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SUMMARY

A mathematical model to predict the dynamics of a
flexible orbiting platform is developed. The platform is
idealized as a large thin homogeneous square plate, made up
of a continuous distribution of mass points in a plane. By
considering the internal and external forces acting on each
generic mass point, the equations for the rigid body
motions, as well as the elastic degrees of freedom are
developed. It assumed that the elastic motion is limited to
small amplitudes and that the center of mass follows a
circular orbit. For small amplitude flexural motion, the
rigid body and elastic modes are modeled to the first order,
thus linearizing the equations of motion for control law
synthesis.

Under the assumption that the linear system is
completely observable, the optimal control laws are
developed for the case where the observational data is
collected on a sampled basis, i.e., a discrete time datd
system.

The attitude and shape control can be achieved by
placing point thrust actuators perpendicular to the main
surface and the edge of the plate. Their effects on the
motion are modeled to the first order. Controllability for
the system is verified for two sets of actuator locations.
An application of the linear quadratic regulator technique
in a discrete-time domain yields the optimum control law
feedback gains.

A comparison of the performance of the different sets
of actuator locations results in the best choice of actuator
positioning. Parametric studies are conducted to show the
effect of varying the state penalty matrix, control penalty
matrix, and the sampling period on the transient performance
of the system.
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CHAPTER 1 - INTRODUCTION

The Solar System is our extended home. Through the use

of space technology mankind's expansion outward from Earth

to other worlds becomes feasible. The opportunity to

stimulate individual initiative and free enterprise in space

will surface through the development of new lands.

Historically, when the power of the human intellect combines

with abundant energy and rich material resources wealth is

created. On the space frontier, new wealth can be created to

benefit the entire human community by combining the energy

of the Sun with materials left in space during the

formulation of the Solar System. Mankind's reach will extend

in science, industry, and the settlement of space with the

correct combinations of: vigor and continuity, the elements

of scientific research, technological advances, the

discovery and development of new resources in space and the

provisions of essential industries and systems . Government

investments will generate, in value, financial returns many

times its initial cost to the benefit of all.

To meet the challenge of the space frontier, the

National Commission on Space, has nroposed a step by step

program to open the inner Solar System for: exploration,

basic and applied research, resource development, and human

operations.)I With the advent of the Space Shuttle as a

| i I



reliable, affordable transportation system, the prelirinary

steps of acquiring a network of outposts in space can be

undertaken. By following a systematic program -with minimum

risk and funding- a progressive path for future space

activities can occur. This program's structure will be in

accordance with the inner Solar System's natural

characteristics: energy, distance, signal delay time, and

availability of resources.

An outpost actually consists of one or several large

platforms with connecting appendages, i.e., solar panels,

radar dishes, habitation modules, skylabs, etc.. There are

major differences between satellites and large platforms;

size and capabilities are two such differences. Large

platforms are well defined by Cuneo and Williams, ' as a

system which provides basic services to a changing set of

activities. ,C?] The capability of service -either updating

payloads, or performing repairs, or replacing degraded

modules, and/or replacing consumables- is probably the most

common aspect attributed to platforms. The primary purposes

of a platform is to provide shared support for multiple

payloads aad to provide connectivity. The reasons for

platforms, are to obtain: (1) the economies of scale which

come from shared support, and (2) the new and improved

services which come from connectivity.[3)



The forementioned network of outposts would have

several different locations: low earth orbit (LEO);

geostationary orbit (GEO); lunar (surface and/or orbit);

Mars and its asteroids. The outposts of interest for this

thesis will be located in LEO, approximately 250 nautical

miles from the Earth's surface. Low earth orbits are those

just beyond the Earth's atmosphere and are the easiest to

reach from Earth. This orbit provides both a close proximity

orbital view of Earth and a window for observation of the

Universe. Freedom from strong gravitational effects allows

experiments that would be impossible to conduct on Earth's

surface and facilitates the construction of large structures

of low mass. Earth provides a sheltering skirt of magnetic

field that protects us from solar flare radiation.

Planetary landings are costly in terms of propellant

requirements for the descent, but the access of surface

materials becomes an invaluable resource. When lifting

payloads into orbit, away from Earth's gravitational field,

we expend energy; to overcome the Earth's gravitational

clutch, the rockets must attain speeds to lift a payload

free of Earth's pull. We must expend the same amount of

energy necessary to haul that same payload influenced by the

full force of gravity to a height of 4,000 miles. To reach a

nearer goal of low Earth orbit -where rockets and their

payloads achieve a balancing act, while skimming above
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Earth's atmosphere- we must spend about half as much energy,

equivalent to climbing a mountain 2,000 miles high.', Once

in 'free space', away from planets and moons, large

distances can be traveled with modest expenditures of

energy. Other gains from working in an orbiting space

environment include: full-time solar energy, which is

valuable for industrial processing, and microgravity, which

is advantageous for building large space structures, i.e.

Space Station, Variable-G Research Facility, and a Mars

Interplanetary Vehicle. Once these facilities are built,

research data can be accumulated to understand how the

absence of gravity affects the fabrication of faultless

materials, physical conditions, and motor skills of

humans. 14,53

Early industrial production in space may be best

achieved by transporting raw materials from the Moon or

Earth to orbiting platforms processing and fabricating

finished products via robotic factories powered by

continuous solar energy.

The first space enterprise to reach economic viability

was satellite communications. Once in orbit, communication

satellites lock into geostationary position and relay

electronic messages, telephone calls, electronic mail, and

television broadcasts. Future developments in space-based



communications and information systems will revolutionize

our daily lives.161 The proposed deployment of large plate or

dish shape orbiting structures will make it possible to

equip a car, boat, or airplane with a receiver and a display

to pinpoint its exact location by satellite, allowing the

provision of navigation, collision warning, fleet dispatch,

emergency location, and two-way communication via satellite.

These services can even be provided to small hand-held

terminals powered by penlight batteries.

Currently in early stages of development is the remote

sensing from low Earth orbiting satellites and/or

structures. From the vantage point of space they enhance the

ability to observe and produce specialized maps, that help

facilitate the management of crops and mineral resources as

well as forecast potentially destructive phenomena to

forests, fisheries, pollution, and water resources.

one highly prospective space enterprise would -if

technically and economically feasible- satisfy all of the

ideal conditions. This enterprise would provide energy for

Earth from orbiting structures that are intercepting solar

energy.17 3 The Soviet Union has already announced the goal of

building the first solar powered satellite to supply energy

to the Earth in the 1990's. To capture such a market would

have substantial impact on the world's energy problem.fil



Using the capabilities of the Space Shuttle many futurc

missions have been proposed based on the deployment of Iarge

space structures. Most of the satellites that have been

launched so far consist of a massive central rigid body,

with characteristic dimensions of the order of a few meters,

attached to light rigid or flexible appendages usually

characterized by dimensions of not more than tens of meters.

The natural frequencies associated with such flexible parts

are normally several orders of magnitude greater than the

orbital frequency and the frequencies of the rigid body

rotational motions. In contrast to the existing satellite

systems, the proposed large space systems' entire structure

will be considered flexible. With the inherent size and

necessary low weight to area ratio, the structural

frequencies in the range of 1/100 Hertz or less may be

considered in the study of the dynamics and control of these

systems. For these proposed missions the operational

considerations define stringent accuracy limits (possibly of

the order of millimeters for a typical structure of 100 m)

on the shape control of these structures.t 81 To satisfy these

requirements and others, both shape and orientation of the

orbiting system should be controllable.

Often the optimal control laws for these future systems

are developed under the assumption that the state vector is

observed directly or the state information can be estimated



on a continuous basis. However, for future applications the

observational data will often be collected on a sampled

basis, creating a discrete time data syster. The amount of

information collected may be reduced and the format of data

input may be acquired more conveniently. The case presented

here will have the characteristics of being completely

observable, with an addressed deterministic system (i.e., no

random noise nor sensor system dynamics will be considered).

It will be useful, and timely, to study the control

problem of large flexible orbiting space structural systems

with discrete-time observational data. The development of

modern control theory and technology provides a strong tool

for solving this kind of engineering problem. The LQR

regulator technique is that strong tool for synthesizing

linear system control laws.o 9l The LQR strategy can provide

acceptable control performance once the state and control

penalty matrices are properly selected. It does not restrict

the number of actuators to be equal to the number of degrees

of freedom in the system. Although, the LQR method has been

developed and widely applied, it is still not an easy task

to apply it to the engineering design for the control of

large space structural systems, especially for systems with

sampled data input.E10 3 There are still many specific

problems to be investigated. This present work represents an

initial effort toward understanding the dynamics and control
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of large flexible structures in a discrete time domain.

By using a continuum approach, Santini, developed a

mathematical formulation for predicting the motion of a

general orbiting flexible body."13 The formulation is based

on the following assumptions that: (1) the elastic

deformations are in the linear ranges so that the

displacements can be expressed as superpositions of the

various modes; and (2) the linear characteristic dimensions

of the structure are assumed much smal er than the orbital

radius. The effects of higher harmonics in the Earth's

gravitational potential are included. However, the

formulation has a slight drawback in that the elastic modal

shapes are expressed only in terms of Cartesian components.

This can be remedied by redeveloping the formulation using

vector calculus, which was done by Kumar.A 81

For simple structures, such as beams, plates, and

shallow spheres moving in orbit, modified versions of

Santini's formulaticn allow the development of the

translational, rotational, and elastic equations of motion.

In order to gain insight into the dynamics and control of

the proposed large flexible platform system, the formulation

and manipulation of the equations of motion for a free-free

beam were studied.("',"" Cf particular interest was a beam

which, in equilibrium, has its longitudinal axis aligned



along the vertical.

Assuming the center of mass follows a circular orbit

and the pitch and the flexural deformations occur only

within the orbital plane, it is seen that the pitch motion

does not influence the elastic motion. The pitch and the

elastic modes are decoupled for large values of the square

of the ratio of the structural modal frequency to the

orbital angular rate.f 143 For small values of this ratio the

elastic motion is governed by Hill's 3-term equation which

can be approximated by a Mathieu equation. Using a Mathieu

stability chart, the resulting stability was considered.A 51

For small amplitude flexural motion, the rigid body and

elastic modes were modeled to the first order, thus

linearizing the equations of motion. (162 A parametric

analysis of the controllability of the motion of the beam

about a nominal orientation for a discretized system was

reviewed.1' 3 Extensions were made to the LQR formulation and

were applied to a thin flexible orbiting plate in a

continuous time domain.) 181

Many large space structures proposed for future space

applications can be approximated by the basic structural

forms of a thin plate or a shallow spherical shell. The

ability to accurately determine the frequencies and mode

shapes is essential for the analysis and control of large



orbiting structures. Methods of describing free and forced

vibrations of plates and shallow shells have been formulated

by many investigators. A comparative study of several

different methods was reviewed for a free-free aluminum

square plate.(1 91

An extension to the comparative study of reference 19

has been accomplished in this thesis to include an

additional technique, GTSTRUDL. GTSTRUDL is a structural

design language that incorporates the finite element method.

With this additional technique the final product is now a

comparison of four different frequency and mode shape

approximation methods.A2°o2 1 The methods compared were:

1) the approximate frequencies and mode shapes of a

rectangular plate derived from the formulation by

Warburton [22,23];

2) the analytical results for a square plate were

calculated from a method by LemkeE24 ;

3) the frequencies and mode shapes were computed

using a finite element program, STRUDL, written at

M.I.T. (251; and

4) the frequencies and mode shapes were computed

using GTSTRUDL, an update version of STRUDL

written at Georgia Tech "2o".

It was found that GTSTRUDL obtained better results than

STRUDL and produced accurate results for specific finite
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element (see Table 1) input grid point (node) locations,

whereas, the Warburton an-i Lemke methods could only afford

approximate answers. (21]

Attitude and shape control are assumed to be realized

in this investigation by placing point thrust actuators in a

symmetrical pattern perpendicular to the main surface and

the edge of the plate. C263 The placement of the actuators on

the main surface help control the shape deformation and the

torque about two of the principal axes. The placement of the

actuators along the edge of the plate help control the

torque about the third axis. Care is taken not to place the

actuators on the nodal lines associated with the first and

second transverse vibrational modes or on the nodal circle

associated with the third mode. The actuator's effects on

the rigid body and elastic modes are modeled to the first

order. In this thesis it will be assumed that the system is

completely observable.

The control laws for the system will be applied to

obtain the optimal control feedback gains based on an

application of the linear regulator problem for a discrete

time-data system. 19-1OJ The implementation of the LQR

procedure will be accomplished by using the ORACLS software

routines. 271



A system may be completely controllable in a

continuous-time domain, but once it is discretized,

controllability is not guaranteed. To insure the

controllability of a discretized data system, the sampling

period theorem will be applied for propetr selection of the

sampling period. The theorem mandates the eigenvalues of the

closed loop system must satisfy certain conditions. [1I0 For

signal reconstruction, the sampling period, AT, should be as

small as possible, but if the sampling time is too small,

the computational requirements may exceed the computer

speed. r1

Under normal operation, the onboard computer estimation

and control must finish processing all the input data during

one sampling period, AT, i.e., the prediction of the state

variables which will be used for the controller must be

available before the beginning of the next sampling

sequence. Thus the sampling period should be more than the

minimum computational time required by the onboard

microcomputer for the simulation of each step in the

estimation and control process. The choice of sampling time

is also constrained by the performance of the transient

response, i.e., oversh.oot characteristics, settling time,

steady state RMS errors.



CHAPTER 2 - DEVELOPMENT OF EQUATIONS OF MOTION FOR A

FLEXIBLE ORBITING BODY

2.1 - Assumptions

In order to achieve a low mass to area ratio many of

the proposed large space structures have been designed in

the form of lattice or truss structures. A finite element

analysis of such an orbiting structure would require a large

computing capability and may be expensive. A preliminary

insight into the dynamics of the system can be obtained by

representing the structure as a large thin plate.

Early analyses of space structures were based on

aluminum or aluminum alloys; since then advances in

technology have made composite graphite a feasible

alternative. When comparing the two materials, graphite

displays two advantages, flexibility and weight, thus,

makinq graphite the optimum material.

The material property vo.lues adopted for reinforced

composite graphite here are: Younlg's Modulus, E, 40 x 106

lb/in 2; Poisson's ratio, u,0.3; and density, p, 5.42 x 10-2

lb/in 3 .r 28' The structure's dimensions are assumed as; width

and length, f, 100 m; and thickness, t, 0.01 m. It assumed

is to travel in a circular orbit at an altitude, h, 250

n.miles, while maintai ing a constant angular velocity, wC,

1I[•



0.0011162 rad/sec.

The equations of motion are derived using a Newtun-

Euler formulation. The principal assumptions made for this

development are:

(1) the mass is idealized as a continuous distribution cf

mass points in a plane;

(2) the structural properties are uniformly distributed;

(3) the material of the body is isotropic;

(4) the structure is deformed in such a manner that it

experiences only small strains (within the linear

range);

(5) the elastic displacements are small as compared with

the characteristic linear dimensions of the body;

(6) the elastic deformations in the plane of the plate are

much smaller in comparison to the deformations normal

to the plate;

(7) the first three elastic modes will be considered, since

normally only a few elastic modes contribute

significantly to the vibrational motion of the

structure;

(8) the system is considered closed, i.e., no mass transfer

across the system boundaries; and

(9) there are no geometrical constraints on the motion.
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2.2 - Coordinate Frames

Initially the equations of motion are derived for a

flexible orbiting body of arbitrary shape.'1 Figure (1)

shows a flexible orbiting body with various symbols and

coordinate frames.

lovtic body

Ear*ns spin a•9s dm

z

-J. LA)

0 X. Y. Z. - Orboit Fixed f rorme

O - center of the earth
0 - center of mass of the body

Figure 1. Transformation of Coordinate Frames



T : O'XYZ is an earth centered inertial reference frame

(T,,) with O'Z along the earth's spin axis and O'X a&ong

the ascending node.

71: Oi~i~i 3 is the local intrinsic frame (r,) centered at

the center of mass of the body 0, with Oi, along tho

local vertical and Oi 2 perpendicular to the plane ZO'O.

72 : OXQY 0 Zo is an orbit fixed reference frame (r 2) centered

at the center of mass of the body 0, with OX0 along the

local vertical and OY° along the orbit normal opposite

to the orbit angular momentum vector.

r3: Oxyz defines the principal axes of inertia (73 ) of the

body in the undeformed state (not shown in figure).

The above reference frames are related to each other as

follows:

i2 -LO
.13J- T1 Y (in)j T2L (2a) - ' I (3 a)

I - TI T 0 (ibý T2 - T' 1 (2b) T3 T3 T 2 (3b)
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The various transformation matrices are[11 .:

[sinicos• sinflsinra cos¶n

T. - COSnCOSW cosisina -sin•ij (4)

--sinf Cos W 0

Ti represents the transformation from the inertial frame to

the intrinsic frame.

S0 0 1
T2 - 0 cos x sinX (5)

0-sinX cosX]

T. represents the transformation from the intrinsic frame to

the orbit fixed frame.

cosocosO (sintcos*+costsinesin*) (sin4tsin*-cos4sinecos*)1
T3 -_-siin(cosO (cos~cos*-sifnlosin8sinf;) (cosOsin*+sinOsinfcos*)I (6)

sine -COsOsin* cosOcos*#

T3 represents the transformation from the orbit frame to the

body frame according to the sequence (1) *-yaw; (2) 0-pitch;

and (3) O-roll, respectively. The body angular velocity

components w, Wy, and w. are then related to the Euler

angular rates , 6 , and + as follows:

Wx. 6sin4 +4Icos4cosO-c%(sinoscosW+cos4psin4sifnl) (7)

W .cos@_-sinocosE_ w(cosPcosgsin sinesinr) (8)

W.- *sin÷.÷+w,(cos0sinqI) (9)



2.3 - Gravitation

The gravitational potential at any point can be

expressed in its most general form8011'121-

where,

M-C

P s(m)() represents the mr- associated Legendre function of

order s; Ksm and psm are constants obtained through analysis

of the satellite orbital motion; p represents the distance

from the point to the center of the earth; and 17 and w

represent the colatitude and the longitude, respectively, of

the point.

For the gravitational force per unit mass at the body's

center of gravity, G:1 8 ,111

av

Fg(P, TIw) )UVVG 8v (12)

av
psinT1awlj



For a point at a distance r from G, neglecting small

quantities of the order lri/p, the gravity force, F(x):

F (x) -Fa- •" <TT) - F- (13)

Substitution of the matrix operator, B%, leads to:

Fa(x) - F3 3 E ., , v a (14)

where B(*) and B(') are defined as:

B (15)

I0o o -1

(s+1) (s+2)2 -(s+2)f Q 5  (s+2)
sinil

B (S01 (S+2)aj 0[ - (S÷2)O]( (16)

-(s+2) 
(

-(÷)sin---- \sinn / sin 2 n

where, ()1 . ) ; (7) .

Reprojecting on the body fixed axes results in;

f(X) -T 3T2FG+ _ + 4Arm (17)



M(1) and M"s) are symmetric matrices, where the following

definition of M') represents both matrices,

7- T 2 B (T'T 2)- (18)

3cos24,COS26--i -3sin4cos~cos 2 8 3cos4cosOsir.01
M"' - -3sin(cos4cos';O 3sin2 cos 2 IO- -3sin(cos8s r.Oj (19)

3cosd)cos~s in8 -3sin(cosfsinO 3.s ir2' -O

3 3 t tB (20)

- k-$

where t mn is the (inn) element of the (T 3T2)) 1 matrix and B()

is the (mn) element of the B(s) matrix.

2.4 - Ecauations of Motion

The position of a general point with respect to the

body fixed frame, 73, is given by

(21)

where f. represents the position vector of the body with

respect to 0 in the undeformed state, f,=Eij+EYj+•,k ; and

represents the elastic displacement of the body. Therefore,

I'- (22a) and 1•-- (22b) (22)



For small amplitude elastic displacements, • can be

represented as a superposition of various modal

contributions:

~- ~r~t&'~(*~)(23)
l-:

where A,(t) represents the nh modal amplitude; and *(

represents the eigenmodes of vibration, ( n)='ý< i+( •) + n j +4

Substitution of Eqn. (23) into Eqn. (17) forms:

f -TTF+GY-3-IM- -,A (24)
SI P S 1Pn

The linear operator •[i] transforms small structural

displacements, ý, to the structural forces acting on the

generic point of the body. The mode shape, •(), is

associated with the natural frequency, wn and satisfies the

following orthonormality condition:

-'5(2 , n (25)

where Mn represents the generalized mass in the nth mode.

The linear operator of S[§(n)) becomes:

[ I -(n) dmn (26)
n
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Therefore,

([Z, t) I d- - x A-(t) I drr (27)

To satisfy the laws of conservation, an unconstrained body's

elastic modes must be orthogonal to the rigid body modes:

Conservation of Linear Momentum-Translational Orthoconality

f dm - 0 (28)

vol

Conservation of Angular Momentum-Rotational Orthogonality

f 0 -r3 r21

fo) (29 )X~~~~o[ zr r d
vol Vol 2  :i 0

If the body is constrained against translational and

rotation of the undeformed center of mass, the corresponding

modes are called "fixed modes". For fixed modes Eqns. (26)

and (27) do not hold. For fixed modes the center of mass in

the deformed state no longer coincides with the origin of

the body frame. Only for the free modes does Jf dm = 0.

2.4.1 - Equations of Rotational Motion

Returning to the development of the local equations,

the equation of motion for an elemental mass, dm, whose

instantaneous position vector from the center of mass of the

body is f, can be written as:



(3)

(T' , FiM* Ef- Ydm (30)

where f represents the gravitational force per unit mass;

Erepresents the external forces (other than gravitational).

Rewriting the inertial acceleration of a differential

mass as a contribution of terms as seen by an observer in

the rotating body fixed system of coordinates, T3. it can be

seen that the general force equation for a rotating body is:

Rdm- dmg,,+ dm 26 xf+ -6x (C ] (31)

where 6 represents the angular velocity, W=0 i+Wj+wz•k.

The equations of rotational motion of the body are

obtained by taking the moments of all the external,

internal, and inertial forces acting on the body. After

equating Eqns. (30) and (31) and taking the moments:

+! jm(32)

The various terms of Eqn. (32) can be evaluated using vector

calculus. Assuming Ij/PJ<< 1, only the I" order terms in q

are retained. Through the substitution of the values of the

integrals into Eqn. (32) and rearrangement of terms, one can

obtain the following form for the rotational equations of

motion: 8I,2



I" zT) W W I"

Y f n (33)

The terms, I., I ,1 and I., are the principal moments of

inertia of the body in the undeformed state. The terms, Q-,

reflect the inertia torque associated with the elastic

deformations, where Q')=Q X )I+Q Yn)I+Q (n)R

n-- Vol (34)

-n) () (n) (- ))

QI( -An( n-H( ((nn) (+ .) I +

÷ "zz +U
A [2( (n) (~n) (•n)+;(n) {;(n) +; Wn

A, (-(H +•" "'y ) y(;)- (+ + )( ý +f n _;(n)H;; -(n, +Hzn)-2 w Y z ("z(z "'X ) xx~ z (35)
( ( n) --(nI H +H W

CA) ~ ~ °G "y "; H; Z Y Y ZY"

Q Y 0~and Q,(-) are obtained by the cyclic permutation of x, y(
z in the expression for Q. (n), where Horn) is defined as,

Vol

The term, C, represents the external momentum caused by

external forces other than gravitational, where 4 is the

external force per unit mass.

if f ffx . m (37)
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The terms, B(n), account for the difference in position

between the actual center of mass and the center of mass of

the undeformed body. For the case of free modes (n)= 0

ff(-)c -fdx -o) - fGZnAnffoxDI,) d~m (38)
n-I n-1

The term, Gri corresponds to the gravitational torque on a

rigid body,

Q- f FoXM ffdM (39)
Vol

G •: ( -T )> M •. 1 . ( -.z ~ , f + ( I . . , ) M 2 ( 4 0 )

where M.. is an element of the M matrix which is defined as

M-M(°• + iK. (a/p) SM(B)
8-i

The terms, 6(n), correspond to the gravitational torque due

to elastic deformations, where 8(n)=Gx(n)i+G Y()j+G z()R.

E - f [Mq×M, j XMfoJ dM (41)
vool

G~n) (4n ) •(n) M _ 21 (H.x(n +,q (n) MI, (n) (rn

"G/~An I[(M3 3 -M2 2 ) +-i z ) --.. R-, ) ÷M 3 ,- -y (n) z) + (42)
2M23( I A Iý l ]

G Yn)and G zn) components are obtained by the cyclic

permutation of x, y, z in the expression of G. n)
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2.4.2 - Generic Mode Equation

The generic mode equation is obtained by taking the

modal components of all internal, external, and inertial

forces acting on the body[8'11,12.

vol (43)

vol

The various terms appearing in Eqn. (43) can be expanded.

With the substitution of the various integrals and

rearrangement of the terms, the following generic modal

equation results:

rn-I rn-i4 :n G) gn +, f, g.Xf + En +,)'~ -€o) ] IM ,

ýP (ný- f ( , (n sX( fo 1dm (45)
vC2

- + (n) (n) (n)

4r) H. - Hz'.) ( H(F,- .,¢ ) + 6 (H. H -YX '
(. n .(nI [ (n) (n

'~~,,( "'HW)~~ 2 (Hlz 'H~ '(WZW)(flz) ,,n + (46)
- 2 (, •n1+HH(n)l ,2 (nl (.(n) 2 n) +H'(n) )

(A) X z/vX Y(1o+ zz W ~'z +H y

The term, 9'(), represents the influence (or force) of the

rotational motion of the body on the nlh elastic mode due to

inertia.

"15-Pd

lP f (47) I i
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P2A,,[Ox(Lv(Z -L~ 1 +6 (L -rZ ) - 7 t".Z( yz -. I +() r n) (48)
W XW (LXY L y • WYyx zy ( z -z + LZY + W zw X 3zX -Xz

The terms, pn, represent the influence of the other elastic

modes on the n" elastic mode due to inertia, where LO(M) is

defined as,

L - f -- (49)
vol

The term, g,, is the gravitational force acting on the nn

mode due to the rigid body motion.

g 'fcn) MfpdVE (n)
gn" f >° o d ov-H-0 M.p (50)Vol $

The terms, g,, represent the gravitational force acting on

the nt mode due to the elastic motion on the mth mode.

gq- f Mcdm-Am L M- (51)
vol M d

The term, E., is the external force component acting on the

nth mode.

En" f 4ý (n) "edMT (52)

vol

The term, DI., represents the term corresponding to the

displacement of the center of mass due to the elastic

motion. For unconstrained motion D' vanishes.



2.4.3 - Ecquations of Translational Motion

The equations of translational motion of the body in

orbit are obtained by integrating the summation of Eqns.

(30) and (31).

f C - -iýxf +Cx\ Zxj v-f1 W1 I/ P f -+'P dv (54)
vol vC!

Noting jrpdv=O, one can obtain the translational equation of

motion.

+ +ff +- f/M (55)

where S is the inertial acceleration of the center of

mass; fi is the intensity of the gravitational force at the

center of mass of the body (force/mass); n is the mass of

the body; E is the resultant of the external forces; and

D-1/mf [1,2,x,5+-& x( (x-S[q/p- Mpdv (56)
vol

For the free-free mode shapes -unconstrained mode shapes-

6=-0.

Because of the size of the structure considered in this

work, (i.e., (100 in)) one may neglect the effect of elastic

motion on the orbital motion of the center of mass. In this

thesis, the equations of orbital motion are not considered
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for further analysis. It is assumed that the orbital

position of the center of mass can be readily computed using

techniques of orbital mechanics.

In summary, the motion of an arbitrary flexible bciy in

orbit is described by Eqns. (33), (44), and (54).

Consideration of the effects of gravity grad-,'nt -including

higher order harmonics- has been included in the derivation

of these equations. Equations (33) and (54) are vector

equations which describe the dynamics of the rigid

rotational and rigid translational motions, respectively.

Equation (44) is a scalar equation which describes the

elastic motion of the body in its ni elastic mode. With the

calculation of the natural frequency and modal shape

functions, the equations of motion of a particular system

can be derived.



2.5 - Motion of a Thin Flexible Plate in Orbit

One class of structures, which has been proposed for

use in many future space applications, has the basic forn of

a thin flat plate. Included among the proposed applications

are: solar energy collection, communications, and scientific

data based orbiting platforms. A brief development of a

mathematical model for the attitude motion and elastic

motion for a large, yet thin, flexible, flat plate in orbit

is presented in this section. The equations presented here

for the plate's motion are the result of simplification of

the general set of equations that describe the motion of an

arbitrary flexible body in orbit (previously presented in

Section 2.4).

By taking into consideration assumption (9), one can

further simplify the development of the equations of

rotational motion. Assumption (9) leads to H n),=H(n),,, where

for all a and 6, H('),,=O, similarly, Dr=Dcn =O. With a

rearrangement of terms and the separation of the rotational

equation of motion into its vector components, Eqn. (33) can

be developed to yield the following set of rotational

equations of motion for the elastic plate in orbit. (8,13]

,6 x - (Iy- IZ) W Y( z -C, +Gr. (57a)Iyý y - (1,-1,) w CY '-Cy G,, (57b) (7

lz(ý z - (IX- IV) w XW v-Cz +Grz (57 c)
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The general equation for elastic motion is listed below.

This paper will present three different nominal

orientations of the platform in orbit; attitude and shape

control will be achieved for each. They are:

Case (1) the platform following the local horizontal with

its larger surface normal to the local vertical,

see Figure 2.1;

Case (2) the platform following the local vertical with its

larger surface perpendicular to the plane of the

orbit, see Figure 2.2; and

Case (3) the platform following the local vertical with its

larger surface perpendicular to the orbit normal,

see Figure 2.3.

It can be shown that for gravitational stability the

plate's axis of minimum moment of inertia should be

nominally oriented along the local vertical. However, in

many applications it is required that the major surface of

the plate be pointed towards the earth. Therefore, fo" the

plate orientation of Case (1) a complete development of the

equations will be presented. For the two other orientations,

Case (2) and Case (3), the final form of the equations of

motion will be shown.
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1.A

°/-
//

Figure 2.1. Case (3) - Platform along local horizontal

Lan

Figure 2.2. Case[2) - Platform following local vertical
with major surface normal to the orbit plane

Figure 2.3. Case (3) Platform following local vertical with
major surface in the orbit plane
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2.5.1 - Plate Normal Nominally Along the Local Vertical

Case (1)

From the equations of motion, Eqns. (57a,b,c), and (58)

can be writteniB]

Yaw: X + (I -I1 (GrXy C) (59a)
x Ix Y ix

Pitch: 6 (Ix- 12) 1W - (G ry+ C,) (59b) (59)Pi c •Y+••y • •z IY

Roll: () Z+IY-X)I - IGZ +CZ) (59c)

Gerieri c ÷[ n

Geei An+() [ p n+ M:~fL,] /- [ g, ~g,,,+ E,1 IM., (60)
Mode , I ] [/

For Case (1) the plate is oriented with its normal

following the local vertical, its axis is aligned with the

outward direction of the local vertical (see Fig. 2.1).

Under the nominal motion the Euler angles, *, 0, and 0, are

defined according to the sequence given after Eqn. (6). From

the previously shown transformations, the Euler angular

rates are related to the body rates as derived in Eqns. (7),

(9), and (9). In order to examine the stability of the

system Eqns. (59) can be linearized by assuming small

amplitude pitch, roll, and yaw displacements and also small

values of their respective time derivatives. With this in

mind the angular rates become:



- (62)

-4z w - - (63)

As a result of the previous assumptions, (2), (3), (6), (7)

and (9), further simplifications of the equations of motion

are in order. Assumption (6) leads to t(r)(f0),t(n)()

where hi is unit normal vector to the plate. As previously

stated, by assumption (9), Hnr. =H(n)$a and H(), =0, and

Dn=Dn)=0. In addition, L-1 -6W6 Om where,

8.~-Kronecker delta 6. * (64)

Hence,

Q 0; C -; q-0; gr-O (65)

ýO (2 ,(j ) xA,- _ W2 (J 'r'A'(66)

9= AM,(67)

Grx" (1z-1 y)M3 ; G,), -- (IX-1z)MN ; CGry (Ix -I)N.Z (68)

Assumptions of a spherical symmetric gravitational

field and circular orbit and neglecting the higher order

terms, (M(s)), of the M matrix results in the following

simplification of M12, M23 , and M31,

va-; Z' --W



M1 2 - -3w2sin(cos~cos2 O

M;.- -3>'-sir4cos8sinO (70)

M3 1 - 3w2cosocos sinB (71)

With the use of the above simplifications -for this

case- the yaw, roll, pitch, and the generic mode equations,

respectively, become,

Ix (72)
Cx (Iý-Iy) -

-- L2Z c[3sin~cos~sin&]
Ix 

Ix

I K (73)- (IYX) f3sin4cos cos'e3

2z 12

(Ix 1z [ý t -4) -wc l-
Iy (74)

Cy + (Ix-Z 3cos)cosOsinO]
Iy 

I W

A + U)2_(WZ +. Uz)2 Ml A, - E./M. (75)

where M11 is defined as

.(j2 [3cos20cos2el] (76)
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The equations of rotational motion can be simplified further

with the elimination of higher order notilinear terms

involving the products of two angles or angular rates or

products of an angle with an angular rate, and assuming the

rigid body angular oscillations are small, i.e., ,

The resulting equations are presented below:

4r~ rL4 :i~jz4FzV (77)

Ix- Ix

At this point, further development of the generic mode

equation may proceed with the substitution of the

appropriate terms. This leads to

,- (022w6 +4c 4+c'-w'$+AI) (0

•0½c(3cos-4cOs0J-1)]A<-E,/Mn

Assuming the Euler angle displacements and time derivatives

and the transverse elastic deformation amplitudes and time

derivatives are small, with the removal of nonlinear terms

Eqn. (80) simplifies further to,

A,. [W 23&JAr.En/M" (81)



Based on the preceding assumptions the following linearized

equations of motion are obtained in a dimensionless form:

t-€- ; V-d4,/dr ; etc.

Ya W: 1 <-(.,-T, 1, 12

Roll: +4 Q (l-az) C.+ TZ) I 2 (83)

Pitch: I/- 3 y8- ( --- T,) /y. 2 (84)

Elastic( (85)
modes Zn n -

where ni is defined as,

IQX -(IZ- Iy)/I .,; a y" (IX -I ') / ly ; QZ" (I Y- IX)/Iz ; • n - l)n/l c ;)

Trepresents the torque produced by the actuators, and E.

represents the generic force on the rt! mode.

Assumption (7) should be noted here, i.e., only the

first three modes are considered. The following observations

can be made from Eqns. (77-80) regarding the motion of a

flat plate:

a) Uncontrolled rigid body motion is independent of the

uncontrolled elastic motion of the plate.

b) The uncontrolled elastic modes are coupled to the rigid

body motion through both inertia and gravity.

c) To first order, gravity can not excite the elastic



modes.

d) There is no intercoupling between the uncontrolled

elastic modes either through inertia or gravity.

For Case (1) , I,=2Iy= 2 Iz, the rotational equations of

motion become,

'J/ -(CX+ Tz) /I.c (86)

0" - 30 - (c', T,) /. W (88)

Since there are no inputs from the elastic terms in

Eqns. (82-84) the uncontrolled rigid body rotat.ional modes

are not influenced by the elastic motion of the plate.

However, the elastic modes are coupled to the rigid body

rotational modes through higher order nonlinear terms as

shown in Eqns. (77-80). Further, for this orientation of the

plate n y >0, the pitch motion is unstable in the absence of

external restoring torques, C y (note the term, -3fY in

Eqn. (84)). For the class of large space structures

considered, passive control has been analyzed, (see Kumar,

ref. 8), but for this thesis active control will be applied.

Through the application of the LQR problem with discretized

input data and point actuators located on the plate's

surface, active control will be implemented.
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2.5.2 - Plate Normal Nominally Along the Local Horizontal

Case (2)

Assumption (6) in this case leads to i (n)(f 0)-_,t)(f() =

, n) z. Similar to Case (1), one can show that for this

orientation:

ýr(n) _0; (,(n)._0; 9,-0; gn-0; fffn)-0; Dz,-0;
9)mn- - ( W÷y) 6 nMnA•,; and, g~n,-At,M33 6 ,,n

in Eqns. (33) and (44). Thus, for Case (2) the equations of

rotational motion are exactly the same as Eqns. (82-84),

with the exception that the relationship between the

principal moments of inertia IX, IY, and I, differs,

Iz=2IX=2Iy. Hence, the Yaw, Roll, and Pitch equations of

motion become, respectively,

4"'- +2. (C4+ Tz)/Ic (90)

01/÷ 36- (cy÷ TY) /IIYW (91)

The equations of elastic motion are based on Eqn. (60),

together with the above assumptions there results,

[co+ [2J- (w2 ÷•W2) -M 3 3 1 An-E,/Mn (92)



where M33 = •c 2 (3sin 2O-l) . Removing angular crossterms aJ

restricting the higher order terms of the angles yields,

0- , 3 - E E/ Y; (93)

For small amplitude angles and elastic motions, the non-

dimensionalized the generic mode equation can be written,

+n , W'!_1Z,, - EP! W: C (94)

Notice for small pitch amplitude, Eqn. (93) can be

reduced to a Mathieu type equation.C 8 3 The roll and yaw

motions are gyroscopically coupled to each other and they

are not influenced by either the pitch or elastic modes

within the linear range.

2.5.3 - Plate Normal Nominally Along the Orbit Normal

Case (3)

In this last case, assumption (6) leads to

i(n)(?o).,(n)(h) ='(n) Yj. Following the steps of the derivation

of the two previous Cases, (1) and (2), one will arrive with

the same equations of rotational motion as Eqns. (82), (83),

and (84), with the difference that the principal moments of

inertia Ix, IY, and Iz, -for Case (3)- have the relationship

Iy=2IX=2I,. Hence, the rotational equations of motion become:



T') / I'W'(96)

C' -( T') /I1'() < (97)

The equations of elastic motion are now,

where M22 = Wc2 (3sin20cos2S-1). Cancellation of the angular

crossterms and restriction of the motion to only small

amplitudinal pitch motion produces,

An + [6 2_ 0 2(4ý2 +*2 _1) -(2 + 2)]3A, - .E•IY, (99)

Removing higher order and nonlinear terms, plus non-

dimensionalizing the amplitude leads to,

" 2 + 1~ ) Zn-_ E.,/IMn2 Q(100)

In this final case, roll, pitch, yaw, and the generic

modes are decoupled from each other. Notice without ary

external influences the generic modes, yaw, and pitch motion

exhibit simple harmonic motion while the pitch rate

incr"eases linearly with time for a given initial pitch rate.



CHAPTER 3 - DETERMINATION OF MODAL FREQUUENC1EL'S AN")

SHPSF'ýA2I. TJIT LEXL B iA'FPFE2IUV1IA7'r

The ability to accurately determine the freauencies and

mode shapes is essential for the analysis and control of

large space structures in orbit. Four different methods have

been analyzed: [2

1) The approximate frequencies and mode shapes of a

rectangular plate are obtained from a Rayleigh-Ritz

formulation by Warburton;[ 22,2 3!

2) The analytical results for a square plate are derived

from the Rayleigh-Ritz method by Lemke; [24

3) The frequencies and mode shapes are computed using the

finite element program, STRUDL, developed at

Massachusetts Institute of T#Thnology;(251 and

4) The rigid body modes and the mode deflection are

calculated with an updated version of STRUDL, GTSTRUDL,

developed at Georgia institute of Technology.1 201

A tabulation of the numerical results for a free-free

thin aluminum square plate with the length and width of

100.0 m, thickness of 0.01 r, Young's Modulus of 0.7441 x

1010 kg/M2 , Poisson's ratio of 0.33, and mass density of

2768.0 kg/m 3 .[19)
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3.1 - Formulation by Warburton

An application of the Rayleigh Method allows the

derivation of an approximate frequency formula. 122 °231 The

plate vibrational equation in the cartesian coordinate

system (x,y) is used as a basic equation, with the length

and width of the plate taken along the x and y directions,

respectively, and is given as,

&__w 2 w + aw + 12p(l-v 2 ) 2w 0 (101)
aX4  (x 2.y' 2 y5 Egh 2  (11

where p, u, and E are the weight density, Poisson's ratio,

and Young's modulus of the plate material, respectively; h

is the plate thickness; and g is the acceleration due to

gravity. The displacement, w, is a sinusoidal function,

which at any point (x,y) at any time t, is given by,

w-Wsinwt-AO(x)i(y) sinwt (102)

where O(x) and 0(y) are beam functions orthogonal to each

other and are used to approximate the plate's behavior; and

( is the vibrational circular frequency. C221 The appropriate

free-free beam functions, O(x), are defined as,

e(x)-i form-O (103a)

O(x) -i--2x for m-I (103b)
a

Osl- (103)
(a fo (a 2)

8(x)-siny'( i-i)+k'sinhy'(1-.) for m-3,5,7,... (103d)

| ~ ~ ( 2 a 2) mmm
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where,

1

k n2 and ranIy+tanh 1 y-O (104a)

S1
Si nki' y 2 2

2 (104)
sin -ýY

k----__2 and tan 1 y'tanh 1 y'- 0 (104b)
sinh y

2

The corresponding expressions for O(y) can be obtained by

substituting y, b, e, and c for x, a, y, and k,

respectively. After calculating e(x) and 0(y), the frequency

expressions for a rectangular plate are derived as[23 1:

l2 pa 4 (2nf)2 12 (l-v2 ) (105)
n4 Egh:

-G; + 2a [vH H + (1-v) JxJ] (106)
b4  b 2  x Y

where I is a non-dimensional factor, proportional to the

frequency; a and b are the length and width of the plate;

and Gx, Hx, Jx, GY, HY, and J are functions associated with

the number of nodal lines (m and n, parallel to x and y) and

the boundary conditions. From Egn. (105), the frequeiicy is

obtained as:

f_ 'Lh27 Eg J12 (107)

a 2 4 8 P (1- v)
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This frequency expression is valid for thin rectangular

plates; for square kJates it must be modified. For square

plates, the combinations of (m,n)±(n,m) describe the types

of existing modes (see Fig. 3.1-3.10); for these cases k in

Eqn. (107) must be modified.

Modes (m.0•±(0,m). for m = 2.4.6....

V - (m--1 )'±2v (m-i)2 8 (108)
2 2 7T2

Modes (m.l)±(1.m), for m = 3,5,7...

X2_ (n-1) 2 (1-1v) (M- -L)2 4 v 112

2 2 4I 2 ] 19-2 2 (109)

±2v (mL) -2-4. 21 2 (1-v0 192
2 7r 2 (MI -),nn 714

For any mode of vibration the nodal pattern is defined

by m and n -the number of nodal lines in the x and y

directions- respectively. The mode shapes are obtained by

using the corresponding modal frequencies in the beam

functions and then evaluating the product, O(x). (y),

numerically.

Using Warburton's results, Eqns. (108) and (109) and

the expressions for O(x) and 0(y), frequencies and mode

shapes are calculated for different combinations of the

number of nodal lines, m and n, starting with combinations

of m=0 and n=l, through m=3 and n=3. The first three
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combinations of nodal line numbers, (0,0), (1,0), and (0,1),

represent rigid body motion. The combination of m=1 and n=l

produce the first fundamental flexural frequency. The

corresponding mode shape for the plate is obtained by

multiplying the beam functions e(x) and 0(y), for the mode

characterized by m=l and n=l (see Fig. 3.1). Since the plate

is approximated by sets of orthogonal beam functions in the

x and y direction, the nodal pattern is also obtained by

plotting the nodal points of these beams for their first

several modes. The next two higher frequencies are obtained

by combinations of m=0 and n=2, but the nodal patterns can

not be visualized. This is because the frequencies are of a

special type resulting from a combination of the (2,0) and

(0,2) plate modes. When the mode corresponding to (2,0)

(Fig. 3.2) is superimposed with -(0,2), (Fig. 3.3), the mode

shape depicted in Figure 3.4 results. By imposing the (2,0)

and (0,2) combinations, the third mode shape (Fig.3.5) is

obtained. The combinations of nodal patterns m=1 and n=2,

give identical frequencies for the fourth and fifth mode and

the corresponding shape (Fig. 3.6) is as expected. The

following higher two frequencies are also identical and are

the results of combinations from the (3,0) and (0,3) nodal

pattern lines (Fig. 3.7). The eighth frequency is obtained

from m=2 and n=2 and the mode shape obtained is shown in

Figure 3.8. The higher frequencies are obtained in a similar

manner. The ninth and tenth modes are the special type
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resulting from combinations of (3,1) and (1,3), (see Figs.

3.9 and 3.10) and the next higher frequencies are

combinations of (3,2) (2,3), and (3,3) nodal lines,

respectively. The calculated modal frequencies and n.,dal

patterns are shown in Table 1.0[1

Figure 3.21. First Mode (1, 1) Figure 3.2. (2,0) Mode

Figure 3.3. (0,2) Mode Figure 3.4. Second Mode
(2,0)- (0,2)
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Figure 3.5. Third Mode Figure 3.6. Fourth Mode
(2,0)+(0,2) (2o1)

Figure 3.7. Sixth Mode (3,0) Figure 3.s. Eighth Mode
(2,2)

Figure 3.9. N4inth Mode Figure 3.10. Tenth Mode
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3.2 - Formulation by Lemke

The analytical results for a square plate are derived

from a method of Lemke, which also uses the Rayleigh-Ritz

method.i 24 ] The displacement function w, can be expressed as

a sinusoidal function (at any point (x,y) and time t),

w- Wsinwt (110)

where w is the circular frequency (w=2rf). The amplitude W,

can be expressed by,

where Xm(X) and Y,(Y) are the free-free beam functions

expressed in terms of a normalized (i.e., x=x/a, where a=t)

xy coordinate system having the origin at the plate center;

Xm( X coshkmcskinx+cskmcshkin3x (m even); (112)
ýcoshk + cos 2 km

X-. sinhkmsinkx+ sinkmsinhkx (m odd); (113)
V/sinh' k& - sin2 km

Y,(y) is obtained by replacing x by Y and m by n, in Eqns.

(112) and (113). The values km are the roots of the

characteristic equations, that are,

tank,+ tanhkm -o (m even) (114)
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tankr. - ranhkr,- 0 (m odd) (115)

These equations result from the spatial boundary conditions.

For a rectangular plate the potential energy due to bending

is given by,

I Eh3  
2 2.w 2 (1wV (w W dXd

2- 1 2 (1 -v Vb W~ , 2v W~ ____8W)2(-) 3(16
where v, E, and h, are the Poisson's ratio, Young's modulus

and the thickness of the plate material, respectively. The

kinetic energy is represented as,

ab

T- f -f dxdy (117)T-2 g0 3t

where p is the density of the plate material, and g is the

acceleration due to gravity. Thus,

2 12 (1-V2) f X I 2a 8Cy2  ldxd

ab

2 h W2 -p.1
00

where U.X is the maximum potential energy due to bending,

and T.. is the maximum kinetic energy due to bending.

By setting UX = TM., it can be shown,

2_ U.
Sab (120)

'ffw2 dxdy
- 00
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The coefficients Aw, in Eqn. (il) are determined to

produce w2 in Eqn. (120) -a minimum. Lemke obtained the

coefficients Am, by taking six or more terms in the series,

Eqn. (1il), and using four different values of Poisson's

ratio. Expressions for six mode shapes and frequencies along

with the coefficients A,,, are tabulated in reference 24. As

an example the expression incorporating 15 terms for the

first mode is given here:

W(,y- -XI 0.0325 (XlY3÷X3) -0.005X3 Y3 - 0.00257(XjY+X5Y1 )
+ 0. 00121(X +XTT) -0D.000365X5•T,+...I

and w - 13O86 Eh3 for v-0.343
a2  12p (1-V 2 )

Frequencies and mode shapes for the first six modes were

obtained using the Lemke method (see Table 1).919
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3.3 - STRUDL. Structural Design Lanquage

A computer program implemented was S.UDL (Structural

Design Language).E25 3 It was developed by the Civil

Engineering Department of the Massachusetts Institute of

Technology and installed on Howard University's mainframe

computer (IBM 3090). STRUDL has the capability to apply the

finite element method to determine the mode shapes and the

natural frequencies of vibration. Necessary computer input

by the user is the specification of the structure's material

properties, dimensions, and the types and total number of

finite elements representing the structure.

For a rectangular plate, the finite elements can be

specified as rectangular elements; the number of elements

into which the plate is divided depends on the accuracy

required. In the finite element method, the discretization

of the number of degrees of freedom requires the

introduction of simplifying assumptions in the element

formulation, which represents an important source of error

in the results. As a consequence, finite element results are

dependent upon the number of elements used in the model.

Thus, even when consistent element formulat ons insure

convergence of the results as the number of elements is

increased, finite element models cannot be arbitrarily

designed.i 251 Generally, the accuracy of the results will
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improve when the structure is modeled with a higher number

of elements. However, computational errors due to truncation

and round-off errors may predominate as the order of the

elements increases beyond a limit. Further, hardware

calculation limitations can restrict the number of elements

into which a structure is divided, thus, limiting the

ability to obtain better results.

For the modes specified, STRUDL calculates the

deflections at each element's corners; from the deflections

the modal shapes can be determined. For each mode, a set of

frequencies is also generated. Results obtained from STRUDL

are available in Table 1.i191



3.4 - GTSTRUDL, Georgia Tech Structural Design Language

GTSTRUDL is an updated version of STRUDL developed at

Georgia Institute of Technology. C'0 1 Similar to STRUDL,

GTSTRUDL, uses the finite element method to determine the

modal shapes and the vibrational frequencies. The

structure's material properties and its dimensions are

necessary initial inputs. In addition, the number of

elements into which the structure is divided and the type of

element must be specified by the user. For this thesis's

structure, a thin flat square plate, the 'BPR' element -

bending plate rectangular with square dimensions- was

chosen.120O29 This element only considers the deflections

normal to the major surface and the in-plane rotations at

the nodes, resulting in three degrees of freedom at each of

the four nodes (see Figure 4).

gL L

Figjure 4. 'BPR' Element with Deflections at N4ode i



3.4.1 - Displacement Function

The corresponding displacement function, w, for the

'BPR' element, contains 12 parameters of a,

+ a2X + a i + Yi + cc
2 j 3 (121)8~Xiyi + (XgXiYi + ajoý,y• 'A +

+1+ a 1 jx yi +2Xyi

The in-plane rotations, Ox and Oy, are related to the

displacement function as follows:

awi -aw1  (122)
8Y"- ; y) - ax

The transition matrix, A, relates the a coefficients to the

deflection vector, a, at the node, i, as follows:

{a,} - [Ai] {a} f a) - [A) '{a) (123)

2 2 x2Y 2.

{ ( " 0 0 1 0 Xi 2yj 0 X? 2xy 1 3y; X4 x 2  (124)

) 0 -1 0 -2x, -y 1  0 -3x2 -2xly j -y j o -zxyi -Y 1

where [A]e = (Ai, Aj, Ak, Al]l

3.4.2 - The Mass Matrix, [M]

In addition, the user must specify the mass type:

consistent or lumped. When specified, the computer will

internally generate the mass matrix. A lumped mass approach

will produce a composition consisting of a diagonal mass



matrix, whose elements correspond to each grid point's

(node) mass. By evenly dividing the structure's matss by the

number of elements, and then dividing that elemental mass

into four, each node is assigned some mass. If a node is

shared by additional elements, its mass is the total sum of

each partitioned mass. The total mass at each node becomes:

a) the mass of the nodes at the corners, m ,

nc = Mt + (# of elements x 4) ;

b) the mass of the nodes along the sides, mr,

1% = Mr+ (r of elements x 2) ; and

c) the mass of the nodes insiae the boundaries, 1>,

mlb = Mt (z of elements)

3.4.3 - The Stiffness Matrix, fK[

The user may input the system's stiffness matrix or it

may be generated by the computer, the latter option was

chosen for this thesis. To begin the fiormulation of the

stiffness matrix, the stress (c) and strain (c) relationship

becomes useful.

V )X 2
I~ ~ IC EhKI1>1-v21 1-v a

!0 ~ y
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The generalized strain displacement matrix, [B], gives

the strains at any point within the element due to unit

values of nodal displacements.°3 0 ,

{II- [B] IaI- [HI [A]-Ital where [B)- [H] [A1-' (126)

{je - [H] {a) - (B] [A] {(a (127)

From Hooke's Law,

III- ff{(v2W)2,2 (1-V) I{ 2Wýc2 ~jd ya} :~q) (128)

Taking the variation, where 6")[f=O, results in

(f aX ay) x Ck axy ld-{a ~q o (-

After substituting in the variation of the stress-strain,

(also known as internal virtual work) the following is

obtained,

ff 160T{udxdy- (8a) T~q} -0 (1-30)
R

Remembering the relationship (6cj T={6a) T[B]J and substituting

into Eqn. (130), results in:

ff{6a) T[B] T [D] [c) dxdy- {6a) T {q) -0 (131)S(31
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{5a} T[ff[B] 7[D, [.Bi (&aldxdv- {qj - {6a} 7( TY {a) - {g}- (132)
R

where (6a)y is arbitrary, and the stiffness matrix, [K], is

defined as,

[fK -ff (34 7I[D [B]dxdy .K- {a I- (133)
R

where the nodal force vector, {q}, is defined as,

1qg -ff 1  [N2 cdxd (134)

and the interpolation matrix, [N], is represented by the

relationship,

[N - [J] [A]-( (.35)

where the matrix, [J], is defined as,

For a complete listing of the stiffness matrix individual

elements refer to Appendix A.

3.4.4 - Develorment of The Basic Dynamic Matrix Equation

D'Alembert's principal incorporated with the principal

of virtual work (with inertia as a body force distributed)

can be expressed as(311:

-fffp(6u] 'r(iLdv4f!!f6u] i b-dv4fif6u] rT}dA-f!![6W] -[oidv-6U (137)
V V S V
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where (T) and (U) are the kinetic and potential energy, and

(u) represents the displacement field {u)=(u, v, w}T, which

can be expressed in terms of the nodal displacements, (a),

and the interpolation function, [N], as follows,

{u} - [IN {a) (138)

Substitution of [N] and (a) leads to:

{u} - [,I [A] -1 [A] {I} - a) {=} (139)

Using the interpolation functions expressed in terms of

the spatial coordinates (in the static form) and considering

nodal displacements, (a), as functions of time, discretizing

the domain, and making the various substitutions of Eqns.

(123), (133), (138), and (139) into Eqn.(135), forms, ( 1)

-fffp {a] a T[N r[N {I} dv+fff[{6a) [N9 T{b) dv+f{{6a} t i(NJ ` T ) dA
V - I (140)

-ff l6a] '[N] I[J] [NM {a) dv-!f! {8a) T[B] 2 [D] [B] {a)dv
V V

where,

Mass Matrix [M] -flfp [ I T [K•dv (141)
V

Damping Matrix: [C] -1ff [N3 T[j [NMdv (142)
V

Stiffness Matrix: [K] -1ff [B] T[D] [B] dv (143)
V
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Force Vector : {q}-JH[NJ r[bNd]v+i[?] {T) dA (144)
V

Equation (144) now becomes,

{(a) (- [M] {I} 4 {q) - [C] {4}) - {6aI TI[K {a) (145)

After rearrangement of terms, the basic dynamic matrix

equation is formed;

[M [ {}) + [C) {J1 + [Al {al - {q) (146)

3,4.5 - Natural Frecruency Formulation for Free Vibrational

Motion

Consider the free vibrational - undamped harmonic -

motion system, (i.e., no damping and no external forces) and

notice the damping matrix and the force vector are null.

Thus,

[N] {11} - [K] {a) -0 (147)

The global equation for free vibration is

{al - () ejý (148)

where (a) is the modal vector of constant amplitude; and w

is the natural frequency. Substituting the global equation

into the dynamic equation results in,

( [K] - 2 [M]) } -0 (149)
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Equation (149) is in the form of a basic eigenvalue-

eigenvector problem. For a non-trivial solution, the

determinant of the coefficients of (d} must be equal to

zero.

KIK - w2 [M) I- 0 (150)

Once the characteristic equation is found, the roots

may be obtained by solving for the eigenvalues -w2- of the

nth mode, the natural frequency, wn- For each natural

frequency generated, an eigenvector is calculated; these

provide the natural mode shapes. To ensure that the

solutions are linearly independent, each eigenvector must

satisfy the orthogonality condition:

[{{&fA'M L j}-O for i*j (151)

Rewriting Eqn. (147) leads to:

K] {y} 4 K32. M] 'T}(152)

After multiplication by {&)T, and (&)Ti and subtraction,

there results,

It is remembered that (K] and [MI are symmetric, therefore,



Since,

(wo- w 0 rhen {,f I[Y {]} -0 (155)

When orthogonality is satisfied the roots are said to

be distinct. An orthogonality check was performed by

GTSTRUDL for each eigenvector solution. It basically

determines whether the normalized spectral matrix

(diagonalized eigenvalues) adequately represents the

original spectral matrix.

It frequently happens in complex systems that the

frequencies are "closely spaced" frequencies, that is, cases

in which wi and w, differ by only 1% or so. It occasionally

happens that a system has a repeated frequency, that is,

A theorem of linear algebra states that if

the eigenvalue is repeated "p" times, there will be "p"

linearly independent eigenvectors associated with this

repeated eigenvalue.I 323 Since it is necessary that these

eigenvectors be orthogonal to each other, it is possible to

choose the eigenvectors such that they will, in fact,

satisfy the orthogonality relationships of Eqns. (154) and

(155), even though w,=W,.
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3.5 - Comparison of the Various Methods of Determining the

Natural Frequencies

To compare each method a tabulation of each technique' ;

numerical results for a free-free thin aluminum plate

appears in Table 1. The natural frequency values calculated

by GTSTRUDL are, on an average, 3.96% smaller than the

natural frequency values calculated by the other techniques.

The shape patterns obtained by the methods GTSTRUDL, STRUDL,

and Warburton were exactly the same, whereas, Lemke's

patterns were slightly different. After this comparison was

made, it was decided GTSTRUDL would be used for the

following various reasons:

a) computation time - the time to compute the values is

almost limited to the actual time it takes to enter the

structure's program file; it also controlled by the

number of elements in the system, i.e., the more

elements, the larger the stiffness, the longer it takes

to compute the eigenvalues. Even with these limitations

it still takes GTSTRUDL much less time to compute the

eigenvalues than with any other method.

b) convenience - there are two ways in which the GTSTRUDL

method is more convenient than the other methods:

i) The first one is that the actual printed results are

much easier to obtain and use than the Warburton and

Lemke formulations, i.e., if it is necessary to obtain

a modal deflection at any particular point, GTSTRUDL



6 6

readily lists the normalized eigenvector at each node

(grid point); an interpolation or graphical

representation can be easily applied for any points in

between the grid points.

ii) The second way is that the GTSTRUDL version, J, is

available on Howard University's School of

Engineering's Vax 750 & 780 system; STRUDL is available

on Howard University's IBM 3090 mainframe. The STRUDL

that is available on the mainframe is a very early

version of the structural design language; the version

of GTSTRUDL available on the VAX is a more recent copy

of GTSTRUDL than the STRUDL. Also, the IBM 3090

mainframe computer system is not as user friendly as

the Vax 750 & 780 ..omputer systf .s.

A listing of the GTSTRUDL commands and the program

implemented on the VAX 750 appear in Appendix B.



CHAPTER 4 - DEVELOPMENT OF THE STATE SPACE EQUATIONS

Feedback control engineering may be regarded as the

conscious, intentional use of the mechanism of feedback to

control the behavior of a dynamic process. This aspect of

control system engineering is generally called control

'theory'; whereas, the state-space method is considered to

be the cornerstone of modern control theory."33 The

advantage of using state-space methods, instead of the

frequency-domain approach, is the characterization of the

processes of interest by differential equations instead of

transfer functions.

In the state-space approach, all the differential

equations in the mathematical model of a system are first

order equations; only the dynamic variables and their first

derivatives (with respect to time) appear in the

differential equations. The dynamic variables that appear in

the system of first-order equations are called the state

variables. The external inputs are called the control

variables.

This chapter will encompass the development of the

system's constant state and control influence matrices, [A]

and [B], respectively, and their relationship to the

system's state and control vectors, (X) and (U),

67
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respectively. Once the matrices and vectors are formed, they

will be put together to form the general state space

equation. (33

{X} - [A] {X} * (B] C (156)

In a linear system the output vector, (Y), is assumed

to be a linear combination of the state and the input,

{Y} - [C] {XI 4 [D] {U} (157)

For our system the output is assumed to be completely

observable and only a function of the state variables, thus,

{(Y - [C] tx} (158)

where (C] is an identity matrix.

Before a complete formulation of the state-space

equation can be accomplished, two factors in the completion

process must be discussed: actuator placement and modal

mass.

4.1 - Discussion of the Actuator Placement

When considering actuator placement, there are two

points to consider: (1) orientation control, i.e, providing

the most effective control torque; and (2) deformation

control, i.e., providing the most efficient actuator force

effort to control the shape of the system.
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Orientation control is implemented by the control

torque vector, Tp; its mathematical model is represented by

the vector cross product of the actuator position vector and

the actuator force vector. To acquire the maximum torque in

any direction one may either increase the force of each

actuator and/or increase the torque arm. Increasing the

force that contributes to the control effort qay result in

an undesirable increase in the energy required. An increased

torque arm can be realized by placing the actuators at some

maximum distance from the origin; this is plausible as long

as these placement positions do not fall on the modal nodal

lines (the zero deflection lines of the modal patterns).

This leads to the second consideration, deformation

control. Placement of an actuator on a modal nodal line must

be avoided. An actuator placed on a nodal line of a

particular mode will have no effect in contributing to the

deformation control of that mode. Noting that each mode has

a nodal line pattern, it is important to accurately

determine each mode's pattern shape (see Table 2).

The nodal lines of the first two modes for a thin

square plate are easy to locate; unfortunately, the third

mode's nodal circle is more difficult. With the use of

GTSTRUDL-144 BPR element data, the third mode's eigenvectors

-for the nodes located on the midway line of the plate's



major surface- were plotted. by viewing the plot, ksee

Figure 5) , as a cross-sectional cut midway through the

plate, the determination of the nodal circle associated with

the third mode can be accurately located.

Third Mode Normalized Deflection
For Square Plate At Midline

Normalized Deflection
0.2

-0..

-0.4F .... . ....... .... ----- -

-0.8 - - --- ------ -- _

0 10 20 30 4U 50 80 70 80 90 100
Plate Length (Meters)

deflectioris

Figure 5. Normalized Deflection Plot for 3-• Mode's Cross-
Sectional View
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Once the nodal line pattern's were acquired for the

first three mode's, a second plot, (see Figure 6), was drawn

indicating 3 possible placements of the actuators (i.e.,

1,1',I'', etc.). Note, in previous references [18,19] two

different sets of actuator positions were studied; these

proved to be less effective because of their placement on

nodal lines (see Figure 7). Two sets of actuator positions,

A & A' have been chosen for this thesis (see Figure 8). Six

ac..uators are assumed to be placed in a symmetrical pattern

with both force axis directions perpendicular to the major

surface and along the edge of the plate.C265 The first four

actuators are assumed to be placed normal to the major

surface; they help control the shape deformation and the

torque about the two major axes in the plane of the plate.

The other two actuators, 5 and 6, are placed along the edge

of the plate; they provide control for torque about the

third axis, normal to the major surface.
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4.2 - Calculation of the Modal Mass

To calculate the modal mass values, a formulation

presented by Hurty and Rubenstien was followed. 1341 Using the

equation of the form:

fl.o 0. .

W1 (n (159)
n-i

where r represents the mode number; n represents the

gridpoint node; n.o.e. represents the total number of

elements: M, represents the mass; and i represents the

normalized deflection of the grid point (node).

The modal masses were calculated and plotted for the

plate modeled by different numbers of assumed finite

elements. Figure 9 shows the variation of the modal mass as

a function of the number of finite elements assumed to

represent the system. The final convergent value was used

for the nodal mass. The calculated modal masses for the

first three modes are, M,=20,278.65 kg, M2=29,366,14 kg, and

M3=18572.34 kg.
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Calculated Modal Mass -1st, 2nd, & 3rd-
Versus Number of Elements

Modal Mass, Mr (slugs)
400'

+

20 ------------- - - ------- -------

1 0 0 ....................... ."i .. . .. . . .... ........ ......... . ............... .. . .......... .............. ................ .................... . . . . . .

0
0 20 40 60 80

Number of Elements

-1st Modal Mass + 2nd Modal Mans s * 3rd Modal Meas

Figure 9. Modal Mass versus Number of Finite Elements



4.3 - Formulation of the System's State Vector and Matrix

With the assumption that the system can be modeled by

three rigid-body rotational modes and the first three

generic modes, assignment of the correct dynamic variables

to the state vector follows. The state vector for this

system:

{X - x1, x 2 , x 3 .... x12] (160)

where the state variables xn are defined as,

d4) -

0"x 3  O/X9  (161)
ZP - X_,4ý Z I[ - X ,o

Z2 -x 5  Z/- X1 1

Z3 - X6  Z3 -X 1 2

Preparation of the system's state matrix through the usage

of Eqns. (82-85) follows,

-4C, o 0 0 0 01 0

0 -0, 0 0 0 0 (1÷.0 ) 0 .. 0

0 0 3I 0 o 0 0

'A] 0 0 0 3(- •- 0 0 0 0( 162)

0 0 0 3-(,

I CI I
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With the substitution of the parameters for the nominal

orientation of Case (1), (see Figure 2.1): the principal

moment of inertias IX=2.5xlOB kgm2 , Iy=Iz=l.25xl0B kgm2 ; the

angular velocity wc=0.0011162 rad/s; and the modal

frequencies w,=0.0547 rad/s, w2=0.07852 rad/s, and w3=0.09773

rad/s, the system's state matrix CA], becomes:

[ 1 [-T I] 6.6

4 0 0 0 0 0 0 -2 0 0

0 0 0 0 0 0 1 0 0
[A) 0 0 3 0 0 0 0 * (163)

0 0 0 -2398 0 0 0 0

0 0 0 0 -4945 0 .

0 0 0 0 0 -7663 0 0 ... 0

4.4 - Formulation of the Svstem's Control Vector and Matrix

The system's control effort, [B]{U), is defined by the

matrix multiplication of the system control matrix, [B], and

the system control (input) vector, (U). This term in the

state-space equation allows for control feedback for the

system. The general control influence matrix, (B], is

defined as,

to)16x6] (164)[B- [ ]
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where the lower part of the [B3 matrix depends on the

actuator positions. The control effort, [B](U), is

formulated as such,

fBiIui (U) -x (165)

where Tp represents the external acceleration due to the pn

actuator; and En represents the external force on the n"'

mode, their formulation is as follows:

T-Ii/J ; r- E7 -EfXTdr. (16b)
P - P f -

?p~! 1 ~ _ I~ 2
p2 2v-~~ ffz,~~ +.L'>fy'X-x' r (167)

Sfyj f.

where N P represents the control torque on the p•t location

due to the jt• actuator; ýP represents the position vector

from the origin to the pn actuator; and fj represents the

control force vector due to the jih actuator. For the

generic modal equations, the control forces can be

transformed into the corresponding modal forces by 161"

$ (168)

where (1)( ) represents the modal shape function at the plý

location corresponding to the nl- mode.

To define the system control matrix for the nominal

orientation of Case (1), it is necessary to establish the
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correct position and force vectors for this system. For the

actuator sets, A and A', the general position vectors and

force vectors are:

R- 4 -yf -z ; if. -f' (169)

The angular acceleration produced by each actuator becomes:

-" ((zf/ Iy - yk/ IZ) (170)

T6 -fZ (y•)ý / Ix

The lower half of the system control matrix contains

external force terms. A definition of the system's modal

deflections at each actuator location is necessary, along

with the modal mass. Because the actuators are placed in a

symmetrical pattern, the deflections for actuators 1-4 are

equal in magnitude but alternate in sign. Since actuators 5

and 6 are located on the side of the plate their deflections

are assumed to be zero. Thus the control force terms become:

The system's control effort, [B](U), for both sets of

actuator locations, A and A', follows:
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0 0 0 0 -. 1605 .1605
-. 1605 .321 .1605 -. 321 0 0 f2,
-. 321 - .1605 .321 .1605 0 0 f3 (172)

-. 2221 .2221 -. 2221 .2221 0 0

-. 189 .189 -. 189 .189 0 0 f5
.1842 .1842 .1842 .1842 0 0

0 0 0 0 -,.1605 .160511
-. 1605 .214 .1605 -. 214 0 0

- 1545 .1545 -. 1545 .1545 0 0

- . 0 5 . .05 5 05 5 5 0 0 f 5
[.0306 .0306 .0306 .0306 0 0 l



CHAPTER 5 - PRESENTATION OF LINEAR QUADRATIC OPTIMUM CONTROL

THEORY

The main purpose of linear control theory is to design

the correct compensator (gains) for the given system. For

this thesis an application of optimum control theory will be

implemented to synthesize the control law gains. 108,34

In this chapter, as an optimum control theory algorithm

the linear quadratic regulator (LQR) technique was chosen.

Initially, the performance criteria is discussed, the

system's linear differential equation is solved, and the LQR

technique is stated for a continuous-time system. Finally,

the sampling period criteria for the discretization of a

continuous-time control system is presented; following the

sampling period criteria, an application of the LQR

technique to a discrete-time system is performed.

5.1 - Discussion of the Performance Criteria or Cost

Function

The dynamic process considered here is 2,aracterized by

the vector-matrix differential equation

(t) -A(t)x8(t) 1 B t) u(0 (174)
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where the variables have been previously defined in Chapter

4. This chapter will seek to define the linear control law

u(t) -G (t) x(t-) (175)

where GU is a suitable gain matrix related to u(t). An

attempt will be made to find the optimum gain matrix to

minimize the performance criterion, J, (or "cost function")

expressed as the integral of the quadratic form in the state

error, e(t), plus a second quadratic form in the control,

u(t); i.e.,

T,

J---<e(tf)2.. Fpe(tf)>+ f [<e(t),O~t) e(t)>+<L:(t) R(t) u(t)>]dt(176)
22

Initially, there are some assumptions to be made.I 311

a) The terminal time, T,, is specified.

b) F is a constant mxm positive semidefinite matrix.

c) Q(t) is an mxm positive semidefinite matrix.

d) R(t) is an rxr positive definite matrix.

Previously mentioned was the assumption that the system is

completely observable, thus C(t)=I. The error vector is

defined by

e(t) - z(t) -y(t:) (177)
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where z(t) is assumed to be zero. Therefore,

-e(d) -y(t) -x(t) (178)

Now the control function, J1, can be designated as,

J.-• <x T),x T) f[<x(t) ,Q(,-)X(0>+<zu{t),R(t)u(t)>]dt(179)

Before an attempt to find the optimum gain matrix, Gu, is

made, some comments about the cost function are in order.

With respect to the limits on the integral, the lower limit,

to, is identified as the present time, and the upper limit,

Tf, is the terminal time or final time. The time difference,

Tf-t,, is the control interval, or 'time-to-go'. If the

terminal, Tf, is finite and fixed, the time-to-go keeps

decreasing to zero, at which time the control process ends.

However, in the customary case, the terminal time is

infinite. In this case we are interested in the behavior of

the process 'from now on', including the state.

Attention is now focused on the term:

1/2<x(Tf),Fx(Tf)>. This term is often called the terminal

cost; its purpose is to guarantee that the final state is

small at the terminal time. This should be included in the

final state, if x(Tf) is expected to be particularly large.

Otherwise, F can be set to zero and the rest of the cost

function can be relied upon to guarantee that the terminal

state is not excessively large.
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Finally, consider the weighting matrices, Q and R.

These are often called tie state weighting matrix and the

control weighting matrix, respectively. A formula fc- the

control gain matrix, Gu, can be derived such that it

involves terms of the weighting matrices and the steady

solution to the Ricatti matrix equation. By plugging in the

matrices Q and R -along with the matrices, A and B, that

define the dynamic process- into the computer routine,

ORACLS, GU can be found.E27 J If the process is controllable

and Q and R are suitable, the computer finds a suitable G..

This is not to say that the calculation is a trivial problem

-far from it- but only that the problem of determining Gu

once A, B, Q, and R are given, is not a control design

problem but a problem in numerical analysis.

The question of concern to the control system designer

is the selection of the weighting matrices, Q and R. In the

cost function defined by Eqn. (179), two terms contribute to

the integrated cost of the control: the quadratic form XTQX,

represents a penalty on the deviation of the state x, from

the origin (this means that the desired state is at the

origin, F=O, not at some other state) and the term uTRu,

represents the 'cost of control'. The physical

interpretation of J 1 is this: We wish to keep the state near

zero without excessive control-energy expenditcure.



The weighting matrix, Q, specifies the importance of

various components of the state vector relative to each

other. For example, suppose x, represents the system error,

and x2 ... ,xk represents the successive derivatives, i.e.,2 33)

X1 - x
x2 -
X,- (180)

Xk - X

If the error and none of its derivatives are of concern,

then one might select a state weighting matrix such as:

[i 0 0

0 0 0(181)

*0 0 0.

which will yield in the quadratic form

XTq- 2 (182)x rqx-x 181

But the choice of Eqn. (181) as a state weighting matrix may

lead to a control system in which the velocity x 2=x is

larger than desired. To limit the velocity, the performance

integral might include a velocity penalty, i.e.,

x 7cx-x . c2x2 (183)

which would result from a state weighting matrix

1 0 .. 0
0 C O( (184)

0 0
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The choice of the state weighting matrix, Q, depends on what

the system designer is trying to achieve. The considerations

of the above with regard to Q apply to the control weighting

matrix, R. The term, uTRu, in the performance index, J 1 , is

included in an attempt to limit the magnitude of the control

signal, u(t). For this thesis, Q and R are chosen to be

constant matrices, where

R-a p :r (186)

The relationships between the weighting matrices, Q and

R, and the dynamic behavior of the closed loop system depend

on the matrices A and B and are quite complex. It is

difficult to predict the effect of a given pair of weighting

matrices on the system's closed-loop behavior. A suitable

approach for the designer would be to solve for the gain

matrices that result from a range of the weighting matrices,

Q and R, and calculate (or simulate) the corresponding

closed loop response. The gain matrix, Gu, that produces the

response closest to meeting the design objectives is the

ultimate selection. With the ORACLS software, it is a simple

matter to solve for G. given A, B, Q, and R. In a few hours

time, the gain matrices and transient response that result

for a dozen or more combinations of Q and R can be

determined, and a suitable selection of G can be made.

Lu
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5.1.1 - Solution of the Linear Differential Equations in

State-Space Form

Starting with the system differential state equation,

.9(t) -Ax(t) +Bu(t) (187)

where the matrices A and B, are considered constant

matrices, the simplest form of the general differential

equation, Eqn. (186) is the homogeneous, i.e., unforced

equation

x( t -Ax(t) (188)

The solution can be expressed as

x( C) -ce*r (189)

where c is a suitably chosen constant vector. To verify Eqn.

(189) the derivative is calculated as

dx(t) cAeA"-Ax(t) (190)
dt

To evaluate the constant, c, suppose that at some time, r,

the state x(T), is given as

x(r) -ceAt (191)

Multiplying both sides by the inverse of eAT leads to

c- (eA,) -IX (,) (192)



Substitution into the homogeneous solution leads tc

x(t)-eA( -IIx(r) (193)

where the matrix eA4t(') is a special form of the state-

transition matrix.

Through the use of 'method of variation of the

constant', a particular solution to the nonhomogeneous, or

'forced' differential equation is found. Seeking a solution

of the form of Eqn. (187) one can select

x(C).eAýc(t) (194)

where c(t) is a function of time to be determined. After

taking the time derivative of x(t) and substituting into

Eqn. (185) the following is obtained

AeAtc(t) +eAc(t).AeACc(t)+Bu(t) (195)

Upon cancellation of the terms AeAtc(t) and multiplication

of the remainder by e"At

e(t)-e -A Bu(t) (196)

Thus, the desired function c(t), can be obtained by simple

integration

c(t) -feA Bu (X) dl (197)
T
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The lower limit, T, on this integral is undefined for now;

substitution into the particular solution produces

C

x(t) -eA I fe A'Bu(.) dX-fe;L "r BuA X) dq (198)
T

The complete solution to Eqn. (187) is obtained by

adding the 'complementary solution', Eqn (193), to the

particular solution, Eqn. (198). The result is

x(t) - eA(-tx(T) +IfeA (t-Bu(k) dX (199)
T

The proper value for the lower limit, T, on the integral can

now be determined. At t=T, the complete solution becomes

x(t) -x(t) - feA 7-)Bu(X)dX (200)
T

The integral in Eqn. (200) must be zero for any u(t); this

is only possible if T=T. Therefore, the complete solution to

Eqn. (187), when A and B are constant matrices,

C

X(t) - e A(t-xt) X feA (I-Bu(1) dL (201)

5.2 - Discretization of a Continuous-Time Control System

When a continuous-time control system with complex

poles is discretized, the introduction of sampling may
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impair the controllability and observability of the

resulting discretized system. That is, pole-zero

cancellation may take place in passing from the continuous-

time case to the discrete-time case. Thus, the discretized

system may lose controllability and observability.

A system which is completely state controllable and

observable in the absence of sampling remains completely

state controllable and observable after the introduction of

sampling, if and only if, for every eigenvalue of the

characteristic equation, the relation

Re X - Re 1 (202)

implies

IM (X X 2nni_ (203)

where X, are the eigenvalues Gi the continuous-time system

matrix A; Ts is the sampling period, and n=±l,±2,....11)

In addition to the forementioned requirement, two

points should be taken into consideration when choosing a

sampling period:[17

a) If the sampling interval is too long, the performance

of the sampled data system, tends to deteriorate; this

makes signal reconstruction difficult.

b) Implementation of a very short sampling interval may be

limited by computer operation times and the expense of
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fast A/D and D/A converter devices; thus, overtaxation

of the computer system with data may result.

Therefore, the sampling time should be as large as possible

after the performance of a sampled data system meets the

requirements of the design. Using the open-loop eigenvalues

calculated by ORACLS a table was developed listing

unacceptable sampling periods (see Table 3 and 4).

Table 3
Eigenvalues and Moduli for Continuous-Time Open-Loop System

Calculated by ORACLS for Orientation of Case (1)

Continuous Open Loop

Eigenvalues Moduli

Real Imaginary

1 0 0 0

2 0 0 0

3 1.4142 0 1.4142

4 -1.4142 0 1.4142

5 1.7321 0 1.7321

6 -1.7321 0 1.7321

7 0 49.006 49.006

8 0 -49.006 49.006

9 0 70.346 70.346

10 0 -70.346 70.346

11 0 87.556 87.556

12 0 -87.556 87.556



Table 4
Calculation of Unacceptable Sampling Periods

from the System Matrix Eigenvalues

i\j 0 -49.00 49.00 -70.35 .70.35 -B7.55 .87.55

-49.00 -114.8 0 -5 7 .4 2  263.7 -47.12 145.9 -41.21

+49.00 114.8 57.42 0 47.12 -263.7 41.21 -_ _5.9

-70.35 -80.00 -263.7 -47.12 0 -39.95 327.4 -35.65,

+70.35 80.00 47.12 263.7 *39.95 0 35.65 -327.4

-87.55 -64.23 -145,9 -41.21 -327.4 -35.65 0 -32.07

÷87.55 64.23 41.21 145.9 35.65 327.4 32.07 C

a t t n u vb e r s a re rnu l t i p l i e d b y k , 
_ __/ -_ _,3 .

i - Ith Imaginary Eigenvalue
j - Jth Imaginary Eigenvalue

5.2.1 - The Linear Ouadratic Reaulator Technique Applied to

a Continuous-Time System

Let's begin by considering the linear time-varying

system of Eqn. (202),

S7 ) -A (t) x (t) * B( t) u{ ( ) (204)

the cost function, J 1, given by Eqn. (205),

7o



and the optimal control u(t), is selected such that the cost

function is minimized.i91 It is defined as,

u(t) -- R-- (t) BT(t) K(t) x(t) (206)

where K(t) is a nxn symmetric matrix and is the unique

solution of the Ricatti equation 9 1

k(t) -- K(t)A(t)-AT(t)K(t)+K(C)B(t)R-I(t)BT(t)K(t)-Q(t) (207)

which satisfies the boundary condition

K(Tf) -F (208)

The state of the optimal system is then the solution of the

linear differential equation

.9(t) - [A (t)-B(t)R"I(t) BT(t)K(t:)] x(t) (209)

The block-diagram representing the optimal control system is

displayed in Figure 10.

~(t) OP>x~t)

+

A (t)4

Figure 10. Block Transfer Function of the Optimal Control
System
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The response, x(t), of the optimal system can now be written

as the solution to the differential equation

*(t) -G(t)x(t) (210)

where G(t) is an nxn matrix given by

G(t) -A( t)-B( )Rtl ) B PL7(t) K(t-) (211)

To find the gain matrix, K(t), a steady state solution

of the matrix Ricatti equation (Eqn. (207)) is necessary,

when the final time, Tf, approaches infinity; thus, the

derivative K (t)=0, making K(t) =Constant (see boundary

conditions, Eqn. (206)). Since the Ricatti equation is

nonlirear, closed-form solutions usually cannot be obtained;

therefore, K(t) must be computed using a digital computer.

For the purposes of this thesis the ORACLS subroutines will

be implemented. 27

ORACLS is a modern ccntrol theory design package for

constructing controllers and optimal filters for systems

modeled by linear time-invariant differential or difference

equations. The digital FORTRAN-coded ORACLS system

represents an application of some of today's best numerical

linear algebra procedures to implement the Linear-Quadratic-

Regulator or Guassian methodology of modern control theory.

An example of the simulation program which incorporates

various ORACLS subroutines has been placed in Appendix D.
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One important thing to realize is that the gain matrix,

K(t), is independent of the state, so that once the systemn

and the cost, J , have been specified, K(t) can be computed

before the optimal system starts to operate.

5.2.2 - Formulation of the Linear Quadratic Requiator

Technique Subject to a Discrete-Time Domain

Consider the continuous time control system

k(t) -Ax t) +Bu( t) (212)

subject to

T

j.x'( t)Fx(t:) *-!f [x (t) Qx(t) +u T (t)RU(t) ]dt (213)
2

0

If the continuous-time control system is approximated by its

discrete equivalent, the sampling period TS, can be

represented as

,-kTs, k-O,I,2.N (214)

thus, its discrete equivalent becomes,

x( (k+l) T6 ) -G(T,) x(kT8 ) +H(Ts) u(kT,) (215)

and the discretized performance index, when the final time

Tf=NTs, becomes:[ 10 3

2 Xj _ s (2 1 6 )Ne-a

+ 2x (kT,) M, u (kT,) + u '"(k T,) R. u (kT,) ]



It is noted that the integral term in Eqn. (215) is not-

replaced by

N-:

1]• [x"(kTr. n x kT. u ;-i • k, = 217(x k 7,,J c-x %k-s -u71_> u~T (217)

but is modified to incluae a cross term involvina x(kT.] and

u(kTs). Also, matrices Q and R are modified. By considering

the discretized quadratic optimal control problem by use of

a simple example -similar to the syster considered in

section 5.1.1- the terms Q., M,, and R, are developed.

Consider the continuous-time system defined by

(218)

where A and B are constant Latrices and

U(t) - i'hk? , kTS ~ (k-UT 5  (219)

The performance index to be minimized is

2 RU2 (220)

To begin, the system equation and performance index

must be transformed to a discrete-time domain; afterwards

the discietized quadratic optimal control problem can be

formulated. Equatior (218) may be discretized as follows:

xF(k~i ?T•) -G (TP) x(kTs) + H(Tr) u(kT,) (221)



C7

where,

GC, .7 (222)

H(Ts) - eAT._ A( (223)

f

or

eA7T, B A eAT,

x( (k+1) Ts) 'x(k 6 S) +-(A -) u(kT,) (224)

The performance index, J, given by Eqn. (220) may be

discretized. First rewrite J as

Ni (kci) T

J 'x2 "N-1 f [x2(t) +÷Ru ()dt (225)

" kT-

Noting that the solution x(t) for kT,<_t<(k+l)T. can be

written as

C

X( t) - eA (tk-Tx(kT.) f eA-) Bu (,r) dr (226)
k T7

-• (t-kT.) x(kT8 ) ÷ i ( t-k T.) v (kT,)

where,

(t-kT) A(-T (227)

t

<1 (t-kT9 ) - E (t--r BdT---eB[• •-k7-- 1] (228)

AkT,,



The performance index J, can be written as follows

LiX, (N)T -2~ f C)[ t -k T ).%(k T,Nk-C

(229)
+TI(t-kTs) u(kT 5)] 2+Ru' (kT,) ) dt

X2 (NT') ~[C~x 2 (k',-,) -2M~x(kT 5 ),T) +R .01u7's) I
2-2

where,

" fQ•2( t-kT•)dt (230)

(k-, 7-

M 1- f (231)

R 1 - f [Qf2 (C -kT,) R] dt (232)
k-..

Notice that Q1, M,, and R, may be simplified as follows:

(k'2 T,

Qe f o -kz°) dr- Q [e 1 (233)
k T,

(k.1) T,

e ~At k7, P ' A(t-kT~lII!t BQ AT,(24
f A 2A 2

k T,

(k.1) T°

R,- f fRf~eA(t-kT,\ ]+ R~dt
kT. kA 2 5

-- :I e -3)(e 
(235)

2 A 2 -------------
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Summarizing, the present discretized quadratic optimal

control problem may be stated as follows. Given the

discretized system equation

x( (k+l) T,) -G(T,) x(kT3 ) H H(T 8 ) u(kT6 ) (236)

where,

G Ts) eAT" and H ( T,) B (e --- )(2 7

find the optimal control sequence, u(0) , u(Ts),...,u((N-

l)Ts) such that the following performance index is minimized

JX2 (NT' + 1Q x(kTq) -2Mx(kT) u(kT,) +R,u2(kT,) 1 (238)
2 2k-0

Such a performance index including a cross term involving

x(kTs) and u(kT.) can be modified to a form that does not

include a cross term, and the solution to the discretized

quadratic optimal control problem can then be obtained. This

subject is presented in the following.

Taking into consideration the quadratic optimal control

problem, where the system is given by

x(k+l) -Gx(k) +Hu(k) , x(O) -c (239)

and the performance index is given by

J- 1 x T(N) Fx(N) + -- [x T (k) Q1x(k) - 2x T (k) M1 u (k) + u T(k) Ru (k) I

2
(240)



where Q, and F are nxn positive definite or semidefinite

Hermitian matrices, R, is an rxr positive definite Hermitian

matrix, and M is an nxr matrix such that the matrix

01TM11 (241)

is positive definite. This means that

[x T (k) u (k)] M 1, R .][u(k) (242)

-X r(k) Q1x(k) +xT(k)M1 u(k) + u T(k) MjIx(k) + u T (k)Rlu(k)
-x T(k) Qx (k) + 2X T(k) Mu(k) + u T(k) R. u(k)

is positive definite. Note that the performance index, J, of

Eqn. (240) includes a cross-term similar to Eqn. (242).

In order to obtain the optimal control vector u(k), let

us define

,-M R1 MT (243)

and eliminate Q from the performance index J. Then Eqn. (240)

becomes

J" IX-(N) Fx(R) + {x (k) [+÷MR 1'M,'] x(k)

+2xT(k)Mu(k) +uT(k) Ru(k)1

N-i"-X 7(M Fx(N) . x xT(k) MxR MTx(k)2 k( (244)
+÷2 x (k) M, u(k) +÷u I(k) R, u(k)]

N-i

- I x T(AD Ex()22 -2k.0 {x (k)jx (k)

+ Ix 7"(k ) lqýR , -u 7(k ) R, Ri [R[• .'x (k) + u (k )]
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Define

v(k) -R'M'x (k) + u(k) (245)

such that

N-i

J" 1-X-T(N)2 Fx(N)- [xr(k)cx (k) v 7 (k)Rv(k)) (246)
2 k-0

Notice that Eqn. (246) no longer involves the cross term; it

has been effectively eliminated.

By substituting Eqn. (245) into the system equation,

Eqn. (239) becomes

x (k+ 1) - Gx (k) +÷H Iv(k) -aR•IM,*x (k)

- (G-HRIIM1
T) x(k) +THv(k) (247)

-dx(k) +Hv(k)

where,

G- HRIT (248)

Note that the quadratic optimal control of the system given

by Eqn. (239) with the performance index given by Eqn. (240)

is equivalent to the quadratic optimal control of the system

given by Eqn. (247) with the performance index given by

Eqn.(246). Hence, the optimal control vector v(k), that

minimizes the performance index given by Eqn. (246) can be

given as follows. Defining

v(k) -- [RI+ HT75(k÷!) H) -'HTP(k+l)Gx(k) (249)



where P(k) is a modified version of the Ricatti Equation.

£(k)-C %'½k -) (1 P R1-II -TP(k -l1) (250)

P(N) -F (251)

The optimal control vector, u(k), can then be given by

u (k) - v(k) - R•'Mx (k) (252)

where v(k) is given in Eqn. (249), Eqn. (252) can be reduced

to the following form:

u(k) -- [R +1YH(k,:) H] [H 7P(k+-)G+2,,7]x(k) (253)

5.3 - Solution by the Conventional Minimization Method Usinq

Lagrange Multiplier

In the present optimization problem, the minimization

of J given by Eqn. (246), repeated here

1 -. N-i

J- 1x 7(N) Fx(N) + [xT(k) lx(k) +vT(k) Rv(k)1 (254)
2 2

when it is subject to the constraint equation specified by

Eqn. (247)

x(k-1) -6x(k) +Hv(k) (255)
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with the initial condition on the state vector

x(O) -c (256)

is considered by using a set of Lagrange multipliers

X(1),X(2),...,X(N); the new performance index L can be defined

as follows:

L- -!x (N) Fx(V) +- 2 I[r lx (k) + v (k) R, v(k)1 +1 7(k 1)" 2 7
2 'k (257)2 2 k-0

[dx(k) +Hv(k) -x(k+l) ] + [dx(k) +Hv(k) -x(k+l) 1 T1 (k+l))

It is a well known fact that minimization of the function L

is equivalent to minimization of J when it is subject to the

equality defined by Eqn. (255). In order to minimize the

function L, one must differentiate L with respect to each

component of the vectors x(k), v(k), and 1(k) and set the

results equal to zero. Thus we set

aLax -_0 1-1,2,...,n ; k-l,2,...,N (258)axi (k)

0L- .i-i,2,.....r ; k-l,2,.....N-l (259)
av2 (k)

aL
_0 i- ,2... ,n ; k-l,2... ,N (260)al.i (k)

Dropping the subscript for simplicity, Eqns. (258), (259),

and (260) may be obtained as follows:

ak 0 - x(k) +6 & (k+l) -I(k) -0 k-l,2 ,..... N-1 (261)ax (k)
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x( -0 Fx(N) -X(N) -0 (262)ax (N)

aLav -0 R1 v(k) +H' 1 (k+l) -0 k-0,01..,-, N-l (263)av(k)

aL 0 G§x(k-l) +Hv(k-l) -x(k) -0 k-',2,..., N (264)

a (k)

After the simplification of the equations just obtained,

there results,

I (k) -Ox (k) 1(k+1) k -1, 2,..... N- 1(265)

with the final condition

I (N) - Fx(N) (266)

Rearrangement of the terms of Eqn. (263) leads to the

solution of v(k)

v (k) - -R-1 H 7*1 (k÷ 1 ) (267)

The last partial differential Eqn. (264) is simply the state

equation (see Eqn. (255)). Substitution of Eqn. (267) into

Eqn. (255) results in

x(k-i) -Gx(k) -HRI'HrX(k+i) ; x(O) -c (268)

In order to obtain the solution to the minimization problem

we need to solve Eqns. (265) and (268) simultaneously.

Notice for the system equation, Eqn. (268), the initial

condition is specified, while for the Lagrange multiplier

equation, Eqn. (265), the final condition is specified. Thus

the problem here becomes a two-point boundary value problem
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(TPBVP). If the TPBVP is solved, then the optimal values for

the state vector and Lagrange multiplier vector may be

determined and the optimal control vector, v(k) may be

obtained in the open-loop form. However, if one employs the

Ricatti transformation, the optimal control vector, v(k),

can be obtained in the following closed-loop or feedback

form:

v(k) -- Gu(k)x(k) (269)

where G,(k) is the rxn feedback matrix.

Under the assumption that )(k) can be written in the

following form

X (k) - f(k) x(k) (270)

where P(k) is an nxn Hermitian matrix (see Eqn. (250)).

Substitution of Eqn. (270) into Eqn. (261) results in

16(k) x(JO)-Cx (k) ÷G Tf(k+1) x(k+l) (271)

and substitution of Eqn. (270) into Eqn. (268) gives

x(k+l) - &x(k) -HRr1H 'P(k+l) x(k+l) (272)

Notice that Eqns. (271) and (272) do not involve 1(k) and

thus 1(k) has been effectively eliminated. The

transformation process employed here is called the Ricatti

transformation. It is of extreme importance in solving such

a TPBVP. From Eqn. (272)



[I(HRH1Pkk+I) x(k+) -Gx(k) (273)

because of the existence of the inverse matrix, Eqn. (273)

can be written as

x(k+l) - II+HR H IS'(k+L)] -'Gx(k) (274)

By substituting Eqn. (274) into Eqn. (271) one obtains

P(k) - 7÷15 (k+1) [i+HRI' HT (k+l) (275)

Equation (275) is the same as Eqn. (250), it may be modified

to

P (k) -Q eTf(k÷I)d-TP(k)I- [Ri+H 1f(k÷ )HI-H T7(k÷I1)G (276)

Equation (276) is called the Ricatti equation. Referring to

Eqn. (262) notice at k=N

P(N) x(N) - (N) - Fx(N)
(277)

P (N) -F

Hence, Eqns. (275) and (276) can be solved uniquely backward

from k=N to k=0. So one can obtain P(N), P(N-l),..., P(O)

starting from P(N) which is known. By referring to Eqns.

(270) and (274), the optimal control vector, v(k) given by

Eqn. (267) now becomes

v(k) - -R1HTf(kl)x(k+l) (278)
-- RI 1HTP(k-1) [I+HRI•'H (k+l) ] -x(k)
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A modified form of the optimal control vector, v(k) can be

given ky

v(k) -- [RI+HT̀ f(k+l) HI -- H 715(k+1) 6x(k) (279)

the same as Eqn. (249)

5.3.1 - Evaluation of the Minimum Performance Index

Evaluation of the minimum performance index given by

Eqn. (254) follows

Jn 1ra-in X T((N)FX(N) +_ [xT(k)3x(k) +vTr(k)Rv(k)] (280)
12- k-o

Premultiplying both sides of Eqn. (271) by xT(k) gives

x7*(k) i(k)x(k) -x7(k)ex(k) +xT(k) G7*1(k+l)x(k+l) (281)

Substituting Eqn. (273) and arranging terms leads to

x "(k) f(k) x(k) - x (k) jx (k) - x I(k+1) j I. (k I) HR,'H r) 16(k+ 1) x(k÷I1) (282)

Hence,

x 7(k) ex(k) -x "(k) 1 x(k) -x T(k,1) P5(k+l) x(k- 1) +
-X (k+.(k+l) HRiH I(k+l) x(k+l)

Similarly, from Eqn. (278)

v(k) -- R•IH7TP(kl)x(k+l) (284)



Hence,

v7R(,k) Rv(k)-[-x-(kl)15(.kl)lhR R [- HrP(k 'l)x(k.k, ] (285)
- x (k-1) 15(k 1) HR,-I H715(k 1) x(k-t )

By adding Eqns. (283) and (285)

x 7(k) 1ýx (k) ÷ v 7(k) R1 v(k) - x 7(k) fx (k)- x I(k- 1) f (k+l) x (k+ 1) (286)

By substituting Eqn. (286) into Eqn. '280) one obtains

k-CJmln"-xT(N) FX(N)+l÷ - t xT(k)Al(k)x(k) _xr(k+l)f•(k+1) x(k+l)U

I-x W(N) Fx(N) + -[x 1(0)P(0)x(0) -xI)1x('1) ) + x (•1 (-
2

-x7(2 )5(2 )x(2) + +x,(N-I) f (N-I) x (N-I) -x -(N) P (N) x (N)
-x W(N) Fx(N) + lx- (0) f()x(O)X (0 - -x I(AI f(M x(N)
2 2 2

(287)

Notice from Eqn. (277) P(N)=F. Hence, Eqn. (287) becomes

Jmi" I XT(0)-15(O)X(0) (288)
2

Thus, the minimum valie of the performance index J is given

by Eqn. (280). It is a function of P(O) and the initial

state, x(0).



CHAPTER 6 - RESULTS AND DISCUSSION

For this thesis three different comparisons have been

analyzed for the nominal orientation of Case (1). The first

is a comparison of two sets of actuator locations (see Fig.

8), this will provide the most effective placement of the

actuators. The second is a parametric study involving the

state penalty matrix and the control penalty matrix (see

Eqns. (185) and (186)), this will yield the best choice of

penalty matrices under the given conditions. The last

comparison is also a parametric study, through the variance

of the sampling period (see Section 5.2) a display of its

effect on the system performance will be produced. Together

these three comparisons will result in the design of the

optimum uuitrol system.

For each comparison three different system

characteristics will be analyzed. The first characteristic

is the discretized open and/or closed loop system eigenvalue

and their moduli. In a z-domain the system's eigenvalues or

moduli should display the following characteristics:

a) the magnitude should be less than 1 to ensure stability

of the system.

b) the magnitude should be as small as possible. The

system with the smaller eigenvalues usually displays

the better system response.
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The second analysis is the tabulation of the calculated

optimum cost function (see Section 5.3.1). The optimur, cost

function -also known as the minimum performance index- i.s

calculated through the minimization of the cost function,

therefore, the obvious selection for an optimum syster is

the smallest possible value of x0 TP0x 0.

The transient time response of the rotational angles,

modal amplitudes, and the control forces of each actuator is

the third system characteristic investigated. A transient

response refers to the process generated in going fror an

initial state to the final state. E5 3 Consideration is giving

to several elements of the ti..nzient response, they are:

a) the maximum c":ershoot or undershoot which is directly

related to the romu~> "u-• I the system. In the case cf

the modal amplitudes, the response is due to an initial

normalized deflection of 0.01, which corresponds to a I

meter deflection. If the response overshoot or

undershoot is too high, internal stresses may reach a

maximum resulting in fracture or failure of the

structure. In reference to the forces, a large initial

ovezthoot is associated with the maximum amplitude of

the control force

b) the area under the response curves is being

investigated. When comparing the rotational angle

response there is no overshoot or undershoot. The



system is subjected to an initial angular deflection of

0.01 radian. The area under this response and the

tangential envelopes created by the other responses is

proportional to the control energy dissipated;

therefore, the overshoot and the area should be as

small as possible.

c' the rise time is the time required for the response

initially to reach the equilibrium value during the

first cycle of the response.

d) the peak time is the time it takes the response to

reach the first peak of an overshoot or undershoot.

e) the settling time is an important characteristic to

take into consideration. The settling time is the point

in time when the response curve reaches and stays

within 5% of the equilibrium value of the system's

response. Hence, one would prefer this duration of time

to be as short as possible.

f) the signal reconstruction is one other system

characteristic which is especially important in the

comparison of the sampling periods. The transient time

response should appear as smooth as possible, thus

exhibiting a proper signal reconstruction.

In the subsequent sections of Chapter 6, three

comparative studies will be discussed.
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6.1 - Comparison of Actuator Positions

For the comparison of the actuator locations, two sets

have been chosen, Set A and A' (see Fig. 8). The nominal

orientation of Case (1), with a sampling period of 5

seconds, and the set of penalty matrices Sq=0.5 and

Sr=l. OxlO"c) is selected as the standard system.

The system's closed-loop eigenvalues and optimum cost

functions are displayed in Table 5. Notice that the minimum

modulus and the overall average modulus if Set A eigenvalues

are smaller than those for Set A'. The optimum cost function

is smaller for Set A than Set A'.

Upon inspection of the transient time responses, it is

seen that the response for the rotational angles are exactly

the same (see Figs. 11 and 12). The responses for the first

and second modal amplitude are quite different. On the other

hand, the third mode's amplitudal responses are exactly the

same (see Fig. 13). Set A' first mode has a higher overshoot

and a much larger settling time than that of Set A.

Similarly, the second mode has a larger overshoot,

undershoot, curve area, rise time, peak time, and settling

time for Set A' than for Set A. The same follows for the

transient responses of the forces for actuators 1-4 (see

Figs. 14 and 15). The actuators E and 6 are in the same
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position for both sets; thus, there isn't any difference in

transient time response for the two actuator forces (see

Fig. 16). Also, notice the symmetry of response for the

actuator groups 1 & 3, 2 & 4, and 5 & 6. This is due to the

fact that the actuators are placed in a symmetrical pattern

around the center of the plate (origin).

The choice between actuator location sets is an easy

one. Obviously, the system of Set A exhibits the best

characteristics. This is an expected result for a couple of

reasons. The first is: the torque arm is a maximum for Set

A, thus, reducing the maximum force needed to control its

rigid rotational motion. The second is: Most of the Set A'

actuators are placed in the vicinity of the nodal lines -for

the first three modes included in the system model- thus,

possibly reducing their overall effect.
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Table 5
The Effect of Different Actuator Locations on the

Closed-Loop System Eigenvalues and Moduli

Set A S*t A'

Eigenvalues Moduli Eigenvalues Moduli

Real Imag. Real Imag.

1 0.20871 0 0.20871 0.20872 0 0.20872

2 0.20873 .00177 0.20873 0.20873 .00174 0.20874

3 0.20873 -. 00177 0.20873 0.20873 -. 00174 0.2C874

4 0.22710 0 0.22710 0.22273 0 0.22273

5 0.25698 0 0.25698 0.26381 0 0.26381

6 0.79820 0 0.79820 0.79575 0 0.79575

7 0.92454 0 0.92454 0.93528 0 0.93528

8 0.88714 .36217 0.9452 0.89757 .36118 0.96752

9 0.88714 -. 36217 0.9452 0.89757 -. 36118 0.96752

10 0.99443 0 0.99443 0.99443 0 0.99443

11 0.99443 0 0.99443 0.99443 0 0.99443

12 0.99443 0 0.99443 0.99443 0 0.99443

Xo PoXo=O. 0086919 XoPoXo=0. 018983

XO'P.Xo - Optimum Cost Function
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6.2 - Comparison of Penalty Matrices

For the parametric study of the penalty matrices,

several system variables were kept constant; they were

chosen as: the nominal orientation of Case (1), Set A for

the actuator locations, and a sampling period of 5.0

seconds. The variance of the system penalty matrices is

handled by changing the control penalty matrix while holding

the state penalty matrix constant, and vice-versa. The

penalty matrices are defined by Eqns. (185) and (186) where,

a,=Sq and a R=Sr. The sets of penalty matrices are:

a) Set 1 - Sq1 =0.5, Sr 1=l.Ox101 °

b) Set 2 - Sq1 =0.5, Sr 2=l.0x10 1 2

c) Set 3 - Sq 2=0.001, Sr 1=l.0xl0"0

d) Set 4 - Sq 2=0.00", Sr 1=l.0x10°12

Note that in this study only block diagonal penalty matrices

-where all the elements are the same- are considered.

The eigenvalues, moduli, and optimum cost function for

each set are displayed in Table 6. The eigenvalues and

moduli of Sets 1, 2, and 4 are very close, whereas, the

first modulus of Set 3's eigenvalues is noticeably larger.

This helps to narrow the system comparison down to the three

sets 1, 2, and 4. After taking a second look at their

eigenvalues, it is noticed that the moduli of Set 4's

eigenvalues are slightly larger than those of the two other
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sets; but the optimum cost function for Set 4 is smaller

than those for Sets 1 and 2.

For a complete comparison the transient response is

viewed. The responses for the system's rotational angles

pictured in Figure 17 show no appreciable difference

regardless of the penalty matrices used. In addition, there

is no significant difference between the yaw, pitch, and

roll responses. The transient response of the modal

amplitudes show a slight variation as a function of the

penalty matrices used. For the first and second mode there

is virtually no difference in responses for all combinations

of penalty matrices (see Figs. 18 and 19). The third mode

responses display a deviation towards a better response for

Set 4 (see Fig. 20). Similarly, all the actuator force

responses (see Figs. 21-26) exhibit better characteristics

for the case of Set 4 penalty matrices.

The determination of the best combination of the state

penalty matrix and control matrix is a little more difficult

than the previous choice of positioning. After taking into

consideration the system characteristics, Set 4 (Sq=0.001,

and Sr=l.0xl0'12) was chosen. Even though the Set 4 system

eigenvalues are not the smallest ones considered, its

optimum cost function is the least and its response is the

best.



Table 6
The Effect of Different Penalty Matrix Combinations an the

Closed-Loop System Eigenvalues and Moduli

Set I:Sq=O.5,Sr=I.OE-1C :Set 2:Sq=O.5,Sr=I.OE-12

Eigenvalues Moduli Eigenvalues Moduli

Real Imag. Real Imag.

1 0.20871 0 0.20871 0.20870 0 0.20870

2 0.20873 .00177 0.20873 0.20870 .00174 0.20870

3 0.20873 -. 00177 0.20873 0.20870 -. 0 0 1 7 4 0.20870

4 0.22710 0 0.22710 0.22709 0 0.22709

5 0.25698 0 0.2569S 0.25679 0 0.25679

6 0.79820 0 0.79820 0.79827 0 0.79827

7 0.92454 0 0.92454 0.92454 0 0.92454
8 0.88714 . 3 6 2 C7 0 . 9 4 5 ?C 0.88714 .36217 0.94520

9 0.88714 -. 36217 0.94520 088714 -. 36217 0.94520

10 0.99443 0 10.99443 0.9943 " 0 30.99443

12 0.99443 0 0.99443 0.99443 0 0.99443

12 0.99443 0 0.99443 0.99443 0 0.99443

X ,,Xn=O. 0086919 X'P X =(. 0086915

Bet 3:Bq=.OO1,Sr=1.OE-1O Set 4;8q=.0O01,Sr=l.OE-12

Eigenvalues TModuli Eigenalues Moduli

Real Imag. Real Imag.

1 0.21375 0 0.21375 0.20875 0 0.20875

2 0.21394 0 0.21394 0.20885 .00174 0.20886

3 0.23154 0 0.23154 0.20885 -. 00174 0.20886

4 0.23262 0 0.23262 0.22713 0 0.22713

5 0.34728 0 0.34728 0.25776 0 0.25776

6 0.76206 0 0.76206 0.79792 0 0.79792

7 0.92394 0 0.92394 0.92454 0 0.92454

8 0.88712 .36218 0.94519 0.88714 .36217 0.9452

9 0.88712 -. 36218 0.94519 0.88714 -. 36217 0.9452

10 0.99443 0 0.99443 0.99443 0 0.99443

11 0.99443 0 0.99443 0.99443 0 0.99443

12 0.99443 0 0.99443 0.99443 0 0.99443

X 0Tp X =1.7823E-5 X TPý,= 1.7388E-5

XoTP X - Optirnum Cost Funct ion
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6.3 - Comparison of Sampling Period

For the comparison of sampling periods, several system

characteristics kept constant were chosen to be: the nominal

orientation of Case (1), the actuator placement of Set A,

and the penalty matrices of Set 1. The different sampling

periods chosen for the comparison were 2.5, 5.0, 10.0, and

40.0 seconds, respectively. The latter was an approximate

value chosen from Table 4 (see 39.95 seconds) as a

representation of system degradation.

Each set's discretized open and closed loop system

eigenvalues and moduli and their optimum cost functions are

shown in Table 7. The open-loop eigenvalues of all four

sampling periods show signs of instability by containing

moduli greater than 1. This is a confirmation that the

uncontrolled (local horizontal) orientation of Case (1) is

unstable. When the closed-loop eigenvalues of each sampling

period are examined, an unexpected result surfaces. Almost

all the moduli of the 40.0 second eigenvalues are slightly

smaller than those for the other sampling periods. This

results from the fact that the calculated unacceptable

sampling period is 39.95 seconds and not 40.0 seconds, i.e.,

roundoff error. The sampling period of 40.0 seconds was

employed to provide an equivalent final time period with the

other sampling periods, in other words, 2.5, 5.0, 10.0 are
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multiplies of 40.0. The moduli of the last eigenvalue of

Set IV is very close to the limit of 1, thus exhibiting a

trend towards degradation. Comparison of the optimum cost

function indicates a minimum for the 2.5 second sampling

period.

The transient time response for the rotation angles are

the same for all the sampling periods (see Fig. 27). When

the transient response of the modal amplitude are considered

the first mode's maximum overshoot decreases, its undershoot

increases, as the sampling period increases (see Figs. 28-

31). The same relationship holds for the response of the

second mode. The third mode's response displays an

undershoot for the 10.0 and 40.0 seconds sampling periods, a

characteristic not shown before in this study. The entire

modal responses for the 40.0 second sampling period

represent a degradation in comparison with the modal

responses for the other sampling periods. For the case of

the transient force responses, the maximum overshoot

decreases as the sampling period increases (see Figs. 31-

35). For the 40.0 second case there is no overshoot but a

large undershoot and a very choppy response, again

associated with system performance degradation.

Initially, the selection of the sampling period can be

reduced to just three periods, 2.5, 5.0, and 10.0 seconds,
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for the obvious reason that the sampling period of 40

seconds is associated with performance degradation. However,

it is not an easy task to decide on the best sampling period

from the three other sampling periods. Effectively, 2.5

seconds can be released from consideration due to the larger

moduli of the eigenvalues and overshoot. The decision

between the last two sampling periods is a more difficult

one. The sampling period of 5.0 seconds has a higher

overshoot, a smaller undershoot, a smaller optimum cost

function, and a smooth response curve. The sampling period

of 10.0 seconds displays a lower overshoot, a larger

undershoot, smaller eigenvalues, and a choppy response.

Finally, taken into consideration that signal reconstruction

is very important, the sampling period of 5.0 seconds can be

chosen.
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CHAPTER 7 - CONCLUSIONS

A mathemdLical model to predict the dynamics of a

flexible orbiting platform was developed. Under the

assumption that the linear system is completely observable,

the optimal control laws are developed for the case where

the observational data is collected on a sampled basis,

i.e., a discrete time data system.

Attitude and shape control of the platform was assumed

to be provided by the placement of point thrust actuators

perpendicular to the main surface and the edge of the plate.

Their effects on the system's motion were modeled to the

first order. Controllability for the system was verified for

two sets of actuator locations. An application of the linear

quadratic regulator (LQR) technique in a discrete-time

domain yields the optimum control law feedback gains.

A comparison of the performance of the different sets

of actuator locations resulted in the best choice of

actuator positioning. Two parametric studies were conducted

to show the effect of varying the state penalty matrix and

the control penalty matrix, and the effect of changing the

sampling period on the transient performance of the system.

Generally, when comparing all of the system

148
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characteristics, one must search for the system with the

maximum number of positive characteristics. Unfortunately,

it is not always a clear cut decision as to which

combination of characteristics designate the best system.

often a system may exhibit some value tradeoffs, it may

possess several minimum values along with several maximum

values. In this thesis particular emphasis is placed on the

quality of the transient response. With this in mind the

following conclusions have been made.

When deciding upon the best placement of the actuators

on the main surface, two items should be kept in mind. The

first is that the actuators should be placed such that there

is the maximum distance between the origin and the actuator

locations. This creates a maximum torque arm which reduces

the maximum force needed to control the system's rigid body

motions. The second is that the actuators should be placed

as far away as possible from the nodal lines of the

fundamental and lower frequency elastic modes (with which

most of the elastic energy is associated).

For the determination of the best choice of the penalty

matrices, one usually chooses a large state penalty matrix

and a small control penalty matrix within the limits of

control saturation levels. These matrices should be chosen

such that they optimize the performance index and produce
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the best transient time response.

Since the sampling period is directly related to

discretization and the signal reconstruction of the system,

careful consideration should be given to its choice.

Initially, when deciding upon a sampling period, one should

take into consideration the sampling period theorem which

involves the use of the open-loop system eigenvalues to

calculate the unacceptable sampling periods for which the

system is not controllable. Any sampling period values near

the values of the unacceptable periods should not be

utilized, for they can lead to system performance

degradation. The sampling period should be chosen such that

the sampling period is not too small to avoid excessive

handling and accumulation of data for the onboard computer

system. On the other hand, the sampling period should not be

too large, otherwise the system's transient time response

will appear choppy, thus, failing to provide a good example

of signal reconstruction.



CHAPTER 8 - SUGGESTIONS

In terms of new actuator positioning, different

locations for the actuators placed on the edge of the plate

should be investigated. In addition, the number of actuators

could be varied, in an effort to improve system performance.

There are some system tradeoffs to consider in the event

that the number of actuators is increased or decreased. If

the number of actuators are decreased there may be some loss

in system controllability and robustness. On the other hand,

if the number of actuators are increased, the system's total

mass will then be increased, thus, creating an increase in

the system's operational costs.

One other possible improvement to actuator modeling

would be incorporation of lumped masses to represent the

actuator mass at its particular location. Implementation of

GTSTRUDL or similar finite element methods for the

recalculation of modal frequency and deflections could than

be performed.

When considering possible improvements in the choice of

penalty matrices, a more indepth comparison should be

performed. The split weighting penalty matrix approach could

be applied, with a possible variance of each individual

matrix element. This could result in a smaller optimum cost

151
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function.

For this thesis the system considered was assumed to be

completely observable and deterministic, it is an inadequate

assumption. To improve system modeling the observer matrix

should be developed and the system should be considered

stochastic (i.e., experience external disturbances and/or

noise). The linear quadratic Gaussian (LQG) technique can be

applied to provide the control law and estimator for a

stochastic system with a Kalman filter to act as a screen.

One last improvement to the system corresponds to the

initial assumptions about the material properties of

composite graphite. For this thesis the material is assumed

to be isotropic. This is an questionable assumption for

reinforced composite graphite. Generall>', the material is

composed of graphite fibers bonded by a resin epoxy. Even if

the fibers were aligned with a 90; 0; or 45* orientation,

the material at best can be assumed to be orthotropic.t 35)

The system's various material constants would then need to

be redefined. These material properties affect the stress-

strain relationship of Eqn. (125) and create cross terms in

the plate vibrational equation, thus affecting the vaiues of

the natural frequency. The new values for Young's Modulus,

Poisson's ratio, and/or Shear Modulus, (i.e., EX, EY, EZ, vX ,

etc.) could then be submitted to GTSTRUDL for recalculation
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of the modal frequencies and deflections.

The results of the present study could then be compared

to the previous LQG results with the thin flat plate and the

shallow spherical shell for corresponding actuator

positions. C26,173
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Appendix A - The Elements of the Stiffness Matrix fKI. for

'BPR' Element

For a thin rectangular plate element with the

dimensions axbxh, the stiffness matrix [K]O, can be

represented as

-K D [k] (" (A~.1)

15ab

where, a and b represents the length of the side, 100.0 m; h

represents the thickness, 0.01 m; and the values of the

elements of [k] are shown below.

Eh3(A2
12 -25,256.41 (A.2)

12 (l-v 2 )

where, u represents the Poisson's ratio, 0.3; and a/b-r=l.

Elements of rk]

k. - 20a 2 + 4b?(l -v) -2.28x1O0

k 21 ... Sab- - 1 . 5xcl 05

k 22 -20b 2 -4a'(l-v) -2.28xI0O

k3 ,- -3Oar- 5bv-3b(l--v) -- 3,660

k 32 -30b/r-15av -3a(1-v) -3,660

k 33 -CQ/r 2 463r 2 +30v -42(1-v) -158.4

kdi-10a 2 -b-(i-v) -9.3x1j 4

k 4 ~-~. k~-k-. -k -0

k43 -- 30b,-3b(l-v) -300,210

k 4 4 -20a 2 4b"1-v) -2.28x1O 5

k. 2 -iOb 2 --4bU(1--v) -7.2xiol

k 3 - i b/ r ..15av--3a,1--v) -840

.'- I -5abv-4,5x7O 4

<5,"2062÷4a2•-'v) -2.28x%10
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Elements .of rki, continued:

k.1-3Oaz-+3b(1-v) -3,211)

ks2 -15b/.r-15av +3a (1-v) -4

k63 -30/.r2 -6Or2 -30v +42 (1-.v) - -68.4
k64-3Oar-1 5bv +3.b(l-v) -2,760

k6s -30b/z+l5av+3a(l-v) -3,660

ks6-6O/z2 +60.r2+30v+42(1..v) -158.4

k, -10a'- 4b 2 (1-V) -7 .2x10'-
k, 3 --- l5ra+15bv+3b(1-v) -- 840

-k7,4 -a
2 +b 2 (I-V) -5.3x10'

k. 7s-l5ar-3b(l-v) -1,290

k7-7-2 Oa 2 +4b 2 (1_V) -2.28x10 5

k82 -lob 2 -. a2 (1-V) -9.3x10 4

k 8 3 -30b/r-3a(l-v) -- 3,210

k9 5 -5b 2+a2(1-v) -5.7 X10 4

k86 -l5b/r-3a(1-v) -1,290

k 8 7 -l15ab-l 1. xi os

k88 -20b 2 +4a2(1-v) -2.28x105

k9 1 --l5az+15bv-3b(l-v) --840

k92 --30blz-3a(I-v) --3,210

k,3-60/.r2 +30- 2 -30v-42(1-v) -51.6

kg,4--l5a/r+3b(I-v) --1,290

k, 5 --- 15b/r-15av--1..290

k9 6 - -30/Z2 -3Or 2 430v-42(1-v) -- 21.6
k97 --30ax-15bv-3b(1-v) -- 3,660

kgs--30b/r-15av-3a(l-v) -- 3,660
k 9 9 -15b/r-15av-3a(1-v) -840
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Elements of rkl-continued:

k 1 0 1I-sa 2 +b 2 (1-v) -5.7XI0'

k,,,3--l5ar+ 3b(1-v) -1,290

k1 0,4-10a 
2-4b2 (1-v) -7 .2xI 0 4

k1 0 6,15a~r-l5bv-3b(l-v) -840

kc10,7 _-1(a 2 -b 2 (1-V )-9.3x104
k1 09g--30arz-3b(l-v) --3,210

k,,,l,-20a2+4b 2 (-V) -2.28x105

kl 0 , 2 - kl1 0 5 - k1 0 ,6 - k1 l, - ki 1 4 - k 1 1', 7 -0

k 1 . 2 -5b 2 +a 2 (1-V) -5 .-7X10'

kll,3-15b/r
2 -3a(1-v) -1,290

k1 1 5,-10b
2-a2-(l-v)_9 .3X104

k,,1 ,-30b/r+15av +3a(l-v) -3,660

kil1 s- 10b2 -4a 2 (1V) -7.2x1O 4

k 1 1 9 - 15b/r + 1av + 3a (1-v) - -840

k1 1 1 0o- -2.Sabv - -1. 5xI0 5

kill l - 2ob 2 + 4a 2 (1-V) -2.28x10 5

k. 2, 1 -15a/r- 3b(1-v) -1,290

kI.2 2 - -'LSb/r + 3a (1-v) - -1, 260

k1 2,3 -- 301r 2 -30r 2 +30v +42 (1-v) --21. 6

k.2.4 -1ar- 15bv +3a (1-v) -840

k 1 2 5,--30b/r-3a(I-v) -- 3,210

k 1 2. 6 -60/r2 +3or 2 -30v-42 (1-v) -51.6
k 1 2.- -30ar +3b (I-v) -3, 210

k28- -15b/':- + l5av - 3a (1-v) - -840

k 1 2. 0 -30/11 -3 0r_2 - 30v -42 (1-v) -- 38. 4
k 1 2,,,-3Oar+l5bv +3b(1-v) -3,660

k12,,l- -30b/z- l5av -3a (l-v) -- 3,660

k,,, 1 ,-15b/r-15av-3a(1--v) -840
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Appendix B - GTSTRUDL Program and a Summary of the

Implemented Commands for the Calculation of

Modal Frequencies and Shape Patterns

Because the model being considered is a free-free

structure, GTSTRUDL recognizes the generated stiffness

matrix as a representation of an unstable structure.

Consequently, it will not formulate a complete dynamic modal

analysis. For a calculation of the modal frequency values,

the command, 'COMPUTE RIGID BODY MODES', must be

implemented. Since the rigid body modes must be computed,

this eliminates using the eigenproblem solver, 'SUBSPACE

ITERATION', for it can not calculate those modes. There are

two other eigenproblem solution methods available:

'TRIADIAGONALIZATION' and 'GTLANCZOS'. Triadiagonalization

can not make the correct calculations, because it

incorporates the Inverse Iteration method, which inverts the

matrix resulting in problems with singularity. Therefore,

for the solution of the eigenvalues the GTLANCZQS method

must be used; it uses the Lanczos eigenvalue solver method.

The eigenvalues are obtained by using two GTSTRUDL

commands, 'PERFORM EIGEN ANAT.YSIS' and 'LIST EIGENVALUES'.

The final values for the frequencies are approximated

graphically. By using the 'LIST EIGENVECTORS' command the

eigenvectors can be computed. This gives the normalized
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deflections at each node. The modal shape patterns are

acquired through the combination of the 'LIST EIGENVECTORS'

and 'PLOT PLANE MODE SHAPE #XZ PROJECTION' commands. The

second command plots a diagram of the normalized deflections

of the XZ plane. The YZ plane was another plane orientation

viewed; for this orientation the Z axis is perpendicular to

the major surface. Table 3 represents the modal shape

patterns derived from GTSTRUDL.

In addition to the previous commands, there are some

others that check the performance criteria and calculation

values: 'ORTHOGONALITY', 'STURM SEQUENCE', and 'ERROR

ESTIMATE'. The ORTHOGONALITY check has been previously

mentioned in Section 3.4.5. The STURM SEQUENCE check

determines whether the correct number of modes are within a

specified range. This calculation requires the decomposition

of a matrix that has an order and banding equal to the

system stiffness matrix. Since the stiffness matrix for this

system is very large, it was assumed this check would need

too much memory space and could not be afforded. Similarly,

was the situation with the ERROR ESTIMATE process. This

command computes an error for each mode as follows:

SG - (B.(D)[ [K] (}I
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The ERROR ESTIMATE command compares this calculate value,

E,, to the set 'TOLERANCE' value -default of l.0xl0"6- to

determine whether the percentage of error is within a

reasonable range. For most situations the default value is

appropriate, but may be changed; this may have a major
e
effect on solution time.
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Ap~pendix C - The System Matrices for the Nominal

Orientations of Case (2) and Case (3)

Case (2)- lx=IV=Iz/2

State Matrix, [A]:

[..03] x6 [I] 6x6

0 0 0 0 0 0 0 1 0. 0

0 1 0 0 0 0 -2 0 . 0

[A],- o o -3 0 0 0 0 (C.1)

0 0 0 -2402 0 0 0 0

0 0 0 0 -4919.5 0

00 0 0 0 -7667 0 0 ... 0

Control Effort Matrix, (B](U):

if1,,

.1605 -. 321 -. 1605 .321 0 0

.321 .1605 -. 321 -. 1605 0 0

B U 0 a {1 0 -. 1605 .1605 (C.2)

[-.2221 .2221 -. 2221 .2221 0 0 f4,
,-.189 .189 -. 189 .189 0 0

.1842 .1842 .1842 .1842 0 0

fl
.1605 -. 214 -. 1605 .21.4 0 0

.214 .1605 -. 214 -. 1605 0 0

LBJ {Ul 2 A-1 0 0 0 0 -. 1605 .1605 f3, (C.3)
-. 1545 .1545 -. 1545 .1545 0 0 f4,

-. 05556 .05556 -. 05556 .05556 0 0 fs
.0306 .0306 .0306 .0306 0 0
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Case (3) - lx=Iz=Iv/2

State Matrix, [A]:

. [0x101 • [I6x6

-4 0 0 0 0 0 0 ... 0 ... 0

0 -1 0 0 0 0 0 ... 0

[A1 3 - 0 0 0 0 0 0 0 (C.4)

0 0 0 -2401 0 0 0 0

0 0 0 0 -4948.5 0

0 0 0 0 0 -7666 0 0 .0

Control Effort Matrix, [B]((U):

if1 ,

.1605 -. 321 -. 1605 .321 0 0

0 0 0 0 -. 1605 .1605

-. 321 -. 1605 .321 .1605 0 0 f3, (C.5)
[B) (U} 3 ,A- -. 2221 .2221 -. 2221 .2221 0 0 f4,

-. 189 .189 -. 189 .189 0 0

.1842 .1842 .1842 .1842 0 0

'fi

.1605 -. 214 -. 1605 .214 0 0

0 0 0 0 -. 1605 .1605

-. 214 -. 1605 .214 .1605 0 0 t (C.6)

[B] (U).A,- -. 1545 .1545 -. 1545 .1545 0 0 if 4

-. 05556 .05556 -. 05556 .05556 0 0

.0306 .0306 .0306 .0306 0 0
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