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Abstract. Barrier calculations based upon solutions of the Liouville equation in
the coordinate representation reveal a complicated spatial dependence of the
quantum distribution function near and within the barriers. Within the framework
of classical transport this spatial dependence suggests equilibrium electron
temperature values that differ from the ambient. The prospect of quantum heating
and cooling under equilibrium conditions is examined and dispelled in favour of
an interpretation that includes density-gradient contributions.

1. Introduction position, as is the consequent electron temperature. For
quantum structures, in which quantum distribution

Calculations based upon solutions of the Liouville functions are required, e is generally spatially dependent
equation in a density matrix formulation yield a corn- [1], and on the basis of equation (1) suggests a spatially
plicated spatial distribution with a mean kinetic energy dependent equilibrium carrier temperature. Because of
in equilibrium that differs significantly from the classical the significance of carrier temperature in interpreting
result. In particular, where classical physics teaches that hot-carrier phenomena, the spatial dependence of the
the energy per particle is ks T/2 per degree of freedom for mean energy per particle, and the origin of this de-
a Boltzmann distribution, quantum physics, as pointed pendence is discussed through solutions to the Liouville
out by Wigner [1], teaches otherwise. The origin of this equation
difference lies in the presence of quantum mechanical ihcpoI& = [H, p.,] (2)
forces arising from gradients in density (Ancona and
lafrate, [2]), and are suggestive of a spatially dependent which in the coordinate representation is a differential
local temperature in both equilibrium and non- equation for p(x, x', t)
equilibrium cases, although spatial dependent carrier ap/at + (h/2rniXV 2 - V-2)p
temperature in equilibrium introduces interpretive dif-
ficulties. To avoid this difficulty one either abandons the -(1/ih)[ V(x, t) - V(x, t)]p = 0. (3)
spatial-dependent temperature description, or retains it To expose the essential features of this discussion, we
for non-equilibrium studies and seeks another descrip- assume Boltzmann statistics, spatial variations only
tion for equilibrium. But in either case, it is necessary to along the x direction, and free particle behaviour along
"0emonstrate its origin. This is provided below for the y and z directions. Transforming equation (3) to
equilibrium conditions, centre of mass and non-local coordinates, r = (x + x')/2,

C=(x-x')/2, p=p(r + C, r-), we find

2. Energy and temperature p(+(l/2mi)p,--(lIih)[V(r + C, t) - V(r-C, t)]p=0. (4) CO
In the above equation subscripts denote differentiation. r -

Classical physics indicates that the mean kinetic energy The potential V in equations (3) and (4) is the sum of all (.0 ,
in equilibrium for carriers obeying Boltzmann statistics is heterostructure contributions. Vo(x), and contributions

from Poisson's equation:

(E> = jJd3p(p2/2m)f(x, p) = jpk0 T (1) /1ax[c(x)c VlJax] -e'[p(x,x)-po(x)] (5) I -

where the subscript 'sc' denotes self-consistent; po(x) is V
-PC the background jellium' doping distribution. The dia- 0

where f(x, p) is the classical distribution function, and c, gonal components of solutions to equation (4) (along the
the mean kinetic energy per particle, is independent of diagonal r=x and C=O) provide the density, while the
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expectation value of energy <E> is obtained from the consistent with the condition of global charge ncutrality.
diagonal components of the kinetic energy dersity matrix Figure l(b) also displays two additional plots. lhe curve
[3] reaching the lowest value of density within the barrier is

E(r + C, r -- -/8mp. (6) obtained from the classical Boltzmann relation between
density and potential energy; the curve reaching inter-

An approximate form of the expectation values of the mediate values of density within the barrier is obtained
density and the energy density [1,4,5] for one degree of from equation (7). Note that away from the barrier the
freedom is: density from equation (7) approaches a value that is less

p(x) = p(x, x) = p. exp[- (V + Q/3)ikB 7] (7) than the classical value, a result that is a consequence of a
change in curvature of the potential as the boundaries are

E(x)= [(knT/2)+(h2 /24mkaT)V..]p(x). (8) approached. Neither approximate solution can be regar-

In equation (7), Po is a reference density, and Q(x) is the ded as an adequate representation of the complete

Bohm quantum potential (see, e.g., [6]): solution, although the quantum-corrected solution
possesses the general features of a density that is higher

Q(x)= -(h 2/2mXp" 2')../p" 2 . (9) (than classical) within the barrier and lower (than clas-

The second term of equation (8) is referred to as the sical) adjacent to the barrier. Figure l(c) displays the

Wigner contribution. In equilibrium the spatial de- potential distribution. The lowering of the potential

pendence of the energy per particle, z, as given by adjacent to the barrier (- 20 meV) is a consequence of the

equation (8) is second order in h. To this order, if the excess charge and self-consistency. Figure 1(d) displays

potential appearing in equation (8) is represented by the the quantum potential; note that its value is greater than

Boltzmann relation between density and potential -300meV in the centre of the barrier. The energy

energy, p(x)=p 0 exp[-V(x)/kRT], it is seen that the density matrix represents the curvature of the density

spatial dependence of e is a direct consequence of the matrix in the non-local direction. As seen in figure 1(a),

spatial derivatives of density. In this context the origin of the curvature is steeper where there is excess charge and

the quantum correction to e is the same as the origin of changes sign within the barrier. The mean kinetic energy

the quantum potential. per particle, c, obtained from the density matrix is
displayed in figure l(e), along with the Wigner con-
tribution as obtained from equation (8). It is apparent
that the main origin of the structure leading to the

3. Calculations Wigner contribution is the quantum potential The

negative value of z within the barrier and the positive
The spatial dependence of c and the origin of the excess value of energy adjacent to the barrier suggest
quantum contributions to transport arise'from gradients that the Wigner contribution is not a correction, but
in the carrier density. These features are illustrated represents a dominant effect, and that temperature con-
through solutions to the Liouville equation for two cepts (which must include negative values) are not likely
equilibrium solutions using Maxwellian boundary con- to be germane within the context of equilibrium
dition as discussed in [7]. Two cases are considered. For transport.
the first calculation a single barrier characterized by a The spatial dependence of the mean kinetic energy
potential per particle is also of significance in multiple barrier

Vo(x)= 300(meV)exp[-(x/12.5 A) ' ] (10) structures. This is examined for a double barrier
structure with

is placed within a uniform, 1500 A long, structure doped
to 10s'cm-1. The two-dimensional density matrix, Vo(x) = (300meV){exp[-(x-75A)/12-5A] 2

p(x,x') as obtained from the Liouville and Poisson +exp[-(x+75A)/12.5 A] 2 } (1A)
equations is displayed in figure l(a). In equilibrium the
density matrix is real and symmetric, p(xx')=p(x',x), The barriers are centrally placed within a 1500A
and the solution is completely represented by one-half of n + n- n + structure with adjacent 10" 8 cm - ' n * regions,
the matrix on either side of the diagonal, x = x', as and a centrally placed 500A, 10 " cm ` region. The two-
displayed in figure 1(a). The charge density p(x)=p(x,x) dimensional density matrix is displayed in figure 2(a),
is displayed as a line plot in figure 1(b), where since most obtained from the Liouville and Poisson equations.
of the structure in the solution is contained within a There is excess charge between the barriers, a modest
range of 250 A, about the centre, only 500 A of the results increase in curvature between the barriers and a change
are displayed. Figure 1(b) displays a significant reduction in sign of the curvature within the barriers. The line plot
of charge within the barrier, as well as charge accumula- of density is shown in figure 2(b) over a reduced range of
tion on either side of the barrier. While the reduction of 600 A. The density as obtained from equation (7) displays
charge within the barrier is a consequence of the presence a significantly lower charge density within the barrier but
of the barrier, the excess charge adjacent to the barrier is order of magnitude agreement within the quantum well.
a consequence of both self-consistency in the calculation The classical solution for density is completely unac-
and wavefunction (or density matrix) continuity across ceptable. The potential distribution, shown in figure 2(c),
the barrier. The spatial dependence of the charge is reaches flat-band beyond 400A on either side of the
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Figure 1. (a) Density matrix for a single- barrier structure. The physical dimension of the structure is 1500 X requiring that
the density matrix, which is calculated over a square matrix, is of side 1500OA/,/2. The centre of mass and non-local
directions are indicated; (b) diagonal component of the density matrix (- - -), from equation (7) ( --- ), classical relation
( - -- ); (c' potential energy V(x); (d) quantum potential; (e) energy per particle from density matrix (*--.from
equation (8) ---

origin; its increase arises from self-consistency and the energy per particle, as seen in figure 2(e). As in the case of
reduction of charge in the low-doped region compared the single barrier of figure I the calculations suggest that
with the bounding charge density. The quantum potent- the Wigner contribution is not a correction but repres-
ial displayed in figure 2(d) is positive within the quantum ents a dominant effect, and that temperature concepts are
well, and emphasizes the reduction in charge density not germane in the context of equilibrium transport.
compared with the classical value; it is negative within
the barriers, as in the case of the single-barrier structure,
and positive outside of the barriers. The positive value 4. Conclusions
outside of the barriers is a consequence of wayefunction
and density matrix continuity within the classically The calculations of figures I and 2 reveal significant
accessible region. Note again that the structure of the spatial variations in energy associated with density gra-
quantum potential is apparently the main origin of the dients. Mathematically, these energy variations, which
structure leading to the Wigner contribution to the are a consequence of wavefunction continuity as repro-
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Figure 2. (a) Density matrix for a double-barrier structure; (b) diagonal component of the density matrix f-- -). from
equation (7) (---), classical relation (--- ); (c) potential energy V(x); (d) quantum potential; (e) energy per particle
from density matrix (- - -). from equation (8) (----).
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