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ABSTRACT I1. METHOD Spocial

This work describes the development of a A. TACTILE SENSORS
testbed which combines a subsumption
architecture approach with neural network Tactile sensing is defined as the continuous
processing of tactile information in a reflexive measurement of contact pressure within an
behavior feasibility study. An ovenrvew o,' the array of tactile elements or 'tactels', and is thus
tactile sensor, the neural network processor, and differentiated from touch sensing, which refers to
subsumption architecture is provided along with single contact pressure measurement as with a
a plan for integrating these components into a force transducer [4]. Tactile sensors may be
single system. By incorporating local (reflexive) comprised of touch sensor arrays, however.
processing capabilities within a robot gripper, an Stansfield [51 compiled a list of 0 tactile
additional layer of control is attained without an primitives that cannot be derived but must be
increased computing burden being placed on the determined from direct measurement or
system controller, computation of tactile data. These tactile

primitives include object size, temperature, and
I. INTRODUCTION mass; contact points, edges, and areas; surface

texture of the object; elasticity or malleability and
Reflexive behavior has been demonstrated compliance; and the surface normal where

on mobile robot systems which implemented moments about all of the Cartesian axes are
subsumption architecture [1,21. These behavior zero 16]. This work focuses on tactile
based control schemes were a departure from infoftnation describing contact points, edges,
traditional control methods based on functional and areas that may represent an unstable grasp
modules. or potentially cause damage to the gripper.

This work investigates the applicability of Harmon [7] conducted a survey of industry
behavior based control to manipulation, and research personnel from which he
specifically to a robot gripper equipped with developed the following specifications of tactile
tactile sensors. When a person touches an sensor requirements: spatial resolution of 1 to 2
object that is hot or sharp his exterioceptive mm, array size between 5 x 10 and 10 x 20
system triggers a reflexive reaction even before points per fingertip, threshold sensitivity of .5 to
the individual becomes cognizant of the situation 10 g for one sensing element, dynamic range of
and initiates an intelligent response [3]. This 1000 to 1, stable, monotonic output, repeatable,
work presents an investigation into behavior no hysteresis, a sampling rate between 100Hz
based gripper control, or autonomous reflexive and 1kHz, rugged, inexpensive, and human
grasping. skin-like. While the full set of specifications is

An overview of the autonomous reflexive extremely difficult to achieve, these
grasping strategy and proof of concept system specifications serve as guidelines for sensor
being developed is presented in this paper. The development.
following section describes tactile sensors, the There are a number of different types of
multi-layer perceptron neural network and tactile sensors available. The brief overview
backpropagation training, and the subsumption which follows represents a survey of [3, 4, 6, 8,
architecture. The final section of this paper 9]. Contact switch or microswilch sensors are
discusses the details of the proof of concept reliable, can withstand harsh environments, and
system currently under development. may exhibit no hysteresis. While the greater



majority are based on metal springs, they may nonlinear, exhibil hysler,-sýi; dll. 8,nd t ýcque 8•
also be pneumatic and recent designs are being an unacceptibly t•ist rat,,
created in silicon. The major disadvantages ot Conductive ela.,toriiur lAc iie stI .0o1
these switches is that they tend to provide only development has progressed to the point tIha
binary sensory information and their relatively commercial tactile sensors are available -1 hese
large size limits their spatial resolution and sensors have high compliance due to the
poses mounting difficulties, relatively malleable conductive clas!orner that

Variable capacitance sensors are resides between the two conductive surfaces
constructed by placing a compliant dielectric Though they offer high resilience, are thin and
between two conducting plates. The inexpensive, and are also resistant to high
capacitance varies with the change in the temperatures and corrosion, they tend to suffer
dielectric thickness due to pressure exerted on from hysteresis, creep, and instability which
the plates. Capacitive sensors provide good commercial developers havu ,ttempted to
sensitivity and spatial resolution, high frequency reduce with specialized and proprietary
response, and good signal to noise ratios, but conductive polymers and elastomers. The
they are susceptible to drift, exhibit mechn4cal res-•'se ,ýr,.,e of a conductive elastomer tact,;;
hysteresis in the compliant dielectric element, sensor is also nonlinear, and cross talk reducing
and their signal to noise ratio is subject to circuitry must be implemented in array sensor
degradation in the presence of electromagnetic applications. Nonetheless, the good sensitivity,
interference (EMI) common in industrial spatial resolution, and low cost commercial
environments. Variable capacitance sensors availability of conductive elastomer sensors
can also be used to sense shear because shear make them an attractive choice for the proof of
forces can cause the conductive plates to shift concept nature of this work.
out of alignment resulting in an increase in The sensor chosen for initial
capacitance. experimentation is a conductive elastomer tactile

Small, nigh performance optoelectronic array sensor as shown in Figure 1. This sensor
tactile sensors, while being rugged, sensitive, utilizes a proprietary resistive ink screen printed
resistant to EMI, and linear, pose mounting onto two mylar sheets that are laminated
difficulties due to their fiber optics and are together, inked sides contacting, so that the
relatively expensive to implement. Variable rows of ink on one mylar sheet contact the
inductance tactile sensors, although highly columns of ink on the opposite sheet. The
compliant, are very large and require complex actual force sensing elements are the
transducers. Magnetic-based contact sensors intersections of the rows and columns<. Since
exhibit design and development problems the ink consists of conductive particles
sufficient to warrant further refinement, although suspended in a polymer-based binder, the
they appear promising. Acoustic modulation resistance through the ink at any given
tactile sensing requires complex signal intersection is a function of the pressure that it
processing and planar mounting, but offers seesO Thus, by sequentially applying a voltage
resistance to EMI and thermal effects. to each row and measuring the current output at

Piezoelectric tactile sensors generate each column, the array of resistance values, and
transient electric fields as a result of mechanical thereby the array of forces, can be obtained
deformation or thermal absorption. They are [10,111.
available in very thin, highly conformable films,
but due to the nature of piezoelectric material,
static or steady loads cannot be measured
directly. Moreover, while these sensors may be
well suited to detect vibration or impact, they are 1 r
highly susceptible to EMI as well as thermal I/O
noise which cannot be easily separated from a Tacte) Connector
pressure response. This sensitivity to Matrix Pads
temperature allows the piezoelectric tactile
sensor to also function as a temperature sensor. Figure 1. Tactile Sensor.

Another type of tactile sensor utilizes a
conductive elastomer or piezoresistive element This tactile sensor contains of a 10 row X 10
that changes in resistance as a result of column sensing matrix. Product specifications
mechanical or thermal stress. Piezoresistive include a 5gs rise time (200kHz scanning rate),
materials are inexpensive, highly sensitive, and sensor thickness of .004 inches, and a spatial
tolerate wide ranges in temperature. However, resolution of 0.05 inches (1.27 mm), all within
many of the piezoresistive materials are noisy, Harmon's guidelines [10,111. Actual spatial

resolution, threshold sensitivity, dynamic raitge,



repeatability and hysteresis require furither One of the primary tunctions tha• this n4.tufal
testing for quantification. network can perform is that of p:tefferr

classification The advantage ot imn klcn r•i'ritig a
Q_. NEURAL NETWORKS neural net for pattern classification is that Il(

ne'.ral net is capable of interring a discnnimwant
This project utilizes a neural network to from supervised training and subsequently

perform tactile data processing and applying that discriminant to input patterns The
classification. Simply stated, a neural network decision making capabilities of mull-ilayer
is composed of many nonlinear computational perceptron neural networks stem from the
elements that operate in parallel. A multi-layer nonlinear activation function fused within the
feed forward architecture has been chosen for nodes [12, 141.
use in this project due to its success in For a multi-layer perceptron network as
developing pattern discfiminants using shown in Figure 3 with input layer i, hidden layer
continuous inputs and supervised training [12, j, and output layer k, the network input to a node
13j. A generalized neural network tactile in layerj is
information processor as compared with a logic
implementation offers the advantage of large n ' V
gray scale pattern recognition without requiring net= ,,

highly complex custom logic designs for each
application, and the output of node j is

A single layer perceptron involves a
processing element that is supplied with an array oi f (net,)
of individually weighted continuous or binary
inputs as shown in Figure 2. These inputs are where f is the activation function, w-, is the
summed with a bias and the resulting value is weight value for connecting link ji, and o, is the
passed through a hard limiting nonlinear function weightovalue for cnnet link nd Wili the
to force it to one of two values as output. Thus, value of the ith input layer node. While the
the single layer perceptron maps the input vector activation function may be one of several hard
to an output space, with the two possible outputs limiting nonlinearities, the sigmoid activation
being separated by a line, or hyperplane. The function is generally used with backpropagation
weights and bias for this model are calculated in training since this algorithm requires a
a learning procedure in which inputs with known continuously differentiable activation function.
outputs are used as input patterns and the For a sigmoidal activation function, the output of
neural net converges by adjusting the weights node j is
and the bias [121.

I

input output where Oj is the threshold or bias parameter.
Outputs for nodes in layer k are found in a
similar manner [12, 14.

Fpfure 2. Single Layer Perceptron.

When the decision region is more complex I

than a simple two dimensional map separated 
[k

by a hyperplane, two or three layers may be
implemented to form a multi-layer perceptron
model. Since a three layer perceptron neural
network can generate arbitrarily complex
decision regions, three layers are needed for Xn- m
non-convex decision surfaces in any mufti-layer
perceptron model [12].

The feed forward multi-layer perceptron is Figure 3. Mufti-Layer Perceptron Neural Network.
characterized by input signals being fed forward
from input nodes to output nodes, and each Training for multi-layer perceptron neural
layer feeding only the next succeeding layer. networks is accomplished using back-



propagation 1151. Input patterns with desired and the cerebral cortex [3]. While the cerebral
output values are utilized by the back cortex is nitdating a complex movum,ent.
propagation algorithm to determine the net vork however, the spinal cord may still invoke a reliex
weights and bias parameters. Backpropagation movement in response to such stimuli as heat or
utilizes the generalized delta rule to minimize the pain, interrupting the commands from the
average system error with reoect to the cerebral cortex
adaptive weights. The average system error / Brooks [1, 2] describes a layered control
is given by system that implements a hierarchical control

schenme for mobile robot applications
2 Traditional robot control systems can be

E (tk - OPk) separated into functional modules that flow
2P k sequentially from sensors to actuators. The

control flow from sensor to actuator might
Convergence toward improved values for consist of perception, modeling, planning, task
weights and thresholds is attained by taking execution, and motor control, each
incremental weight changes proportional to the interconnected and operating sequentially and
partial of the error with respect to weight as dependently. Brooks implements task oriented
given by behaviors that operate in parallel to form the

robot control system. In this way, the
odE autonomous mobile robot controller is able to

Awi= - contend with multiple (and possibly conflicting)
dw1, goals and multiple sensory inputs in a robust

and real time fashion.
where This robot control system is composed of

levels of competence, where each level consists
dE d iE dnet, of a desired class of behaviors. The lowest level
dwji dgnetj o'wji is responsible for the basic reflex responses to

avoid danger. The higher layers provide

objectives for motion and "reasoning" with each
Further reduction yields successively higher layer describing a more

specific and complex behavior. The robot
Awi, = 177joi control system is operational with only the

lowest, or zeroth layer of the control system

where 17 is a proportionality constant and Jj is implemented, and the higher layers can be

given by added at any time without compromising the
existing lower layers. The higher layers inject
data into the internal interfaces of the lower

(,k = (tpk - Opk)Opk(l - Opk) layers to promote their goals, and the lower
layers unknowingly oblige the upper layers,

for output layer units or provided that their goals are not compromised.
This type of hierarchical control system based

8p, = opj(l -opj)> pkwki on parallel levels of competence is known as
subsumption architecture [1, 21.

for hidden layer units, with tpk being the desired Motion obot

output value (14, 15]. A multi-layer perceptron Directives Controller Grasp Objects

neural network is implemented for purposes of Subsu.mpt ionn FGripper,'
this work. Architecture DriveS n o "] N eural ........ . . . ........

C. SUBSUMPTION ARCHITECTURE Netork-,' Avoid Damag6
Thermato Gripper/

To initiate autonomous, reflexive gripper SensorObject
response from tactile stimuli, an independent
layer or module that operates in parallel but
independently of the main robot controller can Figure 4. System Control Scheme.
be implemented. In human beings pure reflex
control of the hand is accomplished at the spinal This subsumption architecture can be
cord in response to sensory information, utilized with gripper tactile sensing to provide
Progressively more sophisticated control is grasping that is autonomous and reflexive.
accomplished by the cerebellum, the subcortex, Figure 4 illustrates a possible control scheme



that may even utilize thermal sensors I he goal remn the tactile set, sor, 8 row (input) and 8
is to create a zeroth level of competence h:n,! column (output) wires are routed to a
operates in parallel to an existing robot grippe! breadboard Iwo multiplexers arid CGOS.
controller, which becomes the level ' switches allow I input to receive a ,5 volt signal,
competence layer. In this way autonomous while the other 7 input wires are grounded to
reflexive grasping can be implemented in reduce cross talk. Op-amps provide signal
existing robotic systems without modification of amplification and current to voltage conversion
the existing controller. for thc 8 output lines. The output signals are

To implement this zeroth layer responsible then fed to the input channels of a DAS-8 A;D
for reflexive response, the gripper control signals board in an IBM compatible PC, where an
could be rerouted through the tactile sensor / onboard multiplexer selects the desired channel
neural network controller. This controller would Digital TTL lines from the DAS-8 board are also
operate in parallel to the layer 1 controller, used to time the multiplexers on the input side,
allowing the gripper to operate in most instances coordinating the scan of the 64 tactile sensor
as if the zeroth layer did not exist. However, in row-column intersections. All of the functions of
the event that the tactile sensor data was the DAS-8 board are selectable from C library
determined by the neural network to be functions, allowing integration of the tactile data
indicative of impending danger to the gripper or extraction program, the neural network program,
to the object being grasped, the zeroth layer and the zeroth (reflex) layer of the subsumption
would subsume layer I and release the grip. architecture.
This architecture could be extended to allow the This system as described forms the
zeroth layer or an additional layer to also detect experimental system which is currently being
and respond to object slippage, selective implemented. This system aflows
compliance requirements, and incorrect characterization of the tactile sensor and neural
orientation, as well as providing the processed network interface, as well as training and
tactile data to any other level of competence for verification of the multi-layer perceptron neural
further more sophisticated actions or reasoning. network. A parallel jaw gripper is being used for

the testbed. The tactile sensor is mounted on
Ill. IMPLEMENTATION the parallel jaw robot gripper, and the gripper

controller is integrated into the subsumption
A. DEVELOPMENTAL SYSTEM architecture. The gripper is programmed to

begin closing when an object enters the area
To demonstrate the autonomous reflexive between its jaws, as determined by the

grasping proof of concept, an experimental interruption of a light beam. The gripper closes
system is being developed as shown in Figure 5. on the object while the autonomous reflexive
This system utilizes a tactile sensor, a personal grasping system monitors for a dangerous
computer based data acquisition system, and grasp. It the object is sharp or pointed, the
software code written in C. The tactile sensor is neural network causes the reflex layer of the
a 10 x 10 Tekscan sensor with an active area subsumption architecture to take control of the
approximately .5 inches square, of which an 8 gripper and release the object; otherwise the
row x 8 column area is actually being utilized for gripper continues to close in a normal grasping
data extraction. The sensor has silver doped routine. In a production or commercial
electrical terminations on mylar. Interconnection implementation of this system, it is assumed that
of wires to the sensor has been accomplished the neural net could be trained and then
with Ablestik Ablebond 16-1 conductive epoxy. implemented in hardware, which potentially

could be located in a single chip on the gripper
PC with A/D or in the wrist.Tactile Converter andSensor A/D I/O Neural Network B. EXPERIMENTATIONSBoard Program

The neural network program as described
above is a modified generalized delta rule
implementation written in C code. Operation is
performed on a personal computer where the
neural network program is integrated with the
code to drive the sensor data acquisition, as well
as the code to run the zeroth level of the

Bread Board subsumption architecture system. Figure 6
Figure 5. Experimental Tactie Sensory System. shows a possible behavior based control system

inspired by subsumption architecture.
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Figure 6. Implementation of behavior based control.

Initial characterization experiments of the The neural network used for this pattern
tactile sensor have shown static resistance to classification trial had 16 input nodes, 1 hidden
peak at over 30 Mohms, with values varying layer, and 3 output nodes for each of the three
from sensor intersection to intersection based on possible categories of point, line, or area.
the sensor's resting position and the most recent Convergence of the backpropagation training
force application. A 21b force application to the algorithm was achieved using 6 nodes in the
sensor produced resistance values for a line hidden layer and 1500 iterations for a
load in the .38 to 1.5 Mohm range, depending on normalized system error of 0.000088 over 60
the orientation of the line with respect to the test patterns. The results of a typical training run
rows and columns of the sensor. Resistances are shown in Figure 7. The number of hidden
along the line load were within a 150kohm nodes was determined experimentally, and it
range, with outliers of no more than 2Mohm was also discovered that the network would not
possibly caused by inadequate fixturing. This converge using the actual resistance values of
data was extrapolated to create an ideal sample the row-column intersection, but converged
data file of horizontal line loads, point loads, and consistently when the resistance values were
surface loads to test the capability of the neural replaced by the difference between the noise
network to differentiate these different patterns. thresholding resistance value and the resistance
For this experiment the line loads were located under load. Using the weights and bias
horizontally on 1 or 2 rows, while point loads parameters developed in this experiment, the
could occupy only I or 2 intersections. Surface sample data was correctly categorized by the
loads included 4 or more intersections and were neural network even when the resistance values
square or rectangular in shape. In addition, the supplied were 75% and 150% of the original
resistance data was subjected to an equivalent values used for training.
thresholding function which prevented any noise Continuing experimentation will utilize
from intersections whose resistance value was the,,,data acquisition system for faster data
greater than 2Mohms. The sensor simulated extraction. Experiments will focus on
was a 4 x 4 sensor providing and input vector of determining the minimum point, line, and area
16 values, sizes and force values that can be detected and

differentiated by the discriminant.

C. CONCLUDING REMARKS
0

uJ Robots are being required to perform tasks
E with more dexterity and agility than previously
.V .oli possible. With the availability of tactile sensors

and the ever present demand for safety, not just
____.. ...... ... .... for humans but for expensive robot manipulators

LN and target objects alike, the development of
sensor driven reflexive robot control methods

0 .0001 seems prudent. Moreover, reflexive response
z will probably become an even greater

requirement for dexterous hands in both
0 50 1 manipulators and prosthetic devices, both of

0 500 1000 1500 which have delicate and expensive hardware to

Number of Epochs protect.
This work has reported on a testbed forF•2ure 7. Typical Backpropagatin Training Results. implementation of behavior based control in a
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