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SUMMARY

A mathematical model to predict the dynamics of a
flexible orbiting platform is developed. The platform is
idealized as a large thin homogeneous square plate, made up
of a continuous distribution of mass points in a plane. By
considering the internal and external forces acting on each
generic mass point, the equations for the rigid body
motions, as well as the elastic degrees of freedom are
developed. It assumed that the elastic motion is limited to
small amplitudes and that the center of mass follows a
circular orbit. For small amplitude flexural motion, the
rigid body and elastic modes are modeled to the first order,
thus linearizing the equations of motion for control law
synthesis.

Under the assumption that the linear system is
completely observable, the optimal control laws are
developed for the case where the observational data is
collected on a sampled basis, i.e., a discrete time data
systen.

The attitude and shape control can be achieved by
placing point thrust actuators perpendicular to the main
surface and the edge of the plate. Their effects on the
motion are modeled to the first order. Controllability for
the system is verified for two sets of actuator locations.
An application of the linear quadratic regqulator technique
in a discrete-time domain yields the optimum control law
feedback gains.

A comparison of the performance of the different sets
of actuator locations results in the best choice of actuator
positioning. Parametric studies are conducted to show the
effect of varying the state penalty matrix, control penalty
matrix, and the sampling period on the transient performance
of the system.
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CHAPTER 1 - INTRODUCTION

The Solar System 1is our extended home. Through the use
of space technology mankind's expansion outward from Earth
to other worlds becomes feasible. The opportunity to
stimulate individual initiative and free enterprise in space
will surface through the development of new lands.
Historically, when the power of the human intellect combines
with abundant energy and rich material resources wealth is
created. On the space frontier, new wealth can be created to
benefit the entire human community by combining the energqgy
of the Sun with materials left in space during the
formulation of the Solar System. Mankind's reach will extend
in science, industry, and the settlement of space with the
correct combinations of: vigor and continuity, the elements
of scientific research, technological advances, the
discovery and development of new resources in space and the
provisions of essential industries and systems . Government
investments will generate, in value, financial returns many

times its initial cost to the benefit of all.

To meet the challenge of the space frontier, the
National Commission on Space, has “roposed a step by step
program to open the inner Solar System for: exploration,
basic and applied research, resource development, and human

operations.!" With the advent of the Space Shuttle as a




reliable, affordable transportation system, the preliminary
steps of acquiring a network of outposts in space can be
undertaken. By following a systematic program ~with minimum
risk and funding- a progressive path for future space
activities can occur. This program's structure will be in
accordance with the inner Solar System's natural
characteristics: energy, distance, signal delay time, and

availability of resources.

An outpost actually consists of one or several large
platforms with connecting appendages, i.e., solar panels,
radar dishes, habitation modules, skylabs, etc.. There are
major differences between satellites and large platforms;
size and capabilities are two such differences. Large
platforms are well defined by Cuneo and Williams, ' as a
system which provides basic services to a changing set of
activities. '% The capability of service -either updating
payloads, or performing repairs, or replacing degraded
modules, and/or replacing consumables- is probably the most
common aspect attributed to platforms. The primary purposes
of a platform is to provide shared support for multiple
payloads and to provide connectivity. The reasons for
platforms, are to obtain: (1) the economies of scale which
come from shared support, and (2) the new and improved

services which come from connectivity.®




The forementioned network of outposts would have
several different locations: low earth orbit (LEO):
geostationary orbit (GEO); lunar (surface and/or orbit):
Mars and its asteroids. The outposts of interest for this
thesis will be located in LEO, approximately 250 nautical
miles from the Earth's surface. Low earth orbits are those
just beyond the Earth's atmosphere and are the easiest to
reach from Earth. This orbit provides both a close proximity
orbital view of Earth and a window for observation of the
Universe. Freedom from strong gravitational effects allows
experiments that would be impossible to conduct on Earth's
surface and facilitates the construction of large structures
of low mass. Earth provides a sheltering skirt of magnetic

field that protects us from sclar flare radiation.

Planetary landings are costly in terms of propellant
requirements for the descent, but the access of surface
materials becomes an invaluable resource. When lifting
payloads into orbit, away from Earth's gravitational field,
we expend energy; to overcome the Earth's gravitational
clutch, the rockets must attain speeds to lift a payload
free of Earth's pull. We must expend the same amount of
enerdgy necessary to haul that same payload influenced by the
full force of gravity to a height of 4,000 miles. To reach a
nearer goal of low Earth orbit -where rockets and their

payloads achieve a balancing act, while skimming above
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Earth's atmosphere~- we must spend about half as much energy,
equivalent to climbing a mountain 2,000 miles high.!" Cnce
in 'free space', away from planets and moons, large
distances can be traveled with modest expenditures of
energy. Other gains from working in an orbiting space
environment include: full-time solar energy, which is
valuable for industrial processing, and microgravity, which
is advantageous for building large space structures, 1i.e.
Space Station, Variable-G Research Facility, and a Mars
Interplanetary Vehicle. Once these facilities are built,
research data can be accumulated to understand how the
absence of gravity affects the fabrication of faultless
materials, physical conditions, and motor skills of

humans. %3

Early industrial production in space may be best
achieved by transporting raw materials from the Moon or
Earth to orbiting platforms processing and fabricating
finished products via robotic factories powered by

continuous scolar energy.

The first space enterprise to reach economic viability
was satellite communications. Once in orbit, communication
satellites lock into geostationary position and relay
electronic messages, telephone calls, electronic mail, and

television broadcasts. Future developments in space-based




communications and information systems will revolutionize

our daily lives.!®

The proposed deployment of large plate cor
dish shape orbiting structures will make it possible to
equip a car, boat, or airplane with a receiver and a display
to pinpoint its exact location by satellite, allowing the
provision of navigation, collision warning, fleet dispatch,
emergency location, and two-way communication via satellite.

These services can even be provided to small hand-held

terminals powered by penlight batteries.

Currently in early stages of development is the remote
sensing from low Earth orbiting sat=llites and/or
structures. From the vantage point of space they enhance the
ability to observe and produce specialized maps, that help
facilitate the management of crops and mineral resources as
well as forecast potentially destructive phenomena to

forests, fisheries, pollution, and water resources.

One highly prospective space enterprise would ~-if
technically and economically feasible- satisfy all of the
ideal conditions. This enterprice would provide energy for
Earth from orbiting structures that are intercepting solar
energy.'” The Soviet Union has already announced the goal of
building the first solar powered satellite to supply energy
to the Earth in the 1990's. To capture such a market woulgd

have substantial impact on the world's energy problem.!V
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Using the capabilities of the Space Shuttle many future
missions have been proposed based on the deployment of large
space structures. Most of the satellites that have been
launched so far consist of a massive central rigid body,
with characteristic dimensions of the order of a few meters,
attached to light rigid or flexible appendages usually
characterized by dimensions of not more than tens of meters.
The natural frequencies associated with such flexible parts
are normally several orders of magnitude greater than the
orbital frequency and the frequencies of the rigid body
rotational motions. In contrast to the existing satellite
systems, the proposed large space systems' entire structure
will be considered flexible. With the inherent size and
necessary low weight to area ratio, the structural
frequencies in the range of 1/100 Hertz or less may be
considered in the study cf the dynamics and control of these
systems. For these proposed missions the operational
considerations define stringent accuracy limits (possibly of
the order of millimeters for a typical structure of 100 m)
on the shape control of these structures.!® To satisfy these
requirements and others, both shape and orientation of the

orbiting system should be controllable.

Often the optimal control laws for these future systems
are developed under the assumption that the state vector is

observed directly or the state information can be estimated




on a continuous basis. However, for future applications the
observational data will often be collected on a sampled
basis, creating a discrete time data syétem. The amount of
information collected may be reduced and the format cof data
input may be acquired more conveniently. The case presented
here will have the characteristics of being completely
observable, with an addressed deterministic system (i.e., nco

random noise nor sensor system dynamics will be considered).

It will be useful, and timely, to study the control
problem of large flexible orbiting space structural systems
with discrete-time observaticnal data. The development of
modern control theory and technology provides a strong tool
for scolving this kind of engineering problem. The IQR
regulator technique is that strong tool for synthesizing
linear system control laws.' The LQR strategy can provide
acceptable control performance once the state and control
penalty matrices are properly selected. It does not restrict
the number of actuators to be equal to the number of degrees
of freedom in the system. Although, the LQR method has been
developed and widely applied, 1t is still not an easy task
to apply it to the engineering design for the control of
large space structural systems, especially for systems with
sampled data input.!” There are still many specific
problems to be investigated. This present work represents an

initial effort toward understanding the dynamics and control




of large flexible structures in a discrete time domain.

By using a continuum approach, Santini, developed a
mathematical formulation for predicting the motion of a
general orbiting flexible body."" The formulation is based
on the following assumptions that: (1) the elastic
deformations are in the linear ranges so that the
displacements can be expressed as superpositions of the
various modes; and (2) the linear characteristic dimensions
of the structure are assumed much smal. er than the orbital
radius. The effects of higher harmonics in the Earth's
gravitational potential are included. However, the
formulation has a slight drawback in that the elastic modal
shapes are expressed only in terms of Cartesian components.
This can be remedied by redeveloping the formulation using

vector calculus, which was done by Kumar.®

For simple structures, such as beams, plates, and
shallow spheres moving in orbit, modified versions of
Santini's formulaticn allow the development of the
translational, rotational, and elastic egquations of motion.
In order to gain insight into the dynamics and control of
the proposed large flexible platform system, the formulation
and manipulation of the equations of motion for a free-free

(12,14

beam were studied. Cf particular interest was a beam

which, in eguilibrium, has its longitudinal axis aligned
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along the vertical.

Assuming the center of mass follows a circular orbit
and the pitch and the flexural deformations occcur only
within the orbital plane, it is seen that the pitch motion
does not influence the elastic motion. The pitch and the
elastic modes are decoupled for large values of the sguare
of the ratio of the structural modal frequency to the
orbital angular rate.!“ For small values of this ratioc the
elastic motion is governed by Hill's 3-term equation which
can be approximated by a Mathieu equation. Using a Mathieu
stability chart, the resulting stability was considered.!™
For small amplitude flexural motion, the rigid body and
elastic modes were modeled to the first order, thus
linearizing the eguations of motion.!® A parametric
analysis of the controllability of the motion of the beam
about a nominal orientation for a discretized system was
reviewed. ' Extensions were made to the LQR formulation and
were applied to a thin flexible orbiting plate in a

continuous time domain. (¥

Many large space structures proposed for future space
applications car be approximated by the baéic structural
forms of a thin plate or a shallow spherical shell. The
ability to accurately determine the frequencies and mode

shapes 1is essential for the analysis and contrel of large
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orbiting structures. Methods of describing free and forced
vibrations of plates and shallow shells have been formulated
by many investigators. A comparative study of several
different methods was reviewed for a free-free aluminum

square plate. '™

An extension to the comparative study of reference 15
has been accomplished in this thesis teo include an
additional technique, GTSTRUDL. GTSTRUDL is a structural
design language that incorporates the finite element method.
With this additional technique the final product is now a
comparison of four different frequency and mode shape
approximation methods. %¢Y The methods compared were:

1) the approximate frequencies and mode shapes <f a

rectangular plate derived from the formulation by
Warburton (2.3,

2) the analytical results for a sguare plate were

calculated from a method by Lemke!?;

3) the frequencies and mode shapes were computed

using a finite element program, STRUDL, written at
M.I.T. ¥; and
4) the frequencies and mode shapes were computed
using GTSTRUDL, an update version of STRUDL
written at Georgia Tech %,
It was found that GTSTRUDL obtained better results than

STRUDL and produced accurate results for specific finite
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fa)

element (see Table 1) input grid point (node} locations,
whereas, the Warburton ani Lemke methods could only afford

approximate answers. !

Attitude and shape control are assumed to be realized
in this investigation by placing peint thrust actuators in a
symmetrical pattern perpendicular to the main surface and
the edge of the plate.’’ The placement of the actuators on
the main surface help control the shape deformation and the
torque about two of the principal axes. The placement of the
actuators along the edge of the plate help control the
torque about the third axis. Care is taken not to place the
actuators on the nodal lines associated with the first and
second transverse vibrational modes or on the nodal circle
associated with the third mode. The actuator's effects on
the rigid body and elastic modes are modeled to the first
order. In this thesis it will be assumed that the system is

completely observable.

The control laws for the system will be applied to
obtain the optimal control feedback gains based on an
application of the linear regulator problem for a discrete
time-data system.®'” The implementation of the LQR
procedure will be accomplished by using the ORACLS software

routines, 1"




A system may be complately controllable in a
continuous~-time domain, but once it is discretized,
coﬁtrollability is not guaranteed. To insure the
controllability of a discretized data system, the sampling
period theorem will be aprlied for proper selection of the
sampling period. The theorem mandates the eigenvalues of the

oY ror

closed loop system must satisfy certain conditions.
signal reconstruction, the sampling period, AT, snould be as
small as possible, but if the sampling time is too small,
the computational requirements may exceed the computer

speed. '

Under normal operation, the onboard computer estimatior
and contrnl must finish processing all the input data during
one sampling period, AT, i.e., the prediction of the state
variables which will be used for the controller must be
available before the beginning of the next sampling
sequence. Thus the sampling period should be more than the
minimum computational time required by the onboard
microcomputer for the simulation of each step in the
estimation and control process. The choice of sampling time
is also constrained by the performance of the transient
respense, i.e., oversh.ot characteristics, settling time,

steady state RMS errors.




CHAPTER 2 - DEVELOPMENT OF EQUATIONS OF MOTION FOR &

FLEXIBLE ORBITING BODY

2.1 - Assumptiorns

In order to achieve a low mass to area ratio many of
the proposed large space structures have been designed 1in
the form of lattice or truss structures. A finite element
analysis of such an orbiting structure would reguire a large
computing capability and may be expensive. A preliminary
insight into the dynamics of the system can be obtained by

representing the structure as a large thin plate.

Early analyses of space structures were based on
aluminum or aluminum alloys; since then advances in
technology have made composite grapihite a feasible
alternative. When comparing the two materials, graphite
displays two advantages, flexibility and weight, thus,

makinn graphite the optimum material.

The material property v.alues adopted for reinforced
composite graphite here are: Young's Modulus, E, 40 x 10°
1b/in; Poisson's ratio, v,0.3; and density, p, 5.42 x 107
1b/in®. 8 The structure's dimensions are assumed as:; width
and length, ¢, 100 m; and thickness, t, 0.01 m. It assumed
is to travel in a circular orbit at an altitude, h, 250

n.miles, while maintai ing a constant angular velocity, W,




0.0011162 rad/sec.

The equations of motion are derived using a Hewton-

Euler formulation. The principal assunmptions made for this

development are:

(1)

(2)
(3)
(4)

(5)

(7)

(8)

(9)

the mass is idealized as a continuous distribution of
mass points in a plane;

the structural properties are uniformly distributed;
the material of the body 1s isotropic:

the structure is deformed in such a manner that it
experiences only small strains (within the linear
range) ;

the elastic displacements are small as compared with
the characteristic linear dimensions of the body:

the elastic deformations in the plane of the plate are
much smaller in cocmparison to the deformations normal
to the plate;

the first three elastic modes will be considered, since
normally only a few elastic modes contribute
significantly toc the vibrational motion of the
structure;

the system is considered closed, i.e., no mass transfer
across the system boundaries; and

there are no geometrical constraints on the motion.
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2.2 ~ Coordinate Frames

Initially the equations of motion are derived for &
flexible orbiting body of arhitrary shape.!'"" Figure (1)
shows a flexible orbiting body with various symbols and

coordinate frames.

iogtic body

orbit
Earth's spin axis oM,

'Y 7

D XYZ - Inertisl reference Frame
0 1,4,1, - Local intrinsic Frame
D X,Y,Z,~ Orbit fixed frame

0 - center of the earth
O - center of mass of the kody

Figure 1. Transformation of Coordinate Frames




T 0'XYZ 1is an earth centered inertial reference frame
(r,) with O0'Z along the earth's spin axis and 0'X along
the ascending node.

7,: Oi,i,i, is the local intrinsic frame (7,) centered at
the center of mass of the body O, with 0i, along the

local vertical and 0Oi, perpendicular to the plane 20'O.

T8 OX Y Z, is an orbit fixed reference frame (1,) centered
at the center of mass of the body O, with OX  along the
local vertical and CY  along the orbit normal opposite

to the orbit angular momentum vector.

L Oxyz defines the principal axes of inertia (1) of the

body in the undeformed state (not shown in figure).

The above reference frames are related to each other as

follows:
. v P i
.ZJ fx'f }LAC]’ 1, X Xo
i .

1z2) = Tl‘Y] ; Y| = 1,11z ; Y| = T,|Y,
i 1z | ' z

3 J (1a) ;ZOJ 13 (2a) Z, (3a)
T, = 1. 1T T, = - T - .

l 170 (1p) 2 Tt {(2b) Ty Tyt, (3b)




The various transformation matrices are!'':

[sinncosw sinnsinw cosn |
T, = [COSNCOS® COSNSInW -sinmn| (4)

. |
i -slnw cCOoS W o

T, represents the transformation from the inertial frame to
the intrinsic frame.
0 0

cosy siny (5)
-siny cosy

T, -

o O

T, represents the transformation from the intrinsic frame to

the orbit fixed frame.

cosdcos® (sindcosy+cosdsinfsinyg) (sindsiny~-cosdsinbfcos$)
T,--sin¢cos® (cosdcosy~sindsinbsiny) (cosdsiny+sindsinbcosy) (6)
sin@ ~cosfsiny cosfcoswy J

Ty represents the transformation from the orbit frame to the
body frame according to the sequence (1) $-yaw; (2) 8-pitch;
and (3) ¢-roll, respectively. The body angular velocity
components o, 0, and w, are then related to the Euler

angular rates ¢, 6, and ¢ as follows:
w,=8sin¢+ycosdcosB-w (sinpcosy+cospsinbsiny) (7)
wy-6cos¢—¢sin¢cos6—wc(cos¢cosw—sin¢sinesin¢) (8)

w,=YsinB+¢+w  (cosBsiny) (9)




2.3 = Gravitation

The gravitational potential at any point can be

expressed in its most general form'&. '

2 = giset
V(p,n,m-("a )waZ(E) Q. w) (10)
p s=1 p
where,
-
Qn,w)=-% Kop (P (4) cos (mo +$ ) ] (11)
m=Q

P.™(n) represents the m associated Legendre function of

order s; K and ¢, are constants obtained through analysis

m
of the satellite orbital motion; p represents the distance
from the point to the center of the earth; and n and o
represent the colatitude and the longitude, respectively, of

the point.

For the gravitational force per unit mass at the body's

center of gravity, G:® 1!

v
op

- ov
Fg(p,n,m)-VVIGl _-P—a—ﬂ (12)

av
| pSinnow |,
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For a peint at a distance r from G, neglecting small
guantities of the order |r|/p, the gravity force, F(x):
F(x)=F,+B' (T, T.) "I (13)
Substitution of the matrix operator, B, leads to:
vall o v o 2\ oy o1
F(X) -FG+ ; Bl )+;KS(._5_) B &) (T312) I (14)
where B and B‘®) are defined as:
[2 0 0
B =0 -1 0 (15)
c 0 -1
Q ]
(s+1) (5+2)Q, -(s+2)Q', (5+42)
sinn
D /
B8 u _(S+2)QI5 [Q”s_(5+1)os] ( 5 ) (16)
sinn
O g, Y 2
- (5+2) —= —_— Q' cotn-0 fs+1s T
sinn sinnm sin?n /|
o{ ) - o( )
where, () = =% ; (7)) = ——=
o ) ow
Reprojecting on the body fixed axes results in:
va? (17)

£{x) =T, T,Fs+

M(O) +E K*__a_) ‘M(s)]f’
5<1 P

p’




M® and M) are symmetric matrices, where the following

definition of MY represents both matrices,

MU - T, T, BUA(T T (18)
3cos?dcos?B-1  -3sindcosdcosiB 3cosdcosBsind |
M©® = i-3sindcosdcos‘® 3sin‘dcos?B-1 ~3sin¢cosesin8§<19)
3cospcosBsin®  -3sindcosBsind Isin<®-1 |
3 3 .
CEONED D N (z0)
Nl k=1

where t_ is the (mn) element of the (T,T,) ' matrix and B ‘*’

is the (mn) element of the B‘®) matrix.

2.4 - Equations of Motion

The position of a general point with respect to the

body fixed frame, 7,, is given by

3!

Hl

F-£,+3 (21)

where I,  represents the position vector of the body with

respect to O in the undeformed state, fg=5,i+iy5+izk ; and g

represents the elastic displacement of the body. Therefore,

-7 {(22a) and T8 (22b) (22)




Fa)
b

For small amplitude elastic displacements, § can be
represented as a superpositlion of various modal

contributions:
g-Y a ()87 r) (23)
N~y

where A (t) represents the nY modal amplitude; and o™
represents the eigenmodes of vibration, ;“”=®“ni+¢“xj+¢mgk.

Substitution of Egn. (23) into Egn. (17) forms:

r
-

[ & ‘; ¢ 1 (24)
|M(o ;;( p) MIE IO‘ZAér}‘

nei

faT,T,Fy+ —~

The linear operator $[g] transforms small structural
displacements, §, to the structural forces acting on the
generic point of the body. The mode shape, 5‘”(?0), is
assocliated with the natural frequency, v, and satisfies the

following orthonormality condition:

[.$% gm - &M, (25)
where M represents the generalized mass in the nth mode.

The linear operator of ¥{%™)] becomes:

LIP™] - -5 8™ dm (26)
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Therefore,
GIG(F,, tildm=[-2 wla, (&) ®'" ] dm (27)
n~1
To satisfy the laws of conservation, an unconstrained body's
elastic modes must be orthogonal to the rigid body modes:

Conservation of Linear Momentum-Translational Orthogonality

f&"”dm-(} (28)

vol

Conservation of Angular Momentum-Rotational Orthogonality

1 (Fydm -0 (29)

If the body is constrained against translational and
rotation of the undeformed center of mass, the corresponding
modes are called "fixed modes". For fixed modes Egns. (26)
and (27) do not hold. For fixed modes the center of mass in
the deformed state no longer coincides with the origin of

the body frame. Only for the free modes does [f dm = 0.

2.4.1 - Equations of Rotational Motion

Returning to the development of the local equations,
the egquation of motion for an elemental mass, dm, whose
instantaneous position vector from the center of mass of the

body 1is ¥, can be written as:




N
i)

L(g] + Fdm+ E=&dm (30)

where f represents the gravitational force per unit mass;

E represents the external forces (other than gravitational).

Rewriting the inertial acceleration of a differential
mass as a contribution of terms as seen by an observer in
the rotating body fixed system of coordinates, 71, it can be

seen that the general force equation for a rotating body is:
&dm=dm&_,+ dm{2+ 2B XX~ WXL+ dx (BxI) ] (31)

where & represents the angular velocity, B=mxi+wyj+mzk.
The equations of rotational motion of the body are

obtained by taking the moments of all the external,

internal, and inertial forces acting on the body. After

equating Egns. (30) and (31) and taking the moments:

[Fx g+ 22 28Xt Bx s Gx (GxD) ] pdv-ffx[—s%g}- +f+£—nl dm  (32)

The various terms of Egn. (32) can be evaluated using vector
calculus. Assuming |G§/Fl<< 1, only the 1% order terms in §
are retained. Through the substitution of the values of the
integrals into Egn. (32) and rearrangement of terms, one can
obtain the following form for the rotational equations of

motion: @112




{wax*(lz-‘r)’)w\wz} ’{‘{I}’wv (Ix_I:)wxm }J-'
{Izdof(lv-l'x)mxw‘}kx25"’+C—"+7 D -C‘;:\Z ch
n=3 ne -1

The terms, I,, Iy, and I,, are the principal moments of

inertia of the body in the undeformed state. The terms,
reflect the inertia torgque associated with the elastic

deformations, where Q'™=Q ‘Mi+Q (M§+Q Wk

3%5“”-.[[f}xd+2f}x(wxd)+f}xhbx§)+§X(0xf})+
i vel
- (L 0) (OxF) - (F6) (dxLF,) dm

K7 A (HD -H) s 2K LT H 0 - B e - B 0 ] -
A 2(HY vH D) @ - (B H T 0 - (P B 6, +
(n) (n} ( (n)
-20 0 (H ~H') ~w 0  (Hed +HY ) +

(n) (n} 2 2 (n) (n)
w0, (Hy +H,') + (Wo-w?) (H +Hy ) )

(34)

(35)

Q‘Mand Q™ are obtained by the cyclic permutation of x, vy,

z in the expression for Q ‘™, where Hy,'™ is defined as,

Hef = [ €. 8" dm
vel

-

The term, C, represents the external momentum caused by

{36)

external forces other than gravitational, where & is the

external force per unit mass.

C- f Fx&dm

(37)




-

The terms, D', account for the difference in position

between the actual center of mass and the center of mass of

the undeformed body. For the case of free modes DW= ¢
L5 - [gdmx (& £,) + £ 0hA,[F,x® ™ dm (38)
n-1 ne=i

The term, Er, corresponds to the gravitational torque on a

rigid body,
,-fr“oxMrodm (39)

= .~ ~ - 40)
Cpm (I, =I )Myl (I -I) M7+ (I,-10)M,K (

where Mij is an element of the M matrix which is defined as

M=M© + Y K (a/p)M'®
g1

The terms, 5““, correspond to the gravitational torque due

to elastic deformations, where G“”=Gf”i+G¢”j+Gf“k.

LG« [ (£,xMF+ GxMT,) dm (41)
a=1 vol

G =An [ (Myy=0yy) (Hyl' +HiD) = My (HE HID) My (B BTV o (40
2M,, (HP -gif) )

G¢mand G,'™ components are obtained by the cyclic

permutation of x, y, z in the expression of G ‘™.
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2.4.2 - Generic Mcode Eguation
The generic mode equation is obtained by taking the
modal components of all internal, external, and inertial
forces acting on the body!®.'.12
f45"“-[scm+r+2axr+mxf+ax(axfnpdv-
vol / _ (43)
[® 1218 /p+ £+ 8 pav
vol
The various terms appearing in Egn. (43) can be expanded.
With the substitution of the various Integrals and
rearrangement of the terms, the following generic modal
equation results:
A4 02A v, /M + X /M =lg.+2g,+E +D)/M, (44)
n2 mn-1
o' - f ($ 7 wxF + & -Bx(BxF,) 1 dm (45)

vel

. tn (m . ) ) . o) (
@' =6 (/T -HT) 0 (HIP R e (S -H) 4

W@ (Hy sHy ) v o @ (BT HY ) 0,0 (HIDsHID )+ (46)

z {n; s 2 An (n) 2 (n) (n)
~0 3 (Hy +Hp ) 05 (Hey vHpp ) - 0% (Hee +Hy )

The term, ¢‘™, represents the influence (cor force) of the
rotational motion of the body on the n!* elastic mode due to

inertia.

E 0 [ (287 Gxgs B wxg+ 3 Bx (Gx@) ] pdv (47)
m-3




N
ot

‘pmn-2‘2£m[ (L(mn) L(mb)*w)(L;)‘:“ ’Lx(;m;;)4“&2([‘;??&3;,5#;;;}} "
Am[d)x(L(m’-L-.., .‘) (,- HT _L\(ir.n“} ’QZ(L;}@: «L‘:I:m } . (48)

w w (Lx(vmn"' fmm)*m W ( ; L«jq)*(ﬂzwx\(faé;’m *‘dxlmrx\
—wz(l;f” +Ly - my(L;? +L;f ) — w5 (L L5 ]

The terms, ¢_,, represent the influence of the other elastic
modes on the nt elastic mode due to inertia, where Ib;““ is
defined as,

La{ém f@;m‘@én’dm (49)

vol
The term, g , 1is the gravitational force acting on the nit
mode due to the rigid body motion.
gn- fﬁ‘“ ‘MF_pdv=- Z‘,H,,(Q” Mg (50)
vol

The terms, g, , represent the gravitational force acting on

h

the n'' mode due to the elastic motion on the n¥ mode.
L G- [ &7 MGdm- A, YEL"“' (51)
m1

vol
The term, E., is the external force component acting on the
n¥ mode.

En-f&(m'é'dm (52)

vol
The term, D' , represents the term corresponding to the
displacement of the center of mass due to the elastic

motion. For unconstrained motion D', vanishes.




ol - [d:‘”‘ dm{d,. -, (53)

2.4.3 - Equations of Translational Motion

The equations of translational motion of the body in
orbit are obtained by integrating the summation of Egns.
(30) and (31).

[ (@228 xT-wxF+&x(GxD) Jpdve [ [L16) /p~F-Elpdv  (s4)
vol vel
Noting [rpdv=0, one can obtain the translational equation cf

motion.

G+ F,+D-E/m (55)

where ém,is the inertial acceleration of the center of

i

mass; f 1s the intensity of the gravitational force at the
center of mass of the body (forces/mass): m is the mass of
“he body: E is the resultant of the external forces:; and

5—1/m[ [ 2GxG+TxG+Bx(BxF) -L[F) /p-MT pdv  (s6)

vol
For the free-free mode shapes ~unconstrained mode shapes-

D=0.

Because of the size of the structure considered in this
work, (i.e., (100 m)) one may neglect the effect of elastic
motion on the orbital motion of the center of mass. In this

thesis, the eqguations of orbital motion are not considered
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for further analysis. It is assumed that the orbital
position of the center of mass can be readlily computed using

techniques of orbital mechanics.

In summary, the motion of an arbitrary flexible bedy in
orbit is described by Egns. (33), {44), and (54).
Consideration of the effects of gravity grad.<nt -including
higher order harmonics- has been included in the derivation
of these egquations. Egquations (33} and (54) are vector
equations which describe the dynamics of the rigid
rotational and rigid translational motions, respectively.
Equation (44) is a scalar eguation which describes the
elastic motion or the body in its n® elastic mode. With the
calcuiation of the natural fregquency and modal shape
functions, the equations of motion of a particular system

can be derived.




2.5 - Motion of a Thin Flexible Plate in Orbit

One class of structures, which has been proposed for
use in many future space applications, has the basic form of
a thin flat plate. Included among the proposed applications
are: solar energy collection, communications, and scientific
data based orbiting platforms. A brief development of a
mathematical model for the attitude motion and elastic
motion for a large, yet thin, flexible, flat plate in orbit
is presented in this section. The eguations presented here
for the plate's motion are the result of simplification of
the general set of eguations that describe the motion of an
arbitrary flexible body in orbit (previously presented in

Section 2.4).

By taking into consideration assumption (9), one can
further simplify the develocpment of the equations of

rotational motion. Assumption (9) leads to H'”_=H'™,, where

af
for all a and B, H”“wzo, similarly, Bfﬂim=0. With a
rearrangement of terms and the separation of the rotational
equation of motion into its vector components, Egn. (33) can

be developed to yield the following set of rotational

equations of motion for the elastic plate in orbit. %3

Iw,~ (I, I)o.w,--C+G, (57a) (57)
I, - (I,-Ijw. w,~-C+G,, (57b)
I,w,-(I,-T)w,w ~-C,+G,, (57¢)
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The general equation for elastic motion is listed below.
At @A+ @ /Mt L@ /M= (6% X g, v E,+ D) /M, (58)
m=3 mel

This paper will present three different nominal
orientations of the platform in orbit; attitude and shape
control will be achieved for each. They are:

Case (1) the platform following the local horizontal with
its larger surface normal to the local vertical,
see Figure 2.1;

Case (2) the platform following the local vertical with its
larger surface perpendicular to the plane of the
orbit, see Figure 2.2; and

Case (3) the platform following the local vertical with its
larger surface perpendicular to the orbit normal,

see Figure 2.3.

It can be shown that for gravitational stability the
plate's axis of minimum moment of inertia should be
nominally oriented along the local vertical. However, in
many applications it is required that the major surface of
the plate be pointed towards the earth. Therefore, fo the
plate orientation of Case (1) a complete development of the
equations will be presented. For the two other orientations,
Case (2) and Case (3), the final form of the egquations of

motion will be shown.




7 O tortis Reference

Figure 2.1. Case (1) - Platform along local horizontal
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vertical

i
{ 1
)

e

~

rs

!
8. prer |
¥
é‘:r‘( renc
L rorf. 2]

Figure 2.3. Case (3) Platform following local vertical with

major surface in the orbit plane




2.5.1 - Plate Normal Nominally Along the Local Vertical

Case 1

From the equations of motion, Egns. (57a,b,c), and (58)

can be written, '®

Ya . : - Ix X
w mX+L T Jwym T (59a)
. [ (I,-I,)] G, +C
Pitch: (by+ l_j_.il mxmn-_i_ﬁi;gﬁ. (59b) (59)
Iy i I,
[ (T,-T1) ] G,,+C
Roll: o +|~2erdd |y o o (Gt G (gqqy
IZ Y IZ
Generic

; 2 3 . =
Mode Anfm"A“.' [‘p“+m¥l¢mJ /Mn- [gn*mz_:lgw':#En] /Mn (60)

For Case (1) the plate is oriented with its normal
following the local vertical, its axis is aligned with the
outward direction of the local vertical {(see Fig. 2.1).
Under the nominal motion the Euler angles, ¥, ¢, and ©, are
defined according to the sequence given after Egn. (6). From
the previously shown transformations, the Euler angular
rates are related to the body rates as derived in Egns. (7),
(3), and (9). In order to examine the stability of the
system Egns. (59) can be linearized by assuming small
amplitude pitch, roll, and yaw displacements and also small
values of their respective time derivatives. With this in

mind the angular rates becomnme:




WY b -~ O -P-w.d (61)

W, 00, ~ ©,-B (62)
Wb e Y = o -dew (63)

As a result of the previous assumptions, (2), (3), (&), (7)
and (9), further simplifications of the equations of moticn
are in order. Assumption (6) leads to 3‘”(?0)-0"”(ﬁ)=¢‘”li,
where fi is unit normal vector to the plate. As previously

stated, by assumption (9), H'™_=H'", and H'” =0, and

8
D,=D,,=0. In addition, L™ =5 &', M :.mere,
S .- Kronecker delta 6,3-{2 g:g (64)
Hence,
o'M-0; G'"™-0: @,-0; g,-0 (65)
Q= (0h+ 0L L A -~ (05 +0%) b MA, (66)
gmn'AanMn'AnNuémMn (67)

Grx= {I,=1 )M,y ;0 Goo=(I,~I,)M,, | Gry= (I - I.)M, (€8)

Assumptions of a spherical symmetric gravitational
field and circular orbit and neglecting the higher order
terms, (M‘®’), of the M matrix results in the following

simplification of M,,, M,, and M,

val/plewl -




M,,--3wisindcosdcos’
M.--3wisindcosBsind

M,, ~3w’cosdcosBsind

(S
o

P
i
‘0
o

(70)

(71)

With the use of the above simplifications -for this

case- the yaw, roll, pitch, and the generic mode equations,

respectively, become,

- . I -I .o . .
‘I"‘wcé"'—(_}}_“v—)" [8¢>-wc(¢>-6tV) "'QZC-‘UE -
ék-.iigﬁilwi[35in¢cosesin6}

" . I.~-I . .
$eobe ~2Ie By -0 (§+80) +wle) -
S ..E.{L-_{L)_uzc [3sin$cosdcos?B)
IZ IZ
i (I-I) TR
6+—f————- Wo+w ($Y-¢d) -0 Y] -
y
£ +_f_{£_{!_)_mzc[3cosd>cosﬁsin8]
I, I,

A+ (04 (0S+wd) -M,1A,~E /M,

where M,, is defined as

M, - 0% [3costdcos?O-1]

(72)

(73)

(74)

{75)

(76)
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The equations of rotational motion can be simplified further
with the elimination of higher order nonlinear terms
involving the products of two angles or angular rates or
products of an angle with an angular rate, and assuming the
rigid body angular oscillations are small, i.e., ¥,¢,08<<l.

The resulting equations are presented below:

% T I.-1, - L, C
w—mcﬂ-ff_‘r.{)’_ *1‘]"“)’}\»{"{:‘—1‘:’}'”‘5 (77)
- x I, Ix
Y ‘ -1 I-I7 C,
d>+wch1- I!: x 4m2C Y_X g —= (78)
I, I, ] I,
e I‘-I
6—[ % ’}(3«»16)-@,/1), (79)
y

At this point, further development of the generic mode
equation may proceed with the substitution of the
appropriate terms. This leads to

Ayv [l - (07-20 Brwi+d?+20 Y+ w0iy?) -

, ) (80)
w.(3cos*¢cos*0-1))A,-E /M,

Assuming the Euler angle displacements and time derivatives
and the transverse elastic deformation amplitudes and time
derivatives are small, with the removal of nonlinear terms

Egn. (80) simplifies further to,

g 2 2
A+ [wh-3wi]A,~E /M, (81)
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Based on the preceding assumptions the following linearized

equations of motion are obtained in a dimensionless form:

T=w. .t ; Z,=A /¢ ; d-db/dr ; etc.
Yaw: V-Q - (1+Q )¢~ (C,+T)) /I, 0% (82)
Roll: " +4Q b+ (1-Q )Y = (C,+T,) /I w° (83)
Pitch: 8'-3Q 8- (C,+T,) /I 0% . (84)
%ﬁ: Z) 4 (Q%-3) 2, - E, /M 0t . (85)

where 0, is defined as,
Q- (I,-I,)/I,;: Q ~(I,-I)/I,; Q,-(I,-I)/I,; Q-0 /w_;

T represents the torque produced by the actuators, and Er

represents the generic force on the r® mode.

Assumption (7) should be noted here, i.e., only the
first three modes are considered. The following observations
can be made from Egqns. (77-80) regarding the motion of a
flat plate:

a) Uncontrolled rigid body motion is independent of the
uncontrolled elastic motion of the plate.

b) The uncontrolled elastic modes are coupled to the rigid
body motion through both inertia and.gravity.

c) To first order, gravity can not excite the elastic
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m

modes.
d) There is no intercoupling between the uncontrolled

elastic modes either through inertia or gravity.

For Case (1), I,=2I =21, the rotational equations of

motion become,

Y- = (Cpt Tp) [ I 0% (86)
¢/ -ad+2y' - (C,+ T,) /I 0% (87)
6”-30- (C,+T,) /I w>% (88)

Since there are no inputs from the elastic terms in
Egns. (82-84) the uncontrolled rigid body rotacional modes
are not influenced by the elastic motion of the plate.
However, the elastic modes are coupled to the rigid body
rotational modes through higher order nonlinear terms as
shown in Egns. (77-80). Further, for this orientation of the
plate 2,>0, the pitch motion is unstable in the absence of
external restoring torques, c, (note the term, -3q, in
Egqn. (84)). For the class of large space structures
considered, passive control has been analyzed, (see Kumar,
ref. 8), but for this thesis active control will be applied.
Through the application of the LQR problem with discretized
input data and point actuators located on the plate's

surface, active control will be implemented.
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2.5.2 - Plate Normal Nominally Along the lLocal Horizontal

Case (2

Assumption (6) in this case leads to 5‘”(?0)-¢"”(ﬁ) =
QmZR. Similar to Case (1), one can show that for this
orientation:

Q"(H)_O; é(n)_c; lpn_o; gn-o; ﬁ(n)_o; Dn-o:
Pmn= - (0)2,(4'&)2),) 5mMnAm; and, gm1-AmM336mnMn
in Egns. (33) and (44). Thus, for Case (2) the equations of
rotational motion are exactly the same as Egns. (82-84),
with the exception that the relationship between the

principal moments of inertia I, I, and I,, differs,

Y’

Iz=21x=21y. Hence, the Yaw, Roll, and Pitch equations of

motion become, respectively,

Y-y 20’ - (C,+T,) /T, 0% (89)
¢/ -¥ = (C,+T,) [/ I,0% (90)
87+36- (C,+T,) /I w5 (91)

The equations of elastic motion are based on Egqn. (60),

together with the above‘assumptions there results,

A+ [0l - (0i+0)) -M,)A, =E /M, (92)




where M;; = wf(3si1@8-l). Removing angular crossterms a.id

restricting the higher order terms of the angles yields,

A+ 05~ wi($?+36%) +20 8- ($?2-0°)12 -E, /M, (93)
For small amplitude angles and elastic motions, the non-

dimensionalized the generic mode equation c¢an be written,

/ 2

2+ QLE,~E,/ Myw'. ¢ (94)

Notice for small pitch amplitude, Egn. (93) can be
reduced to a Mathieu type equation.® The roll and vyaw
motions are gyroscopically coupled to each other and they
are not influenced by either the pitch or elastic modes

within the linear range.

£:.5.3 - Plate Normal Nominally Along the Orbit Normal

Case (3)

In this last case, assumption (6) leads to
5““(?0)-¢“”(ﬁ)=@“xj. Fcllowing the steps of the derivation
of the two previous Cases, (1) and (2), one will arrive with
the same equations of rotaticnal motion as Egns. (82), (83),
and (84), with the difference that the principal moments of
inertia I, I, and I,, -for Case (3)- have the relationship

I=2I,=21,. Hence, the rotational equations of motion become:
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VY- (Co+T) /I w5 . (95)
O’ +4d-C,+T,) /Lw5 (96)
87~ (C,+T,) /I 0% (97)
The equations of elastic moticn are now,

A+ [0h- (0i+0%) -M, 1A -E /M, (98)
where M,, = ©.2(3sin’pcos?~1). Cancellation of the angular
crossterms and restriction of the motion to only small
amplitudinal pitch motion produces,

Apv (05 - 0% (4d2+y?-1) - ($*+ 92 14, -E, /M, (99)
Removing higher order and nonlinear terms, plus non-
dimensionalizing the amplitude leads to,
Zy+ (Q%+1) 2, - E, /M 0% (100)

In this final case, roll, pitch, yaw, and the generic
modes are decoupled from each other. Notice without ary
external influences the generic modes, yaw, and pitch motion
exhibit simple harmonic motion while the pitch rate

increases linearly with time for a given initial pitch rate.




CHAPTER 3 = DETERMINATION OF MODAL FREQUENCIES AND MODE

SHAPES TOR A THIN FLEXIBLE FPRUE-TREE PLATE

The ability to accurately determine the frequencies and
mode shapes is essential for the analysis and control of
large space structures in orbit. Four different methods have
been analyzed:?"

1) The approximate fregquencies and mode shapes cof a
rectangular plate are obtained from a Rayleigh-Ritz
formulation by Warburton; (.2}

2) The analytical results for a square plate are derived
from the Rayleigh-Ritz method by Lemke; !

3) The fregquencies and mode shapes are computed using the
finite element program, STRUDL, developed at
Massachusetts Institute of Technology; ‘! and

4) The rigid body modes and the mode deflection are
calculated with an updated version of STRUDL, GTSTRUDL,

developed at Georgia Institute of Technology.?”

A tabulation of the numerical results for a free-free
thin aluminum square plate with the length and width of
100.0 n, thickness c¢f 0.01 m, Young's Modulus of 0.7441 X
10" kg/m?, Poisson's ratioc of 0.33, and mass density of

2768.0 kg /m>. !9
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3.1 - Formulation by Warburton

An application of the Rayleigh Method allows the
derivation of an approximate frequency formula.[???) fThe
plate vibrational equation in the cartesian coordinate
system (x,y) is used as a basic egquation, with the length
and width of the plate taken along the x and y directions,

respectively, and is given as,

8‘w+2 Fw |, Fw  12p(1-v?) Fw g

- (101)
dx4 ox%dy* oy* Egh? ac?

where p, v, and E are the weight density, Poisson's ratio,
and Young's modulus of the plate material, respectively:; h
is the plate thickness; and g is the acceleration due to
gravity. The displacement, w, is a sinusoidal function,

which at any point (x,y) at any time t, is given by,
we=Wsinwt=20(x)¢d(v)sinwt (102)

where 6(x) and ¢(y) are beam functions orthogonal to each
other and are used to approximate the plate's behavior; and
@ is the vibrational circular frequency.'®’ The appropriate

free-free beam functions, 6(x), are defined as,

8(x) -1 for m=-0 (103a)
0(x)-1—-2-a)—< for m=1 (103b)
103
Gtx)-cosyti-u£)+kccshyt5—-£) for m=2,4,6,.. (103c) ( )
a 2 a 2
. Hx 1 [ Hx 1
- 2.2 2.2 -3,5,7,..
0(x) 51ny(a 2)+k’51nhy(a 2) for m=3,5 (103d)




where,

sinﬁEY

K=o and tan-ly+tanh3;y-0 (104a)
sinh—iy 2 2

2 (104)

sin-iy’

k'm——2  and tan2y/-tanh2y/-0 (104b)
sinh-%y’ 2 2

The corresponding expressions for ¢(y) can be obtained by
substituting y, b, ¢, and ¢ for x, a2, y, and k,

respectively. After calculating 8(x) and ¢(y), the frequency

expressions for a rectangular plate are derived as!®l:

pe.pa‘tlenf)212(1-ve)

5 (105)
n*Egh*

al al
AZ-G;+G;-57+2-E-2-[\:HXHY+(1—v)Jny] (106

where A is a non-dimensional factor, proportional to the
frequency; a and b are the length and width of the plate;

and G,, H, J,, G, H, and J  are functions associated with

x?’ x y
the number of nodal lines (m and n, parallel to x and y) and

the boundary conditions. From Egn. (105), the frequency is

obtained as:

r 1/2
fe Ahnl Eg (107)

a“ {48p (1-v?)
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This frequency expreséion is valid for thin rectangular
plates; for square ,lates it must be modified. For square
plates, the combinations of (m,n)z(n,m) describe the types
of existing modes (see Fig. 3.1-3.10); for these cases i in
Egn. (107) must be modified.

Modes (m,0)*(0O,m), for m = 2,4,6...

12-(m—%)‘:2v(m—%)2«% (108)
Modes (m,1)*(l,m), for m = 3,5,7...
A*-(m-%wxz(l-v)<m-%>21+w__ﬁ‘___Lf.
<M~-§—>u n
1.,,24 2 2 192 (109)
:2v(m—-5)2—-2-1~——--—~i—-— £2(1-v) =
b1 (m__é_)n bid

For any mode of vibration the nodal pattern is defined
by m and n -the number of nodal lines in the x and y
directions- respectively. The mode shapes are obtained by
using the corresponding modal frequencies in the beam
functions and then evaluating the product, 8(x):¢(y),

numerically.

Using Warburton's results, Egns. (108) and (109) and
the expressions for B(x) and ¢(y), frequencies and mode
shapes are calculated for different combinations of the
number of nodal lines, m and n, starting with combinations

of m=0 and n=1, through w=3 and n=3. The first three
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combinations of nodal line numbers, (0,0), (1,0), and (0,1),
represeﬁt rigid body motion. The combination of m=1 and n=1
produce the first fundamental flexural frequency. The
corresponding mode shape for the plate is obtained by
multiplying the beam functions 8(x) and ¢(y), for the mode
characterized by m=1 and n=1 (see Fig. 3.1). Since the plate
is approximated by sets of orthogonal beam functions in the
x and y direction, the nodal pattern is also obtained by
plotting the nodal points of these beams for their first
several mcdes. The next two higher freguencies are obtained
by combinations of m=0 and n=2, but the nodal patterns can
not be visualized. This is because the frequencies are of a
special type resulting from a combination of the (2,0) and
{(0,2) plate modes. When the mode corresponding to (2,0)
(Fig. 3.2) is superimposed with -(0,2), (Fig. 3.3), the mode
shape depicted in Figure 3.4 results. By imposing the (2,0)
and (0,2) combinations, the third mode shape (Fig.3.5) is
obtained. The combinations of nodal patterns m=1 and n=2,
give identical frequencies for the fourth and fifth mode and
the corresponding shape (Fig. 3.6) is as expected. The
following higher two frequencies are alsoc identical and are
the results of combinations from the (3,0) and (0,3) nodal
pattern lines (Fig. 3.7). The eighth frequency is obtained
from m=2 and n=2 and the mode shape obtained is shown in
Figure 3.8. The higher frequencies are obtained in a similar

manner. The ninth and tenth modes are the special type
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resulting from combinations of (3,1) and (1,3), (see Figs.
3.9 and 3.10) and the next higher frequencies are
combinations of (3,2) (2,3), and (3,3) nodal lines,
respectively. The calculated modal frequencies and n.dal

patterns are shown in Table 1.!"

Pigure 3,1. First Mode (1,1) Figure 3.2. (2,0) Mode

Figure 3.3. {({0,2) Mode Figure 3.4. Becond Mode
(210)'(012)




‘ O

Figure 3.5. Third Mode

(2,0)+(0,2)

Pigure 3.6. Fourth Mode

(2,1)

Figure 3.7. B8ixth Mode (3,0)

Figure 3.8. Eighth Mode

(2,2)

N

Figure 3.9. Ninth Mode

(1,3)-(3,1)

Figure 3.10. Tenth Mode
(1,3)+(3,1)




49

3.2 - Formulation by Lemke

The analytical results for a sguare plate are derived
from a method of Lemke, which also uses the Rayleigh-Ritz
method. %) The displacement function w, can be expressed as

a sinusoidal function (at any point (x,y) and time t),

w=Wsinwt (110}

where w is the circular frequency (w=27f). The amplitude W,

can be expressed by,

WX,y ~XA, X, (X) Y, () (111)

where X (X) and Y, (¥) are the free-free beam functions
expressed in terms of a normalized (i.e., X=x/a, where a={)

Xy coordinate system having the origin at the plate center:;

coshk,cos k,x+cos k,coshk,x

X, (X) - :
ycosh‘k, +cos?k,

(m even) ; (112)

sinhk,sink,x+sink,sinhk,x
ysinh?k,-sin’k,

X, (x) ~ (m odd) ; (113)

Yn(i) is obtained by replacing x by ¥ and m by n, in Eqgns.
(112) and (113). The values k are the roots of the

characteristic equations, that are,

tank,+tanhk,-0 (m even) (114)
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tank,-tanhk =0 (m cdd) (115)

These eguations result from the spatial boundary conditions.
For a rectangular plate the potential energy due to bending

is given by,

ad 2 2 2
N (azw)(a’w) (azw) ( aw)!
U- = +2 + +2(1~ dxd (116)
2 12(1-v2)£l1(8x2) "\ ox2 By 2 dy? (1-v) oxdy J Y
where v, E, and h, are the Poisson's ratio, Young's modulus
and the thickness of the plate material, respectively. The
kinetic energy is represented as,
ab 2
T-_Le.!lf (ﬁ) dxdy (117)
2 g 5% t
where p is the density of the plate material, and g is the
acceleration due to gravity. Thus,

\2 2 2
IR e Fod R R E =2 S

ab
1 ER?
U ==
e 12(1-v2)£l

2ab
me-}__eﬁw_j‘fwzdxdy (119)
2 g Co
where U is the maximum potential energy due to bending,
max
and T, is the maximum kinetic energy due to bending.

By setting U =T

max * i1t can be shown,

U

wi- max

(120)

‘N";
O S, 1

b
fwzdxdy

4]
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The coefficients A, in Egn. (111) are determined to

produce ©? in Egn. (120) ~a minimum. Lemke obtained the
coefficients A, by taking six or more terms in the series,
Egn. (111), and using four different values of Poisson's
ratio. Expressions for six mode shapes and fregquencies along
with the coefficients A, are tabulated in reference 24. As
an example the expression incorporating 15 terms for the

first mode is given here:

W(X,7) =X, ¥,+0.0325 (X, ¥, +

X,Y,) =0.005X,¥,-0.00257 (X, ¥, + X,Y,)
+0.00121 (X, Y + X Y,

.) ~0.000365X. Y.+ . ..

3
and w- 13'OSGJ Eh for v=0,343
a? 12p(1-v2)

Fregquencies and mode shapes for the first six modes were

obtained using the Lemke method (see Table 1).!%
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3.3 = STRUDL, Structural Design langquage

A conmputer program implemented was £.UDL (Structural
Design Language).!®! It was developed by the Civil
Engineering Department of the Massachusetts Institute of
Technology and installed on Howard University's mainframe
computer (IBM 3090). STRUDL has the capability to apply the
finite element method to determine the mode shapes and the
natural frequencies of vibration. Necessary computer input
by the user is the specification of the structure's material
properties, dimensions, and the types and total number of

finite elements representing the structure.

For a rectangular plate, the finite elements can be
specified as rectangular elements; the number of elements
into which the plate is divided depends on the accuracy
required. In the finite element method, the discretization
of the number of degrees of freedom requires the
introduction of simplifying assumptions in the element
formulation, which represents an important source of error
in the results. As a consequence, finite element results are
dependent upon the number of elements used in the model.
Thus, even when consistent element formulat .ons insure
convergence of the results as the number of elements is
increased, finite element models cannot be arbitrarily

designed. ® Generally, the accuracy of the results will




improve when the structure is modeled with a higher number
of elements. However, computational errors due to truncation
and round-off errors may predominate as the order of the
elements increases beyond a limit. Further, hardware
calculation limitations can restrict the number of elements
into which a structure is divided, thus, limiting the

ability to obtain better results.

For the modes specified, STRUDL calculates the
deflections at each element's corners; from the deflections
the modal shapes can be determined. For each mode, a set of
frequencies is also generated. Results obtained from STRUDL

are available in Table 1.0%




3.4 - GTSTRUDL, Georgia Tech Structural Design_ Language

GTSTRUDL is én updated version of STRUDL developed at
Georgia Institute of Technology.®” similar to STRUDL,
GTSTRUDL, uses the finite element method to determine the
modal shapes and the vibrational frequencies. The
structure's material properties and its dimensions are

necessary initial inputs. In addition, the number of

o

I

elements into which the structure is divided and the type of

element must be specified by the user. For this thesis's
structure, a thin flat square plate, the 'BPR' element -
bending plate rectangular with square dimensions- was

chosen.%®) This element only considers the deflections

normal to the major surface and the in-plane rotations at

the nodes, resulting in three degrees of freedom at each of

the four nodes (see Figure 4).

I 1

| SN L £,
; j vox
o 7%
y 2

K J

Figure 4. 'BPR' Element with Deflections at Node i




3.4.1 - Displacement Function

The corresponding displacement function, w, for the

'BPR' element, contains 12 parameters of a,

2 2 3
We G, +0,X,+ Q.Y +Q,Xi+0. X,V +QV;+UX;+

2 2 3 3 3 (121)
XY i+ QX Vi + QoY+ 0 XY, + QX YV
The in-plane rotations, Gx and GY, are related to the
displacement function as follows:
ow. -0w;
0,) ;- a; ; (8,) ;= = (122)

The transition matrix, A, relates the a coefficients to the

deflection vector, a, at the node, i, as follows:

{a;} =-[A;]l{e} ; {a)}-[A]°{a} {(123)
a,
W, 1x, 0y, xi oxy, vi xi xiy, xwyi oyi xiy, xyi o,
{;gx; 1}-0 61 0 x; 2y; O xi  2xy; 3yl xi xyifje. (124)
y' i

0 -1 0 =2x, ~y; 0 =3x} -2x;y, -y} © -Ixiy, -yi
12

where [A]® = [A,, A, A

3.4.2 - The Mass Matrix, [M]

In addition, the user must specify the mass type:
consistent or lumped. When specified, the computer will
internally generate the mass matrix. A lumped mass approach

will produce a composition consisting of a diagonal mass




matrix, whose elements correspond to each grid point's

(node) mass. By evenly dividing the structure's mass by the

nunber of
into four,

shared by

elements, and then dividing that elemental mass
each node is assigned some mass. If a node is

additional elements, its mass is the total sum of

each partitioned mass. The total mass at each node becomes:

a)

b)

<)

the mass of the nodes at the corners, m_,
m =M =+ (# of elements x 4) ;

the mass of the nodes along the sides, m,

mo =M <+ (& of elements x 2) ; and

the mass of the nodes insiae the boundaries, m

in'

n, = M =+ (z of elements)

3.4.3 - The Stiffness Matrix, [K]

The user may input the system’'s stiffness matrix or it

may be generated by the computer, the latter option was

chosen for this thesins. To pegin the fcrmulation of the

stiffness

matrix, the stress (o) and strain (€) relationship

becomes useful.

Fw

qu] [~ v o 1} ox?
fot~bete (D] 1ei - EL v1 0 W Ly (125)

b I 12(1-v%) 10 o 1-v|f dy?

-z | 2 o2&

axov
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The generalized strain displacement matrix, (B}, gives

the strains at any point within the element due to unit

values of nodal displacements. %

{e}={B]l{al=[(H] (Al *{al where (B]=-(H][A]? (126)

{e} =~ [H) {a)={B)A) {a} (127)

From Hooke's Law,

}dxdy- {a} T{gq} (128)

2 .
D Fw | | FEwY Fw
halid V2 2 1- -+
2”;{( ez V)[(GXBYJ (axz)(a,vz)
Taking the variation, where §V0=0, results in

dxdy- {da} T{qg} -0 (129)

FW FPW >Fw
fﬂ be( —--ax2]+My6( ——-ayz)+Mxy6(~2—-—axay)
After substituting in the variation of the stress-strain,

{also known as internal virtual work) the following is

obtained,

ff{bc}T{c}dxdy—{ba}f{q}—o (130)
R

Remembering the relationship {(§e}’={éa)'[B]’' and substituting

into Egn. (130), results in:

ff{aa} T(B) T[D) [e]ldxdy- {6a} T{g} =0 (131)

R
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{5a}rff[5 (D] [B] {(atdxdv-{g}l ~{ba) "([K {a})-1g})=0C (132)

where {6a}' is arbitrary, and the stiffness matrix, [K], is

defined as,
(K - ff Bldxdy - [K]{a}-{g} (133)
where the nodal force vector, {q}, is defined as,
(g1 - [[ptx, 3 [N} “axdy ; (134)

and the interpolation matrix, [N}, is represented by the

relationship,

[N} = [J} [A]? (135)

where the matrix, [J], is defined as,

(7 =[1, % yi xi. xy, yi o xi. xiv, xyi, vl xiy, xyi] (136)
For a complete listing of the stiffness matrix individual

elements refer to Appendix A.

3.4.4 - Development of The Basic Dvnamic Matrix Equation

D'Alembert's principal incorporated with the principal
of virtual work (with inertia as a body force distributed)

can be expressed asB!:

~Mfp{du) Tl av+[li(8u} Tibldv+f{du} T{TIda~/II{be] T{o)dv=0U (137)
v v 5 v
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where (T) and (U) are the kinetic and potential energy, and
{(u) represents the displacement field {u}={u, v, w}', which
can be expressed in terms of the nodal displacements, {a),

and the interpolation function, [N], as follows,

{u} ~ [N] {a} (138)

Substitution of [N] and {a} leads to:

{ul = [J] [A] 2 [A] {a} = [J] {a} (139)

Using the interpolation functions expressed in terms of
the spatial coordinates (in the static form) and considering
nodal displacements, {a), as functions of time, discretizing
the domain, and making the various substitutions of Egns.

(123), (133), (138), and (139) into Egn.(135), forms, BV

~”/p{éa]T[N]r[N]{é}dV+fU{6a}T[N3T{b}dV*ff{ba}’(N]TfT}dA

0
-!H{ba]T[N]T[J}[N]{a dv-IH{éa}T[B]T[D'[B]{a}dv (140)
where,
Mass Matrix : (Ml =/{[p(N T[Nldv (141)
\4
Damping Matrix : [C) =/{J{N} T{J} (N}l dv (142)
v

Stiffness Matrix: [K) =J/{{[B]T[D] [(B]dv (143)
v
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Force Vector : {q}=/[/{NM T{bldv+# [N} T{TIdA (144)
v S
Equation (144) now becomes,
{8a} (- [M {4} +{qg} - [C) {3}) - {8a} T[K] {a} (145)
After rearrangement of terms, the basic dynamic matrix
equation is formed:
(M {&} + [C) {d} + [K] {a} = {q} (146)

3.4.5 - Natural Frequency Formulation for Free Vibrational

Motion

Consider the free vibrational - undamped harmonic -
motion system, (i.e., no damping and no external forces) and
notice the damping matrix and the force vector are null.
Thus,

(M) {a}+ [K] {al =0 (147)

The global equation for free vibration is

{a} = (&} eivt (148)

where (&) is the modal vector of constant amplitude; and o
is the natural frequency. Substituting the global equation

into the dynamic equation results in,

([K] ~w?[M]) {&} -0 (149)
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Equation (149) is in the form of a basic eigenvalue-
eigenvector problem. For a non-trivial solution, the
determinant of the coefficients of (&} must be equal to
zero.
K] -w?(Ml=0 (150)

Once the characteristic equation is found, the roots
may be obtained by solving for the eigenvalues -w’~ of the
r!"! mode, the natural frequency, , . For each natural
frequency generated, an eigenvector is calculated; these
provide the natural mode shapes. To ensure that the

solutions are linearly independent, each eigenvector must

satisfy the orthogonality condition:

(&) TIM (&) ;-0  for iej (151)

Rewriting Egn. (147) leads to:

[K] {d) ~w?[M {&) = ([K]{&} i-mi-[M] {ay ; (152)
After multiplication by {é}n and {é)ﬂ and subtraction,

there results,

(&8 {1 {8} ;- (& TIK) (&) 4= 0% d) M (&) - {4 1M (&), (153)

It is remembered that [K] and [M] are symmetric, therefore,

(wi-03) (& T (M {8 -0 (154)




fea
o

Since,

(w%-w%) =0 cthen {&) (M {48} ,-0 (155)

When orthogonality is satisfied the roots are said to
be distinct. An orthogonality check was performed by
GTSTRUDL for each eigenvecter solution. It basically
determines whether the normalized spectral matrix

(diagonalized eigenvalues) adequately represents the

original spectral matrix.

It frequently happens in complex systems that the
f:equencies are "closely spaced" frequencies, that is, cases
in which w, and w,,, differ by only 1% or so. It occasionally
happens that a system has a repeated frequency, that is,
OO, 4= =0,y A theorem of linear algebra states that if
the eigenvalue is repeated "p" times, there will be "p"
linearly independent eigenvectors associated with this
repeated eigenvalue.®” Since it is necessary that these
eigenvectors be orthogonal to each other, it is possible to
choose the eigenvectors such that they will, in fact,

satisfy the orthogonality relationships of Eqns. (154) and

(155), even though W=,
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3.5 ~ Comparison of the Various Methods of Determining the

Natural Frequencies

To compare each method a tabulation of each technique's
numerical results for a free-free thin aluminum plate
appears in Table 1. The natural fregquency values calculated
by GTSTRUDL are, on an average, 3.96% smaller than the
natural frequency values calculated by the other techniques.
The shape patterns obtained by the methods GTSTRUDL, STRUDL,
and Warburton were exactly the same, whereas, Lemke's
patterns were slightly different. After this comparison was
made, it was decided GTSTRUDL would be used for the
following various reasons:

a) computation time - the time to compute the values is
almost limited to the actual time it takes to enter the
structure's program file; it alsc controlled by the
number of elements in the system, i.e., the more
elements, the larger the stiffness, the longer it takes
to compute the eigenvalues. Even with these limitations
it still takes GTSTRUDL much less time to compute the
eigenvalues than with any other method.

b) convenience - there are two ways in which the GTSTRUDL
method is more convenient than the other methods:

1) The first one is that the actual printed results are

much easier to obtain and use than the Warburton and

Lemke formulations, i.e., if it is necessary to obtain

a modal deflection at any particular point, GTSTRUDL
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readily lists the normalized eigenvector at each nocde
(grid point); an interpolation or graphical
representation can be easily applied for any points in
between the grid points.

ii) The second way is that the GTSTRUDL version, J, is
available on Howard University's School of
Engineering's Vax 750 & 780 system; STRUDL is available
on Howard University's IBM 3090 mainframe. The STRUDL
that is available on the mainframe is a very early
version of the structural design language; the version
of GTSTRUDL available on the VAX is a more recent copy
of GTSTRUDL than the STRUDL. Also, the IBM 3090
mainframe computer system is not as user friendly as

the Vax 750 & 780 .computer syste¢ s.

A listing of the GTSTRUDL commands and the program

implemented on the VAX 750 appear in Appendix B.




CHAPTER 4 -~ DEVELOPMENT OF THE STATE SPACE EQUATIONS

Feedback control engineering may be regarded as the
conscious, intentional use of the mechanism of feédback to
control the behavior of a dynamic process. This aspect of
control system engineering is generally called control
'theory’'; whereas, the state-space method is considered to
be the cornerstone of modern control theory.?¥ The
advantage of using state~space methods, instead of the
frequency-domain approach, 1is the characterization of the
processes of interest by differential equations instead of

transfer functions.

In the state-space approach, all the differential
eguations in the mathematical model of a system are first
order equations: only the dynamic variables and their first
derivatives (with respect to time) appear in the
differential equations. The dynanric variables that appear in
the system of first-order equations are called the state
variables. The external inputs are called the control

variables.

This chapter will encompass the development of the
system's constant state and control influence matrices, [A]
and [B], respectively, and their relationship to the

system's state and control vectors, {X) and (U},

67
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respectively. Once the matrices and vectors are formed, they
will be put together to form the general state space

equation. 33

{X} =~ (Al {x}+ (B (U} (156)

In a linear system the output vector, {Y), is assumed

to be a linear combination of the state and the input,

{Yl=-[Cl{Xx}+ [D]1{U} (157)

For our system the output is assumed to be completely

observable and only a function of the state variables, thus,

{y}=[C] {x} (158)

where {C] is an identity matrix.

Before a complete formulation of the state-space
equation can be accomplished, two factors in the completion
process must be discussed: actuator placement and modal

mass.

4.1 - Discussion of the Actuator Placement

When considering actuator placement, there are two
points to consider: (1) orientation control, i.e, providing
the most effective control torgque; and (2) defeormation
control, i.e., providing the meost efficient actuator force

effort to control the shape of the system.
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Orientation control is implemented bv the control

torgque vector, ip; its mathematical model is represented by
the vector cross product of the actuator position vector and
the actuator force vector. To acgquire the maximum torque in
any direction one may either increase the force of each
actuator and/or increase the torque arm. Increasing the
force that contributes to the control effort may result in
an undesirable increase in the energy required. An increased
torque arm can be realized by placing the actuators at some
maximum distance from the origin:; this is plausible as long

as these placement positions do not fall on the modal nodal

lines (the zerc deflection lines of the modal patterns).

This leads to the second consideration, deformation
control. Placement of an actuator on a modal nodal iine must
be avoided. An actuator placed on a nodal line of a
particular mode will have no effect in contributing to the
deformation control of that mode. Noting that each mude has
a nodal line pattern, it is important to accurately

determine each mode's pattern shape (s<e Table 2).

The nodal lines of the first two modes for a thin
square plate are easy to locate; unfortunately, the third
mode's nodal circle is more difficult. With the use of
GTSTRUDL~144 BPR element data, the third mode's eigenvectors

-for the nodes located on the midway line of the plate's




major surface~ were plotted. By viewing the plot, see
Figure 5), as a cross-sectional cut midway through the
plate, the determination of the nodal circle associated with

the third mode can be accurately located.

Third Mode Normalized Deflection
For Square Plate At Midiine

Normalized Detiection

i
1 e i

_Oe [ UV SISO S, G A o { e S
o 1 26 3 4C SO 80 70 BD 80 100
Plate Length (Meters)

— detiections

Figure 5. Normalizad Deflection Plot for 3T Mode's Cross-~
Sectional View
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Once the nodal line pattern's were acguired for the
first three mcde's, a second plot, (see Figure 6), was drawn
indicating 3 possible placements of the actuators (i.e.,
i,1',1'', etc.). Note, in previous references {(18,19] two
different sets of actuator positions were studied: these
proved to be less effective because of their placement on
necdal lines (see Figure 7). Two sets of actuator positions,
A & A' have been chosen for this thesis (see Figure 8). Six
ac uators are assumed to be placed in a symmetrical pattern
with both force axis directions perpendicular to the major
surface and along the edge of the plate.® The first four
actuators are assumed to be placed normal to the major
surface; they help contrel the shape deformation and the
torgue about the two major axes in the plane of the plate.
The other two actuators, 5 and 6, are placed along the edge
of the plate:; they provide control for torque about the

third axis, normal to the major surface.
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4.2 - Calculation of the Modal Mass

To calculate the modal mass values, a formulation
presented by Hurty and Rubenstien was followed. " Using the

equation of the form:

n.oc.e.
M- Y B Ty (159)

I
n-1

where r represents the mode number; n represents the
gridpoint node:; n.o.e. represents the total number of
elements: M, represents the mass; and $ represents the

normalized deflection of the grid point (node).

The modal masses were calculated and plotted for the
plate modeled by different numbers of assumed finite
elements. Figure 9 shows the variation of the modal mass as
a function of the number of finite elements assured to
represent the system. The final convergent value was used
for the rnodal mass. The calculated modal masses for the
first three modes are, M,=20,278.65 kg, M,=29,366,14 kg, and

M,=18572.34 kg.
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Calculated Modal Mass -1st, 2nd, & 3rd-
versus Number of Elements
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4.3 - Formulation of the System's State Vector and Matrix

With the assumption that the system can be modeled by

three rigid-body rotational modes and the first three

generic modes, assignment of the correct dynamic variables

to the state vector follows.

system:

{X} - [Xl’ le X3I

where the state variables x are defined as,

S

¢"X: ¢/'_Cai??"x1'x7

V=X,
0~ x,
Zy=X%,
Z, =X,

Zy= X,

¥’ - xg
/
zl-x
1™ X0
'
Z;=Xy,

!
Z3= X3,

The state vector for this

(160)

(1l6l)

Preparation of the system's state matrix through the usage

of Egns. (82-85) follows,

IO:‘G“‘ -
-4Q, ¢ g 0 ¢
o -Q, ¢ 0 Iy 0
0 0 3Q, o 0
v2
(Al=f 6 © 0 3~(""{ 0 0
wl‘
; H
R TN LER
w_|
/w.\;"
O G N J‘,_,...‘A}
e

0
(2+Q )
0

(1] gxe

(Q,-1) 0.

0

(]

o o

(162)




77
With the substitution of the parameters for the nominal
orientation of Case (1), (see Figure 2.1): the principal
moment of inertias I =2.5x10° kgm?, Iy=Iz=1.25x10B kgm?; the
angular velocity ©_=0.0011162 rad/s; and the modal
frequencies ©,=0.0547 rad/s, ,=0.07852 rad/s, and w;=0.09773

rad/s, the system's state matrix [A], becomes:

[0]6x6 : * ' . [Ilﬁxs
4 0 0 0 0 0 0 -2 0.0
00 o0 0 0 0 1 0 . .0
[Al=l0o 0 3 0 0 0 0 : .. 1| (163)
00 0 -2398 0 0 0 . 0
00 0 0 ~4945 0 : : Lo
0 0 0 " 0 -7663 0 0 .. . O]

4.4 - Formulation of the System's Control Vector and Matrix

The system's control effort, [(B1{U}, is defined by the
matrix multiplication of the system control matrix, [B], and
the system control (input) vector, {(U}. This term in the
state-space equation allows for control feedback for the
system. The general control influence matrix, [B], is

defined as,

[0]6x6
[B]6x6

{164)
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where the lower part of the [B] matrix depends on the
actuator positions. The control effort, [B](U}, 15
formulated as such,

(T,/w%]
(B) (my=| _ % (165)

[Ep/ M, 007) 5
where 5p represents the external acceleration due to the pit
actuator: and En represents the external force on the nt

mode, their formulation is as follows:

T -1,/7 ; Np-};NpJ-);ffpr_,dm (166)
i ¥ K
FxfymiXp Yo Zp|=IUE, vo- £, 2,0 ¢ TUE, 2, £, x) « K(£, xp- £, 5, (167)
£, £y, £

where ﬁm represents the contrel torque on the pt* location
due to the j¥ actuator: I, represents the position vector
from the origin to the p¥ actuator: and %3 represents the
control force vector due to the j¥ actuator. For the
generic mndal equations, the control forces can be

transformed into the corresponding modal forces by!'®:
£, - [805, . eo
where 5‘”(%9) represents the modal shape function at the p¥

location corresponding tc the ni mode.

To define the system control matrix for the nominal

orientation of Case (1), it 1s necessary to establish the
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correct position and force vectors for this system. For the
actuator sets, A and A', the general position vectors and

force vectors are:

(169)

The angular acceleration produced by each actuator becomes:

-f (z7/I,-yK/I,)

170)
-£,(yD /I, (

TS.G
The lower half of the system control matrix contains
external force terms. A definition of the system's modal
deflections at each actuator location is necessary, along
with the modal mass. Because the actuators are placed in a
symmetrical pattern, the deflections for actuators 1-4 are
equal in magnitude but alternate in sign. Since actuators 5
and 6 are located on the side of the plate their deflections

are assumed to be zero. Thus the control force terms become:

The system's control effort, [B]{U}, for both sets of

actuator locations, A and A', follows:




[BJ {U} a”

(B] (U}~

[

L

[

0
-.1605
-.321
-.2221
-.189
.1842

0
-.1605
-.214
-.1545
-.0555
. 0306

0 0
.321 .1605
-.1605 .321
.2221 -~.2221
.189 ~.189
.1842 .1842
0 0
.214 .1605
-.1605 .214
.1543 ~.1545
.0555 -.055%
.0306 .0306

0

-.321

.1605

.2221
.188

.1842

0
~-.214
.1605%
.1545
. 0555
.0306

-.1605

o CcC o o o

-.1605

S O OO0 O

.1605]

o o o o

.1605]

0

O ©C o o

£
£

30

(172)

(173)




CHAPTER 5 -~ PRESENTATION OF LINEAR QUADRATIC OPTIMUM CONTROL
THEORY

The main purpose of linear control theory is to design
the correct compensator (gains) for the given system. For
this thesis an application of optimum control theory will be

implemented to synthesize the control law gains.!'834

In this chapter, as an optimum control theory algorithm
the linear quadratic regulator (LQR) technique was chosen.
Initially, the performance criteria is discussed, the
system's linear differential equation is solved, and the LQR
technique is stated for a continuous-time system. Finally,
the sampling period criteria for the discretization of a
continuous~time control system is presented; following the
sampling period criteria, an application of the LQR

technique to a discrete-time system is performed.

5.1 - Discussion of the Performance Criteria or Cost

Function

The dynamic process considered here is characterized by

the vector-matrix differential ecuation

X{t) =A(L) x(t) +B(t)u(t) (174)

81
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where the variables have been previously defined in Chapter

4. This chapter will seek to define the linear control law

ult) =G, (&) x(r) (175)

where G, is a suitable gain matrix related to u(t). An
attempt will be made to find the optimum gain matrix to
minimize the performance criterion, J, (or "cost function")
expressed as the integral of the quadratic form in the state
error, e(t), plus a second quadratic form in the contrel,

u(t); i.e.,

J—%mt,) ,Fe(tf)>+%f[<e(t) LO(E) e(t)>+<ule)  R(E)ult)>]de(176)

Initially, there are some assumptions to be made. Y

a) The terminal time, T,, is specified.

b) F is a constant mxm positive semidefinite matrix.

c) Q(t) is an mxm positive semidefinite matrix.

d) R(t) is an rxr positive definite matrix.
Previously mentioned was the assumption that the systenm is
completely observable, thus C{t)=I. The error vector is

defined by

e(t)y=z(t) ~y(t) (177)




where z(t) is assumed to be zero. Therefore,

—elt) =y(t)=x(L) (178)

Now the controi function, J,, can be designated as,

1¢

Ty
Jy- 2 <X(Te), Fx(T) >+ 2 [[ex(ey, 0(e) x(e)>+cule) , R{E ule)>]ar(179)

o

Before an attempt to find the optimum gain matrix, G , is
made, some comments about the ~ost function are in order.
With respect to the limits on the integral, the lower limit,

t., is identified as the present time, and the upper limit,

o
T,, is the terminal time or final time. The time difference,
T,~t,, is the control interval, or ‘time~-to~go'. If the
terminal, Ty, is finite and fixed, the time~to-go keeps
decreasing to zero, at which time the control process ends.
However, in the customary case, the terminal time is

infinite. In this case we are interested in the behavior of

the process 'from now on', including the state.

Attention is now focused on the term:
1/2<x(T,) ,Fx(T;)>. This term is often called the terminal
cost; its purpose is to guarantee that the final state is
small at the terminal time. This should be included in the
final state, if x(T;) is expected to be particularly large.
Otherwise, F can be set to zero and the rest of the cost
function can be relied upcn to guarantee that the terminal

state is not excessively large.




Finally, consider the weighting matrices, @ and R.
These are often called tle state weighting matrix and the
control weighting matrix, respectively. A formula fcr the
control gain matrix, G, can be derived such that it
involves terms of the weighting matrices and the steady
solution to the Ricatti matrix equation. By plugging in the
matrices Q and R -along with the matrices, A and B, that
define the dynamic process- into the computer routine,
ORACLS, G, can be found.®’ If the process is controllable
and Q and R are suitable, the computer finds a suitable G_.
This is not to say that the calculation is a trivial problem
-far from it- but only that the problem of determining G,
once A, B, Q, and R are given, is not a control design

problem but a problem in numerical analysis.

The question of concern to the control system designer
is the selection of the weighting matrices, Q and R. In the
cost function defined by Eqn. (179), two terms contribute to
the integrated cost of the control: the quadratic form x'Qx,
represents a penalty on the deviation of the state x, from
the origin (this means that the desired state is at the
origin, F=0, not at some other state) and the term u'Ru,
represents the 'cost of control'. The physical
interpretation of J, is this: We wish to keep the state near

zero without excessive control-energy expenditure.




™
&

The weighting matrix, Q, specifies the importance of
various components of the state vector relative to each

other. For example, suppose x, represents the system error,

and X,,...,X, represents the successive derivatives, i.e., ¥

X, =X
X, =X
X, =X {180)

- k-1
X=X

If the error and none of its derivatives are of concern,

then one might select a state weighting matrix such as:

100
0-" 0 7 (181)
00 -0

which will yield in the quadratic form

x Tgx=x? (182)
But the choice of Egn. (181) as a state weighting matrix may
lead to a control system in which the velocity x,=x is
larger than desired. To limit the velocity, the performance

integral might include a velocity penalty, i.e.,

x Tgx-xi+cix? (183)

which would result from a state weighting matrix

10

@]

O
re

o

(184)

z . o
[ |
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The choice of the state weighting matrix, Q, depends on what
the system designer is trying to achieve. The considerations
of the above with regard to Q aprly to the control weighting
matrix, R. The term, u'Ru, in the performance index, J,, is
included in an attempt to limit the magnitude of the control
signél, u(t). For this thesis, Q and R are chosen to be

constant matrices, where

0-a, (I} (185)

R-a, (I (186)

Ixr

The relationships between the weighting matrices, Q and
R, and the dynamic behavior of the closed loop system depend
on the matrices A and B and are quite complex. It is
difficult to predict the effect of a given pair of weighting
matrices on the system's closed-loop behavior. A suitable
approach for the designer would be to solve for the gain
matrices that result from a range of the weighting matrices,
Q and R, and calculate (or simulate) the corresponding
closed loop response. The gain matrix, G,, that produces the
response closest to meeting the design objectives is the
ultimate selection. With the ORACLS software, it is a simple
matter to solve for G, given A, B, Q, and R. In a few hours
time, the gain matrices and transient response that result

for a dozen or more combinations of Q and R can be

determined, and a suitable selection of G, can be made.
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5.1.1 - Solution of the Linear Differential Equations in
State-Space Form
Starting with the system differential state equation,
xX(t) =Ax(t) +Bu(t) (187)
where the matrices A and B, are considered constant
matrices, the simplest form of the general differential
equation, Egn. (186) is the homogeneous, i.e., unforced
eguation
X(t)=Ax(t) (188)
The solution can be expressed as
x(t)=ce’t (189)

where ¢ is a suitably chosen constant vector. To verify Eqn.

(189) the derivative is calculated as

dx(t)

Pt VudL Ar 190
T cAe Ax{(t) ( )

To evaluate the constant, c, suppose that at some time, 7,
the state x(r), is given as
x{t) =ce? (191)

Multiplying both sides by the inverse of e leads to

c= (e?)1x(1) (192)




Substitution into the homogeneocus solution leads teo

Xx(t) =eAlt-tx(1) {193)

where the matrix e*'") is a special form of the state-

transition matrix.

Through the use of 'method of variation of the
constant', a particular sclution to the nonhomogeneous, or
'forced' differential eguation is found. Seeking a solution

of the form of Egn. (187) ohe can select

x(t)=elc(t) (194)

where c(t) is a function of time to be determined. After
taking the time derivative of x(t) and substituting into

Egn. (185) the following is obtained
Aedtc(t) +ere(t) ~Aer c(t) +Bu(t) (195)
Upon cancellation of the terms Ae*c(t) and multiplication
of the remainder by e™,
é(t) ~e *Bu(t) (196)

Thus, the desired function c(t), can be obtained by simple

integration

4

c(t) -fe““Bu(A)dA (197)
T
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The lower limit, T, on this integral is undefined fcr now;

substitution into the particular solution produces

¢ t
x(t) -e"‘fe‘“Bu(l)dl-fe"“" Bu(A) di
T T

(198)

The complete solution to Egn. (187) is obtained by

adding the 'complementary solution', Egn (193), to the

particular solution, Eqn. (198). The result is

Xx(t) =~ertVx(z)+ [er M Bu(l)dA {199)

H—

The proper value for the lower limit, T, on the integral can

now be determined. At t=7, the complete solution becomes

(200)

x(t) =x(t) + [eAMT-Xpy(r)dr

‘lkﬂ"

The integral in Egn. (200) must be zero for any u{(t); this
the complete solution to

is only possible if T=t1. Therefore,

Egn. (187), when A and B are constant matrices,

t
X (L) = eAt-0 x () +fe“°'”Bu(k)dA (201)

5.2 - Discretization of a Continuous-Time Control System

When a continuous-~time control system with complex

poles is discretized, the introduction of sampling may
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impair the controllability and observability of the
resulting discretized system. That is, pole-zero
cancellation may take place in passing from the continuous-
time case to the discrete-time case. Thus, the discretized

system may lose controllability and observability.

A system which is completely state controllable and
observable in the absence of sampling remains completely
state controllable and cbservable after the introduction of
sampling, if and only if, for every eigenvalue of the

characteristic equation, the relation
Re A, = Re A (202)
implies

2NT (203)

Im (A ;-i,)»

5
where A, are the eigenvalues ci the continucus-time system

matrix A; T, is the sampling period, and n=#1,#2,...%""

In addition to the forementioned requirement, two
points should be taken into consideration when choosing a
sampling period:!?

a) If the sampling interval is too long, the performance
of the sampled data system, tends to deteriorate; this
makes signal reconstruction difficult.

b) Implementation of a very short sampling interval may be

limited by computer operation times and the expense of
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fast A/D and D/A converter devices; thus, overtaxation
of the computer system with data may result.

Therefore, the sampling time should be as large as possible
after the performance of a sampled data system meets the
requirements of the design. Using the open-loop eigenvalues
calculated by ORACLS a table was developed listing

unacceptable sampling periods (see Table 3 and 4).

Table 3
Eigenvalues and Moduli for Continuous-Time Open-Loop System
Calculated by ORACLS for Orientation of Case (1)

Continuous Open Loop

Eigenvalues Moduli

Real Imaginary
1 0 0 o
2 0] o 0
3] 1.4142 0 1.4142
41 -1.4142 0 1.4142
5 1.7321 6] 1.7321
61 -1.7321 0 1.7321
7 0 49,006 49.006
8 0 ~-49.006 49.006
9 0 70.346 70.346
10 0 -70.346 70.346
11 0 87.556 87.556
12 0 -87.556 87.556
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Table 4
Calculation of Unacceptable Sampling Periods
from the System Matrix Eigenvalues
i\3 0 -49.00 +49.00 -70.35 +70.35 -B7.5% +87.55%
0 0 114.8 -114.8 80.00 -80.00 64.23 -64.23 E
-49.00 -114.8 0 ~57.42 263.7 -47.12 145.9 -41.21 §
+49.00 114.8 57.42 0 47.12 -263.7 41,21 -165.5 f
-70.35 -80.00 -263.7 -47.12 0 -39.95 327.4 35.65
+70.35 £0.00 47.12 263.7 *39.95 0 35.65 -327 .4
-87.55 -64.23 -145,9 -41.21 -327.4 -35.65 0 -32.07
+87.55 64.23 41.21 145.9 15.65 327.4 32.07 ¢
ail numbers are multiplied by k, kz+/-1,2,3.. i

i - Ith Imaginary Elgenvalue
j - Jth Imaginary Eigenvalue

5.2.1 - The Linear Quadratic Requlator Technigue Applied to

system of Egn.

Let's begin by considering the linear time-varying

(202),

a_Continuous-Time Svystem

X{L)y=A(t) x(t) +B{L) ultL)

the cost function, J,, given by Egn.

(205),

(204)

Tr
tg--%<x1tf),Fx<tﬁ>«w%jW<x(t),p(c)x(t)>+<u(t),R(t)u(t)>}dt(205)
r15)




[ohe]
-~

and the optimal control u{t), is selected such that the cocst

3

function is minimized.'”® It is defined as,

ul{t) =-R () BT(Lty K(t) x{¢t) (206)

where K(t) is a nxn symmetric matrix and is the unique

solution of the Ricatti equation®

R(t) =-K(E)A(t)-AT(E)YK(EY+K(EYB(E)YR M (E)BT(EYK(t)-0(¢t) (207)

which satisfies the boundary condition
K(T,) =F (208)

The state of the optimal system is then the solution of the

linear differential equation

X(t) =[A(E)-BItYR M (E)BT(EYK(E) ] x(¢t) (209)

The block-diagram representing the optimal control system is

displayed in Figure 10.

( \ %(t) >{> x(t) o —
1§ ’
+

Bet) S Rt HBcHK )

4

ACT

Figure 10. Block Transfer Function of the Optimal Control
System




943
The response, x(t), of the optimal system can now be written

as the solution to the differential equation
X{t) =G(t) x(¢t) (210)
where G(t) is an nxn matrix given by

G(t) =A(E)-B(tIRMEYBT(E)K(¢L) (211)

To find the gain matrix, K(t), a steady state solution
of the matrix Ricatti equation (Egn. (207)) is necessary,
when the final time, T,, approaches infinity; thus, the
derivative K (t)=0, making K(t)=Constant (see boundary
conditions, Egn. (206)). Since the Ricatti equation is
nonlirear, closed-form sclutions usually cannot be obtained;
therefore, K({t) must be computed using a digital computer.
For the purposes of this thesis the ORACLS subroutines will

be implemented. [é”

ORACLS is a modern ccntrel theory design package for
constructing controllers and cptimal filters for systems
modeled by linear time-~invariant differential or difference
equations. The digita’l FORTRAN-coded ORACLS system
represents an application of some of today's best numerical
linear algebra procedures toc implement the Linear-Quadratic-
Regulator or Guassian methodology of modern control theory.
An example of the simulation program which incorporates

various ORACLS subroutines has been placed in Appendix D.
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One important thing to realize is that the gain matrix,
K(z), is independent of the state, so that once the systen

and the cost, J,, have been specified, K(t} can be computed

e A0

before the optimal system starts to operate.

5,2.2 - Formulation of the lLinear Quadratic Regulator

Technigque Subiject tc a Discrete-Time Domain

Consider the continuous time control system

x(t) =Ax{t)+Bult) {212)
subject to
. T
J-2xTe) Fxlt) « 2 [IxT(00x(8) suT (O Ru(t) )t (213)
o]

If the continuous-time control system is approximated by its

discrete equivalent, the sampling period T, can be

represented as

t-kT,, k=0,1,2,..N (214)
thus, its discrete egquivalent becomes,
X{(k+1)T.) =G(T,) x(kT,) +H(T,) ulkT,) (215)

and the discretized performance index, when the final time

T,=NT,, becomes: "

=

" -3

T= S X TNT,) Fx(NT,) - (X TETO O, x (kT
k-0

+2x kT MukT) +uT(kT IR ulkT,) ]

ro| =

(216)




It is noted that the integral term Iin Egn. (212) is not

replaced by

N-L
‘%2:[XT{kR;GX<kT)‘u"Tk‘>Ru£k”:t (217}

s T E T

but is modified to incluae a cross term involving (kT ) and
u(kT,). Alsc, matrices Q and R are modifled. By considering
the discretized gquadratic optimal control problem by use of
a simple example -similar to the systen considered in

section 5.1.1- the terms Q,, M,, and R, are developed.

Consider the continuous-time system defined by
x{t) =Ax(t)+Buit) (218)
where A and B are constant natrices and

u(e)-ulkly, kT st<(k+117T, (219)

The performance index to be wminimized is

NT,
Fm = X2 (NT) - = [ 1Ox3(t) «RU? ¢ (220)
J= = x?(NT, 2{\{:.&:(& Ruz(t))d

To begin, the system equation and performance index
must be transformed to a discrete-time domain; afterwards
the discretized gquadratic optimal control problem can be

formulated. Equatior (218) may be discretized as follows:

X{U{k+1)T) ~G(T,) x(kT,) +H(T,) ul{kT,) (221)

£




where,

LT ) = et (222)

- [e* T gar e B (AT 1) (223)
H(T,) - [e Bt~ — (e
or

x{((k+1) T =e*Tex(kT,) + = (e*T - 1) utkT,) (224)

o

The performance index, J, given by Egn. (220) may be

discretized. First rewrite J as

(ko) T,

N-1
J-Zx*(NT) - 2% [ [ox*ie)+Rut(r)ldr (225)
2 2 % £,
Noting that the solution x(t) for KT st<(k+1)T, can be

written as

t
x(t) -eM KT (kT « fe“"”Bu(r) dt

o (226)
~E(t-kT)X(kT,) «+n(t-kT)v(kT,)
where,
E(t-kT,) -t T (227)
t
n(t-kT,) - f&(t-ﬂsd:-g[e"““”'—l] (228)

KT,
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The performance index J, can be written as follows

N-1 (;\'o;)'.'"
g Lxtnr) -2 {QIE(t-kT) »x(kT,)
s & s
2 2k~c- KT
sn(t-kT)ulkT) 12+ RuS (KT, }dt (229)
N-1
'%X’*(NTQ *—;— O XP(KT) «2M,x (KT u(kTy) + Ryu~ (kT,) ]
keC
where,
(ks 11T,
£y~ f Qg2 (t-kT)det (230)
KT,
tkerd 7,
M, - f OE(t-kT,)n (t-kT,) dt (231)
kT,
tke1) T,
Ry~ [ lon*(e-kT,) +Ride (232)
kT

Notice that Q,, M,, and R, may be simplified as follows:

(k01) T,
Ql‘ f QeEAft‘kT‘)dt__Q [EZAT“‘l] (233)
KA 2A
tke3) T,
M, - pertHTy Brodte kT gigel BO (pATe_ )0 (234)
i1, A 2A2
(ke1) T,
. - \ 2
R, ~ f fo{-"’i[e“’ T, —1]} +Rldt
ir, 1 A (235)

2
- 2k (er-3) (e - 1)+ 2AT ]+ RT

s
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Summarizing, the present discretized quadratic optimal
control problem may be stated as follows. Given the

discretized system equation

x((k+1)T,) =G(T,) x(KT,) + H(T,) u(KkT,) (236)
where,
G(T,) -e*™* and H(Ts)-—i-(e”'—l) (237)
find the optimal control sequence, u(0), u(T.)},...,u({(N-

1)T,) such that the following performance index is minimized

N-1
J-%XZ(NTS) +%§ [0, x%3(kT,) «2Mx (kT ulkT,) ~R,u*(kT.) ] (238)

Such a performance index including a cross term involving
x(kT.) and u(kT,) can be modified to a form that does not
include a cross term, and the solution to the discretized
quadratic optimal control problem can then be obtained. This

subject is presented in the following.

Taking into consideration the quadratic optimal control

problem, where the system is given by

x{k+1) =Gx(k) +Hu(k) , x(0)=-c (239)
and the performance index is given by

N-1
T- 2x TN Fx (M + 2T [x T 0,x (k) +2x TR Myu (k) +u T Ryu (k) )

k=0
(240)
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where Q, and F are nxn positive definite or semidefinite
Hermitian matrices, R, is an rxr positive definite Hermitian

matrix, and M is an nxr matrix such that the matrix

0, M
s (241)
M7 R,
is positive definite. This means that
Or M]ix(k)
[(xT(k) uT™(K)] . }
M" R, j{u (k) (242)

-x T(k) Qux (k) + x T(k) Myu (k) +u T(k) M, x (k) +u T(Kk) Ryu (k)
=xT(k) O, x (k) +2x T(k)Mu(k) +uT(k) R,u (k)

i1s positive definite. Note that the performance index, J, of

Egn. (240) includes a cross-term similar to Eqn. (242).

In order to obtain the optimal control vector u(k), let

us define

C-0 -M R'MT (243)
and eliminate Q from the performance index J. Then Egn. (240)

becomes

N-1
1 1 -
J=SxT(M Fx(N) + -5;3;3 {x T(k) [0, + M R]* MT) x (k)

+2x T(kyMul(k) +uT(k) R u(k)}
N-1
- XTI FXD + 2T 17 Gxtho) + x 7O MR M7 ()
k-0

+2x T(k)Mu(k) +uT(k)R,ulk)]

(244)

N-1
it .1 T(}
5 X T Fx (W) 2§ {xT(k)Ox (k)

+ [xT(RYM R+ uT(k)] R IR ™M x(k) +u(k)]}
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Define

vi{k) =R M x (k) +ulk) (245)

such that

-

N-

J-%XT(N)FX(N)+—;- [xT(k)Ox(k) +vT(K R, v(k)] (246)
-0

k

Netice that Egn. (246) no longer involves the cross term; it

has been effectively eliminated.

By substituting Egn. (245) into the system equation,
Egn. (239) becomes
x(k+1) =Gx (k) +H[v(k) -R{ "M x (k)]

« (G-HR{*M") x (k) + Hv (k) (247)
-Gx(k) +Hv (k)

where,

G-G-HR{*M" (248)
Note that the guadratic optimal control of the system given
by Egn. (239) with the performance index given by Egn. (240)
is equivalent to the quadratic optimal control of the system
given by Egn. (247) with the performance index given by
Egn. (246) . Hence, the optimal control vector v(k), that
minimizes the performance index given by Egn. (246) can be

given as follows. Defining

V(k) =~ [R,+HTP(k+1) H "HTP(k+1)Gx (k) (249)
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where ﬁ(k) is a modified version of the Ricatti Equation.
B(k) =C+G Fik+1) [I+HR'ETP(k~1)17'6 (250)
P(N)=F (251)
The optimal control vector, u(k), can then be given by
u(k) =vik) -R;*Mx (k) (252)

where v(k) is given in Eqn. (249), Egn. (252) can be reduced

to the following form:

ulk) =- (R +HTP(k+1) H1 7 [HTF(k+1)G+M ] x (k) (253)

5.3 - Solution by the Conventjonal Minimization Method Using

ange Multi ie

In the present optimization problem, the minimization

of J given by Egn. (246), repeated here

- N-1 R
T=Sx TN FX) + 2 [xTUO Ox () + v T R v(K)] (254)

k=G

when it is subject to the constraint equation specified by

Eqn. (247)

x(k+1) =Gx (k) + Hv (k) (255)




163

with the initial condition on the state vector

Xx(0) =cC (256)

is considered by using a set of Lagrange multipliers
A(1),A(2),..,A(N); the new performance index L can be defined

as follows:

N-1

1 1 v
L-;x’(N) Fx(M+3kZ;{[x T(k) Ox (k) +v (k)R v(k}] +AT(k+1)- (257)
[Cx (k) +Hv(k)~x(k+1)]+[Cx(k) +Hv(k) -x{k+1)] TA(k+1)}

It is a well known fact that minimization of the function L
is equivalent to minimization of J when it is subject to the
equality defined by Egn. (255). In order to minimize the
function L, one must differentiate L with respect to each
component of the vectnrs x(k), v(k), and A(k) and set the

results equal to zero. Thus we set

oL

_"—"'"_-o [ - ’ r ey ; - ’ l"'lN
=, (8 i=1,2 n k=-1,2 (258)

oL

= =0 [=1,2,.,1 ; -1,2,...N-
aVJ-(k) i=-1,2 r k-1,2 N-1 (259)

oL

e 2= () [ ~1,2,.., ; k=1,2,..,N 260
Er ey 1 2 n { )

Dropping the subscript for simplicity, Egns. (258), (259),

and (260) may be obtained as follows:

oL

=0  Ox(k)+G8TA(k+1) -A(k)=0 k=1,2,.,N-1 (261)
dx (k)
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oL
——— = ) FxX(N)-A{(N) =0 262)
T (V) X{N) (N) (
~OL_ .0 R v(k)+HTA(k+1) =0 k=0,1,..N-1 (263)
av(k) !
L L0 Ex(k-1) +Hv(k-1) -x(k) =0 k=1,2,.,N (264)
oA (k)
After the simplification of the eguations just obtained,
there results,
A(k) =0x(k) +GTA(k+1) k=1,2,..,N-1 (265)
with the final condition
A{N) =Fx(N) (266)
Rearrangement of the terms of Egn. (263) leads to the
solution of v(k)
vI(k) =~RPHTA(k+1) (267)

The last partial differential Egn. (264) is simply the state
aquation {(see Egn. (255)). Substitution of Egn. (267) into

Egn. (255) results in

X(k+1) =Gx (k) ~HR*HTA (k+1) ; x(0) -c (268)
In order to obtain the solution to the minimization problem
we need to solve Eqns. (265) and (268) simultaneously.
Notice for the system equation, Egn. (268), the initial
condition is specified, while for the Lagrange multiplier
equation, Egn. (265), the final condition is specified. Thus

the problem here becomes a two-point boundary value problem




103
(TPBVP). If the TPBVP is solved; then the optimal values for
the state vector and Lagrange multiplier vector may be
determined and the optimal control vector, v(k) may be
obtained in the open-loop form. However, if one employs the
Ricatti transformation, the optimal control vector, v(k),
can be obtained in the following closed-loop or feedback

form:
vik) =-G, (k) x (k) {269)

where G (k) is the rxn feedback matrix.

Under the assumption that A(k) can be written in the

following form

(k) =B(k)x(k) (270)

where ﬁ(k) is an nxn Hermitian matrix (see Eqgn. (250)).

Substitution of Eqn. (270) into Egn. (261) results in

B(k)x(k) =Ox (k) +GTB(k+1) x(k+1) (271)

and substitution of Egn. (270) into Egn. (268) gives

X (k+1) =Gx (k) -HR;'HTP(k+1) x(k+1) (272)
Notice that Egns. (271) and (272) do not involve A(k) and
thus iA(k) has been effectively eliminated. The
transformation process employed here is called the Ricatti
transformation. It is of extreme importance in solving such

a TPBVP. From Eqn. (272)
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(I+HR{*HTP(k+1)) x(k+1) =Gx (k) (273)
because of the existence of the inverse matrix, Egn.(273)
can be written as
x{k+1) = [I+HR'HTP(k+1)] *Cx (k) (274)
By substituting Egn. (274) into Egn. (271) one obtains
B(k) =0+CETPik+1) (I+HR'ETP(k+1))3G (275)

Equation (275) is the same as Egn. (250), it may be modified

to

B(k) -0+8TP(k+1)6-GTP(k+1) B[R+ H TP (k+1)H) ' TP (k+1)G (276)
Equation (276) is called the Ricatti egquation. Referring to

Egn. (262) notice at k=N

B(N)Xx(N) =A(N) =Fx(N)
. (277)

-~

P(N) -F

Hence, Egns. (275) and (276) can be solved uniguely backward
from k=N to k=0. So one can obtain P(N), P(N-1),.., P(0)
starting from P(N) which is known. By referring to Egns.
(270) and (274), the optimal control vector, v(k) given by

Egn. {(267) now becomes

Vv(k) =-R{yPHTH(k+1) x(k+1)

PR L on . (278)
--R{U*HTP(k+1) [I+HR"HTP(k+1) ] *Cx (k)
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A modified form of the optimal control vector, v(k) can be
given kv
V(k) =~ [R,+HTP(k+1) H) *H TP (k+1)8x (k) (279)

the same as Egn. (249)

5.3.1 - Evaluation of the Minimum Performance Index

Evaluation of the minimum performance index given by

Egn. (254) follows

N-1

Ynin = min{%x’(mrmm +%Z [xT(k) Ox (k) +v’(k)Rlv(k)]> (280)
k-0

Premultiplying both sides of Egn. (271) by x'(k) gives

xT(k)B(k)x(k) =xT(k) Ox (k) +xT(k)GTP(k+1) x(k+1) (281)

Substituting Egn. (273) and arranging terms leads to

xT(k) P(R) x (k) =xT(k) Ox{k)+x T{k+1) [I+B(k+1)HR'HT) Blk+1) x(k+1) (282)

Hence,

XT(K)Ox (k) =xT(k)Px(k)-xT(k+1) P(k+1)x(k+1) +

~ ~ 283
-x T(k+1) P(k+1) HR{'HTP(k+1) x (k+1) ( )

Similarly, from Egn. (278)

V(K) =~R{PHTP(k+1) x(k+1) (284)
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[}

Hence,

VT(k) R, v(k)=[-x T(k+1) B{k+1) HR{'1 R, [-R;'E TP (k+1) x(k+1) ] (285)
“xT(k+1) B(k+1) HR;"H TP(k+1) x(k+1)

By adding Eqns. (283) and (285)
xT(k) Ox(k) + vT(k)R,v(k) =x T(k) Px(k) -x T{k+1) P(k+1) x(k+1) (286)
By substituting Eqn. (286) into Egn. {280) one obtains

N-1

Tnin= 5% T (N FX () + 23 [x 70 BUO X (k) - x T(k+1) Blke1) x(k+2) ]
k=0

= 2X T Fx (0 + 2 [xT(0) BLO) x(0) - x T(1) A1) x(1) 4 x T(2) BLL)

-xT(2)B(2)x(2)+ .. +xT(N-1) PA(N-—l)‘X(N—l) -xT(NY BNy x(N))
-—;—XT(N) Fx(N) + %x?(o)ﬁ(o)x(m - —%x’(z\’) BN x (M)

(287)

Notice from Egn. (277) ﬁ(N)=F‘ Hence, Egn. (287) becomes

Jmm-—%x"(O)ﬁ(O)x(O) (288)

Thus, the minimum value of the performance index J is given
by Egn. (280). It is a function of ﬁ(O) and the initial

state, x(0).




CHAPTER 6 - RESULTS AND DISCUSSION

For this thesis three different comparisons have been
analyzed for the nominal corientation of Case (1). The first
is a comparison of two sets of actuator locations (see Fig.
8), this will provide the most effective placement of the
actuators. The second is a parametric study involving the
state penalty matrix and the control penalty matrix (see
Egns. (185) and (186)), this will vield the best chocice of
penalty matrices under the given conditions. The last
comparison is also a parametric study, through the variance
of the sampling period (see Section 5.2) a display of its
effect on the system performance will be produced. Together
these three comparisons will result in the design of the

optimum cuntrol system.

For each comparison three different system
characteristics will be analyzed. Tne first characteristic
is the discretized open and/or closed loop system eigenvalue
and their moduli. In a z-domain the system's eigenvalues or
moduli should display the following characteristics:

a) the magnitude should be less than 1 to ensure stability
of the system.

b) the magnitude should be as small as possible. The
system with the smaller eigenvalues usually displays

the better system response.
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The second analysis i1s the tabulation of the calculated
optimum cost function (see Section 5.3.1). The optimum cost
function -also known as the minimum performance index- is
calculated through the minimization of the cost function,
therefore, the obvious selecticn for an optimum system 1S

the smallest possible value of x:PJ%.

The transient time response of the rotational angles,
modal amplitudes, and the control forces of each actuator is
the third system characteristic investigated. A transient
response refers to the procoss generated in going from an
initial state to the final state.®’ cConsideration is giving
to several elements of the t:.nsient response, they are:

a) the maximum overshoot or undershoot which is directly
related to the roousi.2e~ zf the system. In the case cf
the modal amplitudes, the response is due to an initial
normalized deflection of 0.01, which corresponds to a 1
meter deflection. If the response overshoot or
undershoot is too high, internal stresses may reach a
maximum resulting in fracture or failure of the
structure. In reference to the forces, a large initial
overshoot is associated with the maximum amplitude of
the contrecl force

b) the area under the response curves 1s being
investigated. When comparing “he rotational angle

response there 1s nc overshoot or undershoot. The




d)

e)

f)

5
“

e
[

system is subjected to an initial angular deflection of
0.01 radian. The area under this response and the
tangential envelopes created by the other responses is
proportional to the controcl energy dissipated;
therefore, the overshoot and the area should be as
small as possible.

the rise time is the time required for the response
initially to reach the equilibrium value during the
first cycle of the response.

the peak time is the time it takes the response to
reach the first peak of an overshoot or undershoot.

the settling time is an important characteristic to
take into consideration. The settling time is the »oint
in time when the response curve reaches and stays
within 5% of the equilibrium value of the system's
response. Hence, one would prefer this duration of time
to be as short as possible.

the signal reconstruction is one other system
characteristic which is especially important in the
comparison of the sampling periods. The transient time
response should appear as smooth as possible, thus
exhibiting a proper signal reconstruction.

In the subsequent sections of Chapter 6, three

comparative studies will be discussed.
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6.1 - Comparison of Actuator Positions

For the comparison of the actuator locations, two sets
have been chosen, Set A and A' (see Fig. 8). The nominal
orientation of Case (1), with a sampling period of S
seconds, and the set of penalty matrices Sg=0.5 and

Sr=1.0x10""" is selected as the standard system.

The system's closed-loop eigenvalues and optimum cost
functions are displayed in Table 5. Notice that the minimum
modulus and the overall average modulus of Set A eigenvalues
are smaller than those for Set A'. The optimum cost function

is smaller for Set A than Set A'.

Upon inspection of the transient time responses, it is
seen that the response for the rotational angles are exactly
the same (see Figs. 11 and 12). The responses for the first
and second modal amplitude are quite different. On the other
hand, the third mode's amplitudal responses are exactly the
same (see Fig. 13). Set A' first mode has a higher overshoot
and a2 much larger settling time than that cf Set A.
Similarly, the second mode has a larger overshoot,
undershoot, curve area, rise time, peak time, and settling
time for Set A' than for Set A. The same follows for the
transient responses of the forces for actuators 1-4 (see

Figs. 14 and 15). The actuators £ and 6 are in the same
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position for both sets; thus, there isn't any difference in
transient time response for the two actuator forces (see
Fig. 16). Also, notice the symmetry of response for the
actuator groups 1 & 3, 2 & 4, and 5 & 6. This is due to the
fact that the actuators are placed in a symmetrical pattern

around the center of the plate (origin).

The choice between actuator location sets is an easy
one. Obviously, the system of Set A exhibits the best
characteristics. This is an expected result for a couple of
reasons. The first is: the torque arm is a maximum for Set
A, thus, reducing the maximum force needed to control its
rigid rotational motion. The second is: Most of the Set A'
actuators are placed in the vicinity of the nodal lines -for
the first three modes included in the system model~ thus,

possibly reducing their overall effect.
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Table 5
The Effect of Different Actuator Locations on the
Closed-Loop System Eigenvalues and Moduli
Bet A Bet A!
Eigenvalues Moduli Eigenvalues Moduli
Real Imag. Real Imag.
1/10.20871 0 0.20871 §0.20872 o 0.20872
210.20873 .00177 | 0.20873 }0.20873 .00174 {0.20874
310.20873 |-.00177 {0.20873 |0.20873 |~.00174 {0.20874
410.22710 0 0.22710 [ 0.22273 0 0.22273
510.25698 0] 0.25698 [0.26381 0 0.26381
6]0.79820 0 0.79820 § 0.79575 ¢ 0.79575
710.92454 0 0.92454 §0.93528 0 0.93528
810.88714 .36217 | 0.9452 0.89757 .36118 (0.96752
910.88714 | -.36217 | 0.9452 0.89757 | -.36118 | 0.96752
10 0.99443 0 0.99443 | 0.99443 0 0.99443
11;0.99443 0 0.99443 10.99443 0 0.99443
12]10.99443 0 0.99443 | 0.99443 0 0.99443
X P X =0.0086919 X P X =0.018983

T
X,'P X,

- Optimum Cost Function
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6.2 - Comparison of Penalty Matrices

For the parametric study of the penalty matrices,
several system variables were kept constant; they were
chosen as: the nominal orientation of Case (1), Set A for
the actuator locations, and a sampling period of 5.0
seconds. The variance of the system penalty matrices is
handled by changing the control penalty matrix while holding
the state penalty matrix constant, and vice-versa. The
penalty matrices are defined by Egns. (185) and (186) where,
a,=Sq and a,=Sr. The sets of penalty matrices are:

a) Set 1 - Sq,=0.5, Sr,=1.0x10"°

b) Set 2 - sg,=0.5, Sr,=1.0x10™"%

c) Set 3

§g,=0.001, Sr,=1.0x10"
d) Set 4 - 5q,=0.001, Sr,=1.0x10™%
Note that in this study only block diagonal penalty matrices

-where all the elements are the same- are considered.

The eigenvalues, moduli, and optimum cost function for
each set are displayed in Table 6. The eigenvalues and
moduli of Sets 1, 2, and 4 are very close, whereas, the
first modulus of Set 3's eigenvalues is noticeably larger.
This helps to narrow the system comparison down to the three
sets 1, 2, and 4. After taking a second look at their
elgenvalues, it is noticed that the moduli of Set 4's

eigenvalues are slightly larger than those of the two other




bt
|29
28]

sets; but the optimum cost function for Set 4 is smaller

than those for Sets 1 and 2.

For a complete comparison the transient response is
viewed. The responses for the system's rotational angles
pictured in Figure 17 show no appreciable difference
regardless of the penalty matrices used. In addition, there
is no significant difference between the yaw, pitch, and
roll responses. The transient response of the modal
amplitudes show a slight variation as a function of the
penalty matrices used. For the first and second mode there
is virtually no difference in‘responses for all combinations
of penalty matrices (see Figs. 18 and 19). The third mode
responses display a deviation towards a better response for
Set 4 (see Fig. 20). Similarly, all the actuator force
responses (see Figs. 21-26) exhibit better characteristics

for the case of Set 4 penalty matrices.

The determination of the best combination of the state
penalty matrix and control matrix is a little more difficult
than the previous choice of positioning. After taking into
consideration the system characteristics, Set 4 (Sg=0.001,
and Sr=1.0x10""®) was chosen. Even though the Set 4 system
eigenvalues are not the smallest ones considered, its
optimum cost function is the least and its response is the

best.




The Effect of Different Penalty Matrix Ccmbinations on the
Closed~-Loop System Eigenvalues and Moduli
set 1:8g=0.5,86r=1.C0E~i¢ 5et 2:5q=0.5,8r=1.0E~-12 i
Eigenvalues Moduli Elgenvalues Moduli |
Real Imag. Real Imag.
1/106.20871 0 0.20871 {0.20870 o 0.20870 j
210.20873 .00177 | 0.20873 10.20870 .00174 0.20870E
3/0.20873 |~-.00177 [0.20873 [ 0.20870 {-.00174 {0G.20870
410.22710 &) 0.22710 106.227C9 0 0.22709
510.25698 8} 0.25698 ;0.25679 C 0.25679 §
610.79820 0 0.78820 10.75827 0 0.79827
710.92454 0 0.92454 [0.92454 0 0.92454
810.88714 .36217 O.94§?O 0.88714 .36217 10.94520
910.88714 | ~-.36217 0.94520 0.88714 | ~.36217 [ 0.94520
1010.99443 0 (.984432 (10.989443 0 0.99443
11}0.99443 0 0.99443 1 0.99443 G 0.99443
1210.99443 0 0.99443 1 0.99443 0 0.99443
X P X =0.0086919 X 'P X =0.0086915
Bet 3:8g=.001,8r=1.02-10 |8et 4;:;8g=.001,8r=1.0E-12
Eigenvalues Moduli Eigenvalues Moduli
Real Imag. Real Imag,
110.21375 O 0.21375 10.20875 0] 0.20875
2]10.21394 O 0.21394 {0.20885 .00174 | 0.2088¢
310.23154 0 0.23154 10.208853 |-,00174 |0.20886
440.23262 0 0.23262 {0.22713 0 0.22713
510.34728 0] 0.34728 |]0.2577686 0 0.25776
60.76206 0 C.76206 {0.72792 0 0.79792
710.92394 o 0.92394 [0.92454 0 0.92454
810.88712 .36218 |10.94519 | 0.88714 .36217 1 0.9452
910.88712 | -.36218 {0.94519 {0.88714 |-.36217 {0.9452
10| 0.99443 0 0.99443 10.99443 0 0.99443
__ll 0.99443 0 0.99443 | 0.99443 0 0.99443
1210.99443 0 0.99443 [ 0.9%443 0 0.99443
X, P X=1.7823E-5 | X 'P.X =1.7388E-5

X, P X, - Optimum Cost Function
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6.3 - Comparison of Sampling Perjecd

For the comparison of sampling periods, several systen
characteristics kept constant were chosen to be: the nominal
orientation of Case (1), the actuator placement of Set A,
and the penalty matrices of Set 1. The different sampling
periods chosen for the comparison were 2.5, 5.0, 10.0, and
40.0 seconds, respectively. The latter was an approximate
value chosen from Table 4 (see 39.95 seconds) as a

representation of system degradation.

Each set's discretized open and closed loop system
eigenvalues and moduli and their optimum cost functions are
shown in Table 7. The open-loop eigenvalues of all four
sampling periods show signs of instability by containing
moduli greater than 1. This is a confirmation that the
uncontrolled (local horizontal) orientation of Case (1) is
unstable. When the closed~loop eigenvalues of each sampling
period are examined, an unexpected result surfaces. Almost
all the meduli of the 40.0 second eigenvalues are slightly
smaller than those for the other sampling periods. This
results from the fact that the calculated unacceptable
sampling period is 39.95 seconds and not 40.0 seconds, i.e.,
roundoff error. The sampling periocd of 40.0 seconds was
employed to provide an equivalent final time period with the

other sampling periods, in other words, 2.5, 5.0, 10.0 are
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multiplies of 40.0. The moduli of the last eigenvalue of
Set IV is very close to the limit of 1, thus exhibiting a
trend towards degradation. Comparison of the optimum cost
function indicates a minimum for the 2.5 second sampling

period.

The transient time response for the rotation angles are
the same for all the sampling periods (see Fig. 27). When
the transient response of the modal amplitude are considered
the first mode's maximum overshoot decreases, its undershoot
increases, as the sampling period increases (see Figs. 28-
31). The same relationship holds for the response of the
second mode. The third mode's response displays an
undershoot for the 10.0 and 40.0 seconds sampling periods, a
characteristic not shown before in this study. The entire
modal responses for the 40.0 second sampling period
represent a degradation in comparison with the modal
responses for the other sampling periods. For the case of
the transient force responses, the maximum overshoot
decreases as the sampling period increases (see Figs. 31-
35). For the 40.0 second case there is no overshoot but a
large undershoot and a very choppy response, again

associated with system performance degradation.

Initially, the selection of the sampling period can be

reduced to just three periods, 2.5, 5.0, and 10.0 seconds,




for the obvious reason that the sampling periocd of 40
seconds is associated with performance degradation. However,
it is not an easy task to decide on the best sampling period
from the three other sampling periods. Effectively, 2.5
seconds can be released from consideration due to the larger
moduli of the eigenvalues and overshoot. The decision
between the last two sampling periods is a more difficult
one. The sampling period of 5.0 seconds has a higher
overshoot, a smaller undershoot, a smaller optimum cost
function, and a smcoth response curve. The sampling period
of 10.0 seconds displays a lower overshoot, a larger
undershoot, smaller eigenvalues, and a choppy response.
Finally, taken into consideration that signal reconstruction
is very important, the sampling period of 5.0 seconds can be

chosen.
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CHAPTER 7 - CONCLUSIONS

A mathemaiical model to predict the dynamics of a
flexible orbiting platform was developed. Under the
assumption that the linear system is completely observable,
the optimal control laws are developed for the case where
the observational data is collected on a sampled basis,

i.e., a discrete time data system.

Attitude and shape contrecl of the platform was assumed
to be provided by the placement of point thrust actuators
perpendicular to the main surface and the edge of the plate.
Their effects on the system's motion wére modeled to the
first order. Controllability for the system was verified for
two sets of actuator locations. An application of the linear
quadratic regulator (LQR) technique in a discrete-time

domain yields the optimum contrel law feedback gains.

A comparison of the performance of the different sets
of actuator locations resulted in the best choice of
actuator positioning. Two parametric studies were conducted
to show the effect of varying the state penalty matrix and
the control penalty matrix, and the effect of changing the

sampling period on the transient performance of the system.

Generally, when comparing all of the system
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characteristics, one must search for the system with the
maximum number of positive characteristics. Unfortunately,
it is not always a clear cut decision as to which
combination of characteristics designate the best system.
Often a system may exhibit some value tradeoffs, it may
possess several minimum values along with several maximum
values. In this thesis particular emphasis is placed on the
quality of the transient response. With this in mind the

following conclusions have been made.

When deciding upon the best placement of the actuators
on the main surface, two items should be kept in mind. The
first is that the actuators should be placed such that there
is the maximum distance between the origin and the actuator
locations. This creates a maximum torque arm which reduces
the maximum force needed to control the system's rigid body
motions. The second is that the actuators should be placed
as far away as possible from the nodal lines of the
fundamental and lower frequency elastic modes (with which

most of the elastic energy is associated).

For the determination of the best choice of the penalty
matrices, one usually chooses a large state penalty matrix
and a small control penalty matrix within the limits of
control saturation levels. These matrices should be chosen

such that they optimize the performance index and produce
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the best transient time response.

Since the sampling period is directly related to
discretization and the signal reconstruction of the system,
careful consideration should be given to its choice.
Initially, when deciding upon a sampling period, one should
take into consideration the sampling period theorem which
involves the use of the open-~loop system eigenvalues to
calculate the unacceptable sampling periods for which the
system is not controllable. Any sampling period values near
the values of the unacceptable periods should not be
utilized, for they can lead to system performance
degradation. The sampling period should be chosen such that
the sampling period is not too small to aveoid excessive
handling and accumulation of data for the onboard computer
system. On the other hand, the sampling period should not be
too large, otherwise the system's transient time response
will appear choppy, thus, failing to provide a good example

of signal reconstruction.




CHAPTER 8 - SUGGESTIONS

In terms of new actuator positioning, different
locations for the actuators placed on the edge of the plate
should be investigated. In addition, the number of actuators
could be varied, in an effort to improve system performance.
There are some system tradeoffs to consider in the event
that the number of actuatcrs is increased or decreased. If
the number of actuators are decreased there may be some loss
in system controllability and robustness. On the other hand,
if the number of actuators are increased, the system's total
mass will then be increased, thus, creating an increase in

the system's operational costs.

One other possible improvement to actuator modeling
would be incorporation of lumped masses to represent the
actuator mass at its particular location. Implementation of
GTSTRUDL or similar finite element methods for the
recalculation of modal frequency and deflections could than

be performed.

When considering possible improvements in the choice of
penalty matrices, a more indepth comparison should be
performed. The split weighting penalty matrix approach could
be applied, with a possible variance of each individual

matrix element. This could result in a smaller optimum cost
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function.

For this thesis the system considered was assumed to be
completely observable and deterministic, it 1s an inadequate
assumption. To improve system modeling the observer matrix
should be developed and the system should be considered
stochastic (i.e., experience external disturbances and/or
noise). The linear quadratic Gaussian (LQG) technique can be
applied to provide the control law and estimator for a

stochastic system with a Kalman filter to act as a screen.

One last improvement to the system corresponds to the
initial assumptions about the material properties of
composite graphite. For this thesis the material is assumed
to be isotropic. This is an questionable assumption for
reinforced composite graphite. Generally, the material is
composed of graphite fibers bonded by a resin epoxy. Even if
the fikors were aligned with a 90, 0, or 45 orientation,
the material at best can be assumed to be orthotropic.B®
The system's various material constants would then need to
be redefined. These material properties affect the stress-
strain relationship of Egn. (125) and create cross terms in
the plate vibrational equation, thus affecting the vaiues of
the natural freguency. The new values for Young's Modulnus,
Poisson's ratio, and/or Shear Modulus, (i.e., E, E, E, v

x y 1 xy '’

etc.) could then be submitted to GTSTRUDL for recalculation

e ——
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of the modal frequencies and deflections.

The results of the present study could then be compared
to the previous LQG results with the thin flat plate and the
shallow spherical shell for corresponding actuator

positions. .11




Appendix A - The Elements of the Stiffness Matrix [Kl, for

'BPR' Element

For a thin rectangular plate element with the
dimensions axbxh, the stiffness matrix ([K]®%, can be
represented as

[KJ“’-Eéag[k]“’(A.z)

where, a and b represents the length of the side, 100.0 m: h
represents the thickness, 0.01 m; and the values of the
elements of [k] are shown below.

Eh?

-—— e =25,256.41 (A.2)
12(1-v2)

[

where, v represents the Poisson's ratio, 0.3; and a/b=r=1.

Elements of [kl

,=20a?+4b%{1-v) =2.28x10°

kl‘

ky,=~i5ab--1.5x10°
ky;=20b%+4a%(1-v) =2.28x10°

ky, ~-30ar-15bv-3b{1-v) ~-3,660

ky,=-30b/r+15av+3a(l-v) ~3,660

<
PS

Kyy=60/7r%+€0r?+30v+42{1-v)~-158.4
ky, =10a?-b*(1-v) ~9.3x10*

Kgpmko mky, =k =ky =kg, =0
k;y=-30b%-3b(1-v) =300,210
ky=20Ca?+4p%(1-v)~2.28x10°

Ko, =10b%-4p?(1-v) =7.2x10%
kyy=1Sb/r -15av-3all-v) =840

ke =1%abv=-4.5x10%

«20b%+4a%{i-v)=2.28x10°




Elements of [k] continued:

k¢, =30ar+3b(1-v) ~3,219

k¢, =15b/r-15av+3a(1-v) =840
ke3=30/r%-60r2-30v+42(1-v) --68.4
keg=30ar-15bv+3b(1-v) =2,760
kes=30b/r+15av+3a(l-v) =3,660
ke¢=60/r*+60r2+30v+42(1-v) =158.4
k,,=10a%?-4b*(1-v) =7.2x10%
k,y=~15ra+15bv+3b(1-v) =-840

k, ~5a*+b?(1~v) =5.3x10*
k;g=15ar~3b(1-v) -1,290
k,,=20a%?+4b%(1-v) =2.28x10°%
ky;=10b2~a2(1-v) =9.3x104

kg3 =30b/r-3a(1-v) =-3,210
kys=5b?+a?(1-v) =5.7x10°
kgs=15b/r-3a(1-v) =-1,290

kg, =15ab=1.5x10%
kgg=20b?+4a%(1-v) -2.28x10°
kyy=~15ar+15bv-3b(1-v) =--840
kg,==-30b/r-3a(1-v) --3,210
Kg3=60/r24+30r?-30v-42(1-v) =51.6
kyg==~-15a/r+3b(1-v) --1,290
kgs==-15b/r-15av=-1,290
Kgg=-30/r?-30r?+30v+42(1-v) --21.6
kg, =~30ar-15bv-3b(1-v) =-3,660
kgg=~30b/r-15av-3a(l-v) =-3,660
kgg=15b/r-15av-3a(l-v) =840
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Elements of [X] continued:

ki, =5a?+b?(1-v) =5,7x10°¢

kg y=-15ar+3b(1-v) =1,290

ko ¢=10a?-4b%*(1-v) =7 .2x10*

Ky ¢=15ar-15bv-3b(1-v) =840

ko ,=10a?-b%(1-v) =9.3x10*

kg g=-30ar-3b(1-v) =-3,210

Kyg 10=20a%+4b?(1-v) =2.28x105
Kio,2=Kiq,s= Ko 6= Kyy, 1=Ky g =Ky ;=0
ky,; ;=5b*+a?(1-v)=5.7x10°

ki, 3=15b/r?~-3a(1-v) =1,290

4

ki, ¢=10b%-a*{1-v)=9.3x10"

1<11 5-30b/r+15av+3a(l—v) ~3,660
k, g=10b%-4a*(1-v) =~7.2x10°

k,y, g=-15b/r+15av+3a(1-v) =-840
ki, jo=-15abv=--1.5x10°

ky, ;,=20b%+4a*(1-v) =2.28x10°

k. l-lSa/r~3b(l~v) -1,290

ki, ,~-15b/r+3a(l-v)--1,260

ki, 3=-30/r2-30r?+30v+42(1-v)=-21.6
k,, ,~15ar-15bv+3a(l-v) -840

k;, s=-30b/r-3a(1-v) --3,210

ki, 6=60/r*+30r?-30v-42(1-v) =51.6
ki, »=30ar+3b(l-v)-3,210

o

k,, g=~15b/r+15av-3a(l-v) --840

ki, 0=30/r?-30r?-30v-42(1-v)=-38.4
ki, 1o=30ar+15bv+3b(1-v) =3,660

ki, 1,=-30b/r-15av-3a(l-v) --3,660
ky, ,,=15b/r-15av-3a(i-v) -840
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Appendix B - GTSTRUDIL Prodgram and a Summary of the

Implemented Commands for the Calculation of

Modal Freguencies and Shape Patterns

Because the model being considered is a free-free
structure, GTSTRUDL recognizes the generated stiffness
matrix as a representation of an unstable structure.
Consequently, it will not formulate a complete dynamic modal
analysis. For a calculation of the modal frequency values,
the command, 'COMPUTE RIGID BODY MODES', must be
implemented. Since the rigid body modes must be computed,
this eliminates using the eigenproblem solver, 'SUBSPACE
ITERATION', for it can not calculate those modes. There are
two other eigenproblem solution methods available:
'TRIADIAGONALIZATION' and 'GTLANCZOS'. Triadiagonalization
can not make the correct calculations, because it
incorporates the Inverse Iteration method, which inverts the
matrix resulting in problems with singularity. Therefore,
for the solution of the eigenvalues the GTLANCZOS method

must be used; it uses the Lanczos eijenvalue solver method.

The eigenvalues are obtained by using two GTSTRUDL
commands, 'PERFORM EIGEN ANAZIYSIS' and 'LIST EIGENVALUES'.
The final values for the frequencies are approximated
graphically. By using the 'LIST EIGENVECTORS' command the

eigenvectors can be computed. This gives the normalized
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deflections at each node. The modal shape patterns are
acquired through the combination of the 'LIST EIGENVECTORS'
and 'PLOT PLANE MODE SHAPE #XZ PROJECTION' commands. The
second command plots a diagram of the normalized deflections
of the XZ plane. The YZ plane was another plane orientation
viewed; for this orientation the Z axis is perpendicular to
the major surface. Table 3 represents the modal shape

patterns derived from GTSTRUDL.

In addition to the previous commands, there are some
others that check the performance criteria and calculatien
values: 'ORTHOGONALITY', 'STURM SEQUENCE', and ‘ERROR
ESTIMATE'. The ORTHOGONALITY check has been previously
mentioned in Section 3.4.5. The STURM SEQUENCE check
determines whether the correct number of modes are within a
specified range. This calculation requires the decomposition
of a matrix that has an order and banding equal to the
system stiffness matrix. Since the stiffness matrix for this
system is very large, it was assumed this check would need
too much memory space and could not be afforded. Similarly,
was the situation with the ERROR ESTIMATE process. This

command computes an error for each mode as follows:

SRS ARCHCRLAL

€ {B.1)
: &) (B .}




159
The ERROR ESTIMATE command compares this calculate value,
€., to the set 'TOLERANCE' value -default of 1.0x10°%- to
determine whether the percentage of error is within a
reasonable range. For most situations the default value is

appropriate, but may be changed; this may have a major

effect on selution time.




Appendix C - The System Matrices for the Nominal

State Matr
00

01
[A]l,=j0 ©
00

00

0 0

Orientations of Case (2)

and Case

(3)

Case (2) = Ix=1y=Iz/2

ix, ([Aa]:
(07 gxs
0 0 4]
8] 0 0
-3 0 0
0 -2402 0
0 0 ~-42359.5%
0 0 0

Control Effort Matrix, (B){(U):

[B] {U} 2, AT

[BJ {U}Z.A‘-

[ .1605 -.321 -.160S5
.321  .1605 -.321

0 G U
-.2221 .2221 -.2221
~.189 .189 -.189

| 1842 .1842 .1842

.1605 -.214 -..60S
.214 .1605 -.214
0 Y 0
-.1545 .1545 ~-.1545

~.05556 .05556 ~.0555¢
.0306 .0306 .0306

[I] 6x6
a 0] 1
0 -2 0
0 0
0 { 0
0 : :
-7667 0 0
.321 0
-.1605 0
0 -.1605
.2221 C
.189 0
.1842 C
.214 0
~.1605 0
) -.1605
, 1545 0
. 05556 0
.0306 0

)

0

(Cc.1)

Hh t:‘h rh Nhh i:.h
x n

[
-

iyl

L

i

(C.3)
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"L (C.2)




State Matrix, [A]:
(0] 5
-4 0 0
0 -1 0
[Al;={0 O 0
0 o0 0
0 o 0
0 0 0

Control Effort Matrix,

[ .1605
0
-.321
~.2221
-.189
| .1842

[B) {U}JIA-

[ .1605
0
-.214
-.1545
-.05556
| .0306

(Bl {(Uly ar=

161

Case (3) = Ix=Iz=Iv/2

[T] 6xs

0 0 0 o .. ©0..0

0 0 0 ’ 0 0

0 0 0o o0 : [ (C.4)
-2401 0 0 : 0 0

0 ~-4948.5 0 : : :

0 0 -7666 0 0 0]

[B](U}:
fl
-.321 -.1605 .321 0 0 Wf'

0 0 0 -.1605 .1605|| *=
~.1605 .321 .1605 O 0 fS.L(c.s)
.2221 -.2221 .2221 0 0 Wt;'

.189 ~-.18% .189 0 0 £,

.1842 .1842 .1842 0 0 |
;fs’
£,

-.214 ~-.1605 .214 0 0 }f *

0 0 0 -.1605 .1605}| %=
-,1605 .214  .1605 0 0 <fh,(c.5)
.1545 ~.1545 .1545 0 o |l£,
.05556 -.05556 .05556 0 o g,

,0306 .0306 .0306 0 0 |
Q,
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