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TRIPLET STATES AND OPTICAL ABSORPTIONS IN
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Abstract

We study the nature of triplet states in correlated, quasi one dimensional bands,
with emphasis on the half-filled case relevant to conducting polymers. To incorpo-
rate both electron-phonon and electron-electron interaction effects, we use a Pejerls-
extended Hubbard Hamiltonian, which we solve for finite systems via (numerically)
exact diagonalization (Lanczos) techniques. We extend our results to polymers using
both standard finite-size extrapolation techniques and a novel boundary condition
averaging scheme. First, we examine the nature of the lowest triplet state, focusing
on the crossover from the free electron picture of neutral soliton pairs to the strongly
correlated limit of spin excitations. We then examine the optical absorption spectra
corresponding to (allowed) triplet-triplet transitions; for this purpose it is important
that our novel boundary condition averaging method maintains sharp gap-edge fea-
tures while reducing spurious rapid frequency variations produced by the finite-size
approximations to the band-to-band continuum. We compare our results to data
on triplet transitions in finite polyenes and discuss possible additional experimental
implications, including the interpretation of recent spin-dependent photomodula-
tion (SDPM) experiments in both trans-(CH), and non-degenerate ground state
conjugated polymers.




I. Introduction

No interpretation of the excited state spectra and in particular of the dynamics of photoex-
citations in finite polyenes and conducting polymers can be considered complete unless
it correctly captures the important role of the triplet states. In (derivatives of) finite
polyenes, triplet states are known to be of considerable importance in the processes of
vision {1] and of photosynthesis [2], in that they control crucial relaxation paths after elec-
tronic excitation. In conducting polymers, triplets appear essential to understanding the
nature of long-lived excited states and specifically of the spectra observed in photoinduced
photoabsorption. From a theoretical perspective, knowledge of triplet states and their
properties can provide additional insight into the relative importance of electron-electron
(e-¢) and electron-phonon (e-p) interactions and can help determine the parameters in the
theoretical models of these materials.

Fortunately, a number of recent experimental results have begun to clarify the prop-
erties of triplet states, including the energy levels and their (linear) optical absorption
properties. In finite polyenes, earlier work using pulse radiolysis and flash photolysis
[1, 2] to observe the very weak (forbidden) singlet-triplet in addition to the (allowed)
triplet-triplet transitions has be supplemented by the results of ultra high resolution spec-
troscopy [3] and of embedding the polyenes in “ spectroscopic matrices” [4] which enhance
the forbidden transitions. In conducting polymers, novel experimental techniques includ-
ing “optically detected magnetic resonance” (ODMR) [5, 6, 7, 8], photcinduced ESR [9],
and “spin-dependent photomodulation” (SDPM) [10, 11] have begun to produce definitive
information on the locations and properties of triplet excitations.

Theoretical studies of triplets in these systems have to date been less extensive.
Within the framework of the SSH model {12], Su [13] showed that the lowest triplet
excitation was cxpected to be a pair of neutral solitons with aligned spins. Hartree-
Fock [14], renormalization group (15, 16] and configuration interaction [17] studies have
suggested that in models in which electron-electron interactions are present, triplets could
play an espccially important role as “constituents” in the covalent singlet excitations, such
as the “celebrated” 2' A, state.

However, these intriguing pioneering studies have not been followed by definitive
analyses which simultaneously (1) incorporate completely the full effects of the possible
geometrnic relaxations of triplets and (2) solve eractly the true many-body problem that
ariscs when e e interactions are properly included. Our goal in the present article is to
begin such a defimtive analysis by studying via an exact many-body method a model
which incorporates both e-p and e-e interactions of arbitrary sirengths. We begin in
Section H by introducing the Peierls-extended Hubbard model in the form appropriate
for trans polvacetylene (trans-(CH);) and discussing the numerical exact diagonalization
(Lanczos) techmque we usc for solving the model. We also explain our “boundary condr-
tion averaging” method for extracting estimates of energies ai.! othier properties which
estimates are considerablv less sensitive to finite size effects than those obtained by con
ventional means In Secnon HE we review the analytically tractable weak. (SSH model
and ctrone PHersest oz noded) coupliog i and giscuss the expectations for toplet

properties v Chese g cases. Section 1V contamns the detatls of our numerical reonlts




for the energies, geometries, and optical absorptions of both triplet and (for comparative
purposes) singlet states. In Section V we examine the possible role of triplet states in
recent spin-dependent photomodulation experiments and the relation of the triplet states
to the (optically forbidden) 2' A, state. Finally, in Section VI we discuss a number of
unresolved issues and future challenges for both theory and experiment.

II. The Peierls-Hubbard Model and Lanczos Method

In the context of condncting polymers, the one-dimensional Peierls-extended Hubbard
Hamiltonian [18] provides a theoretical framework capable of treating both clectron-
phonon (e-p) and electron-electron (e-e) interactions of arbitrary strengths. In the specific
case of trans-polyacetylene (trans-(C H).), the Hamiltonian is

1 1
H =3 (~to+ab)Bres + 5K 3 (8e—30)* + 522 D pt+U 3 nana +V 3 neness , (1)
4 . 4 4 4 4

where ¢}, (ce, ) creates (annihilates) an electron in the Wannier orbital at site £, n, = ny; +
ne, where ngy, = czaca,, is the density operator, and By 41 = Za(c} #Ct41 0 + C;_H oCt o) 18
the electron hopping operator, though it may also usefully be viewed as a "bond-charge”
operator [19]. &, represents the projection along the chain axis of the relative displacement
between the (C H) units at sites £ and £+ 1 and p, the momentum of the (C H) unit at site
¢ and mass M. The single particle parameters of the model are the hopping integral {, for
the uniform (C H) 1onic lattice, the electron-phonon coupling a describing the modification
of the hopping between adjacent sites due to the distortion of the underlying discrete
lattice, and the lattice spring constant K representing the cost of distorting the lattice of
(C H), moieties due to interactions not otherwise explicitly included in the model, such
as the core electron repulsion. Since in some of our calculations we shall be interested
in the comparative geometries of the ground and excited states, rather that using the
usual constraint ) ,8, = 0, we have defined ag to be the value needed in order that in
the uniformly dimerized ground state the sum is zero. Using this value of ag allows to to
determine the excited geometries in a manner consistent with that in the ground state.
As in almost all studies of this model, we work in the adiabatic limit, ignoring the lattice
momentum term in Eq. (1) and treating the lattice coordinates as classical variables whose
values are determined by minimizing the electronic energy self-consistently.

The electronic many-body terms due to Coulomb repulsion are parameterized by the
conventional Hubbard U and V| describing the on-site and nearest-neighbor interactions,
respectively. In the hmit U = V = 0 (dominant e-p interactions). Eq. (1) reduces to the
famihar Su-Schrieffer-Heeger (SSH) model [12] of trans-(C H),. In the a = 0 limit (no e-p
but dominant e-e interactions), it reduces to the extended Hubbard model |19, 20].

Considerable experimental evidence (reviewed in [18]) suggests that parameter val-
ues appropriate for conducting polymers lie in the intermediate couphing regime: 17 = 4ta,
where 4tg 15 the ol sigle-parudie bandwidth. ‘To obtam definitive results i this pa-
rameter regime, one must use exact many-body techniques. We adopt adopt the Lanczos
exact diagonalization techmqgue. which we deseribe very brieflv below becanse of some sig-




nificant modifications which simplify considerably the measurement of optical absorption
spectra.

For studies of the optical transitions, we shall need the current operator
Jeerr = t{to — ady) Z(C;«H oCte — C}aClH 5 (2)
-4
The Fourier transform of js¢41 1s

_iq(t+%)jt,t+x . (3)

1
Jy=——= )Y e
q ‘/'N ;
The optical-absorption coefficient a{w) is given by

o(w) = = X (mlJ0)/*6(w — (Em — Eo)) - (4)

In our variant of the Lanczos algorithm, we start generating the basis set by normaliz-
ing some trial wavefunction, which we typically express in terms of real space occupations.
We have usually chosen to start from a random wavefunction, subject only to the con-
straint that S, = 0, where §, is the z-component of the total spin. Since the Hamiltonian
contains no (net) spin flip operators, this constraint is preserved throughout the calcu-
lations. Choosing a random starting wavefunction does not cost much extra computing
time in most cases and, importantly, statistically prevents one from picking a wavefunction
with the wrong symmetry.

The Lanczos procedure is to generate the matrix elements of the Hamiltonian in a
basis that is built up from this trial state. The basis is incremented one wavevector at a
time oy operating on the last basis state with the Hamiltonian and then orthonormalizing
the product to all previous basis states. Notice that by construction (7|H|i) is tridiagonal
{21, 22]. Within this basis, that linear combination of states with the lowest expected
energy forms the estimate of the ground state. The basis will probably not be complete:
we generally will truncate it when we have run out of computer memory, when the estimate
of the ground-state energy stops dropping, or when the residual of a new state, after
orthogonalizing to other components, is negligible.

Importantly, the calculations of optical absorption spectra — and hence also gaps,
conductivities, and susceptibilities — are easily carried out by generating H in a suitable
basis. For the optical absorption, we first calculate the ground state, |1) using the tech-
nique described above. We then generate a new basis, using J,|$o) as the first state and
obtaining subsequent states by the application of H. Once the basis has been generated,
the problem of calculating a(w) reduces to finding the spectral weight of this first state
for the tridiagonal Hamiltonian. In essence, this amounts to determining the spectrum
by measuring the moments of //™ and using the cumulant expansion.

The final theoretical ingredient in our analysis 1s somewhat technical and involves
the use of a novel “boundary condition averaging” technique for effectively reducing the
finite size corrections to optical gaps and spectra and thereby enhancing the convergence




of finite system results to those of the infinite system. Readers interested in the technical
details should consult the original references [22, 23]. Here we note just that by “boundary
condition averaging” we mean, for example, that the total energy of the system is viewed
as the average of the energies derived separately for each of several boundary conditions:

1
NbC(

E Z J:bcE[b.C.J (5)

be}

where N, is the number of boundary conditions used and z;. is a normalized weighting
factor, which may depend on which quantity we are studying. Similarly, the optical
absorption is viewed as the average of absorptions from the separate boundary conditions.

The value of the self-consistent adiabatic lattice distortion is found by minimizing
the total energy
OFE[06,=0 . (6)

At fixed K, to find the grou=d state lattice distortion we use the Lanczds procedure iter-
atively to calculate the new guess at the minimum energy distortion from the expectation
value of the bond charge: this is just the familiar “self-consistency condition”

K(é¢ —2a) = —a(Bpe41) (7)

with the proviso that it be appropriately averaged over the boundary conditions.

IT1. Analytic Limits

We can gain considerable insight into our later numerical results - as well as relate to
earlier work in the literature - by considering the two essentially analytic limits of weak
and strong coupling.

A. The Weak Coupling Limit

In accordance with the common usage, by the “weak-coupling” limit of the Peierls-
extended Hubbard model we mean the case in which (e-e) interactions are weak, so that
an independent particle model provides an accurate approximation. For I/ = V = 0,
the Hamiitonian in Eq. (1) reduces to the SSH model [12], for which the solitonic nature
of the triplet state has been established by Su [13]. We summarize briefly the results.
Working in momentum space, one obtains the ground states of the singlet and triplet by
filling the single particle (band theory) energy levels up to the Fermi surface. The singlet
ground state corresponds to the occupancy shown in Fig. la, in which all levels below
the (Peierls) band gap are filled. Momentarily ignoring relaxation of the lattice in the
triplet state, we sce that the lowest triplet would be as sketched in Fig. 1b, since two
clectrons of the same spin cannot share a single band state. Hence in this approximation
the energy of the lowest triplet wonld be E9 = 27, so that the triplet wonld ocenr at
the same energy as the optical gap However, as shown by Su [13], within the SSH model,
the true fowest triplet state involves a relaxation of the lattice to form a pair of {widely




separated) neutral solitons {which is allowed topologically). Hence the schematic single
particle energy levels are as shown in Fig. 2. The energy of this relaxed triplet, which is
the true triplet ground state in the weak-coupling limit, is

(440)

Ef = Egpg = (8)

Thus the triplet lies below the optically allowed (* B,) state. Further, the geometry of
the relaxed triplet state involves a soliton-antisoliton lattice distortion. Finally, the lowest
triplet-triplet optical transition will involve promotion of one of the occupied midgap
states into the conduction band and will thus occur at Ar = Ao = 1/2Ags, where we have
denoted the singlet-singlet optical gap by Ag.

For later purposes, we note two specific features of this weak coupling limit. First,
the role of “Jahn-Teller” and “anti-Jahn-Teller” systems is reversed between the singlet
and triplet states: that is, the triplet states (in the absence of a gap) are degenerate at the
Fermi surface for 4N + 2 systems with periodic (or 4 N anti-periodic) boundary conditions.
This can affect the interpretation of numerical results on small-sized systems, at least for
weak coupling. Second, for (forbidden) optical transitions between the singlet ground state
and the triplet state — such as would be visible in the high resolution spectroscopy [3] or in
the “spectroscopic matrices” [4] — one would expect to observe the unrelaxed form of the
triplet state because of the essentially instantaneous nature of the transition. However,
for allowed triplet-triplet transitions — as seen in any of the photoinduced measurements
- the relaxed triplet state should be play the role of the initial state.

]
e

s
copEr 4

(b)

Figure 1 Caption: Schematic representations of the momentum space orbital ocen
pancy for the unrelazed (perfectly dimerized) (a) singlet and (b) triplet ground states.
This situation s appropriate for the “weak coupling” (1//ty = 0) limit.
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Figure 2 caption: Schematic representation of the momentum space orbital occu-
pancy of the triplet ground state affer relazation of the lattice; the “two-soliton” lattice
deformation leads to two mid-gap states, which are occupied as for two neutral solitons.
This situation is appropriate for the “weak coupling” (U/to = 0) limit.

B. The Strong Coupling Limit

We consider next the “strong coupling limit”, by which we mean that the Coulomb inter-
action terms are much larger than all single particle energies. Working for simplicity with
V = 0, this implies that U/tq — oc. Since in this limit there can be no doubly-occupied
“sites” (np = 0), it 1s most natural to work in “real” (ie, coordinate) space and to use
valence bond diagrams to describe the states. As is well known, in the absence of dimer-
ization (a = 0) the Hubbard model at half-filling in this mit becomes equivalent to an
antiferromagnetic Heisenberg spin system, with eflective coupling J.,; ~ t3/U. Again we
summarize briefly, using two figures, some famihar results (see, eg, [18] for a more detailed
survey of results in this himit.)




In Fig. 3 we show schematic real space electron distributions for the singlet a_nd
triplet ground states in the ctrong coupling imit. In the singlet state, loosely speaking
all the spins are aligned antiferromagnetically, whereas in the triplet state there are two
bonds which are not antiferromagnetic: hence the energy of the triplet state in this linit
is estimated to be Ex ~ 2J,; ~ t3/U — 0. Strictly speaking, the Néel state shown in
Fig. 3 a “cartoon”, since the actual ground state can have only local (not long-range) spin
order. However, for purposes of estimating energies, this naive picture is adequate.

(a)

=777

(b)

Figure 3 caption: Schematic representation of the distribution of electrons in real
space in the “strong coupling” (U/ts — oo) limit. The Néel state shown is a cartoon; the
actual ground state has only local (not long-range) order.

Figure 3 suggests that in the strong coupling limit the triplet state is a single localized
excitation, in contrast to the weak coupling triplet, which is composed of two sohtons.
However, as shown schematically in Fig. 4, the particular real space configuration with
three parallel spins adjacent to cach other is in fact degenerate with (an infinite number
of} other configurations 1n which two pairs of two parallel spins are separated by an
arbitrary distance. Since these configurations are degenerate to leading order, the actual
ground state will be a mixture of them. In the terminology of the Heisenberg spin system,
the triplet state consists actually of two independent “domain walls”, which must each
therefore have spin 1/2. Note also that the “sense” of the antiferromagnetic ordering -
i, the £:(-1)" - changes as one passes through one of ihe domain walls. In short, the
strong couphng triplet (in the it of zero dimerization) also consists of two independent
excitations and when the e-p coupling is restored, we expect the geometry Lo reflect this,
Avngred above, the energy of the lowest triplet approaches zero, Fop o~ 2.y ~ 13,0+ 0.




Further, the the triplet-triplet optical gap can readily be deduced by noting that the
matrix element of the current operator (recall Eqns. (2)-(4)) in for both singlet-singlet
and triplet-triplet transitions connects subspaces with np = 0 to those with np =1 and
thus involves an energy gap ~ U; hence Ar = Ag ~ U in strong coupling.
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Figure 4 caption: Schematic representation of some of the degenerate real space
electron distributions contributing to the triplet state in the “strong coupling” (U/te —
oo) limit. Note that each has (tc leading order) energy E7 = 2J.45 ~ t3/U

To explore the intermediate coupling regime and the crossover from weak to strong
coupling, we turn in the following section to our Lanczos approach.

IV. Numerical Results

To discuss our numerical results we begin by defining in Fig. 5 the various observables
we will study. As shown in that figure, these include singlet and triplet energies, opti-
cal gaps, and optical absorption spectra as functions of photon frequency. To organize

our presentation, we divide it into three subsections covering energetics, geometries, and
optical absorption.
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E4SE(17A)) v

Figure 5 caption: Schematic diagram of the various energy levels and transition
energies discussed in the text. Energy levels shown include the ground state energy
(Es = E(1'Ay)), the first allowed singlet optical state energy {E('B,)), the (relaxed
lattice) triplet ground state energy (Ef = E(1°B,)), and the “second A,” state en-
ergy (E(2'A,)). Transitions shown are the (allowed) singlet-singiet gap (As) and optical
absorption coeflicient (as{w)) and the (allowed) triplet-triplet gap (A7) and optical ab-
sorption coefficient (ap(w)).

A. Energetics

In Fig. 6 we plot the electronic contributions to the energies of the ground staic and
several important excited states as functions of the Hubbard U parameter, the states
shewn include the lowest triplet (1°B,), the second singlet “A,” state (2'A4,), and the
“optical state” (2' B,). The figure is plotted for an eight site system with open boundary
conditions, corresponding to (idealized) octatetracne. Note that the minimum value of
[ consistent with having the 2' A, below the 1'B, - as is observed in the longer finite
polyenes [3] ~ is about 5 eV (== 24y). Our numerical results show that this “crossover”
point is fairly msensitive to svstem size and to whether one works at fixed &, = & or at
fixed K. Note that over much of the range of {7 the energy of the 284, lies ronghly twice
as far above the ground state as does the 113, state; this strongly supgests that the 21 A,
State s i some sense conposed of two triplets, as indicated by the work of Tavan and
Sehmltern {17].

10
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Figure 6 caption: Electronic contribution to the energies of the states 1' A,. 1’ B,,2' 4,,
and 1' B, (optical gap) as functions of the Hubbard U. Other parameters are ¢,=2.5eV,
a =4.1eVA, K = 51.1eV/A?, and V=0. Open chain boundary conditions on N=8 sites
were used, and the geometiy was constrained to be uniformly dimerized. Note these
parameters give 6=0.03Afor U=4eV, consistent with {rans-polyacetylene. For these pa
rameters, the 2' 4, falls below the 1' B, near U=5¢V.

B. Geometries

To study the geometries of the excited states, we consider both constrained structures -
which are relevant to crystals of both finite polyenes and conjugated polvmers i which
solid state effects impose external forces on the individual chains (e.g. octatetraene, con-
jugated polymers in solid state) and relazed structures, which are relevant to gas phase
experiments on finite polvenes. In Fig. 7 we show the total energies - clectronie plus
lattice distortion  as functions of the (assumed constant '} dimensionless dimerization
(b /ty) for the four states plotted in Fig. 6. Two remarks concerming this fignre are
particularly significant. First, the constraint of constant dimerization (constrainted ge-
ometry) for the excited states is not realistic but is nonectheless useful {or comparnsons
with other theoretical results, sneh as those obtained by Tavan and Schulten [17]. Second,
the asvimmetry between positive and negative values of the dimensionless dunerization
arises <imply becanse, for theae himite svatems with open boundary condition«. the nega

tive values of b /1o corr wpond to systems with one fewer double bonds than the positive




values; these systems naturally have higher energies. The results shown in Iig. 7 are for
N = 8 sites, but our results for N = 10 — 14 show very similar structure, suggesting hittle
system size dependence in this result.

"‘2]]1[]!)]!]1!‘le1]1

ad/tg

Figure 7 caption: Total energy as a function of the dimensionless dimerization aé/{o,
showing the shift in the minimum value for various states of importance in optical ex-
periments: 1'A,, 1°B,,2'A,, and 1' B, (optical gap). Parameters used are U/2t5=0.8,
V/2to=0, and Kto/2a’=2.0. Open chain boundary conditions (b.c.=0) on N=8 sites
were used, and the geometry was constrained to be uniformly dimerized: sec text

In Figs. 8 and 9 we show the relaxed geometries on open chains for the lowest
singlet (Fig. 8) and triplet (Fig. 9) states. Note that the abscissa in each of thcse figures
is the number of bonds, so that the total number ranges from 7 (-3 < n < 3) to 13
(-6 <n <6). InFig. 8, the otherwise uniform dimerization shows a slight increase at the
ends; this is consistent with data on finite polyenes. In contrast, Fig. 9 shows substantial
structure in the dimerization. In fact, in the large system sizes the lattice distortion
is approaching that for a soliton pair. Thus it appears that even at intermediate (e-e)
coupling, the solitonic nature of the triplet state - or at least of the lattice distortion
corresponding to this state - remains.
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Figure 8 caption: The relaxed geometries of the ground state of open chains for
systems containing between seven and thirteen double bonds, corresponding to finite
polyenes from eight to fourteen (CH) units in the gas phase. Parameters are t;=2.5¢V,
a = 4.1eV/A, K = 22 — 24eV/A, and V=0. Note that K was varied to eliminate the
N dependence that arises when the dimerization is constrained to be uniform; when one
allows relaxation via the small variation of K values, the remaining system size dependence
is minimal.
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Figure 9 caption: The relaxed geometries of the lowest triplet state (132) on open
chains for systems containing between seven and thirteen double bonds, corresponding to
finite polyenes from eight to fourteen (C H) units in the gas phase. Parameters are same
parameters as Fig. 8. Note the lattice distortion is approaching that for a soliton pair.

C. Optical Absorption

In discussing the optical absorptions, it is particularly important to distinguish between
instantaneous “vertical transitions”, either allowed or forbidden, and transitions to or
from states with relaxed geometries, such as those occurring in photo-luminescence. In
Fig. 10 we show various energy gaps — labeled generically by “A” in the figure ~ measured
in optical experiments as functions of the Hubbard U. “n!B,” and “n%A,” are used to
denote the “optically allowed” states, since for large U, the lowest states with non-zero
optical absorption matrix elements are no longer the first states of these symmetries. For
simplicity, we have plotted on the case with V = 0; hence there are no ezcitonic effects of
the sort believed to be important in poly-diacetylene crystals [5].

14
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Figure 10 caption : Singlet-singlet (Ag) and triplet-triplet (A7) energy gaps A
measured in optical experiments as functions of Hubbard U. The parameters are tg=2.5¢V,

a=4.1eV/A, K = 21.0eV/A?, V=0, on an N = 10 site system, and antiperiodic boundary
conditions were used.

We note that, as suggested by the analytic estimates in the weak and strong coupling
limits, the allowed triplet-triplet gap (A7) is always less than singlet-singlet gap (Ag).
For U = 0 Ar is almost exactly half Ag (as predicted by weak coupling), while for large
U, Ar — As, as expected in strong coupling.

Finally, in Fig. 11 we plot the frequency dependent absorption coefficient , a{w},
for both singlet-singlet (bottom curve, as(w)) and triplet-triplet (middle curve, ar(w))
absorptions, as well as their difference (top curve). The largest peak in each case is at
the edge of the optical gap, indicating that for these intermediate values of U the rem-
nant of the one-dimensional single particle density-of-states peak survives in the optical
absorption. The prominent higher feature in the singlet absorption has been identified
previously [22] as a “decoupled dimer” peak: that is, a feature that arises because of the
dimerization and which increases in intensity with increasing dimenzation. This feature
is less prominent in the triplet case because a triplet dimer has no allowed optical tran-

sitions, so that the presence of the single triplet on these small systems tends to reduce
the intensity of this peak.
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Figure 11 caption: The optical absorption coefficients as functions of frequency (w)
for allowed singlet-singlet transitions (called as in the text), allowed triplet-triplet transi-
tions {called a7 in the text), and for the difference for an intermediate value of U (= 8 V).
Other parameters are as in Fig. 8. The spectra are averaged over boundary conditions
(b.c.=-1,-0.5,0,0.5,1) and over system sizes N=8,10,12,14. The triplet and singlet absorp-
tions were calculated using the relaxed geometry of the respective cases. The spectra are
displaced for clarity and obtained from the raw data by Lorentzian broadening; this later
procedure leaves some residual unphysical high frequency oscillations in the spectra. Note
however the clear presence of the decoupled dimer peak in the singlet spectrum.

V. Application to Photoexcitations in Conjugated Polymers

A. The 2'A, and 1°B, states

In our discussion of the energetics of excited states (cf. Fig. 6), we noted that over much
of the range of U the energy of the 2'A, lies roughly twice as far above the ground
state as does the 1’ [3, state and remarked that this strongly hints that the 2' A, state
is in some sense composed of two triplets, as suggested also by the work of Tavan and
Schulten [17]. At the same time. from our studies of the geometries of excited states, we
found that the 1°13, state had the lattice distortion appropriate to (wo neutral solitons
(ef Fig. 9). Does this mean that one should view the 2V A, state as composed of four
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solitons? Such an interpretation was proposed in the renormalization group studies of
Hayden and Mele [15, 16] but is explicitly contradicted in the configuration interaction
studies [17] and (at least apparently) in combined experimental/theoretical studies on
octatetraene [24]. Unfortunately, it is easier to argue why each of the purely theoretical
studies could be incorrect than it is to determine a definitive answer to this question.
In the renormalization group studies, the technique of constructing larger systems by
combining smaller ones produces a natural bias against states with “long bonds” in the
valence bond description (see (18] for a more thorough description of this effect). But
these long bond states would correspond precisely to the A, state made up of only two
triplets, rather than four solitons. On the other hand, in the configuration interaction
calculations, the geometries were not completely relaxed, so that one could argue that a
bias existed against the formation of solitons. At present, our data on the fully relazed
geometry and energy of the 21 A, state on the largest systems (N = 12,14) are not sufficient
to determine the resolution of this question unambiguously. This difficulty arises in part
because the 2' A, state is not the lowest singlet state of A, symmetry and thus must be
extracted from the Lanczds data with considerable care.

B. Consistency with SDPM data

Recent studies of the spin dependent photomodulation (SDPM) [10, 11] in both degenerate
ground state (trans-(CH):) and non-degenerate ground state polymers (PPV) identify
the spins associated with long-lived excitations and assign the so-called “high energy”
peak to triplet-triplet transitions associated respectively to neutral soliton pairs in trans-
(CH), and to (spinless) neutral bipolarons (composed of two triplets) in PPV. Although
more detailed quantitative studies are required, our present results on triplet states and
their relations to other excited states (such as the 2' A4, state) are consistent with such
an interpretation. If one assumes a relaxation mechanism which allows the optical 'B,
state to cross over to the lower-lying 2' A, state, then one can take advantage of the
schizophrenic nature of this later state to explain both types of high energy peak. In the
degenerate ground state system the “reversed sense” ground state has the same energy,
so that the long bond that characterizes the 2' A, state can be weak. Hence the two spins
associated with this bond can interact independently with the magnetic field, giving rise
to a spin 1/2 signal. In non-degenerate ground state polymers, the region spanned by the
long bond must also span a region of reversed sense of the bond order. Since this is not
equal in energy to true ground state. the “long-bond” can’t be too long; hence one sees no
spin 1/2 but only spinless or triplet signatures. However, until substantiated by detailed
gquantitative studies, such a theoretical interpretation remains speculative.

V1. Discussion and Open Issues

We have shown that studying Pererls-extended Hubbard models with Lanczos exact diag:
onahization techniques and boundary condition averaging methods, allows one to explore
the properties of trplet states i both finite polvenes and conjugated polvimers over the
entite ranpge of ¢ pand e o couplings. Om resalts are consistent with the known analytic
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limits. More extensive studies should provide detailed interpretations of data from real
finite polyenes, both in gas and crystal phases, and also from conjugated polymers.

Apart from these more detailed studies, there are several additional open issues which
we plan to address. First, we shall attempt to find a definitive resolution of the problem
of the geometry of the 2' A, state. Second, we intend to investigate quantitatively the
consequences of “confinement” -ie, the lack of ground state degeneracy - in conjugated
polymers. Third, we propose to study the potential roles of possible charged triplet states
in doped conjugated polymers. Finally, we plan to explore the manifold of higher spin
magnetic states in these models and systems, in the hope that they may provide still
further insight.
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