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1. INTRODUCTION
1.1 Nature of IR Imagery

High quality infrared (IR) imagery from current staring focal plane arrays has now

reached or exceeded TV resolution. For PtSi-based Schottky barrier IR cameras,! minimum

resolvable temperatures below 0.02 degrees Celsius have been achieved and arrays as large as
512 x 512 are commercially available. Hence, the processing, display and enhancement of
high-resolution wide-dynamic-range staring IR imagery, whether for soft-copy display or in
real-time hardware embodiments, is becoming an important topic in image processing, but one

still in early stages of development.2

At the outset, we review the differences between IR images and the more familiar base-

line of visible imagery.3 In visible images, objects reflect the light of a source or sources to a
sensor. In ideal (thermal) IR images, the objects emit IR radiation as determined by their
absolute temperature; in effect, we view a temperature profile of the scene. However, the
monotonic relationship between object brightness and scene temperature can be perturbed by
the presence of an IR source such as the sun, for example, which gives a more visual look to
daytime IR imagery. Figure 1 contrasts day and night IR images of the same scene - the
latter probably closer to an ideal thermal profile. Lesser perturbations in the brightness versus
temperature relationship arise from the deviations of real objects from ideal blackbodies as
well as from the interaction between the spectral response of the camera and the spectral con-
tent of the radiating scene.

Another important distinction lies in the inherently low contrast of IR images compared
to visible ones. The typical IR image is dominated by the background radiation at the average
scene temperature, as most of the objects will be at ambient temperature and will radiate at
roughly the same intensity, leading to a typical variation of a factor of two from lowest to
highest signal. Consequently, plots of the number of pixels at various signal levels, the raw
image histograms, typically have one high and narrow main peak due to this background radi-
ation (several main peaks if more than one background is present such as sky and ground).
Temporal noise as well as small contrast variations within the background will spread out the
main peak(s) somewhat but generally leave more concentrated histograms than found for visi-
ble images. Frequently, the “‘targets’” or objects of interest are on a small number of pixels
and are warmer and hence separated in gray level from the background levels; this leads to a

!Shepherd, F. D. (1988). “*Silicide Infrared Staring Sensors,”” Proceedings of SPIE, Orlando, Florida, 930, pp. 2-10.

*Silverman, J., Mooney, J. M., and Vickers, V. E. (1990). Display of wide dynamic range infrared images from PtSi
Schottky barrier cameras, Opt. Eng., 29: 97.

3Silverman, 1., Mooney, J. M., and Shepherd, F. D. (1991). Infrared video cameras, Sci. Amer., 266, No. 3, pp. 78-83.




Figure 1. Day and night versions of the same scene.




low level trailing edge in the histogram. The image histograms play a major role in the algo-
rithms of Section 2, and examples and further discussion are found there. A second conse-
quence of the low contrast of IR images is the importance of noise sources, such as spatial

noise,?, which are generally insignificant in the visible.

A subtle point which should be clarified is that this limited contrast does not preclude
imagery of such wide dynamic range as often to exceed the 8-bit sensitivity of high quality
monitors; and the latter sensitivity is effectively further reduced by the limitations of the
inherent gray scale sensitivity of the eye. Images used in this report were taken with PtSi
Schottky IR cameras operated in the 3-5 micron band, with noise characteristics which have

been carefully analyzed and measured.*> IR image dynamic ranges depend on weather, time
of day, detector array technology, camera design, and image content. For PtSi cameras, raw
signal levels at the upper end of representative ranges will span about 1000 10 2000 ADUs
(analog to digital units) after digitizing single frames to 12 bits. Since a typical noise level is
5 ADUs (see reference S for details), a usable dynamic range of up to 200 to 400 levels is
often encountered. We are faced therefore with a classical problem in image display: the
disparity between the image dynamic range and the smaller dynamic range of the monitor/eye
display system.

Ideally, in assessing the relative efficacy of several alternative techniques for display or
enhancement, one should work as closely as possible with the type of imagery, the display
hardware, the ambient light conditions, etc., specific to the application(s) in question. How-
ever, in an imperfect world, the ideal is not always practical. Hence, in evaluating and com-
paring algorithms for general purpose applications, we have adhered to the following philoso-
phy. We have employed an extensive set of locally taken imagery: indoor, outdoor, day and
night scenes as diverse as possible. Whatever general conclusions are advanced in following
sections about the relative merits of one algorithm versus another, it is usually not difficult to
find an image or image type that belies any particular such conclusion. Therefore, we believe
it most useful to emphasize how the various algorithms typically interact with IR imagery. We
hope the reader will thereby gain the insight to choose algorithms based on his application
and his expected image set.

‘Mooney, J. M., Shepherd, F. D., Ewing, W. S., Murguia, J. E., and Silverman, J. (1989). Responsivity nonuniformity
limited performance of infrared staring cameras, Opt. Eng., 28: 1151,

SMurguia, J. E., Mooney, J. M., and Ewing, W. S. (1990). Evaluation of a PtSi infrared camera, Opt. Eng., 29: 786.




1.2 Display Scales, Algorithms and Applications

With the philosophy just stated in mind, let us turn to the question of the gray scale used
for the final 8-bit display, a matter less mundane than one might imagine, as we have found a
strong interplay between the display algorithms and the gray scale. The ‘‘default” gray scale
on our Sun workstation monitors is a linear ‘‘colormap’ between the display value i and the
luminance command value for the red, green and blue components of monitor intensity:

red[i] = greenli] = blue{i] =1, )

where [, red, green, and blue all range from 0 to 255. This default scale on our monitors (and
we suspect similarly on other monitors) is unbalanced and sub-optimum in that it is too sensi-
tive at the bright end and not sensitive enough at the dark (zero) end. While one could argue
that this is desirable for many IR applications where the information of interest tends to be at
the hot (bright) end, we would counter that such bias if desired is better introduced into the
algorithms rather than into the display scales.

Thus we have assumed that features of interest in the imagery — averaged, so to speak,
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Figure 2. The gamma function.




over many images and applications — are equally likely to occur in any range in the final
display. We sought such balance, as well as an optimum number of discernible shades of
gray, by going to the form

red(i] = green[i] = blue[i] = y(), 2)

where the gamma function for the monitor® represents the desired mapping from display value
to screen luminance command value.

While formal algorithmic procedures for determining y(i) are available,” we have found
the following simple procedure adequate. Using software-generated standard bar patte.ns with
a range of spatial frequencies, we set display contrasts at Ai = 2 or 3. The bar pattern back-
grounds were set from dark to light in gradual increments. Working in a darkened room
(which means strictly speaking that the scale should always be used in a darkened room -
needless to say, it wasn’t), one author mapped the above display contrasts into luminance
command contrasts that were comfortably perceptible for the larger bar patterns and just per-
ceptible for the smallest pattern. The gamma function thus derived is shown in Figure 2 (the
optimum mapping varies slightly from monitor to monitor). Figure 3 shows the difference this
gamma function makes, compared with the default gray scale, using both a real daytime
image and a simulated image of uniform blocks going from 0 to 255 in unit steps. Note the
difference in balance and sensitivity between the scales.

For the gamma-corrected scale, when i is between 35 and 175, a change of 2 is just per-
ceptible, while in the regions above and below these limits, a change of 3 is required. We
estimate that roughly 110 shades of gray are discernible cut of the 256 nominal levels.
Although the use of pseudocolor is beyond the scope of this report, we note in passing that a

color scale with about 200 discernible levels has been designed for use with our IR images.?

“Briggs. S. J. (1987). “*Soft Copy Display of Electro-optical Imagery,” Proceedings of SPIE, 762, pp. 153-170.
"Briggs, S. J. (1981). Photometric technique for deriving a ‘best gamma’ for displays, Opt. Eng., 4: 651.
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2. GLOBAL MONOTONIC DISPLAY ALGORITHMS
2.1 Introduction

To display our images, we need to map from the raw recorded signal (digitized to 12 bits
for the images used to illustrate this report) to 8-bit values. Algorithms for this purpose can
be divided into a global monotonic group treated in this section, and all others treated in Sec-
tion 3; Table 1 lists the major algorithms considered in this report. More specifically, we now
consider global mappings (no influence of local context) in which the radiometric trend from
low to high in the recorded image is retained in the displayed image (monotonic). We found
the distinction of algorithm type between Sections 2 and 3 meaningful for IR images; it is
typically igrored for visible images, for which raw signal levels depend strongly on natural
and artificial light sources in the vicinity® (see Fig. 1 of reference 8), and for which the inti-
mate familiarity of the human brain with such imagery allows for flexible interpretation, so
that we are not disturbed by deviation from monotonicity.

Table 1. Acronyms of Algorithms Considered
Algorithm Acronym  Section Introduced

Direct Scaling DS 22
Histogram Equalization HE 23
Histogram Projection HP

Under-sampled Projection UP

Threshold Projection TP

Plateau Equalization PE

Local Range Modification LRM 32
Overlapping Projection opP

Sliding Projection SP

Raw Modulo RM 33
Modulo Projection MP

Weak Sinc Sharpening WS 3.4
Strong Gaussian SRarpening SG

Medium Gaussian Sharpening MG

Weak Gaussian Sharpening WG

#Schreiber, W. F. (1978). Image processing for quality improvement, Proc. IEEE, 66: 1640.
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Figure 4. Raw signal histograms for the three standard images: (a) geese; (b) airport; (c) cups.

These global monotonic algorithms are subdivided into direct scaling and related algo-
rithms and histogram-based algorithms. The fundamental distinction here is between the linear
or piecewise-linear mapping of the scaling algorithms versus the nonlinear mapping of the
histogram-based algorithms. In the former one is reserving dynamic range in the display for
empty regions, if present, within the span of the raw signal histogram; while in the latter
unoccupied levels are ‘‘squeezed’” out of the display.

We next introduce a basic image set chosen to illustrate the operation of the various
display algorithms. A common practice, particularly in the literature on restoration and for
visual imagery, is to employ some familiar standard images previously used by other workers.
Aside from the practical matter of the absence of such standard IR images, we reiterate that
specific images can be quite misleading or at least unrepresentative of general trends. For
example, we firmly contend that histogram equalization, a standard technique discussed in
Section 2.3, is an ineffective algorithm for IR images. Yet it is not hard to find images for
which the technique is quite satisfactory.

How then does one handle this difficulty and still retain coherence and some degree of
brevity? We ask the reader to accept on faith that the small set of three images which will be




used as a common thread throughout the rest of the report to illustrate trends and conclusions
are fairly representative of the range of possibilities for the (literally) hundreds of IR images
used to test the many algorithms. Where needed to make a special point, or hopefully to
prevent boredom, other images will be interjected at certain junctures.

The three images are a sunny day image of Canada geese on a grassy background, a
fairly complex night image of an airport scene, and a staged indoor scene of wide dynamic
range with hot and cold cups (low contrast details on each cup), between which is a set of bar
patterns. The digitized raw signal histograms of the image set are presented in Figure 4. The
geese image exemplifies a very common type of IR image with a histogram much like the
prototype described in Section 1.1: a very concentrated main peak from the grassy background
and a trailing edge on the high side of the peak arising from warmer objects that occupy
fewer pixels. The airport scene is a representative night image for mild clear weather (a
noisier cold night landscape scene will be used as well). The complex histogram of the two-
cup image has portions related to the cold cup (ice water), bar patterns, background, and
warm cup (hot water). This staged image is rich in specific local details, and is interesting for
another reason as well. The first two images are typical of most of our surveyed images in
that they are ‘‘grabbed’” single frames which were one-point-corrected by camera electronics.
The noise of such images includes the temporal noise of the single frame and the residual spa-
tial noise associated with an imperfect correction. The two-cup image is produced from three
direct (uncorrected) images; each image is an average over 256 successive measured frames
and hence has negligible temporal noise. The three direct images are high and low tempera-
ture uniform scenes and the direct cup scene itself, and thc final image is the two-point-

corrected result,> which has lower residual spatial noise than one-point-corrected images.4
Hence, this image has low contrast details and very little noise. (It will be compared later with
a single-frame, one-point-corrected similar image.) The portion of its histogram above 2600 is
an artifact of the interaction between the two-point correction and the bad pixels on the top
few rows and contains no information, but it can affect the operation of display algorithms.

2.2 Direct Scaling and Related Linear Mappings

Direct scaling (DS), if carried out interactively in software, is similar to manual
offset/gain adjustment (contrast and brightness) of ‘‘live’” camera imagery as guided by the
eye. In the software interactive mode, the observer views the histogram and chooses a black
and white level whose span is then linearly mapped into the full display dynamic range. By
and large, the obvious level choices usually provide a display very similar to that given by the

histogram projection algorithm discussed in the next subsection, despite the linear/nonlinear
distinction between .he two mappings. In some cases, the optimun choices are not so obvi-

ous, as in the direct-scaled displays of the two-cup image in Figure 3, which take white as
2500 or 2900 respectively. The second cheice wastes display dynamic range with no increase

10




Figure 5. Direct-sealed display with two choices for white level: () 2500: (by 2000,
Cf. Fig. 15.4c.
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in scene content.

However, a more fundamental problem with DS, particularly for hardware implementa-
tion as an automatic offset/gain control to replace manual adjustment, is the difficulty of
finding a robust automatic counterpart of the interactive process, because of scene and appli-
cation dependencies. One simple candidate technique is to determine the black and white lev-
¢ls with symmetrical criteria by ‘‘integrating’’ to some fraction of the total area of the histo-
gram plot from the bottom (black) or top (white) end. Figures 6 and 7 show the results of
such an algorithm for the geese and airport images with choices of 0.05%, 0.1% and 1.0%
respectively of the area (values are percents of the pixels below the black level and above the
white level). Also included is the computationally simple but naive choice in which the
lowest and highest occupied raw signal levels are taken as black and white respectively: the
presence of a few unreliable pixels typically makes such a high/low scaling a poor choice.
The optimum of the integration procedure is often at the 0.1% level; going beyond the
optimum, as in the fourth picture of the sequences of Figures 6 and 7, tends to increase
overall contrast but leads to a too high black level or too low white one, giving poor gray
scale resolution at the low or high end (the latter here).
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Figure 8. Custom piecewise-linear mapping function for cups image.
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To increase the utility and robustness of a DS algorithm, particularly for hardware imple-
mentation, one would need to incorporate a more sophisticated analysis of the histogram and
to allow for unsymmetrical criteria for black and white choices. In our opinion, the results
would still fall short in robustness for many image types, when compared with the results of
the algorithms described in the next section.

A further extension of the DS concept would be a piecewise-linear transformation, for

example of the interactive type referred to as *‘function processing”’? but restricted to mono-
tonic mappings for the purposes of this section. Carefully probing the raw signal data of the
two-cup image and after some trial and error attempts, we came up with the 3-piece linear
mapping shown in Figure 8, affording the display in Figure 9. This is superior to any of the
other global monotonic algorithms on this image, although the hybrid algorithms described in
the next subsection come close. Since this technique is customized to each image and
requires substantial operator intervention, we submit that it is more of a ‘‘process’’ than an
‘“‘algorithm’’ and not practical for general hardware or software use.

2.3 Histogram-based Nonlinear Mappings

By histogram-based algorithms, we refer generally to nonlinear mappings governed by
transformations from the raw signal histogram to some desired final display histogram. The
prototype for such methods is the well-known technique of histogram equalization (HE)

described in many texts on image processing.!® As the name indicates, the desired final form

is a uniform histogram distribution. While several variations of HE have been proposed.!!
including hyperbolic and exponential distributions as desired goals, we believe such
refinements are essentially related to shifts in the gamma function of the gray-scale display
(Section 1.2) which can be treated at a ‘‘pre-algorithmic’’ stage. Hence, our treatment in this
section will focus on HE and a newer polar opposite to it called *‘histogram projection’” (HP),
as well as hybrids of the two.

HE often gives excellent results on visible imagery and is claimed to be optimum from

the standpoint of information theory.!? Generally it has been used to redisplay 8-bit data on an
8-bit scale. For the present purpose, mapping 12-bit IR data to 8 bits, the algorithm has
major problems.

*Woods, R. E., and Gonzalez, R. C. (1981). Real-time digital image enhancement, Proc. IEEE, 69: 643,
YPratt, W. K. (1978). Digital Image Processing, John Wiley & Sons, New York, pp. 307-344.
"Hummel, R. (1977). Image enhancement by histogram transformatien, Comp. Graph. & Imag. Proc., 6: 184,

Tom, V. T., and Wolfe, G. J. (1982). **Adaptive Histogram Equalization and its Applications,”* Proceedings of SPIE,
359, pp. 204-209.
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To implement HE for the discrete case, one converts the histogram of the starting (raw)
data to a cumulative distribution function, F {i], which rises in discrete jumps from 0 to 1 and
specifies what fraction of pixels are at or below the raw signal level i. Figure 10 shows
F{i] for the geese image. Note the large jurp in F[i] within the histogram peak (refer back
to Fig. 4a). For display on an §-bit scale, pixels at raw level { are mapped into

display value = 255 F[i]. 3)

The resulting display histogram and displayed image are shown in Figures 11 and 12 respec-
tively. The transformation of Eq. 3 produces an approximately uniform display histogram by
fusing sparsely-occupied adjacent raw signal levels while reserving more display dynamic
range for signal levels with high pixel counts (places where F[i] has large jumps). Empty
levels can even be created on the display scale (Fig. 11) between densely-occupied adjacent
raw signal levels. Referring back to the starting histogram (Fig. 4a), we see that the small
leading peak at 2200 and the long trailing stream beyond 2300 rctain their identity in the
display histogram over a very narrow display range at the dark and light ends.

We reiterate that the geese scene is representative of a common type of IR image in
which most of the pixels are on a background (ground here) with relatively little detail or
variety, while a minority of pixels are on smaller objects of interest whose signal levels are
separated from this background. As a measure of the degree of histogram concentration (Fig.
4a), we note that 25% of the total of 451 occupied raw signal levels (the presence of at least
one pixel at a given signal level defines occurancy) account for 95% of the pixels. For
images of this common type, HE assigns most of the display levels to the small variations in
the background and its associated noise. Raw signal levels of the small objects, if outside this
background peak, are compressed into few display levels. (Hence the geese are displayed as

white blobs starkly separated from the background but without the internal thermal detail co.i-
tained in the raw data.)

This incompatibility between IR images and the HE technique was pointed out by Dion
and Cantella!? as follows: “‘since it operates on the basis of probability of occurrence, a small
object within a given field-of-view can ordinarily be de-emphasized if its detail lies at an
infrequently occurring level’’. Their solution was to precede HE with a high-pass filter.
However, one can then no longer guarantee a global, monotonic mapping, and further the ten-
dency of HE to amplify the background noise is increased. Another solution, first reported in

1988,4 is an algorithm, “‘histogram projection’” (HP), whose guiding princirle is

“Dion, D. F., and Cantella, M. J. (1984). Real-time dynamic range compression of electronic images, RCA Eng., 29:
42.

“Silverman, 1., and Mooney, I. M. (1988). ‘‘Processing of IR Images from PiSi Schottky Barrier Detector Arrays,”’
Proceedings of SPIE, San Diego, California, 974, pp. 300-309.

19




o R

s RO




diametrically opposite to HE: display dynamic range is assigned equally to each signal level
present, regardless of how many pixels occupy that level.

To perform HP, one need only compute an occupancy (binary) histogram and then order
the occupied raw signal levels from 1 to N from lowest to highest with N the total number of
levels occupied. The cumulative distribution corresponding to F[i], now called Bli},
represents the fraction of occupied levels at or below the level i. B[i] rises from Q0 to 1 in
discrete uniform steps of 1/N and is also illustrated in Figure 10.

An expression similar to Eq. 3 may be used to describe the 8-bit display of HP, namely
display value = | 256 (B{i] - I/N) ], (4)

where | | represents truncation to the next lower integer. The uniform step rises in B{i] in
effect assign equal display space to each occupied level. A more accurate description of HP
may be based on thinking of the N occupied levels as linearly mapped or ‘‘projected’’ into
the 8-bit display scale. If N is greater than 256 levels, neighboring occupied levels in the raw
signal are fused to the same display value on the 8-bit scale by the compression factor,
N/256. In a typical software implementation using integer arithmetic, one could write for
each pixel

display value = | 256 (n — 1)N |, (5)

where n is the order number (from 1 to N) of the pixel’s occupancy level.

The display of the geese image according to HP is also seen in Figure 12 and the
corresponding display histogram in Figure 11. The close correspondence between this display
histogram and the original (Fig. 4a) is typical of the algorithm. Indeed, thinking in terms of a
transform driven by a desired final histogram, one seeks with HP to project the original histo-
gram (excising empty levels) into the available display space — corresponding features such as
peaks become higher, of course, if N is greater than 256. The natural, although somewhat

dark-level, view of the background and the excellent resolution in gray-scale of the smaller,
warmer objects are characteristic of this algorithm.

The HP display is typically indistinguishable from the best DS result, despite the
nonlinear/linear difference between the two mappings, as in the comparison of Figure 13 for
the airport image (the keen-eyed viewer might spot some differences such as in the airplane
windows). With the increasing sensitivity of IR imagers, the influence of unoccupied levels
within the linear span of the image signal content may well become more important and the
payoff from the nonlinear feature more apparent. In any case, the HP algorithm is easier to
implement in real-time and more robust than the DS algorithm.

21




B s

Figure 14, Comparison of HE and HP displays: (a) HE: (b) 1P

el

P




Figure 15. Comparison of HE and HP displays: () HED (hy HP.

RR




)

-

LT
AT R
..JQ..,..%»
ffﬂa.. v
- ,,"., /
) L
RN
R
’ ~
. ;
“¥
.
€
W ‘¥
NS
Lo N
.y .
\..t,.

Gay HIZ by HP,

QYN

y

6. Compartson of HE and HEP displ

Figure |




Figare 17, Comparison of HE and HP displavs: (o HE: by HP.

AR




Some further comparisons of the displays generated by HE and HP are given in Figures
14-17. For the airport image, the displays are more complementary in their strong and weak
points with the usual superior gray-scale resolution of small-scale objects in the HP result (the
person and the vehicle grilles) but with a broader delineation and hence clearer spatial sense
between foreground and background in the HE display. The face tends to favor the HP result,
but if we had less neutral backdrop and more face in the field-of-view, the two displays would
be more comparable. The cold winter-night landscape (Fig. 16) is a striking example of the
interaction of tc.aiporal noise at the background levels with the two algorithms: the tendency
of HE to amplify such noise is horrendous here, to the extent that image recognition is almost
destroyed. Finally, the two-cup image displays represent one of a small number of cases
where HE gives the better overall display. In these instances, some hybrid form of the two
algorithms is usually superior to either; this brings us to the next topic in this subsection.

The allocation of display dynamic range according to histogram height, the prominent
effect of HE, can be beneficial when used in a weaker mode than occurs in HE. Images that
especially benefit from such weighting, such as the two-cup image, have rather complex
multi-peaked histograms and little information of interest in sparsely-occupied raw histogram
levels. For example, as described above, the occupied levels above 2600 in the histogram of
the cup image (Fig. 4c) are artifacts. These ‘‘eat up’’ dynamic range in the HP display.

Our first attempt to fuse the two algorithms was literally a ‘‘hybrid’’ process in which a
weighted combination of the cumulative distribution functions of each is used:

display value = W | 256 (B[i] - UN) | + (1 = W) 255 F(i). )

Values of W from 0.9 to 0.7 often give the best result, i.e., ‘‘mixing-in’’ between 10 and 30%
of the HE weighting effect. Figure 18 shows the displays resulting from a 25/75% mix of
HE/HP for the airport and two-cup images. Since such a hybrid procedure reintroduces and
even accentuates the computational complexity of the HE algorithm, we sought alternatives
which hybridize the results without such increased complexity. Three are di~cussed here: two
are basically variations on HP called ‘‘under-sampled projection’” (UP) and ‘‘threshold projec-
tion’” (TP), and one is really a variation on HE, ‘‘plateau equalization’’ (PE).

Before examining these three algorithms, one should emphasize that each of them
depends on a single parameter which introduces the assignment of dynamic range on the basis
of histogram height in a gradual and controlled manner. As implemented in software on
actual imagery, they generate similar sets of displays going from the HP result to close to the
HE result. There are however subtle differences between the three techniques which a simu-
lated test pattern image will clarify below. Further, in a hardware real-time embodiment, their
noise characteristics should differ (see Section 4 for further discussion).
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Under-sampled projection (UP) is the simplest way to gradually introduce the weighting
characteristic of HE — one that in fact further reduces the computational overhead. By calcu-
lating a binary histogram based only on every second, fourth, eighth, etc. pixel, one gradually
increases the display allocation of more heavily occupied levels. In effect, this is occurring
on a probabilistic basis, by not detecting sparsely occupied levels; this leaves more display
dynamic range for the occupied ones. The displays for 1/4 and 1/8 under-sampling for the
airport scene and for 1/16 and 1/32 for the two-cups image are given in Figure 19. The
display histograms for HP and the more undersampled UP are compared in .’igure 20. Note
the effect on display range allocation of increasing the weighting given to pixels which are at
frequently occurring levels.

An alternative to under-sampling is to require a threshold number of occupancies, 2, 4, 8,
etc., before deeming a level “‘occupied’’ (TP). TP shifts the dynamic range allocation simi-
larly to UP, by preferential detection of more densely-occupied levels, but operates in a deter-
ministic mode rather than a probabilistic one. On actual imagery, very similar results are
obtained (Fig. 21; display histograms, not shown, are much like those in Fig. 20).
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Figure 24. Histogram for test pattern.
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In principle, a better way to blend the benefits of projection and equalization is to per-
form HE with a cutoff saturation level or plateau imposed on the histogram distribution (PE).
Typically, a plateau of 10 to 20 counts is optimum for the 160 x 244 arrays used to generate
the imagery here; the desirable plateau would increase with total pixel count. In PE, one gen-
erates the F[i] function used in Eq. 3 as before from the full histogram but in effect suspends
counting the occupancies for a given level when and if the plateau is reached. All levels at or
above this plateau are given equal weight as in projection, while levels below are weighted (in
compressed form) as in equalization. Typical results are shown in Figure 22, with Figure 23
comparing the display histograms for HP and PE. Note the close similarity with Figures 19
and 20.

The subtle differences in principle (though usually not in practice >r c¢orrent IR imagery)
among UP, TP and PE are best revealed through a simulated test pattern such as one whose
raw histogram is given in Figure 24. A two-level (1000 and 1004) low-contrast checkerboard
pattern in the center of the image leads to the histogram peak of 3200 near level 1000. The
intensity-graded wavy line signals at the top and bottom of the image lead to the square peaks
of height 4. These arise from 4 pixels each at levels 1 to 162 (top) and at levels 2001 to
2162 (bottom). In all, there are 327 occupied levels. As could be foreseen, HE brings out the
checkerboard pattern but loses the gray-scale resolution of the wavy lines (Fig. 25), while HP
optimizes the latter but loses the contrast in the checkerboard. The computationally intensive
hybrid procedure (75% projection) and PE (40-pixel plateau) afford optimum displays (Fig.
26a, b), bringing out the checkerboard pattern while largely retaining the gray .ale gradations
of the wavy lines. UP and TP (Fig. 26¢, d) shift dynamic range by not detecting levels that
are actually present. In the former, segments of the wavy lines are not graded but lumped
into fixed display values; while in the latter, when the minimum threshold condition exceeds
4, the checkerboard pattern is vividly brought out but each wavy line has been reduced to a
fixed display value.

We conclude this section with the following observation: Our survey of global mono-
tonic algorithms was initially motivated by a pressing need for a real-time automatic contrast
control to replace the manual offset/gain controls on IR cameras, which require frequent
adjustment; and the HP algorithm has successfully provided the requisite automated and
optimized display (see Section 4).
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3. LOCAL CONTRAST ENHANCEMENT
3.1 Introduction

A familiar experience to any operator of an actual IR camera is that in bringing out local
details by adjusting one portion of the image for optimum contrast, one will obliterate other
parts of the image. As a software example, Figure 27 highlights the rudder of the airplane
image and the warm cup portion of the cup image by the assignment of the raw signal span of
these parts of the images to the whole display dynamic range. The purpose of the algorithms
considered in this section is to perform this enhancement function automatically and simul-
taneously for all parts of the image with a minimum generation of artifacts.

In order to accomplish such a locally-enhanced display, one must depart from global,
monotonic mappings. Low contrast details such as those on the cups are frequently not dis-
cernible in such mappings. In the HP algorithm, for example, the total number of occupied
levels N is a measure of the signal dyramic range. N is 451, 1282, and 877 levels for the
geese, airport and cup images respectively. When one is mapping on the order of 1000 levels
of information into 256 nominal levels of display (about 100 discernible levels of gray), about
every four adjacent occupied levels will be fused to the same display value, and raw signal
levels 8 apart or greater can end up as indistinguishable adjacent display values, though a

representative noise level® is only 3 to 5 for the 12-bit raw signal. Clearly, real information
can be lost in such global, monotonic mappings. (In on-line imagery, the spatial and temporal

averaging performed by the eye!® would lower the quoted noise levels slightly.)

In the next three subsections we describe three distinct categories of algorithms for
locally-enhanced display.

3.2 Local Implementation of Global Algorithms

Many locally adaptive enhancement methods described in the literature take advantage of
the obvious fact that the dynamic range of a sub-image is typically less than that of the total
image. For example, in the HP algorithm, the degree of contrast hinges on the number of
occupied levels. To the degree that the local occupancy differs from the total, one can
increase the display contrast by a local application. In Figure 28, the results in applying the
HP procedure to 4, 8, and 16 disjoint sub-imiages respectively are shown for the cups image.
As the number of sub-image divisions increases, the degree of contrast expansion does also,

BMooney, J. M. (1991). Effect of spatial noise on the minimum resolvable temperature of a staring sensor, Appl. Opt.,
30: 3324.
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but so does the number of luminance ‘‘seams’ at sub-image borders; this tends to distract the
eye, and has the potential of destroying information. While this is the simplest way to apply
a global algorithm locally, better results are achieved (at greater computational cost) by using
sliding or overlapping windows or interacting sub-images. Both overlapping- and sliding-
window implementations of HP will be described below. Tom and Wolfe!? describe local
implementation of HE with a sliding window.

A clever example of local implementation of a global algorithm of the linear type

described in Section 2.2 is local range modification (LRM) of Fahnestock and Schowengerdt!®

(also see Schowengerdt,!” pp. 66-67). The image is partitioned into disjoint sub-images. The
maximum and minimum signal level of each region are determined. One then assigns to the
corner of each sub-image the maximum (minimum) of all the maximums (minimums) of the
sub-images which share this corner. Despite the disjointness of the sub-images, the allowed
interactioni of neighboring regions through the assigned corner values is similar in effect to
using overlapping windows. For each pixel, a local maximum and minimum are computed
from a bilinear interpolation of the corner values and then used to define a linear local con-
trast stretch. We have implemented versions of this algorithm for IR images with some
results given in Figures 29 and 30.

For the airport image, LRM yields a display similar to local overlap projection described
shortly (see Fig. 33). Results are shown for block sizes 20 x 61 pixels (32 total sub-images,
and 20 x 31 pixels (64 total sub-images). The false changes of luminance are artifacts which
are also found in local overlap projection. A more serious weakness of the LRM procedure is
its sensitivity to the influence of outlying or fallacious pixels such as found in the first few
rows of the cups image or to very strong edges i the image such as the cup boundaries.
Large regions can be ‘‘whited’’ or ‘*blacked’’ out because of an inappropriate minimum or
maximum in the local stretch equation. In Figure 30, two versions of the LRM algorithm are
applied with 20 x 31 block size. The versions differ in regard to the detection and attempted
rectification of the effects of anomalous pixel values. (Details are not important here. We
simply emphasize the great difficulty in making the LRM algorithm robust to such severe
artifacts over a range of image types.) If one applies these same two LRM variations to a
single-frame, one-point-corrected version of the cups image (Fig. 31), different but equally
severe artifacts are present. (This alternate cup image, referred to hereafter as the ‘‘noisy’’
cup image, is more representative of the majority of our images in its degree of temporal and
spatial noise (see end of Section 2.1) and is used in the remainder of this section in addition

Fahnestock, J. D., and Schowengerdt, R. A. (1983). Spatially variant contrast enhancement using local range
modification, Opt. Eng., 22: 378.

Schowengerdt, R. A. (1983). Techniques for Image Processing and Classification in Remote Sensing, Academic
Press, New York.
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to the first cups image, in order to illustrate the noise-amplifying effects of local enhance-
ments.)

The LRM algorithm inspired a somewhat analogous but more successful local implemen-
tation of a global algorithm, namely a local form of HP based on overlapping windows (over-
lap projection, OP). OP is implemented after first (conceptually) adding four phantom rows to
the image to give 160 columns x 248 rows of pixels. (These pixels have widths twice their
height.) The image is then divided into 80 disjoint sub-images (16 x 31 pixels). To eliminate
or reduce the luminance seams at sub-image boundaries, one applies the HP transformation
within a local window (size 32 x 62 pixels) which encompasses four sub-images (Fig. 32).
The HP transformation is performed for each of the 63 distinct positions taken by the window
as it translates by half its linear dimension in each direction - thus the overlap. For the four
corner sub-images or regions, a unique transformation is defined for each pixel. For the 28

local window
( (32x62)

one of 80 local regions

(16 x 31)

Figure 32. Schematic of the OP technique.
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edge regions, two transformations are defined, and for the 48 interior regions four transforma-
tions are defined for each pixel. For the pixels in the edge and interior regions, the final
display value is generated by linear and bilinear interpolations of the window-defined transfor-
mations, respectively.

Results of OP are shown in Figures 33, 34 and 35. Generally, the algorithm is quite suc-
cessful in bringing out low contrast features such as structural details on the airplane rudder,
designs and lettering on the cups, and veins on the hand. False luminance-change artifacts are
present, especially noticeable for the cups image. However, rarely do the luminance effects
destroy information as radically as in the LRM algorithm. For the hand and Boston skyline
images, HP and OP are directly compared. For the latter image, the many levels occupied by
the clouds (this image has a total of 2025 out of 4096 possible levels occupied!) compress the
global display of the buildings into the low end of the display scale. Hence the local imple-
mentation brings out much lost detail. The hand image is a graphic example of the difference
between a global-monotonic display and a locally adaptive one.

An altcrnate means of applying local implementation of HP is by a sliding window
approach (SP). Using a window size of 11 x 11, 21 x 21, 31 x 31, or 41 x 41 pixels, we
compute the HP transformed display for the pixel centered in this window as well as that of
the pixel directly one row below. One then slides the window to center the next pair of pix-
els and repeats the computation. (If the pixels were square, one would do four pixels at a
time.) The computationally-intensive SP algorithm is a very strong contrast enhancer (Fig. 36)
which brings out much noise as well. It is most useful as a supplement to OP in the smaller
window size versions. As its degree of enhancement lessens to approach that of the OP pro-
cedure (31 x 31 and 41 x 41 sizes), SP has more serious artifacts which are more likely to
destroy information.

Two major drawbacks of local implementations of HP are, first, the computational speed
and memory requirements of a real-time implementation, and, second, the haphazard interac-
tion between the image and the degree of enhancement afforded by the procedure. The latter
reflects the circumstantial dependence of the ratio of local versus global numbers of occupied
levels. These drawbacks are circumvented by the algorithms described next.

3.3 Modulo Processing

The mappings described in this subsection? grew out of the well-known technique of
sawtooth scaling, ‘‘often used to produce a wide dynamic range image on a small dynamic
range display”’.!® For 8-bit displays, one reduces the raw signal level modulo 256, i.e., keeps
the remainder (0 to 255) after division by 256. The problem with such a sawtooth mapping
(Fig. 37; the mapping shown for a raw signal range of 10 bits can of course be continued to
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Figure 37. Sawtooth (dotted line) and modulo (solid line) mappings.

arbitrary size) is the discontinuities at multiples of 256 in the raw signal, which lead to sud-
den black/white or white/black transitions in the display. The simple modification (labeled as
““modulo’’ in the figure, although strictly speaking the sawtooth mapping is the mathematical
definition of modulo) to a continuous triangular mapping with the same periodicity increases
the utility of the procedure. The asymmetry of the sawtooth mapping is replaced by the sym-
metry of the modulo mapping (mirror planes at multiples of 128 in the raw signal). In terms
of the modulo-reduced value m, which ranges from O to 255, the revised mapping is given by

2m for m < 128,
display value = €]
2256 —m) -1 for m > 128.

Eq. 7 generates the displays of our (now four) standard images shown in Figure 38. This
algorithm is referred to as raw modulo (RM), as the modulo property takes us close to the
raw signal data itself. As an image independent global many-to-one mapping (in contrast to
the other algorithms in the previous and next subsections), it can be simply implemented in
table look-up format, while affording a strong and relatively artifact-free form of local con-
trast enhancement.

50




The main drawback of the RM technique occurs whenever a local low contrast feature
straddles a mirror plane in the mapping (cf. the lettering in the lower left-hand corner of the
original cup image in Fig. 38) where the deviation from monotonicity garbles the display, or
whenever regions with high spatial frequency information map into one or more periods in the
display, leading to a too rapidly changing, confusing display (cf. the vehicle grilles in the air-
port scene). Two simple adjuncts to RM can address these problems and increase the utility
of the procedure. The first fix is to allow division of the raw signal data by factors of 2, 4,
etc. before performing the modulo reduction — this is tantamount to increasing the period of
the mappings in Figure 37 by the same factors. The result of division by 2 and 4 for the air-
port scene (Fig. 39) provides more ‘‘readable’” displays. A sequence of RM displays ‘‘toned
down’’ by increasing factors of two, as in the face image (Fig. 40), often provides a useful
survey of the information content of an image. The mirror-plane artifact stems from the arbi-
trary ‘‘phase’’ in the raw signal (additive constant) with respect to the modulo reduction. The

simple fix is to shift the raw signal data by values such as 32, 64, 128 before the modulo
step (Fig. 41). Note the improved reading of the lettering in the lower left-hand of the warm

cup in the mod -32 version and the clearer view of the plant logo and ‘‘coffee connection”
letters in the mod +128 version. However, a more powerful version of this fix can achieve
the effect of shifting the raw signal data by any integer value at very little computational cost.
We merely employ the sawtooth mapping but display the 8-bit results with a cyclic gray
scale: for example, a scale with front-to-back replications of the original, black (0) ... white
(128) ... black (255). Then the effect of any data shift can be obtained practically instantly
merely by a cyclic shift in the ‘‘colormap’ for the monitor.

The RM algorithm involves no histogram processing, is simple and effective, but ignores
the dynamic range requirements of the particular image. A modulo projection technique (MP)
is a more elaborate algorithm designed to adapt to the image dynamic range as measured by
the total number of occupied signal levels N. The following version was ‘“‘tuned’’ to the
present IR images — in principle it can be adjusted for other kinds of imagery. If N is less
than 512, one applies the RM algorithm except that for additional contrast enhancement, the
raw signal data is doubled (if N < 100) or multiplied by 1.5 (if 100 £ N < 512) before the
modulo 256 reduction. For N 2 512, the occupied levels are ordered from 1 to N (as in the
HP technique) and m in Eq. 7 is taken as the modulo-reduced occupancy number rather than
the modulo-reduced signal level. For still higher dynamic range images (N 2 800), neighbor-
ing occupied levels are coalesced to some extent — but by a factor of two less than occurs
automatically in using the HP algorithm - before the modulo 256 reduction.

Figures 42 and 43 show enhancements produced by the MP algorithm. As the images in
these figures have N > 512, MP acts largely as a toned-down version of RM. Comparing the
airport scenes in Figures 38 and 43, the MP version is rather similar but superior to the RM
divided by 4 (Fig. 39) display, with sharper structural details on the plane rudder. With very
low-noise imagery such as the original cups image, the strongly contrast-enhancing effect of

51




sanw
nutp
L piepu
IS
s Inoj
AR
o S
Jo sappdsip
PINY JO
jo sopd
wex:
X RY
R ith
I

f;‘\




Fiocre 290 Bamples of RA with raw signal divided by an 20 b L







INCE G T 0 () IS POIYS PRUSIS WEL Y [V o Sopdiesy g ungig







~dno astou () wdno ) todam ey sAvpdsip

din 1o

sopdiesty vt dannng




RM works well. For the noisy cups scene, MP gives a clearer view of the warm cup, while
RM reveals more of the bar patterns and cold cup details, along with more temporal noise.
For the hand image (Fig. 42; compare Fig. 34), both modulo algorithms bring out the veins
and sleeve cuff details (note the reverse contrast change in the veins in Fig. 42), with better
detail in the fingers than does the OP algorithm. The OP display does retain a better sense of
the global thermal sense of the raw signal — this is typically trve. More comparisons among
the algorithms for local contrast enhancement will be given in Section 3.5.

3.4 High Frequency Enhancement

Up to now, we have concentrated exclusively on the spatial-domain point of view (SD).
The Fourier domain is now widely used in the analysis and filtering of multidimensional sig-

nals'® because of the wide availability of the FFT routine for computing the discrete Fourier
transform (DFT). For images (2-D signals), the spatial frequency Fourier domain (SFD)
viewpoint is widely employed for the ‘‘restoration’’ problem in image processing but in gen-
eral only lip service is paid to the SFD in the ‘‘enhancement’” problem in image processing.

(An exception is the excellent book by Wahl!® in which the DFTs of images are used
throughout to underscore trends and basic principles.)

The algorithms treated in this subsection, high frequency enhancement with linear filters,
can be implemented in either the SD or SFD domains. To our knowledge, there are only two
standard algorithms designed strictly for SFD implementation. One is homomorphic filtering

(Wahl,'® pp. 84-86), in which the signal is modeled as the product of a high frequency
reflectance component and a low frequency luminance component. One converts the product
to a sum through the log function, enhances the (now) additive high frequency component in
the SFD, and exponentiates the inverse-transformed result to recover the processed image.
We have tried this algorithm on our IR images without success — not surprisingly, as the
underlying model is not suitable for IR images. The second SFD-specific procedure is ‘‘alpha
rooting’’ (pp. 124-126 of reference 18) in which one takes the alpha root (alpha < 1) of the
magnitude of the DFT but retains the phase. Again, we found poor results in applying this
technique to IR images.

Since any algorithm for increasing local contrast more or less involves enhancing higher
spatial frequencies at the expense of lower ones, it seems natural to examine this problem in
the SFD. Figure 44 shows the DFTs of the airport image after display with the HP, OP, RM,

¥Dudgeon, D. E., and Mersereau, R. M. (1984). Multidimensional Digital Signal Processing, Prentice-Hall, Engle-
wood Cliffs, New Jersey.

Ywahl, F. M. (1987). Digital Image Signal Processing, Artech House, Norwood, Massachusetts.
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and MP algorithms respectively. (We are using 128 x 256 point FFTs on our images by trun-
cating the first and last 16 columns and mirror-expanding the last 12 rows of our 160 x 244
images. More specifically, Fig. 44 shows log-like displays of the squared magnitude of the
DFT with the center of symmetry indicating the (0, 0) spatial frequency. See reference 19 for
further details.) While the threc local algorithms have the general effect of enhancing high
spatial frequencies, they do so in a nonlinear and spatially adaptive fashion which would have
no counterpart in the SFD. For example, the degree of high frequency enhancement with the
OP algorithm varies locally with the ratio of local to global number of occupied levels — a
signal dependent and operator uncontrolled process. One would like to accomplish such high
frequency enhancement in a controlled and directed manner.

The goal of many high frequency enhancements is to improve subjective image quality
from the standpoint of psychophysics by accenting edges, called ‘‘edge crispening’ (pp. 322-
326 of reference 10) or (the term we prefer) ‘‘image sharpening’’. A typical convolution
mask for this purpose is

-1 =2 -1
177 |-2 19 -2|. 8)
-1 =2 -1

Sharpening the raw signal data of the airport image with this mask and then mapping into 8
bits with HP gives the display of Figure 45a. The thermal span (monotonicity) of the image

is largely intact but only slight contrast enhancement results. One can implement a graded set
of similar operations by means of the equation,

P/ =P.+a(P,~P,y,) )

where P, and P.’ are the initial and final raw signal values respectively of each pixel cen-
tered in an n X n square neighborhood (n odd). a is a small positive integer which controls
the degree to which the difference between the central pixel and the n X n neighborhood aver-
age P, , is amplified. The choice of @ =2, n =3 (Fig. 45b) gives virtually the same result
as the mask in Eq. 8, while a choice such as a = 4, n =9 (Fig. 45c, hereafter referred to as
the WS algorithm for weak sinc sharpened), although more blurry, is beginning to exhibit the
degree of local contrast enhancement sought.

We arrived at further improved masks for local contrast enhancement by ‘‘tuning’’ a
start from Eq. 9 in the SFD and implementing the result in the SD. Applying the WS algo-

rithm to an “‘impulse’’ image and computing the DFT of the sharpened result (Fig. 46a), one
obtains the transfer function of this filter. As expected, it is a 2-D sinc function aligned along

the axial directions with the requisite number of side lobes from the 9 x 9 neighborhood. We
next converted this function into an equivalently strong, circularly symmetric Gaussian
(exponential) filter by using the three-parameter form suggested by Wahl (reference 19, p. 85),
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(c) MG; (d) WG.

k]

(b) SG

(a) WS;

Figure 46. Filter transfer functions for




1 forr =0,
G(r)= (10)
Ay = (A = Ay)exp(— r2})  otherwise,

where r is the distance in frequency space from the (0, 0) frequency. Eq. 10 was
strengthened and adjusted in the SFD by using it to filter the DFT of representative images
and inverse-transforming the result to inspect the filtered image. The final Gaussian G was
then transformed back into a (SD) convolution mask. We then approximated this mask using
integers, shortened the mask extension, and toned down the effect slightly by trial and error.
What finally emerged are the following three Gaussian convolution masks, referred to as
strong, medium, and weak (SG, MG, WG) respectively:

0 -1 =2 -1 0]

-1 =2 -3 -2 -1
SG: |-2 =3 37 -3 -2, an
-1 -2 -3 -2 -1
0 -1 ~2 -1 0]

0 0-10 0
0 -1 -2-1 0
MG: |-1 -2 17 -2 -1
0 ~1 =2 -1 0
0 0 -1 0 0]

-1 =2 -1
WG: -2 13 -2, (13)
-1 =2 -1

whose filter functions are compared to the starting WS filter in Figure 46b, ¢, d. The MG

mask with power of two coefficients and the small 3 x 3 WG mask were designed for ease of
implementation.

Figure 45d completes the sequence of sharpening comparisons of thc airport scene with
the use of the MG mask. Excellent local contrast enhancement is achieved with a more
“‘natural look” than with the OP, RM or MP algorithms (see Figs. 33, 38, and 43). The

DFTs of the airport displays in Figure 45b, ¢, d are shown in Figure 47. Comparison with
Figure 44 indicates that the sharpening filters produce a more structured operation in fre-

quency space, with greater de-empbhasis of the low and mid-range spatial frequencies.
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The WS filter (@ = 4, n = 9 in Eq. 9) is compared in operaticn to the three Gaussian
masks on both cup images in Figures 48 and 49. The weak or medium masks are often
optimum, as in this case, for noisier images; while the SG mask, or even stronger versions,
match up well with very low noise images. Especially for such low noise images, the Gaus-
sian masks can reveal high frequency information missed by the previous algorithms, as for
example in the license plate numbers on the automobile in Figure 50 (a 256-frame average
and hence a low temporal noise image).

These masks — or for that matter any specific high frequency enhancement algorithm —
have two drawbacks. First, they amplify both residual spatial noise (as in the honzontal lines
on the warm cup in Fig. 49) and temporal noise (as in the bar patterns in the same image or
the background in the face image of Fig. 51). Second, if the low contrast information is not
high spatial frequency, such as the veins in the hand image (Fig. 51), modulo and local tech-
niques (Figs. 42 and 34b) do a better job of enhancement.

A basic difference between the algorithms in this subsection and all previous algorithms
should be underscored. We are here not mapping from raw signal to display values, but are
rather preprocessing the raw signals. Hence we can join any of the previous algorithms in
tandem with one of these high frequency enhancements. The examples shown so far have all
been sharpening/HP. A very effective combination (results shown in Fig. 52) is to sharpen,
e.g., with the WS algorithm, and then to map into an 8-bit display with the OP algorithm.
This affords a stronger, more locally balanced, contrast enhancement than just OP, but with
much reduced luminance artifacts (compare to Figs. 33 and 50). Apparently, the preprocess-
ing with sharpening equilibrates to some degree the set of local numbers of occupied levels,
giving smoother transitions between regions upon using the OP procedure (see 3.2).

3.5 Conclusions

The comments scattered throughout this section on the pros and cons of the various tech-
niques for local contrast enhancement are gathered together and categorized in Table 2. We
summarize some broad conclusions from this table.

The three types of local enhancement algorithms — local implementation of global algo-
rithms, modulo processing, and high frequency sharpening - are all useful and sometimes
complementary ‘‘software tools’’, which afford a comparable and effective degree of contrast
enhancement, although one can find images or image types that match particularly well to
each category. Local techniques like OP and SP are less predictable in their effects, with
their circumstantial dependence on the number of locally occupied levels. The high frequency
enhancement techniques rank high with respect to absence of artifacts, other than edge
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overshoots, and in ‘‘natural look’’. One might well ask, ‘“What is a natural look for IR
imagery?’’ We suspect that large regions hich retain the monotonic thermal sense of the glo-
bal mappings of Section 2 look more natural. Hence, modulo processing does not rank high
in this respect and tends to look confusing, particularly to inexperienced observers.

If one turns to issues central to real-time operation in hardware on IR cameras, then RM
processing, which entails simple global, signal-independent transformations, offers a computa-
tionally cheap form of contrast enhancement. Adding the two “‘bells and whistles’’ described
in Section 3.3 (division of the raw signal by 2, 4, etc.; and additive shifts in the raw data
scale) would increase the utility of such a camera adjunct.

4. HARDWARE IMPLEMENTATIONS AND FUTURE WORK

Many IR imaging applications such as low altitude night navigation, target tracking, and
autonomous landing systems require a real-time automatic contrast control which provides
optimized display imagery. While manual offset/gain adjustment on laboratory-designed cam-
eras generally afford an excellent view of the IR scene content (in the hands of a skilled
operator), frequent readjustment is required as the camera is panned or as the IR content of
the scene changes. Real-time hardware implementations of the HP algorithm for this purpose
have now been incorporated into several cameras designed in-house and afford a very useful

alternative to the offset/gain controls.” In similar active areas of development, several US
companies have already implemented HP or are now implementing it, typically in the UP or
TP variation, for the same real-time function. So far, a fixed parameter in implementing UP
or TP has been used. However, an implementation of UP with a programmable parameter
(ranging say from HP itself to 1/32 under-sampling) would allow for some adjustments to the

application by providing on-line flexibility in the dynamic range mapping.’

Aside from issues of computational complexity, other issues arise when real-time imple-
mentations are considered, such as interactions with temporal noise and mean display level
flicker. A problem noticed in some of the HP implementations is the suspected presence of
some frame-to-frame flicker noise, particularly in blander scenes (small total number of occu-
pied levels N). Referring back to Eq. 5, we recall that the final display value of each pixel
depends on its order number from 1 to N in the hierarchy of occupied levels. Even in a

* The first such implementation was done in conjunction with the Hughes Aircraft Co., El Segundo, CA; details are
available upon request from the authors.

t Such an implementation has now been done by the Eastman Kodak Co., Rochester, NY.
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stable scene, noise variations from frame to frame, especially in their effect on sparsely occu-
pied levels, can cause shifts in pixel order numbers. The most noticeable effects would arise
from changes at the low or dark end (say as ‘‘detected’’ occupied levels disappear or are
created) because such changes tend to affect the order number as a constant shift of a large
majority of the pixels. The resulting rapid changes in the mean level of the display can
become perceptible. Noise simulations have been performed and several fixes are being con-

sidered.2%

We conclude this treatment of the display of IR images with a caveat. We have sur-
veyed algorithms in two broad categories: ‘‘standard’’ algorithms used in other contexts (HE,
LRM, homomorphic filtering, etc.) which we have tested on IR images; and algorithms newly
devised for application to IR imagery (HP, OP, RM, etc.). The imagery driving our work and
underlying this survey was based exclusively on PtSi staring technology and taken with cam-

eras designed in our laboratory. More and more, IR imagery of this caliber is coming into the

hands of foreign and domestic industrial companies which make PtSi cameras,! as well as

imagery from other technologies such as InSb and HgCdTe. As staring IR imagery from
other cameras, technologies, and wavelength regions (in particular, the 8-12 micron atmos-
pheric window) becomes available, it would be desirable to revisit our surveyed algorithms.
We therefore expect modifications and expansions of the perhaps somewhat parochial point of
view of this report as more standard algorithms are tried on IR imagery or as new algorithms
come aleng. Conversely, we anticipate possible use of some new algorithms such as HP, RM,
or MP on other types of imagery with similar dynamic range requirements, such as medical
imagery.
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