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1. INTRODUCTION

Thermoplastic filament winding can utilize in-situ consolidation as well as post-consolidation
processes. Recently, thermoset composite can also be cured during winding and tape laying. A schematic
of the winding process is given in Figure 1. In the process of in-situ consolidation, prepreg tow is
simultaneously heated, cured, and consolidated onto a substrate or mandrel at the processing temperature.
The temperature of each layer drops rapidly due to heat transfer into the mandrel or substrate and to the
atmosphere. In the traditional post-consolidation process, composite components are first wound and then
consolidated in an autoclave. Accordingly, the entire composite part is heated to the cure temperature,
held there for the appropriate length of time, and then uniformly cooled to ambient temperature.

Of critical concemn for creating thick-section composite components are the residual stress states
resulting from fabrication and their influence on the mechanical performance of the components. It is
important to urderstand the magnitude and distribution of these residual stresses since the stresses could
be large enough to cause initial failure and may significantly reduce structural performance.

During processing, thermal stresses in composite rings are developed due to anisotropic thermal
deformation and the so-called geometric effect arising from cylindrical geometry. The thermal residual
stress state in an in-situ consolidated ring can be modeled by sequential addition of layers at a specified

processing temperature with corresponding instantaneous thermal shrinkage or expansion of each layer.

Residual stress analysis usually assumes the entire structure to be subjected to a uniform temperature
change (Reuter 1973; Tamopol’skii and Bell 1983; Calius and Springer 1985; Hyer et al. 1986; Nguyen
and Knight 1988; Luo and Sun 1989). Such an anaiysis is appropriate only for prediction of residual
stresses in a post-consolidated ring and not for an in-situ consolidated ring. Cirino (1989) has proposed
an in-situ consolidation model for thermoplastic winding. The analysis simulates the winding process as
a sequential addition of concentric rings to the mandrel. Although Cirino’s model can predict the state
of stress in an orthotropic ring due to the effects of winding tension and consolidation, only hoop-wound

composite rings were considered.

We therefore first seek to develop a model which will predict the residual stresses in rings resulting
from the in-situ consolidation process for rings with variation of layer-to-layer material properties and fiber

orientation. Secondly, we investigate the effects of variation in processing approach, (i.e., post and in-situ




consolidation), material properties, and stacking sequence on the residual stress state in bidireciional

(0°/90°) composite rings.
2. MODEL DEVELOPMENT

The model employs a multiple-layer analysis formulation. Each layer of the laminated ring is treated
as an element with its own material properties. Both winding angle and material properties may vary layer
1o layer. In the formulation, thermal deformation is assumed to result from a uniform temperature change
in each layer; however, ply-by-ply variations in temperature change are allowed. The model also includes

the presence of the mandrel, which can greatly influence residual stresses in the ring.

In the post-consolidation model, it is assumed that all the layers undergo the same temperature change
simultaneously. For in-situ consolidation, each layer is assumed to undergo the temperature change
sequentially. Thus, for the in-situ case, the calculations are carried out N times (once for each of the N

layers) and residual stresses are then accumulated as each layer is added.

Assuming axial symmetry, the strain-displacement relationships for any layer in the laminated

composite ring can be expressed in cylindrical coordinates as follows (Nowinski, 1978):

du
e, =, la
T Tdr (13)
and
u
€4 = —, 1b
8=~ (1b)

where e, is the radial strain component, eg is the circumferential strain component, u is the radial

displacement, and r is the radial coordinate (Figure 2a).

Assuming plane stress conditions, the constitutive equations for an crthotropic material with thermal

anisotropy become (in the cylindrical coordinatcs):




(2b)

where E; and v,; are the corresponding direction moduli and Poisson’s ratios, o are the coefficients of
thermal expansion, and AT is the temperature change. Both the mechanical and thermal properties may
vary with fiber orientations from layer to layer.

The equilibrium equation is:

+ - 0, (3)

where O, and Oy are the radial and the circumferential stress components, respectively.

Substitution of Equation 1 and Equation 2 into Equation 3 yieids:

2
rzd u., rﬂ -k2y = C,rAT,

drz dr
where
k= E‘i
El’
and
Cp = (1 - Voo + (Vg - kg, 4)




The complete solution of Equation 4 consists of homogeneous and particular solutions as follows:

¢
1 -k?

u(r) = Ar¥ + Br* rAT, (5)

where A and B are constants to be determined.

From Equation 1, Equation 2, and Equation 5, the circumferential and radial stress components can
be derived and given by:

o, = AC;r*! + BC,r*! 4 C AT, (6a)
and
Gy = ACyr ! - BCyr ¥ 4 C AT, (6b)
where
Cq - Er(VOr + k)
(1 - vg,Vip) '
_ Evg- B
’ a- VorVie) ’
and
C, = Eg(ay - 0g)

(1-k?

material properties and geometry. The total number of constants to be determined for a ring of N layers
is therefore 2N.

Boundary conditions include continuity of radial displacements and radial stresses at all layer
interfaces, resulting in 2(N - 1) boundary conditions. Furthermore, surface tractions at the inner and outer
surfaces of the .ing complete the set of 2N boundary conditions needed to determmine all the constants AK
and BX.




The direct procedure to solve these simultaneous equations can be very tedious and time consuming.
A very effective method was developed to reduce the equations in half and also 10 solve the problem
systematically by computer. Consider the k-th layer in a multiple-layer ring. The radial displacements
at the inner and outer surfaces are by substituting the respective radii into Equation 5 as follows:

K K, .ok
u; B2 () |4k F(AT.r)

k] ek, ek o : M
U, £10) (T | B X F, (AT.r,)

L

f;; are

Where uik and uok are the radial displacements at the inner and outer surface of the k-th layer, f;

functions of radial position, AF and B¥ are undetermined constants, and Fik(AT .I;) and Fok (AT result

from the layer particular solution.

Solving for constants AX and B¥ in terms of the radial displacements at the inner and the outer
surfaces and substituting the constants Ak and B¥ into the Equation 6a yield the radial stress component

as follows:

Gf 81"1 (r.AT) glk,_ (r.AT) uik Gik(AT,r)
k = k k k + k ’ (8)
S, 831 (AT) g5, (WAT) | lu, G, (AT.x)

where g;; are functions of the inner and outer radial position and temperature, uik and u ok are the radial

displacements at the inner and outer surface of the k-th layer, and Gik(AT,r) and G ok(AT 1) (which can

be viewed as components of force vector in the finite element method) result from the particular solution.

The "r" in Equation 8 represents both the inner and outer radial positions.

Imposing the radial stress continuity boundary conditions results in a set of N + 1 simultaneous

algebraic equations which can be expressed in matrix format as fotlows:




STRRSPIR ST RS Ky
ka1 Kz Koy |JUa | fko ¢ ©
k31 k32 Kag~||Us k;

b .
— - N\ E,

where k;; terms are functions of the radial positions and temperature differences for each layer, and U; are

the radial displacements at the layer interfaces and the surfaces of the ring. The k; are obtained from the

particular solution. Equation 9 can be readily solved for the larger displacements. Once these values are

in hand, radial and circumferential stresses for each layer can be computed from Equation 8.
3. RESULTS AND DISCUSSIONS

Thermal residual stress predictions were developed for a 100-layer composite ring with an inner radius
of 88.9 mm (3.5 in) and a outer radius of 101.6 mm {4.0 in) (i.e., r/t = 8.0). Two layups were considered:
all hoop {(90)100] and [(90/0/90)33/90}. Two material systems, "Graphite/TP" and "Glass/TP" composites,
were examined. Table 1 lists the relevant material properties for these two material systems. Predictions
were made for two processing conditions: post- and in-situ consolidation. Therefore, a total of eight

conditions were studied.

The processing temperature for thermoplastic composite (such as PEEK, PEKK) is approximately
350° C. Accordingly, residual stress was calculated by assuming the rings to be subjected to a temperature
change of -320° C. For the post-consolidation simulation, a uniform temperature difference was applied.
For the in-situ consolidaticn simulation, the temperature difference was applied to each layer as it was
added, and the final residual stress state was obtained by accumulation of the stresses calculated. The
stress results were normalized by o, EAT for the composite material used in the analysis. Predictions of

the model were verified by checking overall requirements as foilows:

1. The circumferential stresses were integrated through the thickness of the ring. The stress resultant

thereby computed must vanish since the ring was not externally loaded (Figure 2a).



Table 1. Material Properties

ﬂ Graphite/TP Composite :

Longitudinal Elastic Modulus, E, 135 GPa
Transverse Elastic Modulus, E,, E, 9 GPa
Poisson’s Ratio, v, 0.30
Poisson’s Ratio, v,, 0.30
Poisson’s Ratio, v4y 0.02
Longitudinal Coefficient of Thermal Expansion, o, -0.5 x 10° F°C
Transverse Coefficient of Thermal Expansion, oy, ay | 30. x 10 °C
Ply Thickness 0.127 mm
s
Glass/TP Composite :
Longitudinal Elastic Modulus, E, 60 GPa
Transverse Elastic Modulus, E,, E, 10 GPa
Poisson’s Ratio, v;, 0.27
Poisson’s Ratio, v,4 0.30
Poisson’s Ratio, v4, 0.045
Longitudinal Coefficient of Thermal Expansion, a, 3.5 x 109 °C
Transverse Coefficient of Thermal Expansion, oy, a3 | 30. x 10 PC
Ply Thickness 0.127 mm

2. A free-body diagram of one-half of the ring shows that the radial stress resultant at the interface

of the inner and outer rings must balance the resultant of the circumferential stresses in the free-body
diagram (Figure 2b).

3.1 Resuits for Post-Consolidated (Hoop-Wound) Case. Figures 3 and 4 show the normalized radial

and circumferential stress distributions resulting from post-consolidation in the hoop-wound Graphite/TP
and Glass/TP, respectively. The stress distributions are very similar for these two cases. For exampie,
the circumferential stress is tensile at the inside radius and gradually changes to compression at the outer

radius. The radial stress is tensile through the thickness for both material systems.




The coefficient of thermal expansion (CTE) of Graphite/TP is negative in the fiber direction
(ie., 0g < 0). Accordingly, an all-hoop wound graphite ring expands in the circumferential direction
(i.e., € > 0) when it is cooled down from elevated temperature. The positive CTE in the radial direction
results in shrinkage in thickness and causes a gradient of the hoop strain through the thickness. Thermal
residual stresses result from the anisotropy in CTE and moduli in the radial and hoop directions. The
hoop stress is tensile at the inner radius and compressive at the outer radius. In addition, the radial stress
will be tensile throughout the thickness.

The residual stress in the Glass/TP ring is also due to anisotropic thermal shrinkage as well as moduli
in the radial and circumferential directions. Although both the radial and circumferential CTE's of the
Glass/TP are positive, the residual stress distribution is quite similar to the distribution of the Graphite/TP
ring. However, the magnitudes of the residual stresses are smaller since the anisotropy of the glass

material ring is small compared to the graphite material.

3.2 Results for In-Situ_Consolidated (Hoop-Wound) Case. Figures S and 6 show the normalized

radial and circumferential stress distributions in all-hoop wound rings subjected to in-situ consolidation

for Graphite/TP and Glass/TP, respectively. Mandrel effects were not considered in the analysis.

The difference in residual stress states for the two materials is primarily due to the sign of the
tangential CTE. The negative CTE of Graphite/TP causes circumferential expansion as the layer is cooled.
Therefore, the circumferential stress is tensile at the inner radius and compressive at the outer radius of
the ring. From the radial force equilibrium shown in the free-body diagram in Figure 2b, the radial stress

is shown 1o be tensile through the thickness.

For the Glass/TP case, the layers shrink in both radial and circumferential directions as they are cooled
on the substrate. The thermal shrinkage compresses the ring, resuiting in compression in the
circumferential direction. In addition, the radial stresses are compressive through the thickness. The

circumferential stress in the outer radius is shown to be tensile to satisfy equilibrium (Figure 2a).

In-situ consolidation is shown to yield lower magnitude residual stresses in the outer region of the
rings as compared to post-consolidation. The in-situ process is thus particularly suitable for materials with

positive CTE’s (such as Glass/TP) since the shrinkage will aid in consolidation. In contrast, the expansion




of graphite fibers in the circumferential direction (fiber direction) may result in tensile radial stresses
causing poor bonding and low shear strength of the ring.

3.3 Results for Post-Consolidated (Bidirectional-Wound) Case. The normalized radial and hoop stress
distributions for Graphite/TP and Glass/TP rings with [(90/0/90)33/90] layups resulting from post
consolidation are shown in Figure 7 and Figure 8, respectively. Residual stress states for these two
material systems are quite similar. For example, the circumferential stresses are discontinuous and vary
with fiber orientation through the thickness. A dramatic variation of circumferential stresses exists at the
interface between the 0° and 90 layers due to the anisotropy of the CTE's and moduli. The radial
stresses are continuous thr;ugh the thickness; however, substantial variation also exists through the
thickness. The through thickness variation of the radial stresses results directly from the variation of the
circumferential stress in the layer. The phenomena can be explained from the radial force equilibrium as
shown in Figure 2.

For polymeric composite materials, the CTE is generally considerably greater in the direction
transverse to the fibers than in the fiber direction (al << a2). 'Accordingly, tensile circumferential stresses
must occur in the 0° plies for both Graphite/TP and Glass/TP. Due to the polar geometry and thermal
shrinkage in the ring thickness direction, the circumferential stress shows a gradient through the thickness.
The stress gradient yields tensile circumferential stress in the inner region and compressive circumferential
stress in the outer region. Because the tangential modulus is higher than the transverse modulus, the
circumferential stress gradient is larger in the 90° layers than in the 0° layers. The radial stress component
shows a greater variation at the outside radius than at the inside radius since it depends directly on the

circumferential stress.

It is concluded that the shrinkage of ring thickness due to the positive CTE will always result in
circumferential stresses with tension at the inside radius and compression at the outside radius for a ring
processed by post consolidation. The circumferential stress distribution generates a moment and causes

the ring to close if it is cut. The radial stress is tensile to balance the circumferential stress resultant.

3.4 Results for In-Situ_Consolidated (Bidirectional-Wound) Case. Figures 9 and 10 show the
normalized -adial and circumferential stresses in the Graphite/TP and Glass/TP rings with [(90/0/50)33/90]

layups subjected to sequential addition of layers undergoing instantaneous temperature change. The

resulting stress distributions for these two cases are very similar. The circumferential stresses are




compressive at the inside radius but gradually change 1o tension at the outside radius. The radial stresses

are compressive throughout for both rings.

As discussed previously, the residual stress state due to the in-situ consolidation results directly from
the difference in the tangential and radial CTE’s. For the Graphite/TP ring, the 0° layers shrink while the
90° layers expand in the circumferential direction as the composite layers cool. For the Glass/TP ring,
both the 0° and 90° layers shrink since the CTE’s are positive in both directions. The Graphite/TP CTE’s
are more highly anisotropic; therefore, the residual stress state of Graphite/TP ring shows more

perturbations.
<+

The total residual stress state is a summation of the contributions from all iayers and thus should
correlate with results for average material properties of the rings. The averaged CTE’s were found to be
positive in both the circumferential and radial directions for these two rings by using laminate theory.
Accordingly, the stress state variations are quite similar for these two material systems but different in

magnitude.
4. CONCLUSIONS

A thermomechanical model has been developed to predict the residual stress state in laminated rings
subjected to sequential addition of layers undergoing instantaneous temperature change and comresponding
thermal deformation. The model accounts for the ply-by-ply variation of material properties and fiber
orientations. A very efficient numerical technique has been developed and applied to solve the
multilayered ring problems of hundreds of layers. This involves the solution of a system of algebraic
equations equal to the number of layers plus one. The numerical method is particularly useful for

simulation of in-situ consolidation processes for hundreds of layers.

Significant differences in the residual stress state were found between rings created using the post- and
in-situ consolidation processes. The distribution of stress for post-consolidated rings (e.g., Graphite/TP
or Glass/TP rings with all-hoop or bidirectional layups) will always be tensile circumferential stress at the
inside radius and compressive stress at the outside radius. A net moment results from the circumferential
stress distribution causing ring closure if the ring is cut. Radial stresses are tensile for post-consolidated
rings regardless of material or layup. The tensile radial stress state may result in delaminations during

manufacturing due to the relatively low transverse strength of the material.

10




The thermal residual stresses for the rings processed by in-situ consolidation are reduced compared

to post consolidates since the composite is cooled layer by layer with minimum curvature effects. For the
Glass/TP rings, the positive CTE's in both fiber and transverse directions cause compressive radial stress
in both hoop- and bidirectional-wound rings. The circumferential stress is compressive at the inside radius
and tensile at the outside radius. Accordingly, a net moment results such that the rings may open if they

are cut.

For the hoop-wound graphite ring (which has negative CTE in the fiber direction), the hoop layers
expand as they are cooled. The expansion in the circumferential direction results in tensile radial stresses.
The tensile radial stress is critical since the strength of composite may be very low during consolidation.
The circumferential stress is tensile at the inside radius and compressive at the outside radius due to force
equilibrium. For the bidirectional-wound graphite rings, the residual stress state depends on average
properties of the ring. The averaged CTE's are positive in both circumferential and radial directions;

therefore, thermal stress distributions are similar to the bidirectional-wound glass ring.

A fundamental understanding of the thermal residual stress was obtained for post- and in-situ
consolidation although the analyses do not include the effects from the winding tension and mandrel. Both
the material properties (Table 1) and fabrication methods are shown to have great influence on the residual
stress state. The developed model may be used for choosing layup construction, materials, and

manufacturing process to achieve minimum residual stress state.

11




Axial (0°)

Hoop (90°)

Preheating

e

w
winding Tension

Nip-point heating

Figure 1. Schematic of the in-situ consolidation winding process. For the post-consolidation winding
process, components are consolidated by using an autoclave.

12




(a)
' i i I
C T T C
(b)

Figure 2. (a) Self-equilibrating condition of circumferential stress. (b) Frec-body diagrams for layer-
by-laver force balance of radial and circumferential stresses in a two-layered ring.
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