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Abstract

A wait-free hierarchy maps object types to levels in Z+ U {~o}, and has the following
property: if a type T is at level N, and T' is an arbitrary type, then there is a wait-
free implementation of an object of type T', for N processes, using only registers and
objects of type T. The infinite hierarchy defined by Herlihy is an example of a wait-free
hierarchy. A wait-free hierarchy is robust if it has the following property: if T is at level
N, and S is a finite set of types belonging to levels N - 1 or lower, then t':ere is no
wait-free implementation of an object of type T, for N processes, using any number and
any combination of objects belonging to the types in S. Robustness implies that there
are no clever ways of combining weak shared objects to obtain stronger ones.

Contrary to what many researchers believe [AGTV92, AR92, Her9laI, we prove
that Herlihy's hierarchy is not robust. We then define some natural variants of Herlihy's
hierarchy, which are also infinite wait-free hierarchies. With the exception of one, which
is still open, these are not robust either. We conclude with the open question of whether
non-trivial robust wait-free hierarchies exist.
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1 Introduction

A concurrent system consists of asynchronous processes communicating via typed shared
objects such as registers, test&sets, and queues. Since any given system supports only a
limited set of object types in its hardware, other useful types will need to be implemented
in software. Thus, implementing an object of a given type using objects belonging to a
given set of types is a fundamental problem. To be useful, implementations must guarantee
linearizability [HW90]: concurrent accesses on an implemented object must appear to take
effect in some sequential order. One way to ensure linearizability is to implement shared
objects using critical sections [CHP71]. This approach however is not fault-tolerant: the
crash of a process while in the critical section of an impltmented ubject can permanently
prevent the remaining processes from accessing the object. This lack of fault-tolerance led
to the concept of wait-free implementations [Lam77J. An implementation is wait-free if
every process can complete every operation on the implemented object in a finite number of
its own steps, regardless of the execution speeds of the remaining processes. In particular, if
object 0 is built using a wait-free implementation, then the crash of some processes cannot
disable the remaining processes from completing their operations on 0.

How feasible are wait-free implementations? It is known that registers are too weak to
implement1 even a 2-process consensus object, i.e., a consensus object that is accessed by
at most two processes [LAA87, CIL871. Test&sets and 1-bit read-modify-write objects can
implement a 2-process consensus object, but not a 3-process consensus object [LAA87]. 3-
valued read-modify-write, on the other hand, can implement an N-process consensus object,
for all N. These results indicate that object types differ in their ability to support wait-free
synchronization, and that there may be a way of ordering them accordingly. This issue was
addressed in a seminal paper by Herlihy [Her88, Her9lb]. Following are some important
definitions and results in [Her9lb].

1. For every object type T, an object of type T can be implemented for N processes
using only registers and N-process consensus objectq. This is the universality result
of Herlihy.

2. For every N > 1, (N + 1)-process consensus object cannot be implemented using just
registers and N-process consensus objects.

3. The consensus number of a shared object ( is the maximum number N such that an
N-process consensus object can be implemented using just 0 and (any number of)
registers. Define a hierarchy of shared objects such that 0 is at level N if and only if
its consensus number is N. This will be referred to as Herlihy's hierarchy.

As an obvious consequence of the universality result, Herlihy's hierarchy has the fol-
lowing important property: if an object 0 of type T is at level N, then for every object type
TV, an object of type T' can be implemented for N processes using just registers and objects
of type T. We will call any hierarchy with this property a wait-free hierarchy. Thus, in a

' Hereafter "implementation" stands for "wait-free implementation".
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wait-free hierarchy such as Herlihy's, if an object 0 of type T is at level N, we can immedi-
ately infer that arbitrary wait-free synchronization among N processes is feasible using just
registers and objects of type T. Notice that this definition allows 0 to be at level N even if
arbitrary wait-free synchionization among more than N processes is feasible using registers
and objects of the type of 0. Thus, the level of an object in a wait-free hierarchy does
not reflect the object's full potential; it is only a lower bound on the extent to which the
object can support arbitrary wait-free synchronization. To understand the exact potential
of objects, we define a tight wait-free hierarchy. In such a hierarchy, an object 0 is at level
N if N is the maximum number of processes for which arbitrary wait-free synchronization
is feasible using registers and ob.iects of the type of 0.

What other properties are important in a hierarchy? We argue below that robustness is
one. A hierarchy is robust if for every object 0, the following holds: if 0 is at level N, then
it is impossible to implement 0 for N processes using any number and any combination of
objects at levels N - 1 or lower. Robustness guarantees that there are no clever ways of
putting weak objects together to implement a strong one. We now present an example to
illustrate the significance of robustness in analyzing the power of shared primitives. Consider
two systems S, and S2. Suppose that 8 1 supports only registers and testasets, and S 2

supports only registers with 3-register assignment. Herlihy showed that arbitrary wait-
free synchronization is impossible for 3 or more processes in S1, and for 5 or more processes
in $2. What implications do these results have on a third system 83 which supports both
test&sets, and registers with 3-register assignment? In particular, can we conclude,
based on just the above results, that arbitrary wait-free synchronization among 5 processes is
still impossible? We can, provided that Herlihy's hierarchy is robust. Otherwise we cannot.
More generally, if Herlihy's hierarchy is robust, the consensus number of a set of objects,
belonging (possibly) to different types, is just the maximum of the consensus numbers of the
individual objects in the set. Thus, robustness reduces the difficult problem of analyzing the
power af a combination of shared objects to the simpler problem of analyzing the power of
the individual objects. On the other hand, if robust wait-free hierarchies do not exist, then
there is a possibility of combining weak objects to implement strong ones. In particular,
it opens up the possibility of implementing universal objects from non-universal objects!
Thus, from a pragmatic point of view, it would also be interesting to prove that robust
wait-free hierarchies do not exist.

Is Herlihy's hierarchy robust? A study of this question with respect to common object
types, such as register, test&set, fetchkadd, queue, comparekswap, and sticky-bit,
does not present any evidence to the contrary. In fact, many prominent researchers have
attributed robustness to Herlihy's hierarchy [AGTV92, AR92, Her9la]2 We prove that it

'[AGTV92] states "An object has a consensus number k if k is the maximum number of processes for
which the object can be used to solve the consensus problem. Thus objects with higher consensus number
cannot be deterministically implemented by employing objects with lower consensus numbers."

[AR92] states "In fact, Herlihy [Her88) describes a full hierarchy of atomicity assumptions, and proves
that atoms of a higher class cannot be implemented by those of a lower class, in a wait-free fashion in the
deterministic setting."

(Her9ia] states "Elsewhere [17, 15], we have shown that any object X can be assigned a consensus number,
which is the largest number of processes (possibly infinite) that can achieve consensus asynchronously [13] by
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is not robust. More specifically, we present an object type T3 p with the property that k
objects of this type, together with registers, can implement a (k + 1)-process consensus
object, but not a (k + 2)-process consensus object. In particular, one T8 p object, with
registers, can implement a 2-process consensus object, but not a 3-process consensus object.
Thus, by definition, a T8 p object has a consensus number of 2, and is consequently at
level 2 in Herlihy's hierarchy. However, since multiple T8 p objects, with registers, can
implement a consensus object for arbitrarily large number of processes, it follows from
Herlihy's universality result that for all types T and all N, an object of type T can be
implemented for N processes using just registers and Tnp objects. Together with the fact
that a Tsp object is at level 2, this implies that Herlihy's wait-free hierarchy is not robust.

Does there exist a robust wait-free hierarchy? We do not know the answer yet. However,
we define three natural variants of Herlihy's hierarchy, which are also infinite wait-free hier-
archies. We prove that two of these are not robust.3 The third hierarchy, whose robustness
is still open, has the following property: if it is not robust, then there is no robust wait-free
hierarchy. We believe that resolng the robustness of this hierarchy is an important open
problem in wait-free synchronization.

This paper is the first to formalize and study robustness. The technical arguments
involved in proving the impossibility result that k Tsp objects cannot implement a (k + 2)-
process consensus object are novel. Traditional bivalency arguments are inadequate to prove
such lower bounds.

2 Informal model

A concurrent system consists of processes and shared objects. We write (P1 , • ., P,n; 01,..., OM )
to denote a concurrent system consisting of processes PF, ... , P" and shared objects 01,..., 0,
Besides a unique name, every object has two attributes: a type and a positive integer which
denotes the maximum number of processes which may apply operations on that object.
We say that 0 is an N-process object if N is the maximum number of processes which
may apply operations on 0. The type specifies the behavior of the object when operations
are applied sequentially, without overlap. More precisely, an object type T is a tuple (OP,

RES, G), where OP and RES are sets of operations and responses respectively, and G is a
directed finite or infinite multi-graph in which each edge has a label of the form (op, res)
where op E OP and res E RES. We refer to G as the sequential specification of T, and the
vertices of G as the states of T. Intuitively, if there is an edge, labeled (op, res), from state
a to state a', it means that applying the operation op to an object in state a may change
the state to a' and return the response res.

applying operations to a shared X. It is impossible to construct a non-blocking implementation of any object
with consensus number n from objects with lower consensus numbers in a system of n or more processes,
although any object with consensus number n is universal (it supports a wait-free implementation of any
other object) in a system of n or fewer processes."

3 In proving this, we show the following result which is interesting in its own right. There exist two types
such that (i) Even 2-process consensus cannot be solved using objects of either type, and (ii) N-process
consensus (for all N) can be solved using the two types of objects together.

4



A sequence S = (opi,resi),(op2,res 2),...,(opl, rest) is legal from state a of T if there
is a path labeled S in G from the state a. T is deterministic if for every state a of T
and every operation op E OP, there is at most one edge from a labeled (op, res) (for some
res E RES). T is non-deterministic otherwise. 7' is total if for every state a of T and every
operation op E OP, there is at least one edge from a labeled (op, res) (for some res E RES).
In this paper, we restrict our attention to total types.

An N-process object 0 of type T supports the set of procedures Apply(Pi, op, 0),
for all 1 < i < N and op E OP(T). A process P invokes operatior, op on object 0
by calling Apply(P, op, 0), and ezecutes the operation by executing this procedure. The
operation completes when the procedure terminates. The response for an operation is the
value returned by the procedure. We denote the event of P invoking operation op on 0 by

inv(P, op, 0), and the event of 0 returning a response v to P by resp(P, v, 0).

The type of an object, by itself, is not sufficient to characterize the behavior of the
object in the presence of concurrent operations. To characterize such behavior, we use the
concept of linearizability [HW90]. Roughly speaking, linearizability requires every opera-
tion execution to appear to take effect instantaneously at some point in time between its
invocation and response. We make it more precise below.

Consider a concurrent system S = (PI, P2,.., Pn; 01,02,1 ... ,Om,). A configuration
of S is a tuple consisting of the states of the processes P1,. .. , PP and the states of the
objects O1,..., Om. An execution E of S is a sequence Co, eo, C1, el, C 2 7, e2 ,..., where Ci's
are configurations of S, Co is the initial configuration, ei's are events, and Ci+1 is the
configuration that results when event ei occurs in configuration Ci. The history in E is the
subsequence of events in E. The history of object 0 in E is the subsequence of events of
0 in E. If e and e' are two events in a history H, we write e <H e' if e is before e' in
H. A complete operation in H is a pair of events in H - an invocation and its matching
response. An incomplete operation in H is an invocation that has no matching response.
H is complete if it has no incomplete operations. If op and op' are two operations in H, we
write op <H op' if the response of op is before the invocation of op' in H. Two operations
op and op' are concurrent if neither op <H op' nor op' <H op. H is sequential if it has no
concurrent operations.

Let H be a history of object 0. A linearization of H is a complete sequential history
S with the following properties:

1. S includes every complete operation in H.

2. Let inv(Pi, op, 0) be an invocation in H with no matching response (and is thus an
incomplete operation). Then, either S does not include this incomplete operation or
S includes a complete operation (inv(Pi, op, 0), resp(Pi, v, C)) for some v.

Intuitively, this captures the notion that some incomplete operations in H had a
"visible" effect, while the others did not.

3. S includes no operations other than the ones mentioned in 1 or 2.

4. For all operations op, op' in S, if op <Uj op' then op <s op'.

5



Thus, the order of non-overlapping operations in H is preserved in S.

Notice that a given history may have several linearizations. A history I! of object 0 is
linearizable with respect to type T, initialized to state a, if H has a linearization which is
legal from state a of T.

Processes are asynchronous: there are n(, bounds on the relative speeds of processes.
Furthermore, a process may crash: a process may stop at an arbitrary point in an execution
and never take any steps thereafter. A process is correct in an execution E if it does not
crash in E. We assume that every correct process has an infinite number of events in an
infinite execution. An object 0 is wait-free in an execution E if either (i) E is finite, or (ii)
every invocation on 0 from a process that does not crash in E has a matching response.

Let T be an object type and £ = (T 1,T 2 .... ) be a (possibly infinite) list of (not
necessarily distinct) object types. Let E = (a,, o2,...) be a list where oi is a state of type
Ti. An implementation of T, initialized to state o,, from (C, E) for N processes is a function
1(01,02,...) such that if 01, 02,... are N-process objects of type T1, T2,..., initialized to
states o,,a 2 ,..., respectively, then 0 = 1(01,02,...) is an N-process object of type T,
initialized to a. Intuitively, 1(01, 02,...) returns a set of procedures Apply(P,, op, 0), for
1 < i < N and op E OP(T). Apply(P,, op, 0) specifies how process Pi should "simulate"
the operation op on 0 in terms of operations on 01,02, .. We say 0 is a derived object
of the implementation 1, and 01, 02,.. ., 0,, are the base objects of 0.

We say that I is an implementation of T, initialized to state a, from a set S of types
for N processes if there is a list C = (T1, T2,...) of types and a list E = (al, a2,. . .) of states
such that Ti E S, ai is a state of Ti, and I is an implementation of T, initialized to a, from
(,C, E) for N processes. We say that a type T has an implementation from a set S of types
for N processes if for every state a of T, there is an implementation of T, initialized to a,
from S for N processes.

An implementation is wait-free if it has the following property: if all base objects are
wait-free in an execution E, then the derived object is wait-free in E. Hereafter when we
write "implementation", it stands for "wait-free implementation".

We now define consensus and register - two object types that appear frequently
in this paper. Type consensus supports two operations: propose(O) and propose(l). The
sequential specification of consensus is in Figure 1. From the specification, it is clear that a
consensus object 0 has the following properties: (i) If 0 returns a response v, then there is
an invocation of propose(v) preceding this response, and (ii) 0 returns the same response
to all operations. These are known as the validity and agreement properties, respectively, of
a consensus object. Sometimes we refer to the consensus problem for processes P1, P2,. .. P,.
This problem is stated as follows. Each process Pi is initially given a binary input vi. Each
correct process Pi must eventually decide a value di such that (i) ds E {vi, V2,..., V0}, and
(ii) VI < ij <_ n : di = dj. These two conditions are commonly referred to as the validity
and agreement requirements of the consensus problem.

Type register supports the operations {read} U {write(v)lv > 0), and has the se-
quential specification given in Figure 2.

6



OP = {propose(v)lv E {O, 1}}
Object State:

XE (1,0,1}

propose(v)
if X = _ then

X := v
return(X)

Figure 1: Sequential specification of consensus

OP = {read} U {write(v)Jv > 0}
Object State:

X E {0,1,2,...}

read()
return(X)

write(v)
X := V
return(ack)

Figure 2: Sequential specification of register

3 Hierarchy Preliminaries

A hierarchy of shared types is a function that maps object types to levels in {1, 2,3,...} U
{oo}. An object type T is at level 1 in hierarchy h if h(T) = 1. A hierarchy is non-trivial
if it has at least two non-empty levels. An object type T is universal for N processes if
for every type TV, there is an implementation of T' from {T, register} for N processes. T
is universal (for oc processes) if for all N, T is universal for N processes. A hierarchy h
is a wait-free hierarchy if for all T, h(T) = N implies that T is universal for N processes.
Thus, in a wait-free hierarchy, the level of T is a lower bound on the number of processes
for which T (together with registers) can support arbitrary wait-free synchronization. The
following proposition is immediate from the definition.

7



Proposition 3.1 If h is a wait-free hierarchy, and h' is a hierarchy such that VT : h'(T) •
h(T), then h' is a wait-free h.rjrchy.

Proposition 3.2 1 -'1 . a wait-free hierarchy, then h(register) = 1. Thus, level I of any
wait-free hierarchy is non-empty.

Proof THere exist object types (for example, queue) which have no implementation from
regie .er for two or more processes [Her9lb]. Thus, register must be at level I in any
wait-free hierarchy. 0

From Proposition 3.1, it is clear that there can be "slack" in a wait-free hierarchy.
This motivates us to define tightness. A wait-tree hierarchy h is tight if for every wait-free
hierarchy h' and every type T, h(T) >_ h'(T). A wait-free hierarchy is fully-refined if for all
levels k E {1, 2, 3, ... U {oo}, there is some type in level k. A wait-free hierarchy h is robust

if for every type T and every finite set S of types, if h(T) = N and VT' E S : h(T') < it',
then there is no implementation of T from S for N processes. The reader should note the
difference between tightness and robustness. The trivial wait-free hierarchy which maps
every object type to level 1 is obviously robust, but not tight. The wait-free hierarchy h;

(to be defined soon) is tight, but it is not known whether it is robust.

In the remainder of this section, we define some natural wait-free hierarchies, and high-
light some simple properties of these hierarchies. In the following definitions, the subscript
indicates whether the definition allows just 1 or many objects of the argument type. The
superscript r indicates that the definition allows the use of registers.

1. hi(T) = maximum number of processes for which a consensus object can be imple-
mented using just a single object of type T. If there is no such maximum, then
hi(T) = c.

2. hr(T) = maximum number of processes for which a consensus object can be imple-
mented using just a single object of type T and any number of registers. If there is
no such maximum, then hr(T) = oo.

Notice that this is Herlihy's hierarchy.

3. h.(T) = maximum number of processes for which a consensus object can be imple-
mented using any number of objects of type T. If there is no such maximunm, then
h.(T) = 00.

4. h;(T) = maximum number of processes for which a consensus object can be imple-
mented using any number of objects of type T and any number of registers. If there
is no such maximum, then h;(T) = o0.

Proposition 3.3 Each of hl,hl, h3 , h is a fully-refined wait-free hierarchy.

Proof Herlihy's universality result trivially implies that these are wait-free hierarchies.

That these are fully-refined follows from the easy observation that Vh E {hi, hr, h,,, h;} and

8



OP = {propose(r)lv E {0, 1)}
Object State:

XE {El0,1}
N Ef, 1, 2,...)

propose(v)
N := N + 1
if X = i then

X : = V

if N < k then
return(X)

else return( I)

Figure 3: Sequential specification of k-cons

k E {1, 2,3,. .. }U{}oo, h(k-cons) = k. (See Figure 3 for the definition of the type k-cons.)
0

Proposition 3.4 h;(T) = N < oo if and only if T is universal for N processes, but not
for N + 1 processes. 4•(T) = oc if and only if T is universal.

Proposition 3.5 If h is a tight wait-free hierarchy, then h = h;. In other words, h4 is the
unique wait-free hierarchy which is tight.

The hierarchy h; is uniquely important in the study of robust wait-free hie'archies. To
formally state this, we need a definition. Let a = (11, 12,...) be a finite/infinite sequence
such that I = 11 < 12 < 13... and l E {1,2,3,...) U {oo}. We say g is a coarsening of
hierarchy h with respect to a if, for all object types T, we have:

1. If li S h(T) < li+1, then g(T) = li.

2. If l S h(T) and li is the last element of a, then g(T) = li.

3. If h(T) = oo and a is infinite, then g(T) = oo.

Intuitively, levels li ... (l,+1 - 1) in h are lumped into level li of g, causing levels

(li + 1) ... (l,+1 - 1) to be empty in g. We say g is a coarsening of a hierarchy h if there is
a a of the form I = l1 < 12 < 13... such that g is a coarsening of h with respect to a. It is
obvious that if h is a wait-free hierarchy, so is every coarsening of h.

Theorem 3.1 If h is a robust wait-free hierarchy, then h is a coarsening of h;.

"9



Proof Assume that h is a robust wait-free hierarchy, and is not a coarsening of h1. Let
a = (11,12 .... ), where 1 = 11 < 2<13... are all the non-empty levels of h. Define g to be
the coarsening of 14 with respect to a. From our assumption that h is not a coarsening of
h;, it follows that h 4 g. Thus, there is a type T such that h(T) $ g(T). Let m = h(T)
and n = g(T). By definition of g, a level k of g is non-empty if and only if level k of h
is non-empty. Together with m i n, this implies that there exist types T' and T", each
different from T, such that g(T') = m and h(T") = n. Since m $ n, we are left with two
cases to consider.

1. m <n.

Since g(T) = n, it follows that h;(T) > n. Thus, by Proposition 3.4, T is universal for
"n processes. In particular, there is an implementation of T" from {T, register} for
"n processes. Since h(T) = m < n = h(T"), h is not robust. This is a contradiction.

2. m> n.

From the above, g(T') m. Thus, level m of g is not empty. This, together with
m > n, implies that n < h;(T) < m. This implies, by Proposition 3.4, that T is
not universal for m processes. Since h(T) = m, it follows that h is not a wait-free
hierarchy. This is a contradiction.

This comple4es the proof of the theorem. 0

What can we say about the robustness of hl,h', and h,? This question is addressed
by the following proposition.

Proposition 3.6 Let h E {hi~h•,h,,}. If h $ h•, then h is neither tight nor robust.

Proof Proposition 3.5 implies that h is not tight. Tleorem 3.1 and Proposition 3.3 imply
that h is not robust. 0

Does one of hx,h1, and h. define the same hierarchy as 4•? The answer is not easy. For
instance, Ih differs from h4 if and only if there is a type such that multiple objects of this
type (together with registers) can solve consensus among a larger number of processes than
a single object (together with registers) can. Does such a type exist? No common object
type exhibits such a property and, hence, it is a non-trivial question. Similarly, h. differs
from 1• if and only if there is a type such that the use of registers increases the number
of processes for which consensus can be solved using objects of this type. Again, common
object types do not exhibit this property, making it difficult to answer whether such types
exist.

In the rest of the paper, we prove that each of hi,hr, and h differs from h•. Thus,

none of h,,hr, and h. is robust. In particular, hr, which is the same as Herlihy's wait-free
hierarchy, is not robust. Unfortunately, we do not yet know whether h4 or some coarsening
of it is robust. This is an important open question. We hope that the ideas employed in
this paper would provide useful insights.
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(L-op, L-first) (L-op, L-first) S (R-op, R-first) (L-op, R-first)

(R-op, L-first) (R-op, R-first)

Figure 4: Object type Tsticky

4 On the robustness of hr (Herlihy's hierarchy)

The main result of this section is that hr is not robust. We prove this result by presenting
an object type Tsp with the following property: n Tsp objects, together with registers, can
implement a consensus object for n + 1 processes, but not for n + 2 processes. This implies
hI(Tsp) = 2 and h;(T.p) = oo. Thus, hr 4 14, and by Proposition 3.6, hr is not robust.

Consider the object type Tsticky in Figure 4. It supports two operations, L-op and
R-op, and responds with either L-first or )-first. If L-op is applied on a Tsticky object
0, initialized to state Sj., 0 changes state to SL and returns L-first as the response.
Furthermore, 0 returns L-first to all subsequent operations, reflecting the fact that L-op
was the first operation apulied on 0. The behavior is symmetric if, instead of L-op, R-op
was the first operation applied on 0. In essence, the first operation "sticks" to 0 and
determines the response for all operations. Notice that Tsticky is similar to the consOnsuB
[Her9lb] and sticky-bit [Plo891 object types.

Now consider the type Tsp, a variant of Tsticky, shown in Figure 5. Tsp lacks the
symmetry of Tstic.:y: If R-op is applied to a Tsp object 0, initialized to S.L, R-op sticks to
0 as before. However, as soon as R-op is applied for the second time, it "unsticks" and 0
starts behaving as though it had been stuck with L-op all along. The following is a trivial
consequence of the definition of Tsp.

Lemma 4.1 Let 0 be an object of type Tsp initialized to S1. Let E be an execution in
which R-op is applied at most once on 0. Then, the following statements are true in E.

1. If r, and r 2 are the responses to any two operations on 0, then r, = r2.

2. If 0 returns a response D-first (D E {L,R}), then an invocation of D-op precedes this
response.

4.1 Implementing consensus from {T.p,register} - upper bound

In this section, we show how to implement a consensus object for n processes using (n - 1)
Tsp objects and 2(n - 1) registers. Our implementation is recursive. Let 1i denote the

11



(L-op, L-first) (L-op, L-first) (R-op, R-flrst) SR (L-op, R-first)
(R-op, L-first)

(R-op, L-first)

Figure 5: Object type T.p

On-,: consensus object for P1, P2,.. ., P,-1, derived from I-,-
Os': Tsp object, initialized to S±
L, R: binary registers

Apply(Pi, propose vi, On) (for 1 < i < n - 1) Apply(P,, propose v,, On)

1. L := Apply(Pi, propose vi, 0,.-1) R := vn
2. if Apply(Pi, L-op, Op.) = L-first if Apply(Pn, R-op, Op) = L-first
3. return(L) return(L)
4. else return(R) else return(R)

Figure 6: Implementing consensus with Tsp and register

implementation of consensus from {Tsp, register) for processes P1 , P2,..., Pj. The base
case is to derive 11, implementation of consonsus for the single process P1, and is trivial:
if 01 is a derived object of 21, Apply(Pi, propose v1, 01) simply returns vi. The recursive
step of deriving i; from I,- is presented in Figure 6.

Lemma 4.2 The implementation 1h in Figure 6 is a correct implementation of consensus
from (Tap, register} for processes P1,P 2,. . .,PPn. Z- requires (n - 1) objects of type T.p
and 2(n - 1) registers.

Proof We prove the correctness of Z,- by induction. The following is the induction hy-
pothesis: for 1 < j < n - 1, 2j is a correct implementation of consensus for processes
P1, P2,.. ., Pj. The base case, namely, that 271 (described above) is a correct implementa-
tion of consensus for P1, is obvious. The induction step is prove,, through several simple
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claims. Let O0, be a derived object of T,,. Consider an execution E of the concurrent sys-
tem (P,, P2,. -.- , P,,; 0.). Assume that each P, executes Apply(P,, propose vi, 0,,) at most
once in E.4 We make the following claims about E. The proof of each claim follows its
statement.

C1. For D E {L, R}, the following holds:

1. Every process that writes the register D, writes the same value V in D.

2. IfD = L, V E { viv2,,v,..v,.-}. Otherwise, V = v,,.

For D = R, the claim is obvious since only P,, writes R. For D = L, the claim follows
from the agreement and validity properties of O,-l.

C2. Some process completes a write on D before any process receives the response D-first
from Op.

By Lemma 4.1, some process, say Pk, invokes D-op before any process receives the
response D-first. By the implementation, this process Pk will have completed a write
on the register D before invoking D-op on Oup.

Consider, for arbitrary i,j and i ý j, the executions of Apply(Pi, propose vi, 0,,)
and Apply(Pi, propose vj, 0,,) in E. By ±4emma 4.1, the responses received by Pi and Pi
from Osp (in Statement 2 of their respective executions) are the same. Let D-first be this
response (for some D E {L, R}). Thus, in Statement 3, both Apply(P,, propose v,, 0,,)
and Apply(Pj, propose v,, 0,,) read and return the value in the register D. From Claims
C2 and C1, it follows that both Apply(P,, propose vi, 0,,) and Apply(Pj, propose vj, 0,)
read the same value V in D and that V E {v, v2 ,. .. , v,,}. Thus, the value returned by
both Apply(Pi, propose vi, 0,,) and Apply(Pi, propose vj, 0,,) is the same and is from
{v1,v2,. . ., v,,}. It is obvious that the implementation is wait-free. Hence the lemma. 0

Corollary 4.1 h(T.p) = 00.

4.2 Implementing consensus from {T.p, register} - lower bound

The main technical result of this section states that any solition to n-process wait-free
consensus using Tap objects and registers requires at least n - 1 Tap objects, regardless of
how many registers are available. We prove this result by reducing the "l-resilient consensus
problem for n processes communicating via registers"' to the "wait-free consensus problem
for n processes communicating via registers and (n-2) Tap objects". The former problem is
impossible to solve [LAA87]. Hence the impossibility of the latter. The reduction is based
on the novel concept of k-trap implementations.

'This is not a limitation for the following reason. After PA executes Apply(P,, propose v,, 0.) once, it
can record the return value in its local variable. Thereafter, when Pi needs to apply a propose operation on
O,,, it may simply return the value of this local variable as the response. This strategy works because O.
is a consensus object, and therefore must return the same response to every invocation.

'A protocol is k-resilient if it meets the problem specification despite the crash of k or fewer processes.
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4.2.1 k-trap implementations

An implementation for processes P 1,P 2,...,P, is a k-trap implementation if every de-
rived object 0 of the implementation has the following property: in any execution of
(Pi, P2, ... , Pn; 0), regardless of the relative execution speeds of processes, all but up to k
correct processes will be able to eventually complete their operations on 0. In other words,
0 appears wait-free to all but up to k correct processes.

We now contrast k-trap implementations with the familiar wait-free, non-blocking,
and critical-section based implementations. Critical-section based implementations and
non-blocking implementations (for n processes) are both (n - 1)-trap implementations. A
critical-section based implementation is (n - 1)-trap because the crash of a single process in
the critical section blocks the remaining (n - 1) processes. A non-blocking implementation
is (n - 1)-trap because repeated execution of operations by one process could cause the
remaining processes to block. The converse does not hold: an (n - 1)-trap implementation
does not guarantee the properties of either a critical-section based implementation or a non-
blocking implementation. To see this, suppose that exactly one process, say P, attempts
to access the object, and suppose that P is correct. In the case of a critical-section based
implementation or a non-blocking implementation, P is guaranteed to complete its operation
on the object. But in a k-trap implementation (k > 1), P may block. Finally, note that a
0-trap implementation is the same as a wait-free implementation.

The following lemma establishes the utility of k-trap implementations in proving lower-
bounds.

Lemma 4.3 Let T be any object type such that for every state or of T, there is a 1-trap
implementation 1, of T, initialized to a, from register for n processes. Then, any wait-
free implementation of consensus from {T, register) for n processes requires at least n - 1
objects of type T (regardless of how many registers it uses).

Proof Suppose that the lemma is false, and there is a wait-free implementation ." of
consensus from {T, register} for n processes such that J7 requires only n-2 objects of type
T, initialized to states al, 02,.. . , an_2 of T, and m registers (for some m > 0). Consider the
protocol P in Figure 7. Clearly, processes communicate exclusively via registers in protocol
P. We argue below that P solves the consensus problem for processes P1 , 2,.- ., P, even
if (at most) one of the processes may crash. By the impossibility result in [LAA87I, such a
protocol does not exist. Hence the lemma.

We claim that at most (n - 2) processes block on 0. This follows from the following
facts:

1. n - 2 base objects of 0 are 1-trap. So at most one process blocks on each of these.

2. No process blocks on the remaining base objects of 0, the registers R 1 , R 2,.. Ry.

3. 0 is derived from a wait-free implementation.
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1. For 1 < i < n - 2, use T, to implement an object Oi of type T initialized to state ai.

2. Use J to implement a consensus object 0 from 01,02,...,O,-2 and registers
RI, R2,. •, Rm.

3. Let D be a 3-valued register initialized to I.

4. For 1 < i < n, let vi be the binary input value of process Pi for consensus. Process Pi
executes the following procedure. We require that statements 1 and 2 are executed in
a fair manner.

cobegin
1. D := Apply(Pi, propose vi, 0)
2. repeat until (D # 1).

decide D
coend

Figure 7: 1-resilient consensus protocol P for n processes

Therefore, if at most one of P1, P2,. .. , P,, crashes, there is still one process, call it
Pk, that neither crashes nor blocks on 0. This process Pk eventually writes the response,
call it V, returned by Apply(Pk, propose vk, 0) in register D. Since C satisfies validity,
we have V E {vi, v2, ... , v,.}. Since 0 satisfies agreement, no process ever writes a value
different from V in register D. Since Statements 1 and 2 are executed in a fair manner,
every non-crashing process eventually reads V and decides V. In other words, P solves the
consensus problem for P1, P2,-. ., Pn even if at most a single process may crash. 0

4.2.2 1-trap implementation of Tap

Recall that Tsp has three states - Sj_, SL, and SR. We now present a 1-trap implementation
of Tsp initialized to S._, and 0-trap implementations of Tsp initialized to SL or SR. These
implementations use only registers as base objects. Thus, by Lemma 4.3, we have the
desired lower bound.

A 1-trap implementation of Tap, initialized to S1 , from r,'gister for n processes is
presented in Figure 8. This implementation is subtle. We present below an informal and
intuitive argument of its correctness before proceeding to give the formal proof. Consider
0, a Tsp object derived from this implementation. Let H be a history of C, and let first-op
denote the first operation to complete in H. There are two cases. Case (1) corresponds
to first-op being an L-op operation. Consider the linearization S which includes only the
complete operations in H and sequences them in the order of their completion times. Thus,
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R[1 .. n]: binary (1-writer, n-reader) registers initialized to 0

Apply(Pi, L-op, 0) Apply(P,, R-op, 0)

return(L-first) 1. if (Vk : R[k]= 0) then
2. R[i] := 1
3. repeat until (3j < i : R[jJ= 1)
4. return(L-first)

Figure 8: 1-trap implementation of T5p, initialized to S±, from register

first-op, which is an L-op operation, becomes the the first operation in S. Furthermore,
the response of every operation in S is L-first (this is obvious from the implementation).

From the sequential specification of Tsp in Figure 5, it is obvious that S is legal from
the state Sj. of Tsp. Now consider Case (2), which corresponds to first-op being an R-op
operation. The key observation is that if first-op, which is an R-op operation, completed in

H, then by our implementation, there must be another R-op operation, call it blocked-op,
from a different process which is concurrent with first-op and is blocked. Let us pretend
that, although incomplete, blocked-op has indeed taken effect in H, and has R-first for its
response. Consider the linearization S which sequences blocked-op first, first-op second, and
the remaining complete operations in H in the order of their completion times. (blocked-

op can be linearized before first-op since these two operations are concurrent.) Thus the

first operation in the linearization S is a R-op operation with R-first as the associated
response. The second operation in the linearization is also an R-op operation, and has

L-first as the associated response. The remaining operations in the linearization have L-
first as their response. From the sequential specification of Tsp in Figure 5, it is obvious

that this linearization S is legal from the state S.± of T.p. Hence the correctness of our
implementation. We formalize the above arguments and present a more rigorous proof of
correctness below. The proof is based on a series of claims.

Claim 4.1 The implementation is 1-trap.

Proof Clearly, a correct process Pi blocks if and only if the repeat ... until loop (Statement
3 of Apply(Pi, R-op, 0)) never terminates. By Statement 2, such a Pi will have written the
value 1 into R[i].

Suppose that the claim is false, and two correct processes Pi and Pi (assume j < i) block

on 0. It follows that R[i] = R[j] = 1 and each of Pi and Pj is caught in the repeat... until
loop that never terminates. Process P, eventually notices that R[j] = 1, and since j < i, Pi

quits the repeat... until loop, and returns L-first. This contradicts the assumption that Pi
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blocks on 0. 0

The next claim asserts that if a process Pi successfully completes an R-op operation
on 0, then a different process Pj is already blocked, unable to complete its R-op operation
on 0.

Claim 4.2 Let E be an execution of (PI, P2,.. .,P,,; 0), and H be the corresponding his-
tory. Suppose that H contains the two events an invocation e"" = inv(vP, R-op, 0)

and its matching response eres = resp(Pi, L-first, 0). Then H contains an invocation
e•'• = inv(P, R-op, 0) such that

1. e, <H ere., and

2. e•,, has no matching response in H.j

Proof The proof of this claim is based on the following observations:

01. The predicate 3k : R[k]= 1 is stable: that is, if it holds in some configuration of an
execution, it holds in every subsequent configuration of that execution. Furthermore,
this predicate must hold before a response can occur to any invocation of R-op.

The first part of this observation follows from the fact that once a 1 is writt-r, to .

register, it is never changed. The second part is obvious from Statements 1 and 2 of
the implementation.

ii")02. In H, let k be the smallest integer such that Pk has an invocation ek = inv(Pk,
R-op, 0) and Pk writes a 1 in R[k]. Then ek' has no matching response in H.

To see this, notice that after writing a 1 in R[k], Pk enters the repeat.. until loop.
This loop never terminates in H because of our premise that k is the smallest integer
such that Pk writes a 1 in R[k]. Thus Pk does not return from Apply(Pk, R-op, 0).

03. In H, if a process Pk writes 1 in R[k] after an invocation e4', = inv(Pk, R-op, 0) andin < _res.

before its matching response, then eknv <H eS.

Suppose not. Then e~- <H er". After the invocation e'flV, when Pk executes State-
ment 1 of the procedure Apply(Pk, R-op, 0), the guard Vk : R[k]= 0 evaluates to
false (by 01). Thus Pk returns the response L-first without writing into R[k]. This
contradicts the premise that Pk writes 1 into R[k] after the invocation ekTh and before
its response.

To complete the proof of the claim, let S be the set of processes that invoke R-op on 0
and write 1 into a register in the execution E. Since H contains a response event eres, by
01, S is non-empty. Let j be the smallest integer such that Pj E S. By 02, Pj's invocation
inv of R-op on 0 has no matching response in H. By 03, e7" <H ere. Hence the claim.

0

Claim 4.3 Let E be an execution of(&i,...,P,;0), and H be the history of 0 in E. H
is linearizable with respect to Tsp, initialized to state Si..
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Proof If H has no response events, then the claim is trivial: the empty sequence is a
linearization of H and is legal from state S.._ of T5 p. Assume, therefore, that H has one or
more response events. Let erC5 = resp(Pi, L-first, 0) be the earliest response in H. Let
ey,• be the invocation whose matching response is er". There are two cases:

Case 1. einv = inv(Pi, L-op, 0)

This corresponds to the case in which the first operation to complete is an L-op
operation from process PA. Define a sequential history S as follows:

1. S includes all complete operations in H.

2. if two operations op and op' are in S, op <s op' if and only if response of op
precedes the response of op' in H.

It is obvious that (i) S is a linearization of H, and (ii) S is legal from the state S, of
Top.

Case 2. eiinv = inv(Pi, R-op, 0)

This corresponds to the case in which the first operation to complete is an R-op from
process Pi. By Claim 4.2, there is an invocation einv = inv(Pi, R-op, 0) such that
e4 tnv <., er" and ernv has no matching response in H. Define a sequential history S

as follows:

1. S includes all complete operations in H, and tt operation (eynv, e7), where
,78 = resp(Pj, R-first, 0).

2. The operation , eea) precedes all other operations in S.

3. If op and op' are operations in S different from (eý', eje), op < S op' if and only
if the response of op precedes the response of op' in H.

It is easy to verify that (i) S is a linearization of H, and (ii) S is legal from the state
Sj. of Tap.

Hence the claim. 0

Lemma 4.4 Figure 8 presents a 1-trap implementation of Tsp, initialized to S.L, from
register for processes P1, P2, .. ., P,,.

Proof Follows from Claims 4.1 and 4.3. 0

Lemma 4.5 Figure 9 presents a 0-trap (wait-free) implementation of T8p, initialized to SR,
from register for processes P1, P2,. . ., P,,.

Proof Let E be an execution of (P 1,JP2,..., Pn; 0), and let HR and Ho be the histories of
objects R and 0, respectively, in E. Let ER be a linearization of HR, which is legal from
the state 0 of register. For every operation op E ER, define f(op) as follows:
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R: binary register initialized to 0

Apply(Pi, L-op, 0) Apply(Pi, R-op, 0)

if (R = 0) then R:=1
return(R-first) return(L-first)

else return(L.first)

Figure 9: 0-trap implementation of Tap, initialized to SR, from register

if op = (inv(Pi, read, R), resp(Pi, 0, R)) then
f(op) = (inv(P,, L-op, 0), retip(P,, R-first, 0))

else if op = (inv(Pl, read, R), resp(Pi, 1, R)) then
f(op) = (inv(Pi, L-op, 0), resp(Pi, L-first, 0))

else if op = (inv(Pi, write 1, R), resp(Pi, ack, R)) then
f(op) = (inv(Pi, R-op, 0), resp(Pi, L-first, 0))

Define a sequential history E2o as follows:

1. For every operation op E ER, include f(op) in E0 .

2. If op, op' E ER and op <rR op', then f(op) <r., f(op').

It is easy to verify that Eo is a linearization of H0 , and is legal from the state SR of Top.
0

Lemma 4.6 Figure 10 presents a 0-trap (wait-free) implementation of Tsp, initialized to
SL, from register for processes P , P2 ,.. . , P.

Proof Obvious. 0

Lemma 4.7 Any wait-free implementation of consensus from {Tsp, register} for n pro-
cesses requires at least n - 1 objects of type Tsp.

Proof Follows from Lemma 4.3, and Claims 4.4, 4.5, and 4.6. 0

Corollary 4.2 hr(T5p) = 2.

Proof By Lemma 4.2, hr(Tp) > 2. By Lemma 4.7, hr(T.p) < 2. Hence the result. 0
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Apply(P,, L-op, 0) Apply(P,, R-op, 0)

return(L-first) return(L-first)

Figure 10: 0-trap implementation of Tsp, initialized to SL

Theorem 4.1 hr is neither tight nor robust.

Proof Follows from Proposition 3.6 and Corollaries 4.1 and 4.2.

Theorem 4.2 h, is neither tight nor robust.

Proof From the definitions of h1 and hr, it is obvious that, for all types T, hi(T') _ h'(T).

In particular, hi(T5 p) _< h(T 8 p) = 2 < cc = h4(T.p). Thus, by Proposition 3.6, h, is
neither tight nor robust. 0

5 On the robustness of lim

The main result of this section is that ha is not robust. We prove this result by presenting

an infinite family Tkd, k E {2, 3,4,. .. } . {oo}, of object types with the following properties:

1. There is an implementation of consensus from {Tnd, register} for k processes, but

not for k + 1 processes.

2. There is no implementation of consensus from Tkd for two processes.

Property (1) implies that h4(Tnkd) = k. Property (2) implies that hE(Tkd) = 1. Thus,

ha # h;, and by Proposition 3.6, h. is not robust.' This result is significant in the following

sense. Registers by themselves are too weak to solve even 2-process consensus. So are Td

objects. Combining these two types, however, lets us solve consensus among any number

of processes!

The object type T d is specified in Figure 11. In this specification, choose(S) is assumed
to choose an element from set S non-deterministically and return it. Notice that upset and

ahead[i] are stable: once true, they remain true. Similarly, once decision E {0, 1), it does

not change.

6 A single member of the Tfnd family is sufficient to establish that ha is not robust. The existence of an
entire family shows that there is not even a coarsening of ha which is non-trivial and robust.

20



S. TYkd supports operations in {op(i)Ji = {O, 1}} U {give-decision(i,b)li E {0, 1),b E
{true, false}}.

S2. The response for op(O) or op(l) is always ack. The response for give-decision(-, -)

is either 0 or 1.

s3. The state of Tzkd is represented by the variables no, ni, nfld : integer; decision E
{f_,0,1}; ahead[O..l], upset : boolean. Informally, no, n1,n9d count the number of

executions of op(O), op(l), and give-decision, respectively. The variable ahead[i]
is set to true if ni > 0 and ný = 0 when give-decision(i, -) is executed. The
variable upset is set to true if one of the following happens: (i) op(l) is executed
more than once (op(O) may be executed any number of times without upsetting a Tnd
object); (ii) give-decision is executed more than k times; (iii) give-decision(i, -)
is executed with no prior execution of op(i); (iv) give-decision(i, true) is executed
with no prior execution of op(I); (v) give-decision(i, false) is executed and ahead
[i = true. If upset, a T d object returns 0 or 1 non-deterministically to an invocation
of give-decision. If not upset, it sets decision irrevocably and non-deterministically
(if not already set) to 0 or 1 such that ndeciion > 0, and returns decision. See S5
below for a formal sequential specification of Tkd.

S4. The state of T d corresponding to (no = ni = 9d = 0; decision = .L; ahead [0.. 1]
upset = false) is known as the fresh state. The states of Tnd are only those that are
reachable from the fresh state by the following specification.

S5. The sequential specification of Tkd is as follows:

op(i) /* i E{0,1} *

ni := ni + 1

if n, > 1 then upset := true
return(ack)

give-decision(i, other-is-ahead) /* i E {0, 1), other-is-ahead: boolean */
ngd := ngd + 1
if (hi > 0 A n7 = 0) then ahead[i :-= true

if (ngd > k) V (nf = 0) V (ahead[n A -,other-is-ahead) V (ný = 0 A other-is-ahead) then

upset := true
if upset then

returm(choose({O, 1}))
else if decision ;- _. then

decision := choose({jlnj > 0Q)

return(decision)

Figure 11: Object type T d
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5.1 consensus from {T'nd, register} - an implementation

In this section, we show, for k E {2,3, . . } U {oo}, how to implement a consensus object for
k processes using only Tk objects and registers. Our implementation is recursive. Let y"

ndn
denote the implementation of consensus from {Tkd, register} for processes P1 , P2 _ ._'., P,.
The base case is to derive 20k, implementation of consensus for an empty set of processes,
and is vacuous. The recursive step of deriving Ik from ,_ is presented in Figure 12.

The implementation 1" works as follows. Processes P1 ... Pn split into two groups, Go
and G1. Group Go has P1 .. P,•-, and group G, has just Pn. Processes P... .P,,_ do
consensus among themselves (recursively) and announce the outcome in R[01. Process P,
announces its input value in R[11. The rest of the protocol resolves which of the two groups
is the winner. If Go wins, every process decides the value in R[0). Similarly, if G, wins,
every process decides the value in R[1]. The object Ond is used to determine the winner
of the two groups. Processes P1 ... Pn-1 perform the operation op(O) on Ond. Then they
set the register R'[0] to inform process P,. that op(O) has been executed on Ond. Process
P, on the other hand, performs op(l) on O,'d, and then sets R'[1] to inform processes in
Go that op(l) has been executed. Processes then perform the give-decision operation.
The return value determines the winning group. For this strategy to work correctly, the
arguments of the give-decision operation must be such that the O,ld object does not get
upset. We urge the reader to understand how the registers R'[0..1] are used to ensure that
O,vd does not get upset. Finally, if Oid returns v, a process assumes that the group G, won
and decides the value in R[v].

Lemma 5.1 For 1 < n < k, the implementation 2k in Figure 12 is a correct implementa-
tion of consensus from {Tn~d, register} for processes Pl, P2,. . ., P,•.

Proof Sketch By induction. Assume that I' is correct. Let O,, be a derived object
of the implementation in Figure 12. Consider an execution E of the concurrent system
(P 1, P2,..., P,; On) in which every process Pi has invoked Apply(P&,propose vi, 0, ) exactly
once, and executed it to completion. The key claim is that Oid is not upset in E. This
follows from the following simple observations:

1. op(l) is e-:ecuted only once.

2. For v E {0, 1}, op(v) is executed before executing give-decision(v, -).

3. give-decision is executed no more than n times. Since n < k, give-decision is
executed no more than k times.

4. Suppose op(v) is ahead ofop(P). That is, the operations op(v) and then give-decision(v, -)

are completed before the first invocation of op(v). Then, the use of the registers
R'[O..1] in the implementation 1k guarantees that when a process invokes
give-decision(V, other-ahead), the second parameter, namely, other-ahead, is true.
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base objects of the implementation Ik

0,-,: consensus object for P1 ,P2,.. ., P,-., derived from 77n-1

Ond: Tkd object, initialized to the fresh state
R[O..1]: binary registers
R'1O.. 1]: boolean registers, initialized to false

local variables of process Pi
di, winneri E {0, 1}
other-ahead,: boolean

Apply(Pi, propose vi, O0) (for 1 < i < n - 1) Apply(Pn, propose vn, 0)

1. di := Apply(Pi,proposevi, O.- 1 ) d4 := V,
2. RI[O := d, R[l] := d,
3. Apply(Pi, op(O), Ond) Apply(P., op(1), Ond)
4. R'[O := true R'[1] := true
5. other-aheadi := R'[11 other-ahead, := R'[0]
6. winneri := winner, :=

Apply(Pi, give-decision(O, other-aheadi), Od) Apply(Pn, give-decision(I, other-ahead,)), O~d
7. return(Rlwinneril) return( R[winner,])

Figure 12: Implementing consensus from {Tnd, register}
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5. Suppose no process completes the operation op(v) before some process invokes
give-decision('6,other-ahead). Then the use of the registers R'[O..11 in the imple-
mentation IkI guarantees that the second parameter of give-decision, namely,

other-ahead, is false.

Since Ond is not upset in E, by the specification of T'd, we have:

1. Every give-decision operation on Ond returns the same binary response. Let
winner E {0, 1) denote this response.

2. Some process Pj invokes op(winner) before Ond returns winner for the first time to
a give-decision operation.

From the implementation, it is clear that Pi writes the value dj in R[winner] before invoking
op(winner). Furthermore, once a value is written by a process into a register R[O] or RIll,
the value of that register never subsequently changes. For R[01, this follows from the
agreement property of 0' _I, and for R[1], this follows from the fact that only P, writes

R[1] and writes it only once.

The above implies that for all i, Apply(Pi, propose vi, O0) returns dj. Thus, 0" satisfies
agreement. If j = n, then di = d,, = v,, and thus, On satisfies validity. If j y n, by the
validity of On-,, dj E {vI,v 2,...,vn-1}. Thus, O,, satisfies validity. It is obvious that the
implementation is wait-free. This concludes the proof of correctness of I0. 0

5.2 consensus from {Tknd, register} - an impossibility result

In this section, we prove that Tnkd objects and registers do not suffice to implement a
consensus object for k + 1 processes. This impossibility result follows from a straight
forward bivalency argument. The intuition behind why this impossibility result holds for
k + 1 processes, but not for k processes, is as follows. As we have seen, a Tk4 object supports
two kinds of operations: op and give-decision. The operation op(i) does not return any
useful information to the invoking process. This is due to the fact that the response of op(i)
is always ack. The operation give-decision does return useful information, but only to
the first k invocations of the operation. Thereafter, its response is non-deterministic and
hence is not helpful. Thus, k proLesses may gain useful information from a Tnd object, but
k + I processes cannot. We now proceed to prove the impossibility result.

Let Tk be a deterministic object type whose specification is defined by replacing every
expression of the form choose(S) in Figure 11 by min(S).? Thus, Td is a deterministic
restriction of Tkd. Hence, if a history of an object is linearizable with respect to Tk, then it
is a fortiori linearizable with respect to Tnk. We prove below that Tk objects and registers
do not suffice to implement a consensus object for k + I processes. This trivially implies
that Tnd objects and registers cannot implement a consensus object for k + 1 processes.

7 mrin(S) is the minimum element in set S.
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As mentioned, the proof uses a simple bivalency argument. Since bivalency arguments
are standard, our definitions and the proof are informal. A configuration C of a concurrent
system is v-valent (for v E {0, 1)) if there is no execution from C in which -V is decided
by some process. In other words, once the system is in configuration C, no matter how
processes are scheduled, no process decides V. A configuration is monovalent if it is either
0-valent or 1-valent. A configuration is bivalent if it is not monovalent. If E is a finite
execution of a system S started in configuration C, E(C) denotes the configuration of S at
the end of the execution E. For the purposes of this section, a step of a process P consists
of invoking an operation on an object 0, receiving the respcrase from 0, and making an
appropriate change in its state.

Lemma 5.2 For all k E {2, 3,...}, there is no implementation of consensus from {T', register}
for k + 1 processes.

Proof Assume I(O 1 , 0 2 ,.. ., On) is an implementation of consensus from {T , register}
for processes P>1, P2,..., Pk+,. Let 0 = Y(01, 02,..., On). Consider the concurrent system
$ = (P1 , P2,.. ., Pk+i; 0). Let Co be the initial configuration of S. Assume that in Co, each
process Pi is about to execute Apply(Pi, propose vi, 0). Furthermore, assume that there are
l,m (1 1,m n< k + 1) such that vi = 0 and v, = 1.

When P1 runs by itself from Co, the validity and wait-freedom of 0 require that P/
decide vi = 0. Similarly, when P.. runs by itself from Co, it decides vm = 0. Thus, Co is
bivalent. Let E be an execution from Co such that (1) Corot = E(Co) is bivalent, and (2)
For all Pi, if Pi- takes a step from Cit, the resulting configuration is monovalent. Let S,
be the set of processes whose step from Ccitt results in a v-valent configuration. Since Ccit
is bivalent, neither So nor S is empty. Furthermore, So n S = 0 and ISO u S, = k + 1 > 3
(since k > 2). Without loss of generality, assume that ISo¶ Ž 2 and ISl1 :> 1. In particular,
let So=PoP2,..., } and S = {P P1_9.,P,},wherer>2ands> 1.

By a standard argument, the enabled step of every process in configuration C~rt must
be on the same base object 0 of 0. Furthermore, again by a standard argument, 0 is not a
register. Thus, the enabled step of every process in configuration Cri is on 0, an object of
type T . Let so and s' denote the enabled steps of P2 and P?, respectively, in configuration
C~it. Con"lier the following scenarios So and Sl, each starting from the configuration Cit.

* In Scenario So, P2 takes the step so. Then, P1 takes a step. Let Do be the resulting
configuration. Clearly Do is a 0-valent configuration.

"* In Scenario S1, P1 takes the step s'. Then, P20 takes a step. Let D, be the resulting
configuration. Clearly D, is a l-valent configuration.

Processes P2 and P, have to distinguish Scenario So from Scenario SI, since they must
decide 0 in (every extension of) So, and decide 1 in (every extension of) Si. Observe that
unless the operation applied by P•2 (resp. Pi') in step so (resp. s') is a give-decision
operation, it must eventually apply a give-decision operation on 0 in order to distinguish
So from Si. Thus, we extend Scenarios So and S1 as follows:
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* If the operation applied by P20 on 0 in step so is not a give-decision operation,
run P•2 (in both scenarios) exactly until P•2 completes a step in which it applies a
give-decision operaton on 0.

"* If the operation applied by P11 on 0 in step sl is not a give-decision operation,
run P, (in both scenarios) exactly until P11 completes a step in which it applies a
give-decision operation on 0.

A process P E {P1,.. ., Pk+l} - {P', P20, P11} has to distinguish Scenario So from Scenario
S1, since P must decide 0 in (every extension of) So, and decide 1 in (every extension of) S1.
Observe, however, that P cannot distinguish So from S1 until it applies a give-decision
operation on 0. Thus, we extend Scenarios So and S1 as follows:

* For each P E {P1 ,...,Pk+11 - {1P,P2,,P1 }, run P (in both scenarios) exactly until
P completes a step in which it applies a give-decision operation on 0.

We make the following observations: (1) The process P1l is in the same state in Scenarios
So and S1. (2) Every base object except 0 is in the same state in So and Si. (3) In both So
and S1, a give-decision operation is applied on 0 at least k times (once by each process
in {P 1,...,Pk+,} - {P11 }, in the execution from Cit). The second observation, together
with the specification of Td, implies that every subsequent give-decision operation on 0
returns 0 in either scenario. Extend Scenarios So and Si by letting P10 run by itself. By the
above observations, P11 cannot distinguish whether it is running in So or S1. Yet it must
decide 0 in So and I in S1. This is impossible. Hence the lemma. 0

Corollary 5.1 For all k E {2, 3, .. .} U {oo}, h;(Tkd) = k.

Proof Follows from Lemmas 5.1 and 5.2. 0

5.3 ha is not robust

In this section, we prove that h.(Tnkd) = 1. Thus, ha is different from h; and, hence, is not
robust. We begin with a simple technical lemma that will be useful in proving h.(Tnd) = 1.
The lemma states that it is trivial to implement Tnd, initialized to any state different from
the fresh state. In the following, let cr[v] denote the value of state variable v in state a.

Lemma 5.3 Let a be any state of Tk different from the fresh state. Figure 13 is an
implementation of Trnd, initialized to a', from 0.8

Proof If a is different from the fresh state, then it is easy to verify that
(c4decision] E {0, 1}) V (a'fno] > 0) V (a'[nj] > 0) V a[upset]. From this and the specification
of Tnd, the correctness of the implementation is obvious. 0.

"8Thus, the implementation requires no base objects, not even registers.
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op(i) give-decision(i, b)

return(ack) if '[decision] E {O, 1 } then
return(o[decision))

else if (a[upset] V ajno] > 0) then
return(O)

else return(l)

Figure 13: Implementing Tnkd, initialized to a non-fresh state a

The following lemma states that it is impossible to implement a consensus object for
two processes using just T4 kd objects. Intuitively, Tnkd objects are so weak that a prccess
cannot use these objects to leave its "foot marks" behind. Thus, if a process P0 runs first,
and then a different process P1 runs, P1 does not realize that Po ran before it started.
This can cause P1 to decide a value which is not consistent with the decision of PO. The
proof below formalizes this argument. The details of the argument are subtle due to the
non-determinism of the Tnkd objects.

Lemma 5.4 For all k E {2,3,...1 U {oo}, h,(Tkd) - 1.

Proof To prove this lemma, we must show that it is impossible to implement a consen-
sus object for two processes using just T d objects. We show this by contradiction. Let
T(01,02,...,O,.) be an implementation of consensus from Tad for processes P0 and P1,
which is resource optimal: i.e., if IV is another implementation of consensus from Tnd for
two processes, then I' requires at least n base objects. From Lemma 5.3, it follows that
every base object of I is initialized to the fresh state.

Consider a derived consensus object 0 of the implementation i. Let 01, 02,... , 0,, be
the base objects of 0. In other words, 0 = 1(01, 02,.. ., On). In the following, we present
two scenarios, So and Si, which are indistinguishable to P1 , but require P1 to take different
actions.

In Scenario So, Po invokes Apply(Po, propose 0, 0) and executes it to completion. (Exe-
cution to completion is po&sible since Y is a wait-free implementation.) Assume that during
tho execution of Apply(Po, propose 0, 0), every base object behaves like a Tdk object. That
is, the history of each base object in the execution of Apply(Po, propose 0, 0) is linearizable
with respect to Td. We will refer to this as Assumption Al. By the validity property of
0, Apply(Po, propose 0, 0) returns 0. Let S be the set of base objects which are in the
fresh state in Scenario S0 at the completion of Apply(Po, propose 0, 0). Continue Scenario
So, and begin Scenario S1, by letting P1 invoke Apply(PI, propose 1, 0) and run by itself in
either scenario. (See Figure 14 for a depiction of Scenarios So and S1.) Assume that each
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Scenario SO PO executes P1 executes

Apply(PO, propose O, 0) Apply(PI, propose 1, 0)

Scenario St 
P, executes

Apply(P 1, propose 1, 0)

TIME

Figure 14: Scenarios So and S1

base object in S behaves deterministically, consistent with T., in both scenarios. We will
refer to this as Assumption A2. We prove the following statement inductively: the base
objects in {O1, 02,... , 00 - S can choose among the non-deterministic alternatives (when
applicable) such that for all i > 0, P1 cannot distinguish So from S1 in i steps. The base
case for i = 0 is trivial. To prove the induction step, assume the hypothesis for i < m.

Consider the (m + 1)a step. Let oper be the operation that P1 performs in this step in
Scenario So, and let 0 be the base object on which it performs oper. From the induction
hypothesis and the fact that the implementation is deterministic, it follows that P1 performs
oper on 0 in its (m + I)- step in Scenario S, too.

Suppose oper E {op(O), op(1)). Then, the response is ack in either scenario. Thus, So
and S1 remain indistinguishable to P1 after m + 1 steps. Hence the induction step.

Suppose that oper is give-decision(-, -). We make a case analysis to prove the
induction step.

Case 0. 0 E S

o is fresh in both So and Si just before the invocation of Apply(P 1,propose 1,0).
For So, this follows from the definition of S, and for S1, from the fact that every base
object is initialized to the fresh state. By Assumption A2, 0 behaves deterministically
(consistent with Tk) in both scenarios. The above facts, together with induction
hypothesis, guarantee that (i) 0 is in the same state in both scenarios at the end of
m steps of P1, and (ii) 0 returns the same response to oper in both scenarios. Thus,
So and Si remain indistinguishable to P1 after m + 1 steps. Hence the induction step.
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Case 1. Case 0 does not apply and the following holds: In at least one of So and S1, 0 is upset

in the first m + 1 steps of P1.

Let Si be a scenario in which 0 is upset in the first m + 1 steps of P1 . By the
specification of T kd, 0 is free to return 0 or 1 to oper in Scenario Si. Suppose that 0
uses this freedom and returns the same response to oper in Si as it does in S-. Then
So and S1 remain indistinguishable to P1 after m + 1 steps. Hence the induction step.

Case 2. Neither Case 0 nor Case 1 applies. In other words, 0 is not fresh in So just before
the invocation of Apply(P, propose 1,0) and, in both So and S1, 0 is not upset at
the end of m + 1 steps of P1 .

We prove the induction step by contradiction. Assume that it is not possible to keep
Scenarios So and S1 indistinguishable to P1 at the end of m + 1 steps. We will refer
to this as Assumption A3. We arrive at a contradiction after a series of claims. Let
a~ and k4 denote the state of 0 at the end of k steps of P1 in Scenarios So and S$
respectively.

C1. ojng4d] = 0. In other words, 'P does not apply a give-decision operation on
o in its first m steps.

Suppose that the claim is false. Let k < m be the smallest integer such that
ao[n9 d] = 1. That is, give-decision is executed on 0 for the first time by
P1 in its kth step in Scenario S1. Since 0 is not upset in S1, this implies
that afi[decision] E {0, 1}, and this value is returned by 0 in the kth step of
P, in S1. By inductive hypothesis, the same value acv[decision] is returned by
o in the kth step of P, even in So. Since 0 is not upset in So, this implies

that ako[decision] = atkl[decision]. Since decision is irrevocable, it follows that
acg[decision] = uk[decision] = af[decision] = ac[decision] E {0, 1}. Since 0 is
not upset in either scenario, the responses ao'[decision] and a-[decision] of 0 to
oper in Scenarios So and S 1 , respectively, are identical. Thus, So and S1 remain
indistinguishable to P1 after m + 1 steps. This contradicts Assumption A3.

C2. There is a v E {0, 1} such that a- [nJ > 0 and ao'[nw] = 0. In other words, P1
executes op(v), but not op(W) in its first m steps in S1.

Suppose a-•[no] = ao[ni] = 0. Then, by the specification of T d, when P, applies
oper _= give-decision(-,--) in the (m + I)`t step in S1, it upsets 0. This
contradicts the case we are considering. Suppose al'[no] > 0 and ao[ni] > 0.
Since Uj'•[flgd] = 0 (by C1), by the specification of Thd, 0 is free to return either
0 or 1 in S1. Suppose that 0 uses this freedom and returns the same response to
oper in Si as it does in So. Then So and S1 remain indistinguishable to P1 after
m + 1 steps. This contradicts Assumption A3.

C3. P1 executes op(v) on 0 at least once in its first m steps in So.

Follows from C2 and the induction hypothesis.

C4. oper =_ give-docision(v, false).

Suppose oper = give-decision(V, -) or oper - give-decision(v, true). Since
a"[n6] = 0 (by C2), 0 will be upset in S1 when oper is invoked in the (m + I)St

step. This contradicts the case we are considering.
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CS. aO'[ahead[v]J] = false.
Suppose aj'[ahead[U] = true. Then, when P1 executes oper E give-decision(v, false)
(guaranteed by C4) in its (m + 1)st step in So, it upsets 0. This contradicts the
case we are considering.

C6. v = 1 implies 4°1nfgd] = 0. In other words, if v = 1, then Po never executed a
give-decision operation on 0 in So.
Suppose v = 1 and Po executed give-decision(l, -) on 0 in So. Since 0
is not upset in So, it follows that Po executed op(l) on 0 before executing
give-decision(1,-). By C3 and the assumption that v = 1, P1 executed op(l)
in So. Thus op(l) was executed at least twice on 0 in So. By the specification
of Tkd, 0 would be upset in So. This contradicts the case we are considering.
Suppose v = 1 and P0 executed give-decision(0, -) on 0 in So. Since 0
is not upset in So, it follows that Po executed op(O) on 0 before executing
give-deciuion(O,-). By C5 and the assumption that v = 1, cr[ahead[O]] =
false. This implies that Po executed op(1) on 0 before executing give-decision(0, -).
By C3 and the assumption that v = 1, P, executed op(l) in So. Thus op(l) was
executed at least twice on 0 in So. By the specification of Tkd, 0 would be upset
in So. This contradicts the case we are considering.

C7. v=O.

Suppose v = 1. Then, we can infer: (1) a'[ngd] = 0 (by C1), (2) oT[rngd] = 0
(by C1, induction hypothesis, and C6), (3) cr[nl] > 0 (by C2), (4) tai[nz) > 0
(by C3). These four facts, together with the specification of Tkd, imply that 0
is free to return 0 to oper in both So and S1. Suppose that 0 does this. Then
So and Si remain indistinguishable to P1 after m + 1 steps. This contradicts
Assumption A3.

C8. 0 returns 0 to oper (in the (m + I),' step of P1 ) in Scenario S1.
C2 and C6 imply that orl[no] > 0 and rji[n1] = 0. Further, by the case we are
considering, 0 is not upset in the first m + 1 steps of P1 in Scenario $1. The
above facts imply that the only legal value that 0 can return to oper is 0.

C9. If Po executed give-decision(l, -) on 0 (in So), it did so only after executing
op(O) on 0.
Suppose Po executed givo-decision(l, -) on 0 (in So). Since 0 is not upset in
So, this implies that P0 executed op(l) on 0 before executing give-decision(l, -).
If Po did not execute op(O) before executing give-decision(1, -), then the ex-
ecution of give-decision(0, -) would set ahead[l] to true. This, together with
the fact that ahead[l] is stable, implies that aor4[ahead[1]] = true. This contra-
dicts the conjunction of C5 and C7.

C10. Every execution of the operation give-decision(-, -) on 0 by Po in Scenario
So returns the response 0.
Consider the earliest execution e of give-decision(w, -) on 0 by Po in so. If
w = 1, C9 implies that P0 executes op(O) before e. If w = 0, the fact that 0 is
not upset in So implies that Po executes op(O) before e. Thus, we conclude that
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Po executes op(O) before e. This, together with Assumption Al, implies that e
returns 0. From this and the fact that 0 is not upset in So, it follows that every
execution of give-decision(-, -) on 0 in So returns the response 0.

C1I. Po never executes give-decision(-, -) on 0 (in So).
Suppose that the claim is false. Then, from C10 and the fact that 0 is not upset
in So, it follows that 0 returns 0 to oper in the (m + 1)'t step of P1 in Scenario
So. Thus, by C8, So and S1 remain indistinguishable to P1 after m + 1 steps.
This contradicts Assumption A3.

We have: (1) ao[no] > 0. This follows from C3 and C7. (2) agl[no] > 0. This follows
from (1) and induction hypothesis. (3) ui[ngd] = 0. This follows from CI, induction
hypothesis, and CI. From (2), (3), and the specification of Tkd, it is clear that 0 is
free to return 0 to oper (in the (m + 1)st step of P1 ) in Scenario So. Suppose that it
does. Then, by C8, So and S1 remain indistinguishable to P1 after m + I steps. This
contradicts Assumption A3. Hence the induction step.

This completes the proof of the induction step.

Since Z1 is a wait-free implementation, Apply(P 1 , propose 1, 0) terminates in So after a
finite number of steps, returning some value val E {0, 1). Since S1 is indistinguishable to
P 1 from So, Apply(P 1 , propose 1, 0) terminates in SI after the same number of steps, also
returning val. If val = 0, validity of consensus is violated in S1. If val = 1, agreement of
consensus is violated in So. Thus, I is not a correct implementation, a contradiction. 0

Theorem 5.1 h3 is neither tight nor robust.

Proof Follows from Proposition 3.6, Corollary 5.1, and Lemma 5.4. 0

6 Conclusion

It is well known that shared primitives, depending on their type, vary widely in their ability
to support inter-process synchronization. Recent research focussed on analyzing the power
of individual primitives. In this paper, we ask whether, from our understanding of the power
of the individual primitives, we can infer tbP power of a set of primitives. For instance, is it
impossible to implement a universal primitive from non-universal primitives? The answer
is not clear. It is conceivable that clever protocols for such implementations exist. Besides
being of theoretical interest, these issues have implications to multi-processor architectures.
To make a systematic study of these issues possible, we define the property of robustness for
wait-free hierarchies. Contrary to popular belief, we show that Herlihy's wait-free hierarchy
is not robust. We also show that some natural variants of Herlihy's hierarchy are also not
robust. This raises the obvious question of whether there is a non-trivial robust wait-free
hierarchy at all. We do not know the answer yet. However, we observe that such a hierarchy,
if it exists, is either h; or some coarsening of it. Thus, further research on the structure
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of h4 is essential to resolving this open question. As explained in the paper, the answer
to this question, regardless of whether it is affirmative or negative, has useful implications.
We close with the conjecture that h; is not robust.
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