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SUBMARINE INTERNAL WAVES

by
E.O. Tuck
Applied Mathematics Department
University of Adelaide
S.A. Australia

A report on a research project carried out during February-March 1992
at DSTO-Salisbury in collaboration with the following DSTOQ staff:
D. Cartwright, R. Webster. G. Furnell, A. Legg. D. Madurasinghe.

Abstract

Details are provided of research directed towards the development of the computer pro-
gram WAKE for predicting the internal waves produced by the passage of a submarine in
a density stratified ocean. The research was undertaken within DSTO during the period
February-March 1992. The report takes the form of a series of appendices (presented in
chronological order), which provide a record of the progress of the research during that
period. Results are presented which indicate that a representative submarine produces
internal waves which have a velocity magnitude of about one millimeter per second.



Summary

In lare 1991. 1 agreed 1o undertake an investigation for DSTO of subnarine wakes with
emphasis on the internal waves generated by the passage of the submanine throngh a srrar-
ified ocean. The primary rask was to compute these mternal waves for a givea subanarine.
and this task was completed in the period Februarv-March 1992, Resvarch assistaice was
provided by Graham Furneil and Tooy Legg of DSTO. and programming assistance by
Michael Carroll of Ebor Pty Ltd. Additional advice and guidanee was provided v David
Cartwright and Dan Madurasinghe of DSTO.

This report is in the form of a collection of Appendices. These are presented in
chronological order. giving a record of progress as the project unfolded  Not all of the
Appendices are of equal miportance. and sone are preliminary or rentarive. i part super-
seded bv subsequent work. All are neveretheless included. to give an acceurate impressinn
of the character of the project.

Appendix 1 is the most important. setting the stvle and backgrouud for the project
This Appendix was actually wrirten before the main project commenced. Appemshix »
is also verv important. since the project follows similar pathwavs 1o the Canadian «fforr
headed by Dawson and Hughes. There are many things that could nor be done or done
sufficiently thoroughly in the very short time available. Some of these could make good
topics for furtver studies. Appendix 13 is a partial list of these topies. Appendix 15 s a4
very preliminary report of final results. It had ro be left till the verv inst. and s presented

in the form mostly of graphs with hand-written annotation. A more complete sunimary of

results may be presented later.

The bottom line is that a submarine at representative depths and speeds in a represen-
tative stratification makes internal waves of a velocity magnitude of about one aullimeter
per second. This sounds small. and is. although (because of the fnng wavelength and large
period - about 20 minutes - of the internal wave: 1t does correspond to actual particle
displacements of the order of abour one metre. These resuits are of the order of magmtide
of those reported elsewhere. They mav or mav not be detectable. at least indirectiv. e.g.
via bunching of capillaries. Our program allows parametric study of various submarine
shapes. sizes. depths and speeds. and of various stratifications.
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Appendix 1: 10 February 1992

Source in Stratified Fluid

Some preliminary notes on internal wave generation. actually prepared by EOT prior
to commencement of project.

1. Basic equations.

Let the fluid velocity vector be @ = (U7~ 0, o, . u) where o = oir oy 2} and v =
wi{r. y. 2} are small. That is. the flow is a small perturbation ro the umiform stream U
the -+r direction. The above representation implies that the s-component of the vorriejry
is zero. but other components are not: the flow 1s not irrorational. and ¢ 15 not u velocy
potential.

Now the continuity equation is

O:I“Oyu"u'::“ 11‘

and there is a second equation of motion for a stratified medinm with density 5= poziof

the form

,)I

P .
Wry = Opye = ~—10zy = KU 1.0
?

where x = g/U?,

il am not too sure about the reference status of this equation. Later tnsertion In
fact. I now believe that it 1s well documented and dertved in C.-5. Yih's 1955 book. se
bibliography. Appendiz 2. It seems to be used by people such as Keller. but withour
derivation. I have derived it myself in two quite independent wavs. getting the same answer.
First by linearising the Euler equation - straightforward and boring. Second by considering
an ocean consisting of many lavers of uniform densitv fluid with standard Kelvin linearised
free boundary conditions at the interfaces. then letting the laver thicknesses tend to zero.
Incidentally. the so-called Boussinesq approximation seems to be to drop the term on the
right in @,r. but | see no reason to do that ]

Our task is to solve these equations in z < 0 subject o the free surface condition

Orr + R =0 (1.3)

at z = 0. and (for an infinitely deep ocean) 0. — 0 as : -+ —x. Note that the free
surface condition (1.3) follows from (1.2) by requiring the coeflicient of the density gradient
to vanish. which is as it must be. since the free surface is just a step discontinuity in density.

Actually. we don't want to solve (1.1) evervwhere: instead we want to allow a source
ar {0.0. —h). Hence we should replece the zero on the right hand side by a delta functio..
&x).4y).¢{z+ h). Equivalently. we necd solurions of (1.1) possessing suitable singularities
at this point. see below.




2. Fourier Decomposition

v= / / TNl i dads 2.1
S I SN N

Write

and

1 ~ x
U= F—;/ / ¢ (o d dad 3 P22

Then (with &* = o + 3% and using a dash for d/dzi. (1.1} gives W' = k%¢ while 1.2
gives

W =0-Zuy ERY
Y (5 2

Then. eliminating ¢. we have an ODE for " = Wiz} namely

!

JET1 AR | ST L T (.4
U
or
U — (kPp—ap i =0 (2.5)
where
g = Kkk? a® = ksec’ ¥ 12 86

with a = kcos@.

Equation (2.3) is a straightforward variable-coeficient second-order ODE. and 1s 1o
be solved subject to suitable free surface and bottom conditions. The former is just the
Fourier transform of (1.3). which leads to

W' =gl (2.7}

at z = 0. The bottom condition is best expressed by assuming that the density 15 uniform
below some level H. in which case the solution to (2.5) for < —H is proportional ro %%,
Hence in that range

W= kW (2.5}

and the appropriate bottom condition is then that {2.8) also holds at = = — H for solutions
in z > —H. Of course if there were an acrual Har imperueable sea floor at = —~H. (2.X)
would be replaced bv H™ = 0. but we shall use (2.8).

Non-trivial solution of the ODE (2.5) subject to both the free surface condition (2.7}
and the bottom condition (2.8) is not possible in general. but is possible (at fixed 7} for
special values of the wave number k. i.e. for eigenvalues k = K, (r). ) =0.1.2.. ... There
is always at least one eigenvalue k = Ky(o) = 0. where the solution is just proportional to
W = ek, as is immediately apparent from the form (2.4) of the ODE. even if the density is
an arbitrary non-constant function of z. If p is constant. this is the only solution. and is the
usual Kelvin surface wave. If p is not constant. there may be more solutions ) = 1.2, . .

D4




and these are what are called internal waves The relationstup £ = R, (o) is a form of the
dispersion relationship for the ;'th internal wave.

3. Solution Method for Sources

Although there are manv direct methods for solving the above vigenvalue problem f
all thar we needed was the dispersion relation & = R, (7). the following indirect method 1
preferable if we need solutions for sources.

Suppose W = Wi(z) and W = WH(2) are two separate solutions of (2.5, detined as
follows. For 117, we satisfi- the borrom boundary condition «2.0% but nor the free surface
boundary condition (2.7}, and normalise {arbitrarilv) the value of 1V ar the bortom
obtaining an initial value problem to be solved upward in : > ~H. starnng with the
initial conditions

Wit H) =e 4

3.1
W{(-H) =ke™*H

at = —H.

Similariv. 115 satisfies the free surface condition i2.77 but not rhe bortom conditnon
(2.8}, and is normalised (arbitrarilv) to the starting value —1 at 2 = 0. Then we soive
downward for 11{z) as an initial value probleni in > < 0. starting with rhe mitial condinons

o (0) =~ 1 o
U0y =~a -
at - = 0.

Each of W and ', always exists for any choice of k.~ for reasonable pizi. and i
readilv computed by any standard ODE-solver numerical package. Unless & and o are
connecred by the dispersion relation. 7 and W are linearly independent of each other.
but if it happens that k = K,{c). they must be proportional to each other. since then and
only then can both boundarv conditions ve satisfied by the same funcrion.

The Wwronskian #7175 — W5 I] must be inverselv proportional to the density pisi a
standard property of variable-coefficient equations like (2.5}, so we can write for all -

Wilz)Wy(z) — Wa(z)W(z) = Dp(—hj pl 2} (3.3

for some constant D = D(k.o). the value of the Wronskian at = = —h. Now consider the
following disconrinuous solution of {2.5). namely:
. -Vl (z). if2< -k g
Waolzj = 2 ! RN
ne {41 H=mWy(z) if —h<z<0, A

{Note that Wo. like 147 and W5, depends implicitly on the parameters k and 7 as well as
the coordinate z. and will be displaved as 185,(z: k. 7) whenever it is necessary to indicate
that dependence.] The function VW, (2) satisfies both houndary conditions (2.7} and (2.5).

by construction. Its derivative is continuous across z = -—h. whereas its value jumps by

é




Wol—h + 0= Wa(—~A -0) = D. Hence W{z} = Wa(2) D 15 the required discontimuons
solution for a unit source. which must have a unit-magnitude jump across @ = -4

The important point is that D = 0 when & = K, (o). Thar 15 hnear independence
fails when the Wronskian vanishes. Hence Dik. o) = 0 ix an tunplicit form of the dispersion
relation. and thart relation can be determined by numerical olution for W'y and W and
hence for Dik. o). The solution Wy ix well defined and bounded for all k. & values. Henee
the source solution W' D is singular. with a pole wherever D = 0. ve. wherever k = K i}

‘Figure 1.1 s a sample plot of the Wronskian Dk ) (see (F40 at 2= ~h versus b
at vartous o. Note the value where D = 0. See Fiqure 6.1 for the corresponding dispe raon
relation curves k = K,(0) ./

4. Pole Avoidance and Free Waves

The solution now found for the vertical velocity w is given by the Founer inrearal
{1.55. which after a change to polar wave nunibers by a = kcos#..9 = ksi# becornes

L7 ™ ok rostepane Walsi ko nsecsd;
wir. y. ) m - gt roosHeusm : ke dk b 4.1
Y 7= /_,[ Dik kseced)

However. since D = 0 at k = A, (xsec ). we must distort the path of k-integration ro
avoid the poles where D = 0. This procedire is the same for all poles j = 0.1.2.3.. . and
is well established for the Kelvin surface wave pattern ; = 0. Namelv. if cos# > 0. distor
the path above the pole. and if cos@ < 0. distort it below rhe pole.

The reason for this choice is clear if we consider rotation of the path of k-integration
through =90°. If r < 0. and this rotation is done through =90% when cos# 70, the pole
is not crossed during the process of this rotation. and rhe resulting integral alung the
imaginary k-axis contains an exponentially decaving factor. Hence u tends to zero rapidiv
as r — ~x. and there are no waves upstream. as required by the radiation condirion.

Once this decision about pole avoidance is made. our task of derermining the flow
from a source is in principle completed. and it “only” remains to evaluate the double
integral {1.1). with W% and D known by solution of the ODE (2.5) {for all values of & and
o = rsec?d). This is a mammoth rask. bearing in mind thar oniv recently has it even
been considered feasible to do routine computations for unstratified fluids. where the ODE
part of the task is eliminated.

However. the main far-field (x — +x) contribution is from the poles. This contribu-
tion can be estimated by rorating the path of k-integration in the opposite direction from
that for r < 0. In that case. one passes across the poles. so picking up a contriburion
from their residues. before arriving at an integral on the imaginary k-axis which again
tends to zero rapidly. as r — +x. Hence the dominant terms in ' as ¥ — +x are the
contributions from the poles. namely

i . . g Bl k. kee 4)
2risgnicosg) Y erkireostrysing L0 hde i4.2)

uplr.y z)=
Flr.y.zj Dilk Ksecid)

172 f_

7

where k = K, {ksec? ).

=1




Note that the denominator Dy in (4.2) i~ the partial k-derivative of the Wronskian
Dk o). evaluated at the point & = K,(g) where D = 0. and this gquantity must he
evaluated numerically with precision as part of the over-all computational task. The above
expression can be simplified slightlyv ro a real integral on (0.7 21 nately

2 i ; : e .
we = -~ Z[ s‘m(K,.r(-osﬁ)mstfw'/smH‘vb: R # 4.3

The expressions {4.2) or (4.3} are single mtegrals wirh respect ro 4. and obviousiy
an order of magnitude easier to evaluate than the doubie wregral (4.1 In rhe shap-wave
example. wg is usually called rhe “free-wave” contribution. and we retain thar ternnnology
here. Although free waves are only a far-field approximation. the ship-wa.e experience is
thar they approxiniate the full flow field very well. ax close as one or two ship lengths
astern.

5. Stationary Phase

Although I advocate evaluation of the integral (4.3) withour further Appr«mmanmx
it is possible to make rhe usual stationary phase approximation for large » = /rr? -y
observing that {4.3) is the sum of real parts of integrals of the form

/F(e*,e”’”‘ d 5.1

where the amplitude function F(#) 1s well behaved. and the phase function is
U6} = R{#)cos(f — ~). (52

where ~ = arctan(y/r) is the polar angle in the horizontal plane. and K(#i = K (x sec” #;
For large r. the main contribution to the integral (5.1} is from the nmghb(mrh(mu of
stationary values of . namely those where ¥/(6; = 0. which satisfv

tan(f ~ ~j = K'(#)}/ K{#) oS!

For most reasonable K () there are two roots 8 of {5.3) for each i~ less than a certain upper
bound ~¢. and none above that value. The two roors correspond to transverse {smaller #°
and diverging (larger §) waves which are observed for ~' < ~. and there are no waves for
t~: > ~g. The waves tends to be greatest in magnitude near ~ = ~;. Determination of
the value of ~¢ is one of the important tasks. and this value is different for each internal
wave mode j. If we re-write (5.3) as

~ =# - arctan(K'(#}/K{#}) i5.4)
we see that the upper bound for {~" must occur when d~/d9 = 0. which leads to a condition
involving the second derivative K''(#) that is not worth writing down. For general A'(#)

e : 1 . s - . L
it is best to simply compute (£} from (5.4) and note its maxima or minima.

&




For example. the Kelvin surface wave j = 0 hax Ky = 7 s0 K (#) s asec? #oand (5 4
becomes

-t

~ = f - arctani2tanf|

which iz negative for positive #, with a mimmum given by -~ = =~ = areraml 2y 20 =
19.5° when 6 = arcran{l 'v?2) ~ 36>, Thix value of ~., 15 the famous Kelvin ship wave
angle. and applies at any speed for any wmoving object at any submergence, producing
waves on the surface of an infinitely deep Huid. even if the Huid density ix non-constanr,

But the internal waves j; = 1.2.3... . will have a differemt ~,. and there seenss 1o he
evidence that it is smaller. ie. that the internal wave wakes are narrower than Kelvin
wakes.

6. Constant Density

The special case of constant density ix worth giving in full. Then there 12 onlv the one
mode ; = 0. and we can make the following ident:ficarions

Wiz = ¢FF 6.1

~
Woizy = ~coshikzi - — sinhihz 6.0

k
Dik.ay=k -0 6.3

) k- .o k—a , e
Wolzih o) = e SR D e R 0 ti.d4
and ,
T T o G N s gt ‘e
we = -—’i”/ sin{a.rsec#) cos(rysec? Bsing ™ <7 > soct 4 dy 5.5
iy ]

which is well known.
‘Figqure 1.2 shows computations from (6.5) by D. Madurasinghs.,
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Figure 1.2: Surface waves computed by D. Madurasinghe.
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Appendix 2: 10 February 1992

Bibliography on Internal Waves and Wakes
Brown E.D.. “SAIC report on infinite-depth solitary waves” see also a J Flurd Mech
paper 1a abour 1990.

Dawson T.W.."The DREP internal wave normal mode model  theoretical background™
DREP T\ 8%-7. Canada. 1957

Gilbreath H.E. and Brandt A.. “Experiments on the generation of mternal waves 1n a
stratified fluid™ AL 4 4 J 23 {19%5) 643,

Grav. Phys. Fluids 26 {19%3) 2914,

Hudimac A A, "Ship waves m a stratified ocean”. J. Flued Mech 11219615 229
Ichive. Pure and Applied Geophys 119 119x1) 294,

Hall R.E. et al. “Short wave Kelvin wakes{ 7. SAIC report ®7 1794 198771
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15th ONR Symp Nuval Hydro. 1986,
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Appendix 3: 18 February 1992

Dispersion Relations

[Note: In part tmproved by later work. see Appendir 6 to follow.

Our concern here is verv much with dispersion relations for internal waves. pamely
relations between wave speed ¢ and wave number k. For convenience. we use instead of ¢
a quantitv proportional to its reciprocal square. namely

o=yg/c°

where ¢ is gravity. Then we need a connection between & and ~# eg. k = RKimi One
of our first tasks is to compute this relation for a given densiry distribution. Because
this numerical taxk obscures some qualitative features. this report summarises soine such
features.

The empirical dispersion relation artributed to Phillips (1977 bv Tulin and Miloh
{1990) can be written

:\‘—f—)(r = kicoth{kH) + 1 = ke’

This contains as its leading term the finite depth dispersion relation
o = kcoth(kH}

for water waves in a fluid of constant depth H. but modified w:th gravity reduced 1w the
ratio of the relative densitv change across the thermocline. The parameters are the depth
H from the free surface to the beginning of the thermocline and rthe thickness ¢ of the
thermocline.

[Figure 3.1 is a sample of the k — ¢ relationship. It 1s not based gn Phillips formula.
but 1s similar.;

The small and large-k limits are of interest. For small k. we have

P a1 . 2t
Ap -+ e
so if #; is the value of o for the first internal wave at k = (0 then we estimate
P o
oy = —H
! Ap

and then for ¢ > &, {but close to it) we have
k= A—p—p(o—m)~0(rr -0y

This applies only to the first internal wave mode. Phillips doesn’t specifv it. but I believe
for the second mode. o3 = 90 approximately. and more generally that the ; th mode
starts at 0 = g, where approximately ¢, = {2j + 1}?¢,. That is. I expect that

2

k=c,(0~0,)+0(c —0,)

11




for some ¢,.
The large-k limit is

R R
e
That is. ¢ and k grow large together. with k varving as the square root of 7. The coethowent
of proportionality varies like the square roor of the densitv difference. and also like the
inverse square root of the thermocline thickness €. but does not depend on the thermocline
depth H.

I am rather interested in corrections to this. especially those which diseriminare be-
tween modes. I am inclined to think that #! * needs to be replaced by (o~ - ardh 2 for
some o} which is not the same as , though it must increase ilike 7, does: ax the square
of the mode number ;. Also. I think that in general there should be an additive rerm. o
the general large-k expansion should be

k=Cle -t <k,

where C is a universal coetficient independent of mode number. and # and &, depend on
mode number.

One cannot rely on the Phillips formula for this tvpe of additional information since
it assumes a special form for the density distribution - as evidenced from the fact that
the results depend on parameters like H and ¢ which are only really meaningful m the
context of that distribution. So a useful piece of analytic or senu-numerical work would
be filling in some of these details for a general density profile. Thar is. what parameters
of the profile do quantities like 0. 07 k;. ¢,. C. etc. depend npon”

The Phillips empirical formula is an example of what one can do with a so-called
Boussinesq approximation. This makes use of the fact that the densitv variations are
small in absolute terms. It only takes them into account when multiplied by the gravity
parameter g. Then one can also use a large-¢ approximation. In effect. one lets o tend 10
infinity and v tend to zero. while retaining the product a.v. There are some simplifications
to the general ODE problem. though not too many. I think there is a Int could be done of
this nature.

Note that the general Phillips formula has this Boussinesq character. My discussion
above pretended that Jp was arbitrary. but in fact the Phillips formula is onlyv valid if
it is small. in which case o is always large. of the order of the inverse square root of Ap.
whereas k is not necessarilv small. ranging from 0 to x in general.




Figure 3.1: Typical dispersion relation for mode 1.
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Appendix 4: 27 February 1992
Program A

The program for submarine inrernal wave wakes is at a point of development where
we need to standardise it in some wav. For definiteness. let u~ call the present version
Program A.

Program A takes as inpurt a file containing values of the density ptz3 It needs no other
input. It solves the ODE (2.5) of Appendix 1. using the Runge-Kutta-Nvsrrom method.
Note: All equation numbers relate to that Appendur.

The solution is done only once for each k. 0. namely vielding the Wi function which
satisfies initial conditions (3.1) at the bottom » = —H. When we reach the rop 7 = 0. we
immediately evaluate

Dik.oy = W[{0) — ali (0

which happens to be the same as that defined by equation (3.3} when = = 0 and h = 0.

Thus we have a function subroutine for Dik.#). This is now used only ro find s
zeros. That is. we use the secant method to solve the equation Dik. sy = 0. This can
be done either by finding the value of o at fixed k or (as i the report) by finding the
value of & = K{o) at fixed 0. Each internal wave is represented bv a separate function
K,{c).j = 0.1.2.... and we can find each solurion separatelv numericallv. However. we
probably are only interested in j = 1.

Once K{o) is determined. the only thing the program presentiv does 15 10 plot it

Program structure

Presently a collection of modules. Namely a main program "SEARCH". and subpro-
grams "DET" . “FIND INTERVAL" “RTSEC” “DENSITY".

These are linked by files called MAKEFILE. COMP etc. whirh do some things Mike
should write up (2-3 paras). There is also a library called “K S GRAPH™ and some other
bits and pieces.

The important subprogram is "DET". This does the ODE solving. bv calling a sut-
routine called "NYST". which has a subroutine called "RHSF" for the right hand side of
the 2nd order ODE.

Program B+

Over the next 6 days we need to extend this program. First (and this is done already)
we need to add determination of W3(z). This is done by duplicating and extending “DET".
Keep "DET" almost as it is. it is still needed. Write a new subroutine “WFUNCTS" which
computes both Wi(z) and W5(z). This is all it does. and it ourputs these functions and
their derivatives. It could also compute the Wronskian Wi(z)H73(z) — Wolo)W /(20 if we
wanted to do that in this subroutine. though perhaps thar is better left for later.

Importantiy. all the above is done with only the densityv p as input. together with the
parameters k.o. (And some numerical or tolerance parameters’). We do not vet have to
specify anvthing about the submarine. in particular not abour its depth h of submersion.
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Now we specify h. (It has to be one of the 2 values for which we have done the
computations of W7 1%). Then we use (3.4) to set up Woiz). That should be a subroutine
all of its own.

Now turn to {4.3). That contains a function

.4(2.(9) = u'(I(:)K'DA-

which we must compute. The # dependence comes about because all 3 quanuties on the
right depend on k and‘or ¢ = x sec? b

Here 1 is just computed. and A'{¢) is found by Program A. and Dy 1s the parnal
derivative of D with respect to k at fixed o. evaluated at & = R'{~}. | think the subprogram
"DET" can be modified to vield Dy. since differences of D are already used in the secant
method. Note that we only need W and D, with & = K{o). not with a general k and o,

Simultaneously {Graham} we need to push the program forward on a couple of other
fronts. namely to go from the K{s) determinarion (subprogram "DET" roward kinematic
aspects of the wave patrern (i.e. those not needing to know the actual wave-generating
efficiency of the submarine) One immediate objective is the Kelvin stationary phase angle.
thus the ~ versu @ information of equation (5.4). Other interesting matrers are generali-
sations of what is in the Tuck. Collins and Wells {1971} Journal of Ship Research paper.
In particular. generalisations of the frequencies (Fig 6) observed by Fourier transforming a
one-dimensional cut. and the “ridge” or expected location of peaks i the double Fourier
transform of a two-dimensional record (Fig 7).
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Appendix 5: 2 March 1992.
EOT Summary

Here iz myv summary of the submarine wake program so fur.

My full-time involvement began 10 February 1992 and ix due 1o end 27 March 1992,
The initial team with full-time involvement consisted of Tuck. Furnell. Legg and Maduras-
inghe. from DSTO. plus Carroll on contract from Ebor as programner. Part titie imvolve
ment or overseeing role is provided by Cartwright. Haack. Webster. Marwood. ere

Division of responsibility initially seemed to be Tuck for general ideax. Furnell for
long-term DSTO carrving on of these ideas after 27 March (and hence close lason with
Tuck before 27 March). Legg for inpur and (especially graphici outpur considerarions
Madurasinghe for the numerical integration end phase of the numerical work. Carroll does
programming directly as required by Tuck.

The team immediately seemed too large to me. Hence ar myv suggestion. the inunediate
working team was reduced to Tuck. Furnell. Carroll. ar least for rhe first few week=. This
report sumumnarises progress by that teami.

For the first two weeks. the team was mostly feeling its wav and getting to know
each other. I arranged to transfer some verv crude computer programs here. and Carroll
started to modifv these. He was at first looking at wavs to improve the ODE solving
aspect. using non-uniform grids. but this proved a non-useful approach. especiaily since
we intend to use a uniform density grid. so was abandonned in favour of retaining the
Runge-Kutta-Nvstrom method in my original program.

I also brought some Macintosh programs which used graphic input and output tech-
niques. These were of interest mainly to indicate to all members of the team what sort of
thing we wanted.

At this stage. Furnell was mostly concerned with parallel development of anah~ic
models for step-wise exponential densitv. ma: v to use as checks on the general program.

On 19 February. I gave a seminar. After this. the focus of the work was clearer. and
the reduced team set out with more specific tasks. Carroll cleaned up the program as
it presently stood. and this was designated "Program A" on 27 Februarv. This program
takes a given density profile as input data. and computes the dispersion relation & = R {7}
of the internal waves for that stratification. It does so bv solving the ODE {2.5) for W{z)
{numbers refer to the Tuck preliminary note “Source in Stratified Fiuid™. Appendix 1).
Note thar it does not solve for W5 (see (3.2)) vet. The Wronskian D(k.s) is computable
at 2 = () (for submarine depth i = 0) (see {3.3)) without the need to compute $5. Then
the equation D(k.o) = 0 is solved for k at each fixed o by the secant rule.

This dispersion relation is of independent interest. We Lave devoted some time to 1un-
derstanding the nature of the k versus ¢ curves for idealised and actual stratifications. For
realistic actual stratifications. the ¢ values are very large. tvpically measured in thousands.
when k is of the order of unity. The first internal wave starts with k = 0 at some 7 = m;
value of this large size. then k increases monotonically with ¢. eventually becoming large
when ¢ is large. asvmptotically like the square root of ¢. Similarly. the second internal
wave starts with an even higher value of 7 = 75 =~ 90;. and has a k value alwavs smaller
than that of the first wave. etc.
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There are many consequences for the tinal form of the mternal waves of this character
to the dispersion relation. and Furnell is pursuing some of these for realistic and wdealised
stratifications. These include the nature of the Kelvin wake patrern. i particular sts
angle (narrow wakes. mostly diverging waves. ete. ). and sowe aspeers of Fourier-analyvsed
detection as in the Tuck. Collins. Wells (19717 paper. Note thar this work can procesd
even without a knowledge of the wave-amplitude generation capability of rhe particular
body (submarine) making the waves.

The next phase of development of the program ro determne actual wave amplitudes
is to develop Program A further. to compure Wy, W (see (3410 and a quantiry whaeh
appears in {4.3) but is not given a specitic symbol there. nameiv

Aoy =k k ) Diik.om

Actually as written. this quantity appears to depend on & too. but we oulv want 1= value
when & satizfies the dispersion relation & = R,{#). This A is the amplrude of the wave
generated by a unit sonurce at the current value of the wave-speed paramerer ~. Note thar
if the actual wave-speed is ¢ then 7 = ¢ ¢°. Also note that since ¢ = [ eos# where U
is the submarine speed at an angle 6 to the wave direction. this confirms ‘2.6;. namely
o = ksec? 8. with k = g/U"?. Uhimately we shall consider 4 = A4(6) and integrare «4 3
with respect to #. so summing up internal waves of all directions.

Note that there iz a separate contribution to the integral (4.3} for each internal wave
mode j. Program A simply computes as many internal waves ; as we <pecific. Bur we <hall
mostly only be concerned with one or at most two.

An important ingredient in the determination of A is the partial derivative Dy of the
Wronskian with respect to k at fixed #. This is the slope of the D versus k plot as it
crosses D = 0. All three ingredients k. 1W,. D of A are presettly being computed. and
computarion of 4 is being done. though at time of writing insutlicient checks have been
made on it.

Next step (assuming that A for a source is compurable) is to move from a source
to a submarine. First we do a Rankine ovoid. namelv a source-sink pair separated bv a
distance of the order of the submarine length. When that length L is large compared to
the maximum radius R. the required source strength is (according to slender bodyv theory
Uz R?. That is. we take the unit source result. already computed. multiply it by " times
the maximum cross section area »R?. and subtract the same thing shifted by a distance
L afr.

In fact. doing this explicitly in (4.3) gives a result where the "sin” is replaced bv a
“cos”. and the "4 for the unit source is multiplied bv

—

{U?‘.’RQJ. 2sin{ =K {0)L cos#)

2

t

the first square bracket being the source strength. and the second the source-sink separation
factor. An interesting formal special case is the limit as L — 0 and R — x with R*L
bounded. which vields a submerged sphere. with the “sin” of the second square bracket
replaced by its argument. This may be a useful test case to compute first.
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Appendix 6: 5 March 1992

Short wave limit of dispersion relation

Make the Boussinesq approximation and write v = —~p’ p Then the ODE (2.5 of
Appendix 1 becomes
-t I 4 Bt -
W op(z) =k~ W =0

There is no hope of a solution satisfving reasonable top and bottom conditions unless the
coefficient in square brackets above takes ot least some positive values. After all. if it s
wholly negative the solutions are exponential-like. and can only have one zero. whereas
when the coefficient i~ positive. the solutions are sinusoidal-like. and can have lots of zeros.
T believe that there is a theorem to that effect for ODEs. but 1t i intuirivelv obvious
anyway.|

Now if we let A — ¢ at fixed 0. eventually the coefficient must becume wholly negative
for all z. Hence there will be no solution satisfving the boundary conditions. Therefore.
o must increase with k& at such a rate as to keep at least zome positive vajues for the
coefficient. This will happen last {as we increase k at fixed @) ar those = values where 12
is greatest.

Hence suppose the maximum value of v{z) is v, and that ir occurs at 2 = z,,,. Then
it is clear that as k and ¢ become large together.

U — K2 — 0

or
k— \/’v(”/m

Thus the large-k limit of the dispersion relation depend: only on the behaviour of the
stratification at the depth where the density is varving the most.

We can improve on this estimate as follows. Suppose in the neighbourhood of the
maximum density gradient. the stratification is of the form

¥
-

viz) = vy, — {2 = )

for some positive constant . This is a quite general relationship since v(z) must have a
maximum at : = z,,. Then suppose —e is the correction to &%, i.e.

k* = ovm — ¢
Then. writing t = z — z,,. the above ODE becomes approximately (locallv to t = )

W+ e—optl W =0
and must be solved subject to W — 0 ast — = x.
This 15 a standard Hermite or parabolic cvlinder function ODE. and for example has
the simple exponential solution
W= et
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if €2 = op. More generally there are solutions which are polvnomials of degree j — 1 times
the above exponential. providing

R
&

e =(2) - Hop

This is the j'th internal wave.
Thus as 0 — x.
k:z = OV, ~ \2_} — li\’(f_ﬂ_ +~ 0O
or

e . 1 ;M 10
k=yov, —{J— =)y — +0(c7"")
v m \J 2 }V U \ 4
Hence {asvmptotically) each mode is obtained from the previous one just by a constant
down shift in k£ of magnitude

Ak= 2
V v
This answers one or two of the questions in Appendix 3. In particular. in the last
equation of that appendix. C = /U, and k, = Ak (independem of mode number ji. 1
dont know what o} is: that is a higher order effect for smooth stratifications such that
viz) has a simple maximum at an interior point : = z,,. Experience with nonsmooth
stratifications {e.g. stepwise constant v(z}) or with those where the maximum density
gradient occurs at an end point. or with empirical formulae like Phillips s, tends to suggest
erroneously that an apparent rightshift in o is the leading-order correction. rather than an
apparent downshift in k.
[Figure 6.1 gives samples of our computation of the k — o curres.
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several modes.

Figure 6.1: Tyvpical dispersion relation
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Appendix 7: 11 March 1992.

What submarine?

Most of our work so far has been on the waves made by a single isolated point ~owee
of unit strength. The "final” result is equation (4.3} of Appendix 1. namelyv

Y =2

U = — / singk.r cosBicostkysing) Ak o
[t}

-
n

where A(k) = Wak/Dy.

At this stage {(Program B} we are computing A(k} successtully for the unit souree . for
various stratifications and source depths.

Note that the above form of {4.3) dves not distinguish modes ;. the resulrs being
assumed computed separately for each mode and summed at the end. I have just wnitren
k for K,{c). assuming that if the above integral is being carried ont with respect 1o the
theta variable. then we work out 7 = xsec” #. rhen call upon our program to evaluare the
corresponding k. etc.

A serious alternative being considered at the moment is to converr directly from a ¢
integral to a k integral. i.e. set df = (d9/dk)idk. working out

db dk 3 1
e 1 2R sec” B Sing
dk ! do e m 1

which demands output from the progiam of the slope dk:do of the dizpersion relation.
which is not too hard to get.

Importantly. the integral with respect to # self-truncates at its lower end. indeed
only occupies a small range near # = r/2 for realistic small stratifications. That 15, the
generating amplitude A4 is identically zero for ¢ < o, (the lowest value of ¢ for each
mode}. and o, is a large number. of the order of thousands. Hence the acrual lower limit
of integration is # = 6, where 0, = ksec? 8, or

which is very close 10 7/2 unless x is verv large (slow sub. but that will make small waves
anyway).

Thizs is all well known. and commented upon by most anthors, It means that internal
waves are largelv diverging rather than transverse. i.e. their crests are parallel to the sub's
track. But there are a number of important consequences.

First note what happens when we make the change of variable from ¢ to k. Then
the range of k is fully from 0 to x (corresponding to # = 4, 10 =/2). Meanwhile the
r-wise wave number kcosd is going from 0 to a finite upper bound., whose magnitude (see
Appendix 6) can be shown to be \/kv,,. a small guantity. The y-wise wave number is
essentially & itseif. and goes from 0 to x. The integral converges subject to only mild
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restricdons on A4 because of the fact that df . dk tends 1o zero like &77 (which adso tallows
from Appendix 6 after some mampulation).

Counsider first the Rankine ovold representation of a real submazine of lengrh Loand
volume V7. According to slender bady theorv. thisx w a eviinder of uniform erossseetion
area VU L = 7R*. This holds so long as R << L.

But now let us examine whar happens wien we srart ro evaluate rhe mtegral for the
waves, As discussed at the end of Appendix 5. all that happens refanive to the souree
integral is that the sin{krcos#: gets replaced by a “cos ' and the amplitude tacror 4 s
wltiplied by

251 _L:k rosf
We just showed that the largest vaiue that can be taken by the r-wise wave nutber k cos#
is the small quamtity (‘Av,,. Hence the argument of the above sin fuuenion can never
exceed K, L 2.

A rough estimare for realistic stratificarions 1= 14, = 10775 o this quanty comes
1o about 0.005L /1" where the submarine length L 1~ i metres and the speed U7 m metres
per second. I believe that this will be small for all realistie submarine leng s and <peeds.
at least small enough for its sine to be reasonably replaced by itzelt.

If that is done. what results is the same as if we had let L — 0. In other words.
all submarines of the same volume generate the same internal waves. urespective of then
length/diameter ratio! Hence we can assume the submarine ix a sphere. which 15 generated
bv a dipole.

The actual effect is to replace the sine i {4.3) by a cosine and ro mdtiply the amplh-
tude function 4 by the r-wise wavenumber & cos#. and the final resiut by just the produer
of the speed and volume of the submarine [V, Yet anot’. vy "o set | his s to note that
the waves due to a dipole are proportional 1o the v geavative of the waves due 1o a sonree.

In anv case, we should compute =o1. + waves due to dipoles and (separarelvi some die
to Rankine ovoids of the same vol:ime. and see if there 1s anyv difference. Dipoles first.
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Appendix 8: 12 March 1992,
A review of the DREP report by T.W. Dawson

The 1988 Canadian report DREP TMxX-T bv T.W. Dawson is very relevam to our
project. This note is a sunuuary of some mportait fearures of 1.

Overview

DREP TMN32-T is about 90 pages long. and very detatled. It s an impressive documenr
in its accuracy and coverage. It reads like a Ph.D. thesis. and [ would rare it as deserving
of a Ph.D. if it was one. On that basis and others, | assess 1ts cost as about 3 high-level
man-vears. taough this could be conservative. since there are references to supporting work
that was obviously done in parallel. The cost of the research directly reporred i TNxx-T
alone must therefore exceed a half million dollars: if the supporting work 12 alvo mnciuded.
perhaps the total cost would run to several million dollars. Compadre our {approximateiv:
6-week times d-person effort!

The good and bad news is that this report is highly televant ro onr project and uses a
comparable methodology. I do not believe that we will be able to come up with amvthing
significantly better than the Canadians. Hence one serius alternative strategy wonld
have been simplyv to buy in their finished product. If that was not possible. we could have
attempted to duplicate ir using TMB8-T as our guide. | hope ro make 1t clear rhat the
latter would have been infeasible in the time available.

That is probablyv the bad news. The good news is that we are on rhe right track in
our independent approach. In particular. I am absolutely amazed rhat myv preliunary
note “Source in a stratified fuid” {call it EOT92-1 here: it is reproduced as Appendix 1
of the final report) which was written without benefir of stvdving TM&X-T first . deseribes
a methodology that is quite like Dawson’s. There are many other things one could do.
and some in our group thought we might be doing them. ranging up to supercomputer
Navier-Stokes solurions. But [ chose a more conservative approach. and so did Dawson.
We could both be wrong. of course. but there is some experimental evidence at the end of
TM 58-7 that Dawson's results are good. which is another piece of good news.

Summary of TM88-7

1. “Introduction.” A nice summary of the problem. Note (pl} the discussion of
two separate generating mechanisms. ~wake collapse” and “hull effect™. and an importam
remark that the methodology allows both mechanisms to be studied. although the illus-
tration is only for the second. This also applies to our approach. The approximations and
assumptions (p.2) are as I would make. and (to my surprise. since ! thought few others
had even heard of it!) Dawson also chose a Rankine ovoid model of the submarine

2. “Model and basic equations.” This repeats derivations thatr are for example
given in Yih's {1965) textbook (see bibliography. Appendix 2). On p.& the Boussinesq
approximation is introduced. I do not propose to use this approximation explicitly. thongh
I am sure that it is a good approximation for realistic stratifications. However. as a
practical matter. it does not provide anv numerical simplification to the ODE that has to
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be solved for the verrical distribunion of velocity, and hence need not be made except as

r

an analvtic tool. The mmparimn is between my EOTY2-1 equation (2.5 and I)m\mn *

TMBEE-T equation {3.4) (subject to (3.2} My equation reduces 1o Dawson's of 7
is replaced by pii™". whwh is the Boussinesq approximation. valid in the hnor of smsdl
stratification. Note that his N* = —¢p’ p. and myv o = ¢ .

3. “General solution of the basic equations.” Oue ditference berween enrap-
proaches is that Dawson uses rigid lid conditions B = 0 borh at the “free ~vnwe” 2 =4
and the ~botrom™ 2 = d {his : is downward). 1 use neither. My free surface 15 & yennne frw
one. where V' = g¥l". and my ~bottom™ is not really a botrom, but rather a level where
the density becomes uniform. and iz assumed uniform for ever below n an sdimre deprh
ocean. Neither of these differences is too important in practice. The apparent ngidiry ot
the free surface is consistent with the Boussinesq approximatim: the bortom condirion 1=
probably not too important in practice uuless the submarme 1= close 1o 1t

Dawson's equation (3.11) looks familiar to me. It is closely connected with v EQT42-
1 {4.3). though arising verv differently. In both cases, rhe forinula nvolves i os denommina-
tor. the partial derivative with respect to a wave parameter. of the Wronskian berween rwo
solutions of the fundamental homogeneous ODE. These solutions are i general lineariy
independent (so the Wronskian is non-zero) but are of main interest 1o s when dependent
{s0 the Wronskian is zero). In that case. the wave number & and mv parameter # requiv-
alently the wave speed ¢) are connected numerically by the ¢ spersion relation. Dawson
avoids actual differentiation of the Wronskiau by some manipulation around p. 13, but 1
don’t see any problem doing it bv brute force numerical differentiation.

The summation over modes in (3.11) and throughout TM&X-T represents the major
point of departure between the philosophies of Dawson and me fand [ think » number
of others are with me on this). TM%x-7 adopts the view that one must compute many
internal waves. There are infinitelv many. They are ordered with respect ro speed. there
being a maximum-speed mode ) = 1 {minimum ¢ in mv notation). then a slower mode
J = 2 {larger o) etc. Roughly speaking. the speeds go down like the inverse of the mode
number j {0 goes up like j?). Since o is already rather large even for the first mode ; = 1.
the actual ¢ numbers for higher modes pretty quickly get huge. It 12 my view that almost
all that one wants to know about internal wave generation is available by assuming that
only the first mode is generated. We can calculate several modes if we want to: the results
are in any case just additive. 30 we can test this hypothesis easilv: I wonder if Dawson did?

“Uniformly translating source: frequency inversion.” Dawson bas assumed
a general source distribution doing somewhat general things up to now. Now he specialises
1o steady horizontal translation. as I have done from the ontset. and first does an isolated
SOUrce.

“Extraction of steady-state fields.” More specialisation.

6. “Evaluation of k£, integrals”. It appears that Dawson is ambitious enough to
tryv to evaluate the whole thing. Thar is. in my terminology. he evalnates not only the
free wave single-integral comribution from the residues at the poles & = K, (#}. but also
the double integral local disturbances near the source. As I sav on p. 4 of EOT92-1. thi-
is a truly "mammoth rask”. 1 can onlv have admiration for Dawson for artempting it

.
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and more. Perhaps we in the ship-hvdrodyviamic community have been too conservative,
but I do have my doubts about whether one can really do it with accuracy and etheieney.
J.N. Newman has been quite scathing in the past about some attempts. Anvway. if one
is mainly interested in the far field. the free-wave integral EOT92-1 (4.31 should suthee.
Here I am calling upon decades of ship-hvdrodynamic experience. with a xhight worry that
some of this experience might not translate directly to internal waves.

7. “Numerical considerations™. This is a very long and detailed chapter. It
describes Dawson's technique for solving the ODE. his (3.4). equvalent to EOTY2-1 (2.5
Namely. simpiy represent the ocean bv many lavers. in each of which the densite 15 assimed
to vary exponentiallv. so N? iz constant. Fit these lavers together with suirable conrinuty
conditions. and vou have a tool for ODE solution.

Much of this chapter is raken up with concern for the accuracy of this rechinigue
related to things like “evanescent modes” {complex eigenvalues). and close approact of the
real eigenvalues for one mode to those for another.

I believe to a certain extent these worries are an artefact of the method Dawson s
using to solve the ODE. though thev are a warning to us also. We are using a direct
numerical solution method of Runge-Kutta tvpe {not for anv reason other than ease of
programming) and I don't think we are seeing any similar ditheulries.

Figure 2 on page 3% iz very important. It provides a benchinark density distribunion
{indirectly via the Brunt-Vaisala frequency .V = /gv). We are using it to recover the actual
density p bv integration and exponentiation. and then inpurting that to our program. This
is a bit sillv. since in effect our program just differentiates p immediately 1o give v again.
but is justifiable on convenience grounds. After some effort. I think we have quite good
data for p at intervals of 10 metres. as used by Dawson in his Figure 2. and also interpolated
to 5 metre intervals. This density data is shown as a Figure here.

Dawson's Figure 3 on p.41 is one thar we should be able tu reproduce. It is in effect
the dispersion relation plot. equivalent to our k versus o plots. Indeed there is considerable
equivalence. Dawson's variable s is proportional to our 7. and (see his eq. (.13j) his p
is proportional to k%/z. So. apart from some possible confusion over the proportionality
coeflicients. once we find k versus o. we have his Figure 3.

Of course. there are 21 modes on his Figure 3: we are rather more modestly thinking
of computing about 3 modes! One difficulty I ind with Figure 3 is that I can'r tell which
mode is which. The lowest curves should be the earliest modes. but the first 3 of these
are incomplete. The logarithmic scale doesn’t help. Anvwayv. the sooner we artempt this
comparison the better.

The rest of Chapter 7 is special numerical techniques. and perhaps not too interesting.
Figure 7 (p.64) starts to be interesting again. and all the remaining Figures should be
reproducable by us.

8. “Wake examples”. Here on p.71 Dawson introduces the Rankine ovoid dea.
and gives a concrete example with submarine-like dimensions. He then gives final results
for that example. at several speeds and depths of submersion. in the stratification of his
Figure 2. Figures 12-14 are 3D plots which we should be able to reproduce of the surface
currents. However. the actual scale of these plots i1s not easy to pick up. though there are
Tables of extreme values provided.
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In the caption to Figure 12, the “local” effect near the submarine s noted. We can’t
reproduce that. since we neglect the local effect via the double integral term in the wave
field. If the local effect iz as small as that shows in Figure 12, this should nor be too minch
of a worry.

9. “Comparison with measured data™. Figure 16 i< a verv interesting compar-
ison between computation and experiment. the experimemal mrernal waves being ship-
generated. The agreement is very encouraging. both qualitatively and quantitanvely. We
could not directly reproduce this withour more information. presnmably obtamable from
Reference 1. which is a DREP report of 1985. 1 would like ro know how many internal
wave modes were significant. and whether “local” effect= {the double mtegral terms: were
significant.

10.4+ *Concluding remarks, Reference and Distribution Lists.™ Useful. The
US reports under the name Milder seem likely to be interesting. There are some mteresting
inclusions (Cartwright. Reed) and omissions {Tulinj in the distoibution list.




Appendix 9: 13 March 1992

Direct f-integration

After some thought. [ have decided thar (at least for the time being! we will du the
¢ integration directly. 1.e. without the change of variable to k canvassed 1n Appeudix 7
The alternative is still worth considering. but let's go with #-nregration first.

Hence the vertical velocity made by a Rankine oveid of lengrh L and maxinum radius
R moving at speed [ is given bv

a0 et A sintk cos #L 2}
wi/l = ~m/ cos{kx cosBicos kysiné] “——‘L—;‘“““]‘ Aikide
T Je,, L - ]
where V" = 7 R?L is its volume.
The lower limit of integration is 8,,,. which is the minimum # value. cotresponding ro
the minimum ¢ = o, value for each (separate) internal wave mode ;. Namelv

!

K
By = — — arcsin . —
\

[£+]

We assume for validity of this formula that x < 0. which 15 not a severe requirement =ince
. is numerically large. This is what Tulin and Miloh (1990: see bibliography. Appendix 2;
call (misleadingly) the “supersonic™ range. This just means that the submarine 15 moving
faster than the fastest internal wave. namely faster than about one metre per second.
Absence of small-§ contributions means absence of transverse waves. If the submarine s
moving so slowly that this condition is violated { “subsonic™ motion in the sense of Tuln
and Miloh 1990). the generated wave amplitude is probably 100 low to deteer anvway.
However. if we did need to compute it. we would just set #,, = 0. since then all # values
occur. and there are transverse waves.

since o, is large. fm, is very close to #/2. The range of integration above is rherefcre
a very narrow one with respect to 6. 1 think this is good news for convergence of the
integration. Actually. that convergence is also illustrated by the A transformation. which
leads to an integration on an infinite k-range. but with k¥~ rate of decay of the integrand.
In some sense this decay rate with respect to k is equivalent to rhe small #-range.

Traditionally {for surface waves) we are worried in evaluaring this sort of integral
about the effect on our integration method of a rapidlv-varving characrer 1o the integrand.
This comes from the trigonometric functions when r and y are large. strictly when kr and
ky are large. That occurs when we are in the far field of the disturbance. strictlv many
wavelengths from it.

There are several reasons to suspect that this won't be a problem int our case. First. the
internal wavelengths are much greater than those for surface waves. so at a fixed (perhaps
large) r.y. the value of kx. ky may not be so large. Second. there 1s an actual upper bound
on the coefficient of r. namely kcosf < \/Kv,, (see Appendix 7} which is small. Hence
there cannot be a rapidly varving character to the contribution from the factor in r. no
matter how large r is. Since 8 is close to 7 /2. the y factor is essentiallv cos{ky). and will be
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rapidlv varving when y is large. However. we are rather less interested i large ¢ fad to the
side of the submarine! than we are in large r (far astern of the submanne: Pioally there =
only one point # of stationary phase (so long as & < ¢, 7 and that i close ro = 2ot vonrae
since all # values have that propertyv.) If we were to be worrted about the nehibnurhood
of points of stationary phase. we would be worrving about the nephbourbood ot # 2 = 2
where there is no contribution at all from the r factor.  The last srgnment = probably
facile: but amyway. all 1 am arguing ix thar we should press abead domg the mregranon
without worrving too much. and the proof of the pudding s in the eating

In Appendix 7. it was argued thatr. as generators of inrernal waves all submarines ot
the same volume are indistinguishable. irrespective of shape and lengih, 1 thunk this s an
important principle that we can check. most directly for the Rankine bodies by virviug
their length/diameter ratio L{2R). In partirular. in the it a~ KL — ) tnote length
rending to zero relative to wavelength. nor necessariiyv refative to diameter . we revover
the internal waves generated by a sphere. where the quantity in square brackers 1= <imply
replaced by kcosd. and the result i independent of L. It would be verv mteresring 1o
check this by computations at a sequence of L values.

Some comment on dimensions is appropriate here. Obviouslv the output o U mnst
be dimensionless. The volume factor ourside the integral has dimensions of length cubed.
s0 the integrand must have dimensions of length to the power - 3. This 15 roue since i s
not hard to see that 4 has dimensions of length to the power -2 (see Appendix 1. below
{3.4): W5/ D is dimensionlessi,

[ suggest that we use consistent §I dimensions. i.e. input and use L in metres ete.
Up till now we have normalised all variables s0 that the apparenr depth of the ocean H 1~
unity, I think this is no longer appropriate in the production program. so we should nput
the actual depth H in metres. etc. Since all results are proportional to the submarine
volume V7. that factor need not be inputted. I it s omitred. we are compuring the wave
made bv a submarine of volume one cubic metre: a submarine of volume 1000 cubic metres
makes 1000 times that wave. Otherwise. all variables are 1n true SI units.




Appendix 10: 17 March 1992

Density data

As seen in Appendix GF (a preliminary note by Graham Furnell}. the data is not
always presented to us directly in the form of density versus depth p(z). It mav be sahuny
or temperature profiles. or it may be speed of sound data or even Brunt-Vaisala fequencies
whose square is proportional to our intermediate variable v{zi.

Generallv though. we expect to see a p{z) that increases with depth (anvthing else
being statically unstable) and our results only depend on the ratio between two densities.
so without loss of generality we can assume that the density at the free surrace 1= normalised
to unity. Then it will increase with depth and the actual increases are generally less than
one percent.

The action takes place in the first few hundreds of metres. There may be a mixang zone
for the first few tens of metres where p is essentially constant. then perhaps a relatively
rapid increase with a peak density gradient in the next few tens of metres {the thermochue:.
then less dramatic increases in densitv. with a levelling off at about 200-300 merres 1o a
final density of p = 1.0015 to 1.0070. (times the free surface value; at least m the examples
I have seen.

There are interesting examples where the Brunt-Vaisala frequency N(z) 15 quoted
radians per second. {Sometimes it is given in cveles per hour. which must be first converted
by multiplying by 27/3600]. One wayv to proceed with these would be ro pur this data
directly into our program. Instead. however. it is possible to recover the actual density
profile from N{z}.

Namely. since

Nt = —gp'ip=gv

then (normalised to unitv at 2 = {)

plz) =€xp(“/ Nt gdt)
0

We have done this integration for a few sample data sets. The most imporrant is
Dawson's Figure 2. reproduced here as Figure 10.1. The consequent density curve 1s
Figure 10.2. A decision has to be made as to where to cut off the data. Dawson shows N
as pon-zero even down to depths of the order of kilometres. Ir is a good question whether
this data is believable. but in anv case. the actual values of N? are small. of the order of
hundreds of times less than the maximum of N?. so the densitv i< only increasing very
slowly at great depth. We have to do some numerical experimentation to verify this. but
I would expect that we would be making very little error if we were to assume that the
density was constant whenever 2 is greater than about 300 metres in the conditions of
Dawson’s data. and also for some other examples we have scen. There are some cases
where there does seem to be significant variation down to order of a kilometre. hut [ donbt
its significance for nur problem.

o
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Figure 10.1: Dawson's Brunt-Vaisala frequency.
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figure 2. The layered Brunt-Vaisala frequency profile used for the examples
in this report. It is based on a smoothed version of measured data taken at
Ocean Station P during the summertime.
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Figure 10.2: Re-constructed Dawson density profile.
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Appendix 11: 20 March 1992

Early output

We are now in a position to produce some preliminary outpur quantities that can and
in some cases have been checked against existing results.

In the first place. regarding just the kinematics. namely the dispersion relation. we
have checked a number of Dawson's results. using our own re-construction (Figure 10.2) of
his densirv profile. That reconstruction is a potential source of error. bur the resulis seem
pretty good. so [ think our reconstruction must be OK.

For example. Figure 11.1 reproduces Dawson's Figure 3. as anticipated in Appendix
3. We have to pick a value for "N3_ . ". as used in TM&-7. p. 37. According ro Figure
2 of TM83-7. Nypax = 14.6 cvcles per hour @ at least that is the largest value of the
Brunr-Vaisala frequency displaved on that step-like Figure. and we believe it i likelv that
that was the value used by Dawson for his calculations leading to Figure 3. [nterestingly.
however. our first choice was to “smooth” the steps in Figure 2. which leads to a “better”
estimate Ngax = 15.9 cvecles per hour. since there is a very sharp maximum that ix not
well captured by the steps in Figure 2. The result was to shift all our results bv a small
constant amount. which (on the logarithmic scale used) corresponded to the approximarely
20% factor in N2,

In any case. with what we believe was Dawson’s choice of N, we are always spot on
his graph for modes 1 and 2. Dawson gives 21 modes. but only incomplete graphs for the
most important first 3 of +".ese. We show (dashed) the complete graphs for modes 1.2 and
3: those for mode< 4 2 merge smoothly with Dawson's and extend Dawson's resuitx
correctly toward p - . ie toward k = 0

The sam 1 .ue for mode 3 with the results shown iz Figure 11.1. which was based
on use of deusity data extending down to about a kilometre depth. However. it 15 worth
noting that our first computations using data extending down to onlv 500 metres depth
diverged from Dawson's mode-3 curve near its bottom end. This is because mode 3 has
a maximum at about 600-800 metres. and is not adequately captured by 500 metre data.
T owever. the actual generated amplitude (see the sample curve of Figure 11.7) is smaller
bv a factor of about 10 than the corresponding mode 1 and 2 signal reflecting the fact
that a submarine at about 100 metres depth is not an efficient exciter of a mode whose
maximum is much deeper.

As of this date. we are rapidly producing graphs of 4{z.8). These give a verv good
picture of dependence on parameters like submarine depth. mode number. for a particular
stratification. We ars presently using Dawson's. but that is a bit weird. and we should shift
to some more realistic stratifications. The Figures to follow are preliminary indications of
behaviour of A(z) for various ¢ (equivalently k) values. The first 4 Figures show mode-1.
for various submarine depths. Figure 11.6 is a mode-2 for depth 100 metres. and Figure
11.7 mode-3 for depth 100 metres.

28




[
i
¢1

~{

v
+
.

A2

W
]

e G s ——
e & e . w o WP . me @

MoDE 3 (toctm dai)

& Wiy e -
; -
-
’/
-—

-

- _J_ meDE 2
10
WMaDE ) - -7
m’* ‘6 FYT—TTIII 5 ‘Il’li”l..‘ T T I[ll[‘{! ) T Kj4TAT|; T TTI(TnT{ [ 4 T lrlITTi
. -~ -3 -1
Y 4] ¥ 0 0 L\ 1

Figure 11.1: Comparison of our (dashed) dispersion relation with Daw-

son.

28

p




100.

Figure 11.3: Mode-1 at A
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Figure 11.2: Mode-1 at h
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Figure 11.5: Mode-1 at
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Figure 11.6: Mode.2 at h = 100,

N
0.00010

0.00000

o
N
P
-
£ Q
@
i
3
|
}
|

0.0
-100.0 r

-200.0

-0.00030

-300.0



Figure 11.7: Mode-3 at A = 100 (260-metre data).
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Appendix 12: 23 March 1992.

Other components of velocity, and large wavelength.

For reasons associared with the exact linear theoryv {see Appendix 1y we have con-
centrated on the vertical component u so far. A somewhart disappointing aspect of thiat
concentration is that the value of this component is verv small ar the free surface Ir s
not actually zero. but appears so on the plots. relative to the values at deprhs of vhie order
of 100 metres or so.

In fact. it is consistent with the Boussinesqy approximation that w =~ 0 at th free
surface. a result that can be seen by noting the linear free surface condition W' = a7y
the limit of large o.

From the practical point of view. the other two velocity componenrs u. + are more
significant. and their values are at least as great in order of magnitude at the free surface
as thev are at depth. These two components are the gradient of a porential with Founer
transform @ available from the equation above {2.3) of Appendix 1. namelvy ¢ = £7717.
Hence as well as the leading equation of Appendix 9. namely.

wl = _?:E f:f?cos(krt‘osﬂ)ms(kys‘;nm %'11%—%—‘;—[—'—3-1; A0k dB
T e L - J
we have
ull = % ) 2;s‘in(}z:rcos Aicos{kysiné) [ﬂ{—%f—f—é—{} Biz kicosHd@
T Ja. 2
and
U= 2? ) 2(.'osfkr('ns(hsin(kysinf}) {:&(—A—(—L—T;—é—z} Biz:kisinddB
T S, 2

where 3 = A"/k = W/ Dy. the prime as usual meaning 0.9z,

That is. to compute these velocity components. just substiture the = derivative 117 for
the function Wy, and delete the facror & in the original definition 4 = kW5 Dy to give a
new amplitude function B. Then replace A4 by B in the integrals. and for u include a factor
—cos 6 and for v a factor —sinf. Finally. the r and y factors are swapped appropriarely
between cosines and sines. The result is no more difficult 1o compure than u-.

Estimates of orders of magnitude are interesting. First note that u 1= the disturbanee
r-component of velocity due to the submarine. the total being U+ u in & frame of reference
moving with the submarine. Then. at least in the far “supercritical” speed range when
Kk << o, and hence #,, is close to 7/2. we must have v << r. since then cos# <<
sinf. Thus the lateral velocity disturbance should be more significant than the along-
track disturbance. This does seem 1o be in rough agreement with Dawson’s resulrs.

At the same time. there are a couple of arguments .aggesting that 1 and w are of
the same order of magnitude. Recalling that w is essentially zero at the free surface
whereas 1- is not. this means that the value of i at the free surface mayv be comparable in
magnitude with that of w at depths like 100 metres. In the first place. we mav consider
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that the important values of the wavelength 27 7k are comparable with sigmticant deprh
scales for rates of change of the density stratitication. Hence the order of magnitude of &
is comparable to that tor 3-9: Hence B and 4 should have coniparable magmtudes: and
thus s0 do v and .

Another related intuitive idea is expressed by the attached Figure 12,1 which s ot
new. but appears in other publications on internal waves generated by steadily moving
bodies. Namely. when we have neglected u. contimury in the crossflow plane demands
that a snapshot of the flow field takes the form of closed loops

I do not believe that this means that Hud particles necessartly undergo sueh loops.
there would not in any case be time for particles to move round such loops as the <ubmarine
passed. This matter calls for further study. But nevertheless one gets the impression from
such pictures that there must be a rough balance between rhe maguitudes of r and w

Wave-like behaviour oceurs in each of the cormponents . uw as functions of y. and these
waves are lisely to be nearly out of phase. Hence when w 1= at irs greatest upward value at
depth. meanwhile  should be nearly zero. In between two such vaiues of y there will be a
near-zero point for u' (at depth: w is alwavs near zero at the free surface). Ar rhat value of
y. then 1 will be near maximum. and that will be especially true at the free ~u face irself,
etc.

Figure 12.1 applies to the first internal wave mode onlv. and the loops exrend down
to the effective end of stratification for that mode. A similar picture must hold tor higher
modes. e.g. Figure 12.2 for mode 2. with two loops in the depth direction. These Joops
are pure speculation. We can compute them. though. and should do so ASAP

It is alwayvs well 1o keep in mind that the general lengrh scale of interext for these
internal waves is that of the stratification. namelyv the order of about one hundred merres
This scale starts life as a scale in the z-direction. and alwayvs correctly indicates that scale.
so that any disturbance penetrates up and down over these rather large distances with
ease. In particular. whatever internal wave 15 present at the surface will also be present
at several metres depth with essentially no change in amplirude. and will only actually
attenpuate at depths of the order of many hundreds of metres.

Meanwhile. this scale is also determining the horizontal length scale of the wave Other
factors (such as the u.» disparity above) suggest some disparity between its manifestation
n the r and y directions. Roughly speaking. I believe that the y-wise wavelength preserves
the depth scale of about a hundred metres. But the r-scale mayv be stretched to several
hundreds of metres. so that the internal wave appears to be propagating mainly sidewavs
ro the submarine’s track: a mainly “diverging” wave pattern. In anv case. these are very
long waves. compared for example to surface waves made by a ship (or even a submarine!.
which have wavelengths of the order of only several metres. nearly two orders of magnitude
smaller.

Internal waves are thus qualitatively unlike ship waves: thev could be said to look nore
like “currents”. They are unlikely to be observed directly. but rather via their influence on
other observable quantities like capillarv waves. Indeed. one (perhaps controversial?) sug-
gestion has been that these roughness-like elements of the micro-scale free surface patrern
become bunched rogether (higher?; where there is an up-current in Figure 12.1. 1.e where
w has a (positive) maximum. and become lower in magnitude where there is a (negative}
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minimum of w. Hence on images which detect this roughness. there may be a visible
indirect image of the internal wave.
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Figure 12.1: Sketch of conjectured mode-1 cross-sections.
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Figure 12.2: Sketch of conjectured mode-2 cross-sections.
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Appendix 13: 24 March 1992

Further effort
1. Mode number effects.

I would have liked to do more comparative work on the influence of the various internal
wave modes. Does the generating etliciency decrease significantly with mode number?
How many modes does one in practice have to consider” How does the numerical accuracy
vary with mode number - since there is more structure with respect ro depth in rhe higher
modes. do we need a finer numerical grid for them” The preseut program 1< rather prinutive
in the way thart it picks out the particular mode that is desired. It conid be improved in
that respect.

2. Fourier outputs.

The quantity A(k) on which we have spent most time is a weasure of wave-generating,
efficiency in the space of the wave-number k. However. our use of it hax been directed
toward subsequent integration 1o give the actual point-wise How tield wir. y. zi. There are
other possibilities. In particular. there may be wavs 1o detect A{k} 1uself. in effect. Some
of these ideas are contained in the Tuck. Collins. Wells (1971) paper (zee Appendix 2.
and essentially I am suggesting that the present work be combined wirh that.

3. Xelvin angles

Another related matter that we gave some thought to early in the project but never
found the time to pursue further. is the simple Kelvin stationary phase angle. This is
discussed in Appendix 1. and there is no reason why the ~ versus # curves could not be
computed routinely as additional output from our program. There i a separate curve for
each internal wave mode and (for internal waves as distinct from surface waves in water
of infinite depth) a distinct curve for everv separate speed of the disturber. [ believe that
the results mayv be in some way similar to those for the Kelvin waves in shallow water. at
supercritical speeds. for which (as part of my seminarj I drew up the attached curve.

4. Other stratifications

We have given perhaps unwarranted attention to a particular stratification. namelv
that used by Dawson. The only reason for this is so that we can compare with some of
Dawson's results. But that stratification is not tvpical. and 1s perhaps somewhat bizarre.
There are many other more typical stratifications that should be tried. including some of
direct interest for the present application to detection. A related numerical matter is the
question of how deep to truncate the data. We have used data from Dawson of up to 480
metres. but this seems unnecessary: onlv the first 300 metres is really significant. but more
testing is needed.

5. Dispersion relations

Appendices 3 and 6 contain ideas for analvtic work of a novel nature on the character
of the dispersion relations for internal waves. Just whar features of the stratification

32




do the parameters of the dispersion relation depend upon” Plulbps's formula snggests
things about the separate dependence on depth and rhickness of the thermocline. but
this depends on a particular assumption abour the stratification. and the whole idea of
a “depth” or a “thickness™ or even a “thermocline” 15 not necessarily meaningful for «
general stratification. The ideas in these Appendices could form the basis for publishabice
research on internal waves. In particular. the nature of the large-o {or &3 Lhuut conld be
clarified using ideas from Appendix 6. This applies not oulv to the dispersion relation. it
is possible to use the method of Appeudix 6 10 determine all onr ourpnt paramerers
the short-wave limit. but this has not vet been done. There i2 also a munerical element
to this: our program has difficulry in distinguishing modes in the short-wave Linut csee 1
above). If it could be guided bv the asvmptotie analvtic work. it might be able to do rha
job more svstematically.

6. Graphical output

There has not been time to do as good a display job asx we would have liked on the
output data. Several options were investigated brieflv. e.g. the Sun Vision package. Matlal,
etc. We shoudd be able to produce quite nice views of the fow field. ineluding “tubher
sheet” plots. perspective views from any direction. etc. An important view ot the outpur
is the “cellular” or “looped” structure in the cross-flow ' r=constant: plane. diseussed in
Appendix I1. We have not had time to prepare accurate plors of this strueture. Another
form of output not pursued is the actual wave displacement. e.g particle motions.

7. Other output and detection matters. [ndirect effecr= of the imrerna wave
tield should be given more time. These include electromagnetic effects. effects on capiliany
wave size and location. and other determinants of the radar return.
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Appendix ]4: o March 1992
EOT post-mortem

“Post mortem” is not an accurate description of the fate of this project. I hope! There
1s much more that can and should be done.

In the beginning. evervone involved had a lot to learn about wakes and intern: i vaves.
If we knew more to begin with. we could have avoided some pitfalls. We might in faet
have chosen to do little of what was eventually done. relyving instead for exaniple ou the
Canadian study (Appendix 8). which adopts a similar methodolosy.

I believe that would have been a mistake. It was necessary for our own computer
program to be developed. in order that we could build up our own knowledge and inrainion
This pas now been done. It is possible that our program is better than those of prpvinrﬁ
investigators. It is certainly comparable. and is producing results of comparable guality.
This in less than 2 months at a very small total cost.

Internal waves are not very big. Some of us woulc like to have seen waves with
velocities of the order of metres per second instead of millimetres per second. It 1= not for
me to judge whether these are measureable or detectable signals. Certainly it appears thut
detection must be indirect. and that has also been appreciated by a number of previons
investigators.

At the beginning. it was felt that more of my time might be spent on non-interna!
wave aspects of the wake. This has not proved possible in a direct way. However. indirectly
we are covering some parts of ihe general problem. In a crude seuse. the viscous wake can
be interpreted as a “tail” added to the stern of the submarine. i which case one can get
information about its effect by studying a “non-balanced” source-sink pair in the Rankine-
ovoid model. Immediate properties of the actual turbulent wake are another mazter.

From the personal point of view, this has been a most challenging and interesting
project. I thank David Cartwright for organising it. and my colleagues while working ou
it. Graham Furnell. Tony Legg and Michael Carroll. 1 have not been easy to work with.
being ever conscious of the limited time available for me to contribute. Now that this time
is up. I hope that the work can be carried on within DSTO.
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Appendix 15: 27 March 1992. (informal)
Final results.

This section of the report is written .eparatelv from the rest. i part becarnse of L
minute interruptions to the computing svstem that prevented its mncor; . o into the
main report. and in part because the same interruptions prevenred us from obtaining {in
time) as high a qualitv of final outpur as we would have preferred. It is planned thar a
separate report will be produced by Graham Furnell when a complere set of fullv-checked
final results are obtained.

By “final” ourput. we mean actual computations of the gow field {u. v a) components.
as functions of the spatial co-ordinates (z. y. z). This "only” requires nunierical integration
of the integrals appearing in Appendix 12. zince we now arc confident of our ability 1o
compute accurately the generation amplitudes 4 and B.

However. there are pitfallx in that numerical integration task. The main difficulty 15
that when r and y are large. the integrand of this é-integration 1s rapidly varving. This
is no surprise. of course: it is the basis for Kelvin's stationaryv phase argument. There are
several methods to account for it numerically. One (see Tuck. Collins and Wells 19715 s
to mimic the method of stationary phase. This was used by Madurasinghe in producing
Figure 1.2.

Another more brute-force method is to use manyv values of # in the discretisation.
However. we don't want or need to compute A and B at many # {hence o and k) values.
since these are not very rapidlv varving functions. though expensive to compute. It 15
only the sine and cosine functions involving r and y that are rapidly varvine Hence a
good procedure. also tried bv Madurasinghe. is to interpolate within (sav; 30 computred
values of A. while dividing the integration range of the # integral into manv thousands of
sub-intervals.

We have had time to do neither of these things vet. Hence the results attached are
only reliable for re. -ively small values of r and y. In particular. it is not possible to
demonstrate any asyvmptotic decav as r — x or ¥ — x unless this rapid oscillation is
accounted for numerically. so our results display spurious osci'lations that do not decav ar
infinitv.

The Figures artached show the lateral velocity v(x.y.0) at the free surface. as a
function of y for fixed . Thev were computed for a submarine of length L = 100 metres
and radius R = 5 metres, travelling at {7 = 2.5 metres/second at depth h = 35 metres i
an ocean with the stratification of Dawson's report. These results were compured using
Simpson’s rule on either 30 or 60 intervals.

For example. the first two figures are at r = 500. which is probably already too
large. with 30 and 60 #-points respectively. 'The 30-point ourput is smoother. for reasons
not entirely appreciated at this time. and there is general order of magnitude agreement.
There is good quantitative agreement between these curves about the major minimum of
about ~0.00075 (nearly a millimetre per second) at about y = 25 metres and (perhaps) a
subsequent maximum of +0.0002 at about y = 100 metres. but this quantitative agreement
vanishes for larger y. and the results are no longer to be believed at these y values.




We have compured some other outpur ar more reasonable isimadlers valiues of rogen-
erating waves of the order of one millimetre per second. but ar the ume of aninng have
not been able to plot it. Plots will be atrached if produced before the end of this da




Figure 15.1: v(H00. y.())usmg 308's.
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0 to 100 metres.

Figure 15.3: v{z.y.O)versus y for r
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Figure 15.4: vir.y. 01 versus y for o = 1 to 300 meters,
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0 to 100 meters.

Figure 15.5: u(z,y,0) versus y for z
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Figure 15.7: v(z,y,0) versus y for 2 = 0 to 100 meters. Speed ' = 10 ms~'. Note
smaller wave! (and almost independent of z - to be expected, see formula: more and

O more diverging waves as [/ — oo).
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. Note bigger

Figure 15.8: v(z,y,0) versus y for r = 0 to 100 meters. Speed U = 1.5 ms~

wave! (“Critical speed” where & = oy ~ 4.7 is

U = 1.5") i.c. this is when 0,,,, = 0.
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