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Abstract

In our work we introduce a framework for exploring array detection problems in a reduced
dimensional space by exploiting the theory of invariance in hypothesis testing. This involves
calculating a low dimensional basis set of functions called the maximal invariant, the statistics
of which are often tractable to obtain, thereby making analysis feasible and facilitating the
search for tests with some optimality property. Using this approach, we obtain a locally most
powerful test for the unstructured covariance case and show that the Kelly and AMF detectors
form an algebraic span for any invariant detector. Applying the same framework to structured
covariance matrices, we gain some insights and propose several new detectors which are shown
to outperform existing detectors.

In this final report we explain the key components of this work. The most detailed compi-
lation of our work to date is found in a recently submitted paper [7], a copy of which we have
enclosed.

Introduction

The problem of detecting a signal vector of known direction but unknown strength in Gaussian
noise whose covariance matrix is unknown has received much attention lately. In [6], Reed et al
used the sample covariance estimate from secondary (signal free) data vectors to derive a weight
vector for use in an adaptive matched filter (AMF) detector. Kelly[2] used the Generalized
Likelihood Ratio (GLR) procedure to derive a constant false alarm rate (CFAR) test. Both
methods assume that the covariance matrix is completely unknown (unstructured). In many
applications, however, the array geometry and partial information of the noise environment
(number of interferers, rough bearing estimates etc.) impose a structure on the covariance
matrix. It has been shown in [1] and [3] that the use of structured covariance estimates results
in a significant improvement in performance in terms of gain in PD and reduction in the number
of secondary data vectors required.

In this research, we introduce a framework for studying the optimality properties of these
tests. We consider the following structure for the covariance matrix:

R = 41B91H + ARo (1)

where R(N x N) is the covariance matrix, 41(N x d) spans a rank-d subspace and R0 is a known
covariance matrix. For this research, we assume that qI is known while B and A are not. This or .
structure not only corresponds to the case of a low rank interference component in a dominant
subspace (which frequently arises in narrow-band processing when the noise has an interference
component due to a small number of sources superimposed on the receiver noise which is usually 0

white); but also as a special case reduces to the unstructured matrix when d equals N. We shall
therefore work with this model to obtain general results which can then be applied to specific------------
instances. By
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Another case is the block diagonal form for the covariance which may be used to model a
non-stationary environment.

Unfortunately, it turns out that for these covariance structures, with the signal bearing and
waveform known, it becomes intractable to use the GLR procedure to obtain a test statistic.

Consequently, we approach signal detection from the viewpoint of the general theory of
hypotheses testing. We model the signal strength p as deterministic-unknown. This along
with the unknown covariance matrix become the parameters describing the distribution of the
observed data vectors. The problem of signal detection becomes one of choosing between two
disjoint parameter sets based on the observations. Thus we have the following hypothesis esting
problem:
Given

XN.L -/(puaeH, R 0 1) (2)
where the columns of X are independent data vectors each normally distributed with covariance
R as in (1), a is the signal vector (known), possibly present only in the first column and jp is its
strength (unknown).
Test
H -:y = 0 versus Hi : j, $ 0

Note that the covariance is a nuisance parameter which should not affect the decision statis-
tic. This motivates us to reduce the problem as follows. Transformations on the data that
induce transformations on the parameters to which the parameter sets are invariant leave the
decision problem unchanged. Therefore, the decision statistic should also be invariant to all
such transformations. More concretely, this can be formulated as follows:

Let X be the data characterized by the probability distribution Po, 0 E fQ and let g be a
1 : I onto transformation on the sample space such that gX is distributed as P9,, 0' E 2. This
transformation thereby induces a transformation on the parameter space. It is shown in [41
that the set of all transformations g, such that the corresponding induced transforn.ation DJ is a
1 : I map of S onto itself, form a group.

The decision problem Ho : 0 E £0 vs HI : 8 E Qi
is invariant to the group of transformations, G, if gQi = Qi i = 0, 1 for all g E G. In that case
we require the decision statistic to be invariant to all transformations in G.

This principle of invariance (Lehmann[4) greatly reduces the class of detectors to be con-
sidered and frequently, it may become possible to find a uniformly most powerful test within
this smaller invariant class (UMPI), even though no general UMP test may exist. Often, the
GLR procedure leads to such a test. In our case, since the GLR is unavailable, we proceed by
deriving the group of transformations that leave the problem invariant. From this, we obtain
the maximal invariant, which is the algebraic basis for the largest set of independent functions
of the data that are invariant to the transformations. These functions separate the sample space
into orbits or invariant subsets. Thus, M(X) is a maximal invariant iff

M(X) = M(g(X)),Vg E G (3)

M(XI) = M(X 2 ) X 1 = g(X 2 ) for some g E G

It is shown in [4] that all invariant test statistics are functions of the maximal invariant, whose
distribution depends on a reduced parameter set (this may eliminate the nuisance parameters
from the problem, which is a very desirable feature). The maximal invariant turns out to be a
small set and it is feasible to come up with a reasonable test statistic.
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A Maximal Invariant Framework

To begin, consider as a special case of (1) the following structureR (Rp 0 (4
0 ( O'(Vd)L )(4)

This is completely equivalent to equation ( 1) with Rp = B + a2 I, since it can be obtained
by a known Linear transformation on the data. Again, for the same reason, we can assume the
following form for the signal vector, a, and partition the data matrix accordingly:

a, X £11 £12
0 X:21 X-22

a2 X31 32

0 X41 -42

where xl is 1 x 1, x2 is 1 x (L - 1), x., is (d- 1) x 1, x31 is I x I and x,1 is (N -d) x I

We can represent this matrix as a length-NL vector

I11
X21

(X12
vec

k X22 (6)
X31
X41

v ec (X12)
where vec(A) = [A{ Af ...H AH]H for A = [Al :.A.2 AN]

This is distributed as a Gaussian vector with mean jua and covariance diag(R¢0!L a2I(N-d)L)
where 0 denotes the Kronecker product.

This decision problem is invariant to all transformations which preserve the Gaussian nature
of the distribution, the mean vector to a scale factor and the structure of the covariance matrix.
The largest group of such linear transformations are given by T(x) = Gx where( ,. 10 U )

C= ofo)0 (7)
0 0 u 2

where U1(L - 1) and U2((N - d)L - 1) are unitary matrices, 13H is (1 x L - 1) ai d F is
(N - 1 x L - 1).

We show in [7] that the maximal invariant to this group of transformations is given by

'II2(-l X H nX -2 2X ,) 2l ?21 / -- 22!,2 2 22 / 12

H H -1I
m 2 = x(X22X22) X21
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M3 X31It
m3  = lx'l +llx i II112 x21

IX3 2 + IIX41 11' + 11 X4 1'
m4 X 12 X(X H2 2)X 2 1  (18)

X31

A corresponding maximal invariant in the parameter set is given by

01= 1 a,I 2 (R 1
-

02 = o2 (R, ) 1  (9)

Thus we have greatly reduced the dimensionality of the problem. We obtain the density
function for the maximal invariant [7] which is now parameterized by 01 and 02 above. We show
there that no UMP test exists for this problem. Further, since 02 is a free parameter even under
HO, the distribution function of the maximal invariant is not completely specified thereunder and
hence an invariant decision statistic will, in general, not have the CFAR property. Approximate
CFARness is all one can hope for.

For the unstructured case, the maximal invariant reduces even further, to nZ, and rn2 and
the corresponding parameter set to a single parameter 01 (which is the SNR). The distribution
function under HO only depends on the dimension of the data set, and so in this case. any
invariant decision rule will be CFAR. Again, in this case no UMP test exists. However, in
many applications the performance is critical only for low SNR and a locally most powerful
invariant test(LMPI) in the limit of zero SNR is of interest. Since, the parameter space is one
dimensional, it becomes feasible to obtain the LMPI test statistic following the theory in [5].
The LMPI decision rule in the limit of Oo is given by:

60 - 0 > (10)
feo iiHo

where f is the density function of x with parameter 0.
In 17] we derive the following density function for m, and m 2 :

f(m,m) = k, G + M2) +m 2 )N._2 e- +tT-3
(I + 771, + m 2 )L-Ne

L-N O1nz ()

Sk((1 + m 2 )(l + , + )
k=O

where ki = L-i! and k2  L-NN-2!L-N-I! an 2-L-N-k!k!

Applying the rule in (10), we obtain the following T"r'T tcst:

(L- N)tK - 1 H(>r (12)
(1 + m2)(tK +. 1) H0o

where tK = m/(1 + n2 ) is the Kelly statistic.
The pfa is closed form [7], and the detection probability is calculated numerically as a finite sum
of simple integrals. Preliminary comparsons with the Kelly statistic indicate a slightly better
performance at very low SNR (a gain of 0.1 dB for N = 4, L = 9, pfa = .1 at -5dB SNR)

4



at the expense of a degradation in the higher SNR region (0.3dB loss at 10dB SNR). Further
simulations are shown in !71.

Finally, we note that m, is exactly the AMF statistic and the Kelly statistic is ro,/( I + rn2).
Thus these two form an equivalent basis set to in, and in2 . This implies that they form an
algebraic basis for all invariant detectors and in searching for viable detectors, it is sufficient to
look at compositions of them. It is not necessary to explore alternative ways of projecting down
the initial raw high-dimensional data.

Detectors for subspace covariance structures

We consider above the case when the matrix is unstructured, as per Kelly and Reed. We saw that
the Kelly and Reed tests are both equally valid since they are basis functions for all invariant
detectors. We also found the LMPI test. We extended our work to the subspace structured
covariance case [7]. This problem is important for enhanced detection because exploitation of
covariance structure allows one to converge to reliable detection with fewer snapshots. ROC
curves are shown in [7], which demonstrate that the invariant tests outperform previous ad hoc
solutions.

Conclusion and Comments

Detection in an array environment involves projecting down the multivariate data to a scalar
statistic. Since any reasonable statistic must satisfy the invariance criterion, the maximal in-
variant set specifies all the functions one need consider in devising the detector. Since this set is
often small, it is feasible to do analysis and search for a detector with some optimality property
with the confidence that the search is over the whole class of reasonable detectors. This frame-
work provides an alternate route to conventional methods like the GLRT for arriving at decision
rules and further enables the study of their optimality properties. Thus, for the unstructured
covariance case studied by Kelly and others, we show that the Kelly and the AMF statistics form
a maximal invariant set. Further, we show that a UMPI does not exist and obtain a LMPI test
around 0 SNR. The Kelly detector is seen to perform nearly as well which is a good endorsement
for its use. For the structured covariance case where the GLRT breaks down, we again obtain a
small invariant set whose statistics can be analyzed. For this case, the UMP test does not exist.

We have derived extensions [7] of our test for cases when there are various unknown param-
eters in the target signal waveform and/or bearing. This has relevence in applications involving
range migration such as occurs with accelerating targets. We are in the process, under a new
AFOSR grant of (i) extending our work to testing for spatial stationarity as arises in faulty
sensor and/or near field source detection, and (ii) applying our tests to real data.
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