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EXPLOITING STRUCTURAL SYMMETRY
IN A SPARSE PARTIAL PIVOTING CODE*

STANLEY C. EISENSTATt AND JOSEPH Wt t LIU:

Abstract. This short communication shows how to take advantage of structural symmetry
to improve the performance of a class of partial pivoting codes for the LU factorization of large
sparse unsymmetric matrices. Experimental results demonstrate the effectivene.s ot this technique
in reducing the overall factorization time.

Key words. sparse LU factorization. partial pivoting, strectural symmetry

AMS(MOS) subject classifications. 65F05. 65F50

1. Introduction. Many implementations of sparse LU factorization with par-
tial pivoting compute the factors one row or column at a time. Each step involves
both symbolic operations (to determine the nonzero structurei and numeric opera-

tions. With the development of fast floating-point hardware and vector processors.
the symbolic operations have come to represent a nontrivial fraction of the overall

factorization time. Thus any sizable reduction in this symbolic overhead would have
a significant impact.

The technique of symmetric reductzon [41 exploits structural symmetry to decrease

the amount of structural information required for the symbolic factorization of a sparse
unsymmetric matrix (i.e.. for obtaining the nonzero structures of the factor matrices),
This has the practical advantage of decreasing the run-time.

In this short communication. we show how to use symmetric reduction to im-

prove the performance of a class of partial pivoting codes for the LU factorization of
large sparse unsymmetric matrices, in particular. Sherman's NSPFAC (a more recent
version of NSPIV [8]) and a code of Gilbert and Peierls (7]. For some problems the

speedup is more than a factor of two.
Notation. For an n x n matrix Al and two sets I and J of subscripts, we let

Mrj denote the submatrix of M determined by the rows in I and the columns in J.
As a special case. we let ,Il. denote the submatrix of If determined by the rows in
I.

We let G(M) denote the associated directed graph. Here edges are directed from
row to column: i.e., (r, c) is an edge in G(M) if and only if mrc is nonzero. We use

the notation r -M c to indicate the existence of an edge from r to c in G(M), and
Mr c to indicate the existence of a path from r to c. We also adopt the conventic

that i = i for any i.

2. Unsymmetric symbolic factorization. Let A be a sparse unsymmetr.
n x n matrix that can be decomposed (without pivoting) into L. U, where L is lowt ( "

triangular with unit diagonal and U is upper triangular. Let F denote the filled matm $0
L + U.
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Assume that we have determined the nonzero structurc• of the first k - I rows of
L and U; i.e., letting K 1..k - I } and k = ..... }it we know the struct ure
of

EK. = LK. + UK. L ( , K ))

The following result relates the structures of the rows L4. and U,. to the existence
of certain paths in G(UK.).

THEOREM 2.1 (see 17j). k i if and only if k in for some .n.
Thus. to determine the nonzero structure of Fk. LA.. - k.. we can search

G(U,..) for nodes reachable from some node n for which Uk,, 0

3. Two sparse partial pivoting codes. WCe fo us on two implementations of

sparse LU factorization with partial pivoting: Sherman's NSPFAC ia descendant (t
NSPIV r8l) and Gilbert and Peierls's code '7' (referred to here aL GP).

NSPFAC factors .4 by rows using column partial pivot tug. While computing f-.
it represents the structure of the current. partially fornted row olv an ordered. linked
list of subscripts corresponding to nonzero columns. The linked list is initialized to
the nonzero columns in Ako. For each nonzero t4., (in increasing column order . the

structural and numeric updates front t2 . to 1--.. are applied int a single loop. one
element at a time. The numeric update involves two levels of indirection.

Gilbert and Peierls [71 observed that it is not necessary to apply the row updates
in increasing order-any order consistent with a topoloqical order of G(UKK I would
suffice. They also noted that a depth-first search of G( UK.) starting from the nonzero
columns of ,4. gives the nonzero structure of Fk... and that a topological ordering
can be obtained as a byproduct. without additional work. Using this result. they
show that GP runs in time proportional to the number of floating-point operations.
a property not shared by other sparse partial pivoting codes.

In computing Fk..,i GP first does a depth-first search to compute the structure
of Lk. (but not Uk.,) as above. Then. for each nonzero t(., (in topological orderO. it
applies the structural updates from U,. to Uk. and the numeric updates from U,. to
FA. in a single loop. one element at a time.

To estimate the time NSPFAC and GP spend in nonnumeric computations. we
wrote a sparse LU factorization code (called NF) that uses a predetermined pivot
sequence and precomputed factor structures." By using the same pivot sequence and
factor structures as computed by NSPFAC or GP. we cat. measure how much time
would be spent if the nonnumeric operations involving symbolic factorization and
pivot selection were removed.

Table 2 gives the run-times 3 for ten problems from the Harwell -Boeing collection

[3]. For each test matrix A. the rows of the matrix were preordered by a minimutn
degree ordering of AAt, as suggested by George and Ng [5]. The results for the Sun
SparcStation/I show that the nonnumeric overhead can exceed 50 percent. For the

IAlthough GP computes the LU factorization by columns using row partial pivoting, to be

consistent we describe the Gilbert-Peierls approach by rows. In the numerical experiments. (GP
factored At rather than A.

2 NSPFAC scales rows by multiplying by the reciprocal of the pivot: GP scales columns by dividing

by the pivot. To make the comparisons fair, we used two versions of NF.
3 AIl programs were written in Fortran; use double-precision arithmetic; and were compiled with

optimization enabled (f 77 -0 (SCI.O Fortran VI.4) on the SparcStation! 1, xzf -0 (XL FORTRAN
Compiler/6000 Version 2.2) on the RS/6000).
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TABLE 1

Nonzeros in ortpgna and filled matrces.

Problem n nz(A) nz(FNsp) nz(Fcp)

GEMAT11 4929 33185 79774 79757
JPWH991 991 6027 134741 131502
LNS3937 3937 25407 403017 403520
LNSP3937 3937 25407 383313 383340
MCFE 765 24382 68288 68288
ORAN1678 2529 90158 262250 262365
ORSREG1 2205 14133 374957 374957
SAYLR4 3564 22316 624742 624742
SHERMAN3 5005 20033 409475 409475
SHERMAN5 3312 20793 242556 242556

TABLE 2

Time (in seconds) for NSPFAC/GP and NF unth the same pivot sequence.

SparcStation/1 RS/6000

Problem NSP NF I GP NF INSP NF GP NF

GEMAT1I 2.61 1,44 3.23 1.59 1.75 0.48 1.98 0.50
JPWH991 29.79 17.75 32.54 18.75 19.53 5.20 18.97 5.10
LNS3937 68.58 39.76 73.79 42.86 43.27 11.88 45.02 12.38
LNSP3937 63.34 35.16 65.42 37.92 38.38 10.58 39.77 10.98
MCFE 7,18 4.16 7.89 4.63 4.83 1.28 4.65 1,32
ORAN1678 32.17 15.64 29.41 16.81 21.82 4.87 17.78 5.13
ORSREGI 92.43 56.26 103.94 60.40 60.23 16.33 62.20 17.33
SAYLR4 168.39 102.90 189.65 110.18 110.07 29.80 118.82 30J78
SHERMAN3 97.31 58.60 107.58 62.70 62.88 17.10 65.18 17.32
SHERMAN5 42.50 26.01 47.98 27.88 27.90 7.73 29.25 7,92

IBM RS/6000 Model 320. which has relatively faster (with respect to the speed of its
integer unit) floating-point hardware. the nonnumeric overhead can exceed 70 percent.

4. Symmetric reduction. Theorem 2.1 characterizes the nonzero structure of
Fk. in terms of the structure of Ak. and paths in the graph G(UK.). But by removing
from G(UK.) edges that are not needed to preserve the set of paths, a process called
transitive reduction [1], we can decrease the amount of searching required to determine
the structure.

If we remove all such redundant edges, then we get the elimination dag (directed
acyclic graph) [6], the minimal subgraph that preserves paths. However, if we remove
fewer redundant edges, we will still preserve the set of paths. The search time will
be larger than for the elimination dag, but the total time (including the time for the
reduction) may be less.

Symmetric reduction [4] is based on structural symmetry in the filled matrix F.
The symmetric reduction of G(UK.) is obtained by deleting all edges (i, m) for which
eji * ui # 0 for some j < min{k, m}. In effect, all nonzeros to the right of the first
symmetric nonzero are deleted; if no such symmetric nonzero exists, then all nonzero
entries are kept. We denote the resulting symmetrically reduced matrix by UK..

Figure 1 shows the structures of two partial factor matrices FK,.. and FK,..,

where K 4 = {1,2,3,4} and K 5 = {1,2,3,4,5}. We use "o" to indicate a nonzero
entry in the original matrix, and "o" an entry that fills in. Since 241 * U14 is the only
symmetric nonzero pair in FK,,., only the nonzeros to the right of U14 are pruned

from UK4,. to get UK,.. On the other hand, there are two more symmetric nonzero
pairs in FK5 ,., 452 * U25 and 44 * u 4 5 , so that nouzeros are pruned in rows 2 and 4 to
get UK5 ,..
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2 • -2 •
oK4, •- UK4,. --

4 o o 4 a a o

2x j - K 23 •
FKs,. = 3 o o , 3 o

4 o * o )I
0 • 0 5 0 0 5 0

FiG. 1. An ezample to tilustrate symmetric reduction.

TABLE 3

Normalized time for the original and two modified versions of NSPFAC/GP.

SparcStation/ I IBM RS/6000

Problem NSP Red Mod GP Red Mod NSP Red ModI GP Red Mod

GEMATil 1.81 1.76 1.56 2.03 1.69 1.64 3.65 2.50 2.29 3.96 2.64 2.50
JPWH991 1.68 1.27 1.09 1.74 1.09 1.09 3.76 1.58 1.19 3.72 1.24 1.21
LNS3937 1.72 1.30 1.12 1.72 1.12 1.12 3.64 1.67 1.27 3.64 1.36 1.33
LNSP3937 1.80 1.32 1.12 1.73 1.14 1.13 3.63 1.68 1.29 13.62 1.36 1.33
MCFE 1.73 1.39 1.21 1.70 1.19 1.17 3.77 1.86 1.43 13.52 1.42 1.38
ORANI678 2.06 1.79 1.60 1.75 1.25 1.21 4.48 2.86 2.51 13.47 1.62 1.49
ORSREG1 1.64 1.27 1.07 1.72 1.08 1.08 3.69 1.58 1.17 13.59 1.20 1.18
SAYLR4 1.64 1.26 1.07 1.72 1.07 1.07 3.69 1.59 1.20 13.86 1.26 1.24
SHERMAN3 1.66 1.30 1.08 1.72 1.09 1.08 3.68 1.59 1.18 13.76 1.27 1.25
SHERMAN5 1.63 1.29 1.09 1.72 1.11 1.11 3.61 1.63 1.23 1 3.69 1.33 1.28
Harmonic Mean 1.73 1.37 1.17 1 1.75 1.16 1.15 3.75 1.78 1.37 3.68 1.40 1.36

Symmetric reduction preserves the set of paths in G(U) (see "4]). The argument

can be adapted to show that it also preserves the set of paths in G(UK.). The following
result is an immediate corollary of this observation and Theorem 2.1.

COROLLARY 4.1. k Fi if and only if k ---r- m n i for some m.

5. Numerical experiments. We incorporated symmetric reduction into NSP-
FAC and GP. In the process, we made a number of small modifications to the codes.

In NSPFAC, we split the innermost loop so that, when applying the update from
Uj. to Fk., we complete the structural update before performing the numeric update.
Furthermore, we removed one of the two levels of indirection from the numeric update.

In GP. we removed the structural update to Uk. from the innermost loop and
disabled the test for accidental cancellation, for otherwise symmetric reduction might
not preserve paths. Furthermore, we combined the symbolic computation of Lk. and
Uk. into a single depth-first search that computes the structure of Fk. using Corollary
4.1.

Table 3 presents the ratios of the run-times of the original and two modified ver-
sions of NSPFAC and GP to the corresponding NF using the same pivot sequence.
The versions labeled "Red" include only those changes needed to incorporate symmet-
ric reduction: the versions labeled "Mod" also include the changes that remove one
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level of indirection (NSPFAC) or combine the depth-first searches (GP). As in Table
2, the rows of each test matrix A were preordered by a minimum degree ordering on
AA t .

The results show a dramatic decrease in the overall factorization time. The re-
duction is more pronounced on the RS/6000 due to the relatively faster floating-point
hardwaxe. An even more dramatic reduction would be expected on a vector processor.

There are other ways to improve these sparse partial pivoting codes. One is to

use path-symmetric or partial path-symmetric reduction, as described in i4j. Another
is to switch from nodal to supernodal elimination [2,, which we expect will give a
substantial improvement. A code with these features is currently under development
by the authors.

Acknowledgment. The authors thank John Gilbert for making available a pre-
release of sparse Nlatlab, which was used to generate the row orderings for the test
problems, and for suggesting the notation used for edges and paths.
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