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ABSTRACT

We show that the iterative signals generated by a simple recurrently connected
network of only 3 sigmoidal nodes become stable, periodic or chaotic, depending
on the magnitude of a global parameter (s) that controls the steepness of the node
responses. High values of s produce chaotic signals, and low values lead to stable
signals, i.e. unchanging from cycle to cycle. The transition from stability, through
periodicity to chaos is shown to be consistent with Feigenbaum's model of critical
nonlinear systems.

For large networks that are recurrently connected, the stability also depehids crit-
ically on the node connection weights and biases. When these are fixed randomly. it
is possible to find large systems that also show a transition from stability to chaos
by the adjustment of s. When the weights and biases are allowed to evolve by a
modified Hebbian rule, which deptnds on the internal state of the network, we find
that the system becomes stable or chaotic, again depending on s, but does not appear
to exhibit periodicity.

We have developed a software simulation of a machine whose motion in two di-
mensions i3 controlled entirely by the iterative activity of a recurrently connected
neural network. The activities of some randomly chosen nodes drive motor responses
that control the movement. In the absence of external input, the machine can be
made to spiral into inactivity or to follow a chaotic trajectory. If the simulated en-
vironment contains one or more emitting sources, and the machine carries sensors
whose responses are fed into the network, the motion is influenced by the sensory
input. Under a Hebbian-type learning scheme, we show that the machine is strongly
attracted to an emitting source when s is not in the chaotic regime. The motion of
the machine in the region of a source is characterized by cycles of err'.tic attraction
and repulsion, and is highly reminiscent of the motion of a moth near a light.

It is possible that recurrent networks may be used to develop navigation and
obstacle avoidance capabilities that are self-learned in an autonomous land vehicle.
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Nous montrons que les signaux itdratifs produits par un r~seau simple A connexions
r~currentes de seulemnent trois noeuds, sigmo~daux deviennent stables, p~riodiques ou
chaotiques, selon la grandeur d'un param~te global (s) &e stabilit6 des r~ponses des noeuds.
Selon que la valeur de s est dlev~e ou faible, la r~ponse est chaotique ou stable, c'est-A-dire
constante d'un cycle A l'autre. La transition d'un 6tat stable A un 6tat p~riodique, puis
chaotique, est en accord avec le mod~le des syst~mes non lin~aires critiques de Feigenbaum.

Dans les grands r~seaux A connexions r~currentes, la stabilitd depend aussi
grandement de la pond~ration et de la polarisation des connexions entre les noeuds.
Lorsque ces param~tes sont fixes au hasard, ii est possible de trouver de grands syst~mes
qui comportent aussi une transition de 1'6tat stable A l'dtat chaotique selon la valeur
attribute A s. Lorsque nous laissons la pond~ration et la polarisation 6voluer suivant une
r~gle Hebbienne modifi~e, qui depend de l'6tat interne du rdseau, nous trouvons que le
syst~me devient stable ou chaotique, toujours selon la valeur de s, sans presenter aucune
p~riodicit6.

Nous avons mis au point une simulation par logiciel d'une machine dont Ie
mouvement en deux dimensions est enti~rement command6 par l'activit6 it~rative d'un
r~seau neuronal A connexions r~currentes. Les activit~s de certains, noeuds choisis, au hasard
d~terminent les r~ponses qui commandent le mouvement. En 1'absence d'intrants externes,
la machine peut etre amen~e A spiraler vers un 6tat d'inactivit6 ou A suivre une trajectoire
chaotique. Si le milieu simnul6 renferme une ou plusieurs sources 6mettrices et que Ia
machine porte des capteurs dont les r~ponses sont introduites dans le r~seau, le mouvement
est fonction des intrants sensoriels. A l'aide d'un mod~le d'apprentissage de type Hethbien.
nous montrons que la machine est fortement attir~e vers une source 6mettrice torsque s
W'est pas en regime chaotique. Le mouvement de la machine au voisinage d'une source est
caract~ris6 par des cycles d'attraction et de repulsion erratiques, et rappelle beaucoup celui
d'un papillon de nuit pr~s d'une lampe.

1I est possible que des r~seaux r~currents puissent servir A mettre au point des
moyens de navigation et d'~itement des obstacles qui sont auto.-appris dans un v~hicule
terrestre autonome.
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1. Introduction

Part of the work performed by The Advanced Guidance Concepts Group at DRES
is research on radical methods for developing machine intelligence. The long-term goal
is to develop navigation, obstacle avoidance and object recognition capabilities in an
adaptive, intelligent, autonomous land vehicle.

Over the last ten years, artificial neural network (ANN) techniques have shown
promise in the areas of nonlinear mapping, prediction, pattern recognition and adap-
tive nonlinear control. Based on the performance of biological systems, iterative,
recurrently connected networks should be capable of controlling the motion of a dy-
namic system in a changing environment.

The work presented here is the beginning of a bottom-up approach to machine
intelligence based on the self-organizing properties of recurrently connected ANNs
We wish to investigate the development and characteristics of the behaviour of a
machine that is controlled by a recurrent network when it is allowed to evolve in an
environment that provides input to the network through sensors. Output from the
network will drive motor responses of the machine. No human criteria will influence
the behaviour of the machine; i.e. any learning that occurs will be unsupervised.

Our ANNs consist of many identical nonlinear processing nodes that are randomly
interconnected. Each node sums the weighted input from many other nodes, adds a
constant bias (or offset), performs a nonlinear transformation (sigmoidal) and passes
the output to many other nodes. These systems are connected recurrently; i.e. there
is continuous feedback. In the absence of changing external input, these are closed,
iterative, nonlinear systems.

Iterative, nonlinear systems are known to be capable of generating periodic and
chaotic signals.

Consider a nonlinear function of a variable x, whose shape is determined by a pa-
rameter A; i.e. f(x; A). Feigenbaum [1] showed that for a large class of such functions,
values generated iteratively exhibit a periodicity that doubles as the magnitude of A
increases past well-defined values. Beyond a critical value of A, iterative values of f
become aperiodic and are said to be chaotic.

DRES-SR-589 UN(LASSFIED
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Iterative signal generation may be written

xi+1 = f(xi; A) (1.1)

Thus if xi+ = xi the period is 1, and xi is a fixed point of f. If X,+2  x, the
period is 2, if Xi+4 = xi the period is 4, and so on. If A,, is the value of A for which the
n-th periodicity of x first occurs, Feigenbaum showed that A, converges geometrically
in n to A.., for which the system is aperiodic. He defined

6 = A, - An (1.2)

A,+2 - A,+1

and found that 6n approaches a universal constant

lim 6, = 6 = 4.6692.. (1.3)

for all nonlinear systems that exhibit period doubling.

A recurrently connected network of nonlinear processing nodes can therefore be
expected to generate periodic and chaotic signals under certain circumstances.

Recurrent artificial neural networks are often referred to as Hopfield nets because
of the pioneering work done by J.J. Hopfield. His original model [2] employed a
completely connected set of simple linear threshold elements (LTEs) as nodes. The
output of each node was either on or off (0 or 1), depending on whether or not the
sum of the weighted input signals was above the node threshold. The signals passing
between nodes were modified by a matrix of weights, which were iteratively adjusted
to minimize a Lyapunov function. Hopfield's later work [3] employed sigmoidal nodes.
The output of a sigmoidal node is a continuous, bounded, nonlinear, monotonically-
increasing function of the summed input. For both types of network, Hopfield showed
that stable network states, giving a constant output, were possible.

Bruck [4] proved that Hopfield nets with LTEs always converge to stable or cyclic
states of period 2 or 4, if the matrix of connection weights between the nodes is
symmetric or antisymmetric. He termed these "the only interesting cases", but also
showed that for an arbitrary weight matrix there exists a network of order n that has
a cycle of period 2'11. For example, with 30 LTE nodes there exists a network of
period 1024. Bruck did not consider sigmoidal nodes.

The presence and role of periodicity and chaos in biological systems has been
discussed by Freeman and coworkers [5]-[7], and a simulation of biological neurons by
Chay [8] also showed the presence of complex oscillations and chaos. A mathematical
proof of the existence of period-doubling to chaos in sigmoidal neurons was also given
by Wang [9]. The generation of chaotic behaviour in neural networks has been widely
discussed [101-1161.

In the first part of this work (Chapter 2) we show hat the generation of stable,
periodic and chaotic signals in recurrent ANNs can be controlled by a single global

UNCLASS1FIED DRES-SR-589
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parameter s, which determines the steepness of the node response functions. A simple
recurrent network of only 3 sigmoidal nodes can exhibit cyclical behaviour, with
period doubling observed from 1,2,.. 1024 as s increases. For higher values of a,
chaotic behaviour results. From the values of a at which each period doubling occurs.
we obtain an estimate (4.669) of Feigenbaum's universal constant 6, showing that the
process does indeed lead to a chaotic system. A similar study [16] of a system of 3
sigmoidal nodes with delay in the signal transmission, showed that periodicity and
chaos can also result from connection weight and bias modifications.

Beyond the first chaotic region in our 3-node system, there exist smaller regions of
3, for which cyclic behaviour and period doubling reoccur. We have observed regions
of periodicity 7, 14, 28, 56,.., and also 9, 18, 36, 72.., and 8, 16, 32, 64.. For even
higher values of s, cycles of unpredictable period occur (3, 6, 5, 13, 4..). This erratic
behaviour is shown to be due to near discontinuities that arise when the sigmoids
become almost step functions (quasi-LTEs).

We also show that the stability of large networks with fixed weights and biascs
can be controlled by the adjustment of the steepness parameter, s. For dynamic
networks (Chapter 3), in which the weights and biases are allowed to evolve by rules
that depend on the internal state of the network, the stablity may again be controlled.
When the activity of several nodes is used to define a trajectory in two-dimensional
space, we find that in the absence of external input, the trajectories either spiral in
to a fixed point or define bounded chaotic regions.

Thus we understand quite well the behaviour of a simulated recurrent neural
network, evolving by internal rules, that may be driving the movement of a machine
when it receives no sensory input. In the second part of Chapter 3 we then examine
the effect of input to the network from sensors that constantly receive intensity from
a simulated emitting source, such as a light. The intensity, and hence the input to
the network, varies as the position of the machine, in a true dynamic simulation. The
trajectory that such a machine will follow is shown to be dramatically affected by the
presence of sensory input.

Finally, in Chapter 4 we discuss the implication of these results for the possi-
ble development of machine intelligence, and capabilities of obstacle avoidance and
navigation in an autonomous land vehicle.

DRES-SR-589 UNCLASSIFIED
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2. Recurrent Networks

We consider networks that are composed of highly connected processing nodes,
the output of each node n being a sigmoidal function fn of the total input signal x,•.
We define

f.(Xn;,xon) [I + exp(-S(x+ - xo,)j' (2.1)

The function fn is parametric in a steepness factor s and an offset x0n. Figure
2.1 shows the sigmoidal curves for s = 4.0 and 8.0, with an offset of 0.5. The offset
plays the same role as a bias or threshold. We will also refer to the node output as
its activity.

The total input signal to the n-th node at cycle t is

N

Xn)= y W,,f( 1 1  (2.2)
,n=I

i.e. it is the weighted sum of the outputs from the previous cycle of all the N nodes
in the network. If the network is not completely connected, some of the weights will
be zero. Also, the diagonal elements of the weight matrix W will be zero for nodes
that do not have direct feedback.

In this work, we set W,, = 0 for all n, and we may normalise the sum of the
absolute values of the weights at each node in order to limit the total input; i.e.

, IW l- c (2.3)

where c is a constant.

In principle, the steepness parameter s could be different for each node, but in
this work the same value of s is applied to every node.

The iterative output of the network in matrix form is

f(t) = [1 + exp(-s(Wf(t-1 ) - Xo))]-1 (2.4)

The weights and offsets may themselves change from cycle to cycle. There are
many weight updating schemes in the literature, most of which attempt to generate

DRES-SR-589 UNCLASSIFIED
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Figure 2.1

Sigmoid Functions with s = 4.0, 8.0, and xO = 0.5.

stable network states in response to given initial conditions; i.e. the vector f becomes
fixed after a number of cycles. References 16 and 17 are collections that contain
many of the important papers on weight updating algorithms. In Section 2.1 on 3-
node networks and in Section 2.2 on multinode systems, the weights are not altered
from cycle to cycle. However, Chapter 3 considers networks in which the weights and
biases change as the node activities change.

In the next section we show how a simple 3-node system can be made to generate
periodic and chaotic output.

2.1 A 3-node recurrent network

Consider the simple recurrent network of 3 nodes shown in Figure 2.2. Initially,
we consider the function y(x) that is generated by the group of 3 nodes in response
to the input x. The output y(x(')) actually occurs after 2 network cycles; i.e.

y(-(,)) = A"', (2.5)

However, to demonstrate the property of period-doubling to chaos in a way that
can be easily related to Feigenbaum's work [1], we consider the iterative generation

UNCLASSIIED DRES-SR-589
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' 3 ) >

2/

Figure 2.2

A Simple 3-Node Recurrent Network.

of the output of the 3-node group to be

X(,) _,+ V(W O,).. -+ €+,• ._, V(P(+,•) ....,... (2.6)

2.1.1 Generation of symmetric peak functions

The sigmoidal curves generated by nodes 1 and 2 of Figure 2.2 can be combined
at node 3 in such a way that y(x) is a symmetric peak function. This can be done by
setting W31 = -W32. Since nodes 1 and 2 are not connected, the weight matrix is

W 0( 0 1 (2.7)
1 1 0

W satisfies the normalization condition (Eq. 2.3), and the node outputs are

= [1 + exp(-s(x - xo))]-1  (n = 1,2) (2.8)

and
f3= [1 + exp(-s(p(x) - X03))]-_ = y(x) (2.9)

where
p(x) = 1[f 2(x; s, X02 ) - f(x; s, x01)] (2.10)

If the two sigmoids f, and f2 have different offsets, p(x) ;- An p,,k fiipct;,n. Figure
2.3 shows p(x) for several values of the steepness parameter (s = 10, 20, 30), with
x01 = 0.65 and X02 = 0.60.

DRES-SR-589 UNCLASSIFIED
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Figure 2.3

p(x) with s = 10, 20, 30, and x0o = 0.65, x02  0.60.

The function y(x) also depends parametrically on the offset for node 3, X03. Figure
2.4 shows y(x) with x03 = 0.0, and using the s ne parameters as those used in Figure
2.3. It can be shown that the asymptotic values of y(x) are 0.5, and that as s increases
the maximum approaches 1.0; i.e. for x03 = 0.0

0.5 <y(x) •1.0 (-o0 < x < 00) (2.11)

If x03 is not zero, the baseline of y(x) moves up (x03 < 0) or down (X0 3 > 0) the
y-axis.

2.1.2 Periodicity and chaos

Figure 2.4 shows the interception of the line y = x with curves of y(x; s) for 3
values of the steepness parameter s.

Feigenbaum showed [1] that when the magnitude of the slope of y(x) at y = x is
less than 1, the point of interception is a stable fixed point (xf); i.e. iterations from
all initial values of x converge to x1 . Thus, the lowest curve in Figure 2.4, with s =
10, will generate iterative values of about 0.65 for x and y(x), for any initial value of
x. This can be seen from the following procedure:

1. choose any initial value on the x-axis; e.g. x, = 0.2;

2. find y(x1 ) on the curve;

3. move horizontally to the line y = x to find x2 ;

UNCLASSIED DRES-SR-589
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1.0

0,8-

0.6 -

On 0.2 0.4 0.6 0.8 1.0
x

Figure 2.4

y(x) with s 10, 20, 30, and xol = 0.65, x0 2 = 0.60, x03 = 0.0. The
line y = x is also shown.

4. iterate steps 2 and 3.

The iteration converges rapidly to the interception point on the curve with s = 10.

It is possible for a curve to have more than on,. stable fixed point. For example,
consider the curve of Figure 2.5, which has been displaced to the right by setting
X01 = 0.8 and x02 = 0.75, and has s = 15.0. In this case there are two stable fixed
points, near 0.54 and 0.79.

In Figure 2.5 there is also an unstable fixed point near 0.64. At this point the
slope of y(x) is > 1, and iterations diverge away from the point to either of the stable
points. Therefore this system can stabilize to either of two values, depending on the
initial value. There are certain regions of x for which the iterative result is extremely
sensitive to the initial value; e.g. near 0.64 and 0.92 in Figure 2.5.

When many sigmoidal nodes provide input to another node, the output function
can contain many peaks. Therefore, large Hopfield networks can stabilize to any of
many fixed patterns, and which pattern results may be very sensitive to the initial
conditions.

Con-der the cases in Figure 2.4 where ly'l > 1 at y = x; i.e. with s = 20 and 30.
Now the iterations diverge away from y = x. This is an unstable fixed point. As s
increases from 10, the iterated values settle into a cycle of period 2.

DRES-SR-589 UNCLASSIFIED
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0.4 0.6 0.8 1.0
X

Figure 2.5

y(x) with 2 stable fixed points; s = 15, x01 = 0.8, Xo2 = 0.75, x 03 =

0.0. There is also an unstable point.

This period doubling occurs because the curve y(y(x)), which we write y(2)(x), has
2 stable fixed points. An example is shown in Figure 2.6, for s = 15.0.

As s increases, the two stable points of y(2) become unstable, 4 new stable points
first occur for y(4) (Figure 2.7, with s = 16.0), then 8 for y(S) (Figure 2.8, s = 16.5)
and so on. Period doubling occurs ad infinitum, but the spacing between successive
values of s at which doubling occurs becomes geometrically smaller. Thus there is a
rapid convergence to a value s,, beyond which the system is aperiodic, or chaotic.

Table I lists the values of s,•, found numerically, at which the n-th period doubling
was first observed to occur. Table I also gives the values of Feigenbaum's constants
6,, calculated by substituting s,, for A,, in Eq. 1.2. This shows a rapid convergence
to Feigenbaum's value of 6 (4.669201..).

It is quite difficult to obtain accurate numerical estimates of s,,, for several reasons.
First, for any value of a that is very near a period doubling transition, it takes
hundreds of thousands of iterations of the x-values to stabilize to a precise fixed cycle.
For example, Figure 2.9 shows the slow convergence of iterated x-values when s = 12.9,
near the first period doubling. As s approaches s, (12.9735..) the convergence gets
slower, and as s increases further a stable oscillator of period 2 eventually emerges,
as shown in Figure 2.10 for s = 13.1.

The closer s is to a period-doubling transition, the greater is the number of itera-
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Figure 2.6

y( 2)(x) with 2 stable fixed points; s = 15, xo, = 0.65, X0 2 = 0.60, X0 3

= 0.0. There is also an unstable point.
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Figure 2.7

y(4)(x) with 4 stable fixed points; s = 16, xo, = 0.65, X0 2 = 0.60, x0 3

= 0.0. There are also 3 unstable points.
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Figure 2.8

y(8)(x) with 8 stable fixed points; s = 16.5, xo, = 0.65, X0 2 = 0.60,
X03 =0.0. There are also 7 unstable points.

n s, period 6

1 12.9735 2 2.503
2 15.4103 4 4.124
3 16.3838 8 4.579
4 16.61984 16 4.646
5 16.6713832 32 4.665
6 16.6824763 64 4.669
7 16.6848542 128 -

8 16.68536348 256

Table I

Values of s at which period doubling first occurs
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Figure 2.9

Slow convergence of xi when s 12.9, near the first period doubling
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Figure 2.10

Convergence to a cycle of period 2 (s =13. 1).
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Figure 2.11

Cycle of period 4 (s = 16.0).

tions required to determine the stable cycle, and so some criteria must be chosen to
define the point at which period doubling is accepted to have occurred. Our algorithm
performs the following two tests for a cycle of period N:

Ii - zXi-NI < A (2.12)

and
[xi- Xj-Mj > E (M < N) (2.13)

We used AX = 1.OE-12 and E = 1.OE-08. The second condition, Eq. 2.13, establishes
the uniqueness of at least one other member of a cycle of period N. After ever"
iteration, the new point must be checked against up to N previous points. Thus, if
for example the period = 1024, thousands of checks must be performed on hundreds
of thousands of iterations. This is quite CPU intensive, taking z:'veral minutes on a
typical Unix workstation. We use a Hewhi't Packard 9000/720. All calculations were
done in double precision, using a C program.

Figures 2.11 and 2.12 show example of cycles of periods 4 and 8 respectively.
They show that when the value of s is not near a transition, a stable cycle is quickly
established after only a few iterations.

Table I shows values of s that generate period doublings up to 256. Cycles of period
512 and 1024 were also observed with s = 16.6854726 and 16.6854960 respectively.
but no accurate estimates of s9 and si0 were attempted numerically because the
differences are approaching the limit of double precision accuracy.
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Figure 2.12

Cycle of period 8 (1 = 16.5).

Table I also indicates that a region of chaotic (aperiodic) signal generation would
be expected for values of s > 16.7, and in fact no periodicity was observed immediately
beyond this value. Figure 2.13 shows an example of chaotic iterative x values for s -

17.0. The values shown are an arbitrary set of 200 consecutive iterations.

Iterative periodicity and chaos can be represented as trajectories in xy-space. If
we take each input signal xi and its output yi (i.e. xi+,) to be a coordinate pair,
then the movement of these points represents a trajectory. Figure 2.14 shows the
trajectory for the cycle of period 8 that was shown in Figure 2.12. Figure 2.14 is
actually a plot of 101 points from the 400th to 500th iterations. This shows that the
system is constrained to move in a closed 8-point trajectory. Each of the 8 points
must, of course, lie on the curve y(x). Figure 2.15 is the trajectory for the chaotic
system shown in Figure 2.13. In this case, the trajectory is not closed. Plotting more
points results in completely filling the curve y(x) to which the trajectory is confined.

As s increases, the system remains chaotic until a cycle of period 7 appears near
8 = 20.0. Period doubling then reoccurs as s increases, as summarized in Table II.
The way in which this region of periodicity emerges from a chaotic region can be
understood by looking at the curve y(7)(x) for s = 20.0, where the period is 7. Figure
2.16 shows that this curve has 7 points where ly'l < 1, where the line y = x intercepts
maxima or minima. Figure 2.17 shows the same curve, but with s = 19.0, just before
the onset of periodicity.
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Figure 2.13

Chaotic signal generation (s = 17.0).
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Figure 2.14

Trajectory of a cycle of period 8 (s = 16.5).
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Figure 2.15

Chaotic trajectory (s = 17.0).

n sn period

0 19.996 7
1 20.090 14
2 20.131 28
3 20.140 56
4 20.1415 112
5 20.1419 224

Table II

Approximate values of s in second period doubling region
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Figure 2.16

y(7)(x) with 7 stable fixed points; s = 20.0, x0 l = 0.65, X0 2  0.60,
X03 = 0.0.
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Figure 2.17

y(l)(x) with no stable fixed points; s = 19.0, xo, = 0.65, xo2  0.60,

X03 = 0.0.
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n s,, period
0 20.600 9
1 20.602 18
2 20.6032 36
3 20.60351 72
4 20.60358 144
0 20.95 8
1 21.00 16
2 21.024 32
3 21.029 64
4 21.030 128

Table III

Approximate values of s in 3rd and 4th period doubling regions

The second region of periodicity spans a much smaller range of s than the first,
and at s = 20.15 the system is again chaotic. However, because of the emergence
of new maxima and minima in the curves y(n)(X), further regions of period doubling
occur. At a = 20.60, a cycle of period 9 is established, period doubling reoccurs, then
again at s = 20.95 a cycle of period 8 appears. These 3rd and 4th regions of period
doubling are summarized in Table III.

Beyond the 4th period doubling region the system is chaotic until about S = 24,
where a cycle of period 3 appears. Now the sigmoids are so steep that they are
almost step functions. At s = 23.0 (Figure 2.18) y(3 )(x) has no value for which Iy'I <
1 where y = x, but when s = 25.0 (Figure 2.19) there are three stable fixed points.
This system of period 3 remains stable as s increases from 24 to 47; i.e. no period
doubling occurs. This is due to the flat extrema produced by the quasi-step functions.

At s = 48, a cycle of period 6 occurs. However, this is not a process of period
doubling leading to chaos, but rather a series of abrupt and unpredictable transitions.
As s increases, cycles of period 5, 13, 4, 6, 5 and 7 appear for s = 50, 51, 52, 61, 62 and
70 respectively. Figures 2.20 and 2.21, showing y(3)(x) for s = 47 and 49 respectively,
demonstrate the origin of these sharp transitions, arising near discontinuities in the
steep quasi-step functions. Figure 2.22 shows the 6 fixed points for s = 49, and
Figures 2.23 to 2.25 are examples of cycles with periods 5, 13 and 4. In this domain
of s the fixed points jump erratically from one flat region of a y iterate to another.
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Figure 2.18

y(3)(x) with no stable fixed points; s 23.0, x0 l = 0.65, X0 2  0.60,
X03 = 0.0.

1.0 . . ..

0.8-

0.6-

0.4
0.2 0.4 0.6 0.8 1.0

x

Figure 2.19

y(a)(x) with 3 stable fixed points; s = 25.0, xol = 0.65, x0 2 = 0.60,
X03 = 0.0.
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Figure 2.20

y(3)(x) with 3 stable fixed points; s = 47.0, x0 l = 0.65, X0 2 = 0.60,
Xo3 = 0.0.
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Figure 2.21

y( 3)(x) with no stable fixed points; s = 49.0, x0 l = 0.65, X0 2 = 0.60,
X03 = 0.0.
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Figure 2.22

y(6)(x) with 6 stable fixed points; s = 49.0, xo0 = 0.65, X0 2 = 0.60,
X03 = 0.0.
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Figure 2.23

y(')(x) with 5 stable fixed points; s = 50.0, xl = 0.65, X 0 2 = 0.60,
X03 = 0.0.
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Figure 2.24

y(13)(X) with 13 stable fixed points; s = 51.0, x01  0.65, x02  0.60,

X03 = 0.0.
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Figure 2.25

y(4)(x) with 4 stable fixed points; s = 60.0, x0l = 0.65, X0 2 = 0.60,
X03 = 0.0.
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2.2 Multinode Networks

Having determined that in a very simple recurrent network the generation of sta-
ble, periodic or chaotic signals can be controlled by a single global parameter, we
now determine if stability can be controlled similarly in large ANNs. The simple
mathematical analysis of the iterated functions that was possible for the 3-node sys-
tem is no longer possible when the output signal from any given node is fed back
through many other nodes whose outputs may not reach the original node until many
iterations are completed; i.e. the signal that is fed back is strongly coupled to many
previous iterations. We have therefore focussed on the numerical results of iteratively
calculating the vector of node activities in large networks.

First we look at nets in which the weights and offsets are fixed at some random
initial values (sections 2.2.1 and 2.2.2) and the system is iterated with various values
of the node steepness parameter s. These rigid systems do not have adaptive or
learning properties, although it may be possible to use them to store and recall
different patterns depending on the initial input vector, and their stability properties
are relevant to an understanding of large nets with plastic parameters. Section 2.2.1
considers completely connected ANNs.

Biological systems do not have completely connected sets of neurons. It would be
physically impossible to connect all the billions of neurons in a mammal, for example.
Similarly, in a simulation of a recurrently connected ANN, computer processing speed
and storage capacity limit the number of connections per node. In section 2.2.2 we
describe the stability of a partially connected ANN with fixed parameters.

In Chapter 3 we consider dynamic recurrent networks, in which the weights and
offsets change from cycle to cycle, depending on the input and output at each node.
Chapter 3 concludes by describing the interaction of a dynamic ANN with a simulated
environment, through nodes receiving external input and tranemitting motor output.

2.2.1 Completely connected nets with fixed weights and offsets

We have simulated several completely connected multinode networks. The nodes
had no self-feedback (W,•,, = 0). The weights for each node were chosen randomly
between -1 and +1, and then normalized (Equation 2.3), with the normalization
constant generally chosen to be the number of nodes in the network. The only purpose
of this normalization was to ensure that each node could receive roughly the same
total input signal. The offsets, contained in the vector xO, were chosen randomly
between 0 and 1.

The state at time t of a recurrent network of N nodes is given by the vector f(0).
It is calculated from the state at the previous cycle using Equation 2.4. The initial
components of the state vector for each network were chosen randomly between 0 and
1.
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When a recurrent network operates iteratively, periodicity must be detected by
testing all the components of the state vector with all the components from previous
cycles (cf. Equations 2.12 and 2.13). For example, for a 100 node network, the outputs
from all the 100 nodes must be identical to those from a previous cycle for the system
to be termed periodic.

From the work described in thv, previous section on 3-node networks, we expected
that periodicity and chaos should occur for some random multinode networks, and
that it should be possible to control this behaviour by adjusting the node steepness
parameter s for the whole network.

Initial work on nets containing 20 and 100 nodes supports this. A 20-node network
showed cycles of period 1, 7, 14 as s increased from 1.0 to 2.1. However, beyond about
2.194, we could detect no periodicity. The 20-node system then appears to be chaotic.
This aperiodicity persists until s reaches about 6.0, where a cycle of 1 occurs. For
higher values of s, erratic periodicity occurs, much as in the 3-node case, with cycles
of period 38, 1, 142, 1, 31, 33, 13,.. being observed in the region s = 10 to 20.

A particular randomly initiated 100-node network was stable for s < 0.69, i.e. it
converged to a cycle of period 1. However, above this value we detected no periodicity.
The transition from stable behaviour to chaos seems to be much more abrupt for this
larger network. This is not to say that all randomly initiated networks will exhibit a
transition to chaos when s is increased. In fact, most of these networks simply iterate
to a stable state. However, those that do exhibit a transition to chaos can all be
stabilized by reducing a.

2.2.2 Partially connected nets with fixed weights and offsets

Because it was a convenient structure for the subsequent studies described in
Chapter 3, we focussed on a network of 90 nodes, each with input connections from
10 other different nodes. The connect;rn• 'ver, chn'on randomly from anywhere in
the network. Other network sizes and numbers of connections have also been studied,
but the results are essentially the same; i.e. the stability can be controlled by varying
8..

The connection weights in the 90-node system were chosen randomly between 0.1
and 0.9, and the sign was also assigned randomly. The offsets were chosen randomly
between -1.0 and 1.0.

The results were quite straightforward. For s < 5.6 the network converged to a
fixed state, and there was a sharp transition to chaos around s > 5.7. We observed no
region of period doubling in this system. However, other randomly initialized systems
may show periodicity. Since our goal is to develop adaptive, learning machines,
a detailed study of the conditions under which period doubling may occur in the
transition to chaos was not performed.
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3. Dynamic Recurrent Networks

A dynamic recurrent network is one in which the weights and offsets change from
cycle to cycle, depending on the input and output at each node.

The dynamic variation of connection weights and offsets is similar to the changing
synaptic strengths and thresholds in biological neural systems, and offers the possibil-
ity of machines that are capable of learning from, remembering, and adapting to their
environment. This requires some dynamic interaction between the network and the
environment through nodes that receive sensory input and output nodes that drive
motor responses.

The structure of such a dynamic recurrent ANN is described in section 3.1, to-
gether with its properties in the absence of external input. Output node signals are
used to drive a simulated machine and its two-dimensional trajectories are shown to
depend on the global node steepness parameter s.

In section 3.2 we describe the effect of sensory input on the movement of tile
simulated machine.

3.1 A partially connected dynamic recurrent ANN

The structure of the recurrent ANN described in this section was intended to
provide the basis for studies of the dynamic interaction of an ANN with a simulated
environment containing an emitting source, results from which are given in section
3.2.

Our dynamic recurrent ANN (Figure 3.1) has 3 distinct regions, which we call
input, internal, and output regions. Sensors only have connections to the input
region, and motor nodes are only connected to the output region. Nodes in all 3
regions are partially interconnected (randomly), so that the processing is recurrent
throughout the ANN. To summarize, the following functions are performed in each
region:

1. input region: signals from sensors and other network nodes are received.
processed and passed to other nodes in the network by a limited number of
randomly chosen connections;
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Figure 3.1

A 90-node dynamic recurrent ANN with three processing regions.

2. internal region: signals are received from and passed to randomly connected
nodes; the nodes in this region have no direct external input or output; and

3. output region: signals are received from and passed to anywhere in the net-
work, but not directly from the input sensors; the motor nodes are randomly
connected to a limited number of the nodes in this region.

An example of this arrangement is shown schematically in Figure 3.1. In each
of the regions, a node is shown with 5 of its possible connections. The sensors Only
provide output signals, and the motor nodes only receive input. The recurrent nodes
may be connected for either input or output, or both. In our simulation, it is only
necessary to store the input connections for each node since the activity of any node
can be calculated from its input at each cycle. The node activities are stored fromn
the previous cycle and then updated after all the new activities have been calcu-
lated. Each node is initialized to have the saime number of randomly chosen input
connections, and every node provides output to at least 2 other nodes.
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We used 90 recurrent nodes in all the simulations described subsequently. The
nodes were divided into 30 per region, as shown in Figure 3.1. This was a convenient
number for reasonable CPU times, and provided enough nodes in each recurrent
region for at least 10 unique input connections per node without it being difficult to
randomly assign the connections. The sensors each had 10 random connections to
different nodes in the input region, and each motor node had 10 random connections
from different nodes in the output region. The connectivity of our network is thus
about 10%. We have not yet studied the effect of changing the connectivity.

In this section, the sensor outputs were all fixed at zero. The weights for the
connections from the sensor nodes to the input region were all set to 1.0. This is
unimportant here because the sensor outputs were always zero. The form of the
sensor response as a function of incident intensity is given in section 3.2.

The weights for the recurrent node connections were randomly initialized between
0.1 and 0.9, and the signs were also assigned randomly. The offsets were randomly
initialized between -1.0 and 1.0. The weights and offsets of the recurrent nodes were
changed dynamically, as described in section 3.1.1, after every iterative calculation of
the network state; i.e. the node activity vector.

The motor nodes were connected with constant weights of magnitude 1.0 to ran-
domly chosen recurrent nodes in the output region. The sign was alternated between
the random connections; i.e. these weights were (1.0, -1.0, 1.0, -1.0,..). The motor
node weights did not change during the simulation. However, their offsets did change
dynamically (see section 3.1.1).

3.1.1 Dynamic variation of the weights and offsets

For a recurrent node i at cycle t, which received an input f"-1 , from the jth node
and generated an output flt, the change in the weight connecting nodes i and j that
we have used is:

W13 1 -it
d1YM = a1r jf•-ft - yW,, (3.1)

This is a modified form of the synaptic strength modification rule proposed by
Hebb [19]. The principal effect is to strengthen connections carrying strong input
signals that contribute to strong output signals. Because our weights may be positive
or negative, we have included a sign term to ensure that both types can increase
in magnitude, and we include a decay term (-) so that the weight magnitudes are
bounded. The parameter a controls the maximum change that can occur at each
cycle; i.e. it is a growth rate.
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We also allow the offsets of the recurrent and motor nodes to vary dynamically in
the folowing way:

dxoi = 0(ft - 0.5) (3.2)

This ensures that every node continually adjusts its offset so that the node output
approaches the centre of its range. No node can be permanently off because its offset
is too high, or permanently on because its offset is too low. This technique has the
following consequence: in a recurrent system that is approaching stability all the node
outputs will approach 0.5. However, for networks that receive changing sensory input,
or are operating in the chaotic regime, the offsets change continually.

From Eq. 3.1 it can be seen that for a system approaching stability, the weight
change approaches zero and

Wj (3.3)

If, for example, the growth rate is set to ten times the decay rate, then all the
recurrent node weights will approach a magnitude of 2.5. Reasonable values of the
update parameters are:

a = 0.01;

- = 0.001; and

= 0.01.

These values ensure that the maximum change in a weight is 0.01 and in and offset
it is 0.005 at any iteration; i.e. normally less than 1% change for weights and offsets.

3.1.2 2D movement of a simulated machine

Four motor nodes are shown in Fig. 3.1. Since their outputs are all positive, we
used the output of two of them to determine a change in the z-coordinate, one node
output giving +6x, the other -6x. Similarly, the other two motor nodes determine
the change in y. The magnitude of the (x, y) steps taken at each cycle may be scaled
for convenience. Consequently, the units on the trajectory diagrams shown in this
Chapter are arbitrary.

Now we look at the trajectories generated for different values of the recurrent
node steepness parameter st. The motor nodes are also sigmoidal in our system, and
the steepness parameter (s,,) for all of them was assigned a fixed value of 4.0. For
each motor node, this generates a roughly linear response to the total input that it
receives, at least in the region around the offset.

Figure 3.2 is an example of the trajectory of a system that is converging. To
generate this curve, the initial random network was iterated for 5,000 cycles to allow
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Figure 3.2

Convergent trajectory with sr = 0.4 and no sensory input

the weight and offset schemes to take effect, using the update rate parameters given
in section 3.1.1. Then the motion of the system was plotted from the (0,0) coordinate
position for a further 10,000 iterations. The movement along the curve then represents
the change in (x, y) for each iteration. The updating scheme clearly generates a
smooth convergence.

The trajectories spiral to fixed points for low values of s, and become chaotic as
S. increases. As in the case of large systems with fixed weights and offsets (section
2.2), there is a sharp transition from systems that converge to those that become
aperiodic. In our system, this occured between s, = 0.49 and 0.50.

At first sight, the trajectories of systems that have s, > 0.5 appear to be closed,
even though the node activity vector was determined to have no exact periodicity.
With s, = 0.5 for example, Fig. 3.3 shows the trajectory generated by 10K iterations
after an initial 500K iterations had been performed from the random initial state to
ensure that it had not in fact converged to a periodic system. Figure 3.3 certainly
appears to be a periodic orbit. However, when any section of the trajectory is greatly
magnified, it is clear that the path never exactly repeats itself. It is chaotic, Figure
3.4 is a magnified view of the top right hand corner of the orbit shown in Fig. 3.3. If
the number of iterations is increased, the lines in Fig, 3.4 simply become more closely
spaced; e.g. the same region of the trajectory is shown in Fig. 3.5 after 20K iterations.

As s, increases, the quasi-periodic trajectory first becomes more complex (Fig.
3.6), then less confined (Fig. 3.7), and finally completely unstructured (Fig. 3.8).
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Figure 3.3

Quasi-periodic trajectory with s, 0.5 and no sensory input
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Figure 3.4

Magnified view of the chaotic trajectory with s, = 0.5 after 10,000
iterations
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Figure 3.5

Trajectory with s. = 0.5 after 20,000 iterations
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Figure 3.6

Quasi-periodic trajectory with s, = 0.6 and no sensory input
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Figure 3.7

Trajectory with ., = 0.8 (10,000 iterations)
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Figure 3.8

Unstructured trajectory with s, = 1.0 (10,000 iterations)
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Simulated machine in a 2D world with an emitting source

3.2 Effect of Sensory Input

We have simulated the movement in two dimensions of a circular machine that
is controlled by the recurrent neural network shown in Fig. 3.1. The six sensors are
equally spaced around the circular machine, which is confined to move in a circular
world containing an emitting source. The arrangement is shown in Fig. 3.9.

The dimensions and units used in the simulation are arbitrary because the motor
node outputs can be scaled to adjust the machine step size, and the source intensity
can be varied at will. We normally use a world radius of 10 and a machine diameter
of 1. The intensity at the source is normally in the range 1 to 10, and is modelled
to decrease as the inverse of the distance from the source. The angular size of the
sensor and the angle that the sensor surface makes with a line joining the source to
the sensor centre are both included in a realistic estimate of the intensity at each
sensor. Also the position and size of each sensor is used to determine which sensors
are partially or totally illuminated. The response of a sensor that is not illuminated
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Figure 3.10

Sensor response as a function of incident intensity

at all is zero.

The function that we have used to generate the sensor response to incident inten-
sity is shown in Fig. 3.10. It has a roughly linear response in the centre of its dynamic
range, and saturates at high intensity. The equation used to generate this response
is:

A)=1 -g9(x) (3.4)

()+ Vg(x)

where
g(x) = exp(-six) (3.5)

and
v = exp(six 0i) (3.6)

si and x0i define the steepness and offset respectively of the curve shown in Fig.
3.10. The subscript i is used to indicate input to the network, si = 4.0 gives a roughly
linear response near xoi. The value of x0; was chosen to give f(0.5) = 0.5.

Thus, as the machine moves about the world, driven by the activity of the recurrent
nodes, the sensor responses change dynamically and are fed into the network. This
provides a continual feedback from the environment. However, it should be noted
that the sensor input to the network can be discontinuous, because a sensor may
suddenly become illuminated or hidden from the source. Also, the machine cannot
go beyond the boundary of the world. If the network output indicates a step out of
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the world, the machine goes as far as possible and stops. It may wait many iterations
before the network generates an acceptable step within the world.

The procedure for studying the effect of sensory input on the trajectories is then
quite straightforward. The machine is initially placed at some point, usually the
centre of the world with coordinates (0,0), and is initialized with random connections.
The weights and offsets may be either random or from the final state iesulting from
previous iterations. The final state of the network is always stored at the end of a
trial so that it can be continued in the same or a different environment. The source
is given a constant intensity I, and the simulation is started. Our program gives a
graphical animation of the machine, source and world shown in Fig. 3.9. It shows the
machine moving in the wo.ld.

If the source is off (I = 0), the machine moves ;long trajectories such as those
shown in section 3.1, depending on the value of s,. If s, < 0.49, the motion eventually
ceases (Fig. 3.2) because the network stabilizes. If s, > 0.5, the motion may appear
periodic or chaotic. (Figs. 3.3 - 3.8).

3.2.1 Effect of pctitive input

An intense source, e.g. with I = 5.0, has a dramatic effect on the trajectory of the
machine driven by a non-chaotic network.

To ensure that the sensor signals dominate input to the nodes in the input region
of the recurrent network, we fixed the weights for the connections from the sensors
at +10.0 for the trials in this section. Recall that with our updating scheme, the
reurrent node weights tend to approach a magnitude of 2.5 (section 3.1.1).

When a machine with a stable network, i.e. one that has converged in the absence
of a source, is placed at (0,0) and the simulation is started with the source on, the
machine immediately starts moving, first toward the source, then away, and eventually
it is strongly attracted to the source. It appears to attach itself to the source for many
iterations, but then moves rapidly away, eventually being attracted again.

It is difficult to express the effect of this motion without actually seeing the ani-
mation. Figure 3.11 shows 10K iterations of the trajectory of a machine with s, = 0.4
(cf. Fig. 3.2). The source can be seen as a small circle at (-5.6, -5.6). The lines show
the trajectory of the machine centre, which is 0.5 units from the machine edge. From
this it is evident that the machine tends to hover around the source, but the periods
when it is actually immobile while touching the source cannot be deduced. However,
Fig. 3.12 shows the distance of the machine from the source at each iteration, and
from this the attachment periods can be seen. There are also long periods when the
machine is immobile at the edge of the world, but the attractions continue to occur.
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Figure 3.13

Trajectory with s, = 1.0 and source intensity = 5.0

A chaotic network is also affected by the presence of the source. With S, = 1.0,
the machine is also initially attracted towards the source, but rapidly moves away.
It moves much more freely over the entire world (Fig. 3.13), and although there are
repeated periods of attraction, the times spent touching the source are brief (Fig.
3.14).

The motion of these systems is very much like that of a moth hovering near a
light.

3.2.2 Effect of negative input

A negative input signal may be obtained by reflecting Fig. 3.10 about the x-axis.
When this negative signal is fed into the recurrent network, the resulting trajectories
are quite different.

For s, < 0.5 the machine now tends to avoid touching the source. Figure 3.15
shows the trajectory with s, = 0.4, and a negative sensor response, again with I =
5.0. Comparing this with Fig. 3.11, it can be seen that the machine is much less likely
to touch the source. In fact, Fig. 3.15 shows 15K iterations, and only once, after 10K
iterations, did the machine actually touch the source.

For values of s, that are in the chaotic regime, the machine exhibits no particular
attraction to the source. Figure 3.16, showing 15K iterations with s, = 1.0, indicates
that the machine is more likely to be farther from the source than for the case of
positive input (cf. Fig. 3.13)
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Figure 3.16

Trajectory with negative input (s, = 1.0, I = 5.0)

A similar effect is obtained if an inverted input signal is used; i.e. if the signal is
always positive but goes to 1.0 as the intensity approaches zero and goes to zero as
the intensity gets large. In this case the machine also appears to avoid the source.
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4. Discussion and Conclusions

Iterative signals generated by a recurrent network of sigmoidal nodes with no
external input can converge to stable or periodic states, or they may be chaotic.
In Section 2.1 we showed that the approach to chaos in a 3-node system may be
achieved by the increase in magnitude of a single network parameter, s, which controls
the steepness of the node responses. This is consistent with Feigenbaum's model
[1] of a nonlinear system driven by a single parameter. As s increases, a stable
system becomes periodic, and then exhibits period doubling to chaos. Beyond the
first chaotic region, other regions of periodicity and chaos occur, and because of the
step-like functions generated by higher s values, a region of erratic periodicity follows.

The behaviour of large recurrent networks with fixed weights and offsets is more
difficult to analyse. However, from the results given in Section 2.2, it seems that the
node response parameter s can be used to ensure stability. Below a ccrtdin value of
3, a multi-node network will converge to a stable state. For some choices of weights
and offsets, large networks can become chaotic as s increases, and the onset of chaotic
signal generation appears to be much more abrupt.

A dynamic recurrent network (DRN), in which the connection weights and node
offsets change as a function of the node activities, has the same property. In Section
3.1 we showed that a DRN with no external input can be used to define the trajectories
of a simulated machine, and that as s increases these trajectories first spiral to a fixed
point, then become quasi-periodic, and are finally completely unstructured (chaotic).

When a DRN is exposed to sensory input, the trajectories of tbe simulated machine
are dramatically altered. The machine shows a strong response to an emitting source
(Section 3.2). Depending on the sign of the input signal from the sensors, there is
evidence of attractive or repulsive behaviour. The motion of the machine, as seen in
a graphical animation, is reminiscent of a moth near a light, with periods of erratic
attraction, hovering and repulsion. For nonchaotic values of s, the equations that
drive the system could stablilize in two possible positions. One is where the machine
is far from the source, so that the input is weak and eventually becomes low and
constant, and the machine becomes inactive. This is observed when s is low and the
source intensity is weak. Here the sum of the node activities is a minimum. The
other possible stable position is where the machine is touching the source, so that the
input is also essentially constant, and the sum of the node activities is a maximum.
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For strong sources, the equations drive the system to maxima in the sum of the
node activities, but these configurations are evidently unstable, because after several
network iterations the machine moves away from the source.

The DRN that we have constructed is essentially a responsive system. In the
absence of a source, it may be made to make what looks like a random walk, using a
high value for s. Thus the machine can be made to search its environment. When a
source is detected by an input signal from one or more sensors, the value of s may be
lowered so that the machine is attracted to the source, if the input is positive. It may
also be possible to effect repulsive behaviour by using a negative or inverted input.

So far, our simulated machine has Po memory. When a source is illuminated,
the system takes some time to respond to it. It may be possible to construct a
network that retains a memory of the weight modifications associated with each
sensor response, so that when a sensor generates a signal the machine immediately
responds. There are many possible variations to the network architecture that must
be investigated; e.g. changing the growth and decay rates in the modification rules;
increasing the number of nodes and connections per node; and using distinct network
regions that have different weight and offset updating schemes.

Our weight modification scheme may be called a pre-post modification rule, be-
cause it uses the strengths of input signals and the resulting output signal at each
node. Another possiblity is a pre-associative or pre-modulatory scheme in which strong
coincident input signals to a node may strengthen their connection weights. Kandel
and Hawkins [20] summarize the modification rules that are suspected to occur in
biological systems.

It may also be possible to use regions of a network to recognize and respond to
stored patterns. Depending on the exact initial state, a multinode net may converge
iteratively to one of many possible stable states, and this has been proposed as a
mechanism for pattern recognition. It should be possible to avoid iterative chaos in
these regions of a network by adjusting the local node steepness parameter. The
pattern generated may then drive a motor node response in a predetermined way.

Our initial results on the behaviour of dynamic recurrent networks that are ex-
posed to sensory input show promise for the eventual development of autonomous
vehicles that respond adaptively to their environment. By constructing complex re-
current systems with sensory input and motor output, it is possible that intelligent
machine behaviour may be created, with no human criteria determining the machine
responses. The expectation is that it will be possible to define systems that lead to
useful machine behaviour.
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