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SUBMARINE INTERNAL WAVES

by
E.O. Tuck

Applied Mathematics Department
University of Adelaide

S.A., Australia

A report on a research project carried out during February-March 1992
at DSTO-Salisbury in collaboration with the following DSTO staff:
D. Cartwright, R. Webster. G. Furnell. A. Legg. D. Madurasinghe.

Abstract

Details are provided of research directed towards the development of the computer pro-
gram WAKE for predicting the internal waves produced by the passage of a submarine in
a density stratified ocean. The research was undertaken within DSTO during the period
February-March 1992. The report takes the form of a series of appendices (presented in
chronological order), which provide a record of the progress of the research (luring that
period. Results are presented which indicate that a representative submarine produces
internal waves which have a velocity magnitude of about one millimeter per second.



Summary

In late 1991. 1 agreed to unidertake an invest igat ion for DSTO (if toibinarmvw %-wake with
emph~asis on the internal waves generated by the passage oft The stibinarnit- thr ou-h ii ;r rat-
ified ocean. The primary. task was to compute I hese initernal waves- for ai givec ~turlrme
and This task was completed iii the period Februarvý-.%arch 1992, Reseati ac tah wazs
provided by Grahiam Furneil and ToiNy Leg~g of DSTO. alidl prouaran]11i~ng hvstiu-
Michael Carroll of Ebor Ptv Ltd. Additional advice and guidancet wii. pro vided hNv Dav"d
Cartu-ri-ghx and Dan \ladura-singhie ,)f DSTO.

This report is in the form of a collect ion of Appendicees. These are pr*-'I'nted III
chronoldogical order. gi~ving a record of progr~ess as; The prc ijec(t ujifi ldted N it all (i Thc
Aý)pendices are of equal Importance. and some are preininia.I(rv uTtentativt- iii piariSlu

seded by subsequent work. All are neveret hieless included. to g-ive an accurarte impresiou n
of the character of the project.

Appendix I IS The most important. setting the style and backgrouind for the pro)#ect
This Appendix was act ually written before The main projecvt con-Inienceti Appendix ý-
is also v'erv impairtant. since the project follows similar pathways to Thle Canadian efforT
headed by- Dawson and Hughes. There are, many things That couild nut hte douic ,,- done
suifficiently thoroughl1y in the very short time available. Soime oif theme could ma~kev goo4d
topics for furti-r studies. Appendix 13 is a partial list of thiese topic--. Appedilx F)I'
very preliminary report of finial results. It had to be left till The v'er aist. and Is prvescritf'c
in t'he form mostly of grTaphis with hand-written annotation. A more cumniplete suunif o

results may be presented later.
The bottom line is that a submarine at representative det hý. anid sýpc"d In a represeni-

tative stratification miakes, internal waves of a neo it agnitt de of abo ut one nuiihn'et i
per second. This sounds, small, and is. airthough (because of T the 1in 111TW,%Velengtli alnd largle
period - about 20 minutes - of the internal waVe1 it doe: co rrespaidi~ ti, actual part ide-
displacements of the order of about one metre. These results are of the orde~r of niagm11T ode
of those reported elsewhere. They may or mnay not be detectable. a- least .ridirect iveg
via bunching of capillaries. Our program allo)ws param~etric STuIVI (if VU1riuS Slitifli~aTiIw
sshapes. sizes. depths and speeds. an(1 of various stratification-
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Appendix 1: 10 February 1992

Source in Stratified Fluid

Some prelininaryv notes on internal wave generationl. actua11ly prepared b1w EOUT prior
to comm~fenlcemen~ft of project.

1. Basic equations.

Let the fluid velocity. vect or be q = (U oý o, ý . where ":)Ix. y, all ad it
tr(.r x. are small. That is. the flow is a smnall perrurbat ion to the unifo~rm st ream I inl
the -x direction. The above representation imiplies that the s-ýomup..nenrt of Tilt vorlclIVtY
is zero. but other components are not: the flow Is not irrotational. and (-- i-s not a~ veP ,citv
potential.

Now the continuity equation is

and there is a -secnrd equation of motion for a stratitied niedilim with densitly ; t4
thle form

where K = g 1U~
am not too sure about the reference s;tat u:- of thi-; equat ion Latrti ins rtwfl riII

fact. I now beliere that it is well documpnfrd and denct-d in C.-S. YIhM 19f65 1X~ok. ..

biblioqraphy. Appendix 2. It seemis to be used by people such as Keller. but without
derivation. I have derived it myself in two quite independent waYs. getting the same answer.
First by, linearising the Euler equation -straightforward and boring. Second by considering
an ocean consisting of many' layers of uniform density fluid w-it h standard Kelvin linearised
free boundary. conditions at the interfaces, then letting the layer thicknesses tend To zero.
Incidentally, the so-called B~oussinesq approximation seem:! to be to drop the termi on the
right inr OX but I set no reason to dc, that.;

Our task is to solve these equations in z <z 0 subject to the free surface condition

0" 4- KI = 0 11.3)

at z =0. and (for an infinitely deep ocean) 0. ir.()a z- - -x. Note t hat thle free
surface condition (1.3) follows from (1.2) by requiring the coefficient of the densit y gradient
to vanish. which is as it must be. since the free surface is just astep discontinuity in density.

Actually. we don't want to solve (1. 1) everywhere: instead we want to allow a source,
at (0.0.ý -h). Hence we should repL-ce the zero on the right hand side by. a delt a funct io,.

e~().(y5( ih), Equivalently, we netd solutions of (1. 1) possessing suit able !siingularit ies
at this point, see below.
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2. Fourier Decomposition

Write

and

Then (with k2 = - 32 and using a dash for d/d,: (,11) gives 1I" A-4 , 1 whihc 121
gives

Then. eliminating t, we have an ODE for It' It'( : namely

k2 Il - t-" = I•i"- 7It* 2.4)

or
.pT'VY - (k2p -ap'IlI' = 0 2. -

where
S= ,K2 '.. 2 = Nse,2  2.6)

with a = k cos 0.
Equation (2.5) is a straightforward variable-coefficient .eco'nd-order ODE. and is ro

be solved sLbject to suitable free surface and bottom conditions. The former is Just the
Fourier transform of (1.3). which leads to

W,' = all 2.7)

at z = 0. The bottom condition is best expressed by assuming that the density is uniform
below some level H. in which case the solution to (2.5) for - < -H is proportional to r,
Hence in that range

I' = kW 2,

and the appropriate bottom condition is then that (2.8) also holds at : = -H for solutions
in z > -H. Of course if there were an actual fiat impermeable sea floor at z --H. (2.8)
would be replaced by IF" = 0. but we shall use (2.8).

Non-trivial solution of the ODE (2.5) subject to both the free surface condition (2.7)
and the bottom condition (2.8) is not possible in general. but is possible (at fixed a) for
special values of the wave number k. i.e. for eigenvalues k = K,('a). j = 0, 1.2. There
is always at least one eigenvalue k = Ko(a) = a, whe-e the solution is Just proportional to
W = ekz. as is immediately apparent from the form (2.4) of the ODE. even if the density is
an arbitrary non-constant funct ion of z. If p is constant. this is t he only solut ion. and is t he
usual Kelvin surface wave. If p is not constant. there may be more solutions j = 1, 2.



and thes-e are what are called internal waves The rt'lationSlup I)A Klc is a tf.rin of t h(
dispersion relationship for the j th internal wAave.

3. Solution Method for Sources

Although there are mianv direct niet hodzs for solving the ahL vc eigcnivalire pr~i'01eu1 )I.
all that we needed was t he dispersion relatijon kA,- K, ý 7) t lit, folilown ý%lyIndirect 1210 bo d i-
preferable if we need solutions for sources.

Suppose IF =' and It* = W,( ark, two separate solultiOný of4 (2 5i dtehiwd 4a-
follows. For It', we satisfv the i)otroin 'boundary condit ion .2.,% r in not h1 e -1 frefe Surface
boundary condition k2.7 '1. and normalise I'arbitrarilyv the value, of it' at !he bolt urn
obtaining anl initial value problem to be solved upward in z - -H. starting, "-ih the.
initial conditions

IU[ý --H) =k -kil

at :-H.
Sirnilarly. IV.2 satisfie-s the free surface co~ndition i2.7ý but i;10t tWhe oTlo~n cl(4w tIMOn

12.$<.. and isý normialised (arbitrarily) to the starting value -1I at z 0. Thfen wesoe
downward for TV) (_) as an initial value problem in -< 0. sýtarting with themiitial cniin

at z0.
Each of 11- and( W)2 always exists for any' choice of Ak. rr, for rea.sotiahlo p(, _i. anti i-ý

readily computed by any standard ODE-solver numerical package. Unless A- anid -7 are

connected by the dispersion relation. 11-1 and W., are linearly independent of each other.
but if it happens that Ak = K.,(aT). they must be proportional to each other. sziice then anid
only then can both boundary conditions be satisfied bY the same, function.

The Wvronskian W1- IV4 TV21IVl must be inversely Proportional to the deinsity p! a
standard property, of variable-coefficient equations. like (2.5)). so we caii write for all _

W1z)~() W(z1U'z) = Dp(-h); p(:) (3

for some constant D = D(kjij. the value of the Wronskian at z-h. Now consider the

following discontinuous solution of (21.5). namelv:

J -t~(-hIi' 1 z),if:: <c --h:
WI:) tI'~( -hWd:) if -h < -- < 0~.

:.Note that WF0 . like It", andI It' depends implicit ly on the parameters k and t'T Ls' well a:ý
the coordinate Z. and will be (lispla~ved as IVO(z: k'.,7) whenever it is necessary to indicate
that dependence. 1 Thc function IVOd:) satisfies both boundarv conditions (2.7) and (12$).
by con'truction. 'Its derivative is c'ontinluous acro-,.- z = --h. whiereasz its value jmsb



IVO(.-h -4- 0W - WO(-h - 0) = D. Hence IV(--) = 11) _( ) D is the retquired discont muw<Us
-olution for a unit source. which must have a unit-nagnitude jump across .-- h h

The important point is that D = 0 when k - K, (i). That 1s. linear indtependentc.
fails when the Wronskian vanishes. Hence DIk. a() - 0 is an impicit foirm ofn the d-perý,jio
relation. and that relation can be determined bv numnlrical solution oi lWi and W,. and
hence for Dik. a). The solution WO is well defined and bounded for all k-,a values. Hence
the source solution IiO D is singular. with a pole wherever D = i). ,e. wherever k K. i.

TFiunr 1.1 is a sample plot of the Wron.skian D(k. ar) /.,r i'.+.i it 1 Ii .h r'.oNv, k
at araous a. Note the calute where D = 0. See Fiqure 6.1 for the (orco sporidil i, ; p, ,,,on
relatIon cur'rec' k = K.(al.i

4. Pole Avoidance and Free AWaves

The solution now found for the vertical velocity u' is liven hl. the Fourier interal
1.5,. which after a change to polar wave numbers by o =A k sin H v-).i liz

" os,2 i D~k,0 o> , 'c ' dA,t 1.1

However. since D = 0 at k = K, (K sec2 0). we must distort the pat h of k-integration To
avoid the poles where D = 0. This procod're iý- the z-amn for all poles j - 0.1 2. 3.... and

is well established for the Kelvin surface wave pattern j = 0. Namiely, if cosft > 0. dtort
the path above the pole. and if cos0 < 0. distort it below the pole.

The reason for this choice is clear if we consider rotation of the path of k-integTation
through -90W. If x < 0. and this rotation is (lone through :90-- when (05• I, the pole
is not crossed during the process of this rotation, and the resuqlting integTral along the
imaginary k-axis contains an exponentially decaying factor. Hence ia tend- to zero rapidly
as X - -x. and there are no waves upstream. as reqiired by the radiation condition.

Once this decision about pole avoidance is made, our task of determining the flow
from a source is in principle completed. and it "only" remains to evaluate the doublh
integral (4.1). with U-0 and D known bv solution of the ODE (2.5) Kfor all v-alues of k and
7 = K sec2 0). This is a mammoth task. bearing in mind that oniy recently ha.- it even
been considered feasible to do routine computations for unstratified fluids. where the ODE
part of the task is eliminated.

However, the main far-field Lx -.-x) contribution is from the pole-, This contribu-
tion can be estimated by rotating the path of k-integration in the opposite direction from
that for x < 0. In that case. one passes across the poles, so picking up a contribution
from their residues, before arriving at an integral on the imaginary k-axis which again
tends to zero rapidly, as x - -xc. Hence the dominant terms in w' as xr - -x are the
contributions from the poles. namely

1 k- 0 7 (70',it.)(: k. K~ -ec 2 ,.W"F (.r. Y.Z e sin2 2rf -g~o0 e'••s••i°I'(~'s Okd(-J i4.2)
_ 2 7,.1 sJ. Z jo j D k (k Ks e c 2  N )

where k = K, (K sec2 9).
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Note that the denonunator Dk In (4.2, iý, the partial k-derivative )f thle \Vriz-kian
D(k. -}. evaluated at the point k = K,(ur) where D = 0. and tlui, qluantity imw.st hke
evaluated numerically with precision as part of the over-all conmpuit at ional t a-k. The 1d,,au
expression can be simplified slightly to a real integ-al on t0. :7 2!, arn i

t 1  -= . sin(A 1rrcos ,9ucoisiKA j" 1 D-n I d, 4.3

The expression-s4.2) or 4 are single iiitegrals with respect to H. aid oidv, lslY

an order of magnitude easier to evaluate than the double inteoTal 4 1 i. In the ship-wavtu

example. UF- is usually called the -free-wave" contribut ion. and we reta in t ha terninuhýg-"
here. Although tree waves are only a far-field approimatimon. tile shnp-wax, experwnczv 1ý.
that they approximate the full flow field very well. as ciose as one or two -hdp ienT tls
asterin.

5. Stationary Phase

Although I advocate evaluation of the integral (4.3) without further approxiatioi
it is possible to make the usual stationary phase approximation for large r- x -Y-1.-
observing that (4.3) is the sum of real parts of integrals of the form

JF(&vr'•€ft d& ;5.l

where the amplitude function F(O) is well behaved, and the phase function is

Tr(H) =_ K(H)cos(a- -, )- ..5,.2!

where . arctan, -x) is the polar angle in the horizontal plane. and (I -P K K sec2 $i
For large r. the main contribution to the integral (75.1) is from the neighbourhood of

stationary values of 0. namely those where 'V(0) = 0. which satisfv

tan(O - -, K'(H I/K(6( (9 3

For most reasonable K(09) there are two roots H of (5..:) for each p.. less- than a certain upper
bound ,. and none above that value. The two roots correspond to transverse (smaller 9'
and diverging (larger 0) waves which are observed for -, < . and there are no wavs for

,i > ' The waves tends to be greatest in magnitude near -. = %. Determination of
the value of ^0 is one of the important tasks. and this value is different for each internal
wave mode j. If we re-write (5.3) as

"0= - art.tan(K'(6)/K 0)) 15.4)

we see that the upper bound for must occur when d-, /d. 0. which leads to a condit iol
involving the second derivative K"0() that is not worth writing down. For general K(H)
it is best to simply compute .,(8) from (75.4) and note its maxima or minima.



For example, thie Kelvin surface wave j = 0 has K ,.. so K ,, 0; so" . antd , 4
becomnes

x - arctani 2 tan 6( j A5

which is negative for positive H. with a mm1nimin given by .. -1.... ran 1 2 '2

19.52 when 0 = aXCrTan( f2 ) a 3W. This value idf ., i.! the, fanipi,' Kl'vin >h"l wave
angle. and applie.s at any speed for any moving object at any suiliiirgtice DIr)•", 1w1.2
waves on the surface of ail inhnitelv deep fluid. even if the Hlui! density in- Ini- -ust.r.

But the internal waves j = 1. 2.3 .... will have a diffeirent '. and there s !em ( IT be
evidence that it is smaller. i.e. that the internal wave wakes are narrower thian Kelvin
wakes.

6. Constant Density

The special case of constant density is worth giving in full Then there i on he one
mode j = 0. and we can iaike the following ident thcarions;

) = • .1

IQ:2Z) - (oshb, - sinh k:' .

D(k.<a) A a-.( 143,

IN k. k--r M - k k A-h • h _ .--

and

2
WF -n6 sin(Nxsec0)cost K sec H-sin H);- h - s" H oYJ1 6,h5

which is well known.
"Figure 1.2 .show.s conpntatzons from f.i 65 by D .faduntsznqh.',
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Figure 1.2-: Surface wavvs co111J)tacd 1,Y D, NMadiurasilligliv.
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Appendix 2: 10 February 1992

Bibliography on Internal Waves and Wakes
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Appendix 3: 18 February 1992

Dispersion Relations

[Note: In part inipro'ed by later trork. se" .Ap1pindtiz 6 to follou.

Our concern here is very imuch with dispersion relations for internal waves. uantilv
relations between wave speed c and wave number k. For cOnveiniere, w•e u.s, instead ,•f C
a quantity proportional to its reciprocal square, namely

a =g, c2

where g is gravity. Then we need a connection between k and ýT e.g. A - K((7', Oinl

of our first tasks is to compute this relation for a given density distribution, B[ecaIL.4ý

this numerical task obscures some qualitative features, this report sunimarisez- st w S ý,uch
features.

The empirical dispersion relation attributed to Phillips 1977, by Tliiin and .Mil,•
(1990) can be written

.p-- T = k i cot h(kH} I -- '-I- k,-"
P

This contains as its leading term the finite depth dispersion relation

a = kcoth(kH)

for water waves in a fluid of constant depth H. but modified v :;h gravity reduced in The
ratio of the relative density change across the thermocline. The parameters are the depth
H from the free surface to the beginning of the therinocline antd the thickness ( of tilth

t hermocline.
fFigure 3.1 is a sample of the k - a relationship. It is not based on Phillips forrn ua.

but zs similar.;
The small and large-k limits are of interest. For small k. we have

P ill-1 -k (

so if a, is the value of a for the first internal wave at k 0 then we estimate
P -H - 1

andthn ora ~(bu cos t i) e Aveand then for (7 > (71 (but close to it) we have

Ap2
k= ?(a-el)-.Ofa - 7)"

This applies only to the first internal wave mode. Phillips doesn't specify it. but I believe
for the second mode. o,2 = 9a, approximately, and more generally that the .; th mode
starts at a = (7, where approximately a, = (2j ± 1)2 a,. That is. I expect that

k = cj(a - a,) + O(a - aj)

i1



for somne ?,
The large-k limit is

That is. r and k grow large together. with k xarving as the SiLquare root Of,-t The cucfhc.Cnt
of proportionality varies like the square root of the density difference, and also like th(
inverse square root of the t hermocine thickness f. but does not depend on tilt, therioclixu'
depth H.

I am rather interested in corrections to this. es-pecially those which di.,,c-ninate be-
tween modes. I am inclined to think that (TI 2 needs to be replaced by (e- '-' for
onie cJ which is not the same as a, though it must increa( e (like no the same aa, 7he rdqu-ar

of the mode number j. Also. I think that in general there should b, an additiVe term. .,-.
the general large-k expansion should be

k = C(, - 1 2 - k

where C is a universal coefficient independent of mode number. and .r* and k, depend ti
mode number.

One cannot rely on the Phillips fcrmula for this type of additional inforniation since
it assumes a special form for the density distribution - as evidenrced friom the fac-T that
the results depend on parameters like H and e which are only really meanmngful In the
context of that distribution. So a useful piece of analyTic or seni-numerical work would
be filling in some of these details for a general density profile. That is. what parameters
of the profile do quantities like Tr. a;.3 k-. c,. C. etc. depend upon7'.

The Phillips empirical formula is an example of what one can do with a so-called
Boussinesq approximation. This makes use of the fact that the de-nsity variations are
small in absolute ternis. It onl" takes them into account when multiplied by the gravity
parameter g. Then one can also use a large-r approximation. In effect, one lets , tend to
infinity and v tend to zero. while retaining the product a.v. There are some sirnplificationý
to the general ODE problem, though not too many. I think there is a lot could be done of
this nature.

Note that the general Phillips formula has this Boussinesq character. My discussion
above pretended that Ap was arbitrary, but in fact the Phillips formula i,• oni- valid if
it is small. in which case a is always large. of the order of the inverse square root of Ap.
whereas k is not necessarily small. ranging from 0 to x in general.
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Figure 3.1: Typical dispersion relation for mode 1.
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Appendix 4: 27 February 1992

Program A

The program for submarine internal wave wakes is at a point of develtwpuieiur where,
we need to standardise it in some way. For definiteness, let u- call The present vers, 'o
Program A.

Program A takes WS input a file containing Ivalues of t he density pt 2 It ineed. n, ,(thlier
input. It solves the ODE (2.5) of Appendix 1. using the Ru tige-Kt a-NYstroni metht,d.
Note: All equation numbers relate to that AppendLr.

The solution is done only once for each k. u, namely yielding the 1'i .n-", function which
satisfies initial conditions (3.1) at the bottom -H. When we reach th, rop 0. wt,
immediately evaluate

D(k = Ia {) - 0

which happens to be the same as that defined by equation (3.3! when - ) and h t .
Thus we have a function subroutine for Dtk. a). This is now used itlv T,) find its

zeros. That is. we use the secant method to solve the equation Dik. a( 0. This ci
be done either by finding the value of 7 at fixed k or kas in the report) by finding the
value of k = Kfa) at fixed a. Each internal wave is represented by a separate fullction
K (a). j = 0. 1.2.... and we can find each sýIlurion separately numericallY. However. we
probably are only interested in j = 1.

Once K(a) is determined, the only thing the program pres-ently does Is To plot 1!.

Program structure

Presently a collection of modules. Namely a nain program 'SEARCH". and sulpro-
grains 'DET",FIND INTERVALU "RTSEC"DENSITY.

These are linked by files called MAKEFILE. COMP etc_ which do some things Mike
should write up (2-3 paras). There is also a library called 'K S GRAPH' and some other

bits and pieces.
The important subprogram is -'DET". This does the ODE oiving, hy callhng a sub-

routine called -'NYST". which has a subroutine called "RHSF" for the right hand side of
the 2nd order ODE.

Program B±

Over the next 6 days we need to extend this program. First (and this is done, already)
we need to add determination of W2 (z). This is done by duplicating and extending "DET".
Keep ;'DET'" almost as it is. it is still needed. Write a new subroutine 'WFUNCTS" which
computes both Wi(z) and 11'2(z). This is all it does. and it outputs these functions and
their derivatives. It could also compute the Wronskian It' (z)1U,(:) - W2 (:)Wf(z) if we
wanted to do that in this subroutine, though perhaps that is better left for later.

Importantly. all the above is done with only the density p as input, together with tile
parameters k. a. (And some numerical or tolerance parameters',). W~e do not vet have to
specify anything about the submarine, in particular not about its depth hI of submersion.
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Now we specifv h. (It hass to be one of the : values for which we have done tile
computations of W e. W.. Then we use (3.4) to set tip II:m :). That should be a subroutine
all of its own.

Now turn to (4.3). That contains a function

A (z. ) = I V) , -) KDk

which we must compute. The 0 dependence conies about because all 3 quant ities oil the
right depend on k and: or cr = K se-2 O.

Here Wo is just computed, and K(a7) is found by Progran A. and Dk. is the partil
derivative of D with respect to k at fixed a. evaluated at k = K, ,) I think hth, subprogran
"DET" can be modified to yield Dk. since differences- of D are already used in the secant
method. Note that we only need WIX and Dk with k = K(a ). not with a general k aid a.

Simultaneously (Graham) we need to push the progTain forward on a couple of other
fronts, namely to go from the K(ar) determination (subprogram 'DET" i toward kineinatIc
aspects of the wave pattern (i.e. those not needing to know the actual wave-gfenerating
efficiency of the submarine) One immediate objective is the Kelvin stationary phase angle.
thus the -, versu 0 information of equation (5.4). Other interesting matters are general-
sations of what is in the Tuck, Collins and Wells (1971) Journal of Ship Resarch paper.
In particular. generalisations of the frequencies (Fig 6) observed by Fourier tralsforming a
one-dimensional cut. and the "ridge" or expected location of peaks in the double Fourier
transform of a two-dimensional record (Fig 7).
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Appendix 5: 2 March 1992.

EOT Summary

Here is my suniiavy of the submaime, wake program so far,
My full-time involvement began 10 February 1992 and Is d(' to end 27 March 1992.

The initial team with full-time involvement consisted of Tuick. Furnell. Leg,' and .Madl-u'-
inghe. from DSTO. plus Carroll on contract from Ebor as progranmier. Part tole iyVolve-
ment or overseeing role is provided by Cartwright. Haack. WeVestr. Marwod. etc

Division of responsibility initially seemed to be Tuck for general ideas. Furnell for
long-term DSTO carrying on of thes ideas after 27 March (and hence, cl•ose haso with
"Tuck before 27 March). Legg for input and (especially graphic. output c, nsidratlr i

Madurasinghe for the numerical integrat ion end phlase of t he numerical work. CarrtPl1 ,Ioc,
programming directly as required by Tuck.

The team immediately seemed too large to me. Hence at my suggest iol. The 1in"1•tdiat,
working team was reduced to Tuck. Furnell. Carroll. at least for the first fe w week-_ hi,
report sunmnarises progress by that team.

For the first two weeks. the team was mostly feeling its waY and getting t, klow
each other. I arranged to transfer some very crude computer programs here. and Carroll
started to modify these. He was at first looking at ways to improve the ODE solving
aspect. using non-umform grids, but this proved a non-useful approach. especially since
we intend to use a uniform density grid. so was abandonned in favour of retaining the
Runge-Kutta-Nystrom method in my original program.

I also brought some Macintosh programs which used graphic input and output tech-
niques. These were of interest mainly to indicate to all members of the team what sort of
thing we wanted.

At this stage. Furnell was mostly concerned with parallel development of analt'i-c
models for step-wise exponential density, maj v to use as checks on the general progran.

On 19 February. I gave a seminar. After this. the focus of the work was clearer, and
the reduced team set out with more specific tasks. Carroll cleaned up the program asL
it presently stood. and this was designated "Program A" on 27 February. This program
takes a given density profile as input data. and computes the dispersion relation k = K(7)
of the internal waves for that stratification. It does so by solving the ODE (2.5) for W, (:)
(numbers refer to the Tuck prehminary note "Source in Stratified Fluid". Appendix 1).
Note that it does not solve for TV2 (see (3.2)) yet. The Wronskianl D(k. a) is computable

at z = 0 (for submarine depth h = 0) (see (3.3)) without the need to compute IV2. Then
the equation D(k. ea) = 0 is solved for k at each fixed a by the secant rule.

This dispersion relation is of independent interest. WC, Lye devoted sone time to un-
derstanding the nature of the k versus a curves for idea'ised and actual stratifications. For
realistic actual stratifications. the aT values are very large. typically measured in thousands.
when k is of the order of unity. The first internal wave starts with k - 0 at some aT = (71

value of this large size. then k increases monotonically with a. eventually becoming laxrge
when a7 is large. asymptotically like the square root of a. Similarly. the second internal
wave starts with an even higher value of a7 = (72 z 9a 1 . and has a k value always smaller
than that of the first wave. etc.
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There are miany consequences for thie final form of the iiternal wavts of this character
to the dispersion relation, and Furnell is pursuing some of these tor realist ic and ideahied
stratifications. These include the nature of the Kelvin wake pattern. in particular tts
angle (narrow wakes,. mostly diverging wavts. etc.). and somnet aSIpct' of urier-fiilvsei
detection as in the Tuck. Collins. Wells (19711 pauper. Note that thi: wo rk can prw,'t 4,
even without a knowledge of the wave-amnplitude generation capatilit'y of the plarticular
body (submarine) making the waves.

The next phase of development of the program to deternine act ual wave aniplit ides
is to develop Programn A further. to compute IV'2. ITV) (see (3.4iý anidi a uuralrtity which
appears in (4.3) but is not given a specitic symibol there, namely

A.z::) = k,;z kV t) Dk .k. k

Actually as written, this quantity appears to depend on k too. but we om\ want ,its xvaliu
when k satisfies the dispersion relation A- = K (,r(. This A is the aiplrl tide of The, wawv
generated by a unit source at the current value of the wave-spe•d parameter .!. N• te that
if the actual wave-speed is c then 7 = y c-2 ALso note that since ( - U cos H whlerte U
is the submarine speed at an angle 0 to the wave direction. this confirns ý2_6i. nativh"
(7 = K sec2 8. with t = giU2 . Ultimately we shall consider A = .409) and ineg-rate 4 3,
with respect to 8. so summing up internal waves of all diret-tions.

Note that there is a separate contribution to the integral (43,a for each internal wave
mode j. Program A simply computes as many internal, wave .j as we -pec6fv. But we shall
mostly only be concerned with one or at most two.

An important ingredient in the determination of A is the partial derivative DA. of the
Wronskian with respect to k at fixed o7. This is the slope of the D versis k plot as- it
crosses D = 0. All three ingredients k. 10 . D;, of A are presently being computme and
computation of A is being done. though at time of writing insufficient checks have, bern
made on it.

Next step (assuming that A for a source is computable) is to move from a source
to a submarine. First we do a Rankine ovoid. namely a soource-sink pair separated by a
distance of the order of the submarine length. When that length L is large compared to
the maximum radius R. the required source strength is (according to slender body theoryý
UrR 2 . That is. we take the unit source result. already computed. multiply it by U times
the maximum cross section area -,R2. and subtract the same thing shifted by a distance
L aft.

In fact. doing this explicitly in (4.3) gives a result where the -sin- is replaced by a
'cos". and the "-4" for the unit source is multiplied by

,U . ['2si(41K (c)L rosH)1

the first square bracket being the source strength. and the second t he source-sink separat ion
factor. An interesting formal special case is the limit as L - 0 and R -- x with R'2 L
bounded, which yields a submerged sphere. with the -sin" of the second square bracket
replaced by its argument. This may be a usefuil test case to compute first.
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Appendix 6: 5 March 1992

Short wave limit of dispersion relation

MIake the Boussinesq approximation and write v' j )p. Then the, ODE 21.7 )f
Appendix 1 becomes

- ~v(: k2 11 -

There is no hope of a solution sat isfyig reasonable top and boTT011 Vondiltios llS~ tilit,

coefficient in square brackets above takes (it least sonic positive vahtiezs After al.iitn
wholly negative the solutions are exponential-like, anid can only~ have (),w zero. vdhereas
when the coefficient 1-, positive. the solutions are sinusoidal-Uie, and Canl have, lots of r.
"I[ believe that there is a theorem to that effect for ODEsý. but it is intuitivelY obvious,
anyway.

Now if we let k - x at fixed cr. eventually t he coeffirient must become wholly nle'(at iye
for all --. Hence there will be no solution satisfy-ing the boundary conditions. 1iheretore,
,7 must increase with k at such a rate as to keep at least sonlie pOSITive vallues for theý
coefficient. This will happen last (as %we increase k at fixed e7) at t hose --valutes where v'~
is greatest.

Hence suppose the maximum value of i:)is v, and that it occur, at z zr,f ,i~
it is clear that as k and a become large together.

a,- k 2- 0

or

k -

Thus the large-k limit of the dispersion relation depends only on the behaviour of the
stratificat ion at the depth where the density is van'ying the most.

We can improve on this estimate as follows. Suppose in the neighibourhood of the
maxinmum density gradient. the stratification is of the form

V()V(Z ( "ý Zm) 2

for some positive constant pu. This is a quite general relationship since v(z) must have a
maximum at z Z.Then suppose -f is the correction to k2. i.e.

k2  
-

Then, writing t z - zm.- the above ODE becomes approximatelY (locally to t 0

ffV -+ ie - apt2] Tv' = 0

and must be solved subject to W - 0 as t -±-x.
This 16 a standard Hermite or parabolic cylinder function ODE. and for example has

the simple exponential solut ion



if e2 = api. More generally there are solutions which are polynomials of degree j - I timn.w
the above exponential. providing

E2 : (2j -2,=a/

This is the jth internal wave.
Thus as a - x.

S= v, - '2) - I 7 O-01)
or

2

Hence (asymptotically) each mode is obtained from the previous one just by a constant
down shift in k of magnitude

Ak-

This answers one or two of the questions in Appendix 3. In particular. in the last
equation of that appendix. C = vl-v, and k. = Ak (independent of mode number j j. I
dont know what cr, is: that is a higher order effect for smooth stratifications such that
v(z) has a simple maximum at an interior point z = :,. Experience with nonsniooth
stratifications (e.g. stepwise constant v(z)) or with those where the maximum density
gradient occurs at an end point, or with empirical formulae like Phillipss. tends to suage-t
erroneously that an apparent rightshift in or is the leading-order correction, rather than an
apparent downshift in k.

Figure 6.1 gqies samples of our computation of the k - a curres.
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Figure 6.1: Typical dispersion relation several modes.
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Appendix 7: 11 March 1992.

What submarine?

'\ost of our work so far has beeýn onl thle Waves mnade by a s geisolated puoillluu c

of uinit strengtqh. The --final" result is equation (4.3) of App~endix 1, uanilelvy

U, sin(kx coS 014 cosilkyzsill 'Ai k)dti

where A(k) W Vk~iDk_.
At this stage (ProgrTam B) we are comiputing A k sticce-ssfullv fuir the unit Swurct."J

various stratifications; and source depths.
-Note that the above form of (4.3) does not distiinguiz.hi miodes. j. thC( resuP-ý bemnm-.

assumed computed separately for each mode and summned at the enld. I ha*vt' ust UTImm(en

k for K3 (a). assuming that if the above integral is being carried wit with rej)(Iet to OWli
theta variable. then we work out (7 = K secý, 0. then cnall upon Mur prog-rai to eovaluaro th,
corresponding k. etc.

A serious alternative being considered at the momrent is to convert directily fromi i~
integral to a k integral. i.e. set d9 = (d&.'dkidk. working out

[t = dA-., _WC' 0 sin 01
_dk 1 4 K S1

which demands output from the progiam of vhe --lope dk :da of ihe Qiispersion reI i4 rPIo U
which is not too hard to get.

Importantly, the integral with respect To 9 self-truncates: at itsz lowver end. inldee~d
only occupies a small range near 0 = 7./2 for realistic s;mall stratifications. That is. thc
generating amplitude A is identically zero for (. < a7, (the lowest value of (7 for eacn
miode'). and a, is a large number. of the order of thousands. Hence the actual lowe~r limit
of integration is 0 6 where a. - sec, ft, or

which is very ciose to -, /2 unless K is very lag so ub. but that will make smiall waves
anNyway)

This4 is all well known, and commented upon by most authors. It mieansý that internal
wavesý are largely diverging rather than transverse. i~e. their crests are parallel to Ithe sub's
track. But there are a number of important consequences.

First note what happens when we make the change of variable from 6 to k. Then
the range of k is fuilly from 0 to )c ( ,corresponding ito 6 = o9, to -,/2). Meanwhile the
x-is wave number k cos 6 is going from 0 to a finite upper bound. whose mragnit ude (See
Appendix 6) can be shown to be vý-- a small quantity. The y-wise wave number is
essentially k itself. and goes from 0 to x. The integral converges subject to onmly mild
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restricdous onl A because of tile fact that d10 A tends~i- tot itlvr hikt k ` whtic aitiM t(A1Ihw,
from Appendix 6i after sunle -mminpiilation't

Consider first thc Raiikint, ovoiP 'er-c.'<''aitt iko f I r('111 -0, )iiau 1,1 ' wl lk-!A L 111(1

volume 1' According to slender htody htmory. dhiý is a k-Na1ilidtr 4 wfi rin it' '-"ll 'ettill

area V' L = -R 2 . This holds so longl as R <," L.
But now lee u examine what hlppen1S W.Ien %%V staryti e.cala cle er l T ilt-

waves. A, i&u'e at the endl of Appendixi\ . all~ .1ipcn rtc'iatvt') tll he Mdwivt

integral is thlat thte sin( kx cos -~et ý r'i u laced by atI en Te a~if-tllj~lIP t i~' fat( Tr ol .4

2sinm L k coý,

We just showed That the largest value that c-an be taken h * tvw .r I-xwle ua~ ~it(itiiikvei k itis 1
is the smiall quantity Hence the argumnent of thec abiv 'ye-i flunetmit caii Ilvt

exceed ~~~ 2
A rough estimate fohr realistic stratfihcaTU ions V~i,,, :ý10-, 11 T ill- q11,IT tV Ci 111!

to about O.OO.5L ,;[ whiere the suoluariiie leng-th L i:, lin mftrvý- Ulid Tilt spe'td U iiit :wrvý-
per secondI. I believe that this will be smnall for aldl realistic -uhmiarilie ltng - nkiees
at least smiall enough for its sine to be reas;onably replaced bv aset.ý4

If that is done. wtiat result,, is the, szaie as if we had let L U.In other word!.,
all submarines of the samne volunle generate thle same internahl wavve,. irrespIcTItive f Then13

length/"diameter ratio' Hence wve can assunme the submnarine i., a sphere. which is g~enerated
by a dipole.

The actual effect is to replace thle sine in (,4.3 by a cosine anld to iuiuit IpyTil th'aipi

rude function A b% the .r-wise wavetiumber k cosO. anld thle hnil;4 result 1w i.- the produlct
of the speed arnd volume of the submarine UI'. 'Yet anot'. ,. ixw 4) ý' !Js i.ý toý no(te That
the waves due to a dipole are proportional to the, .ý .I(i,%-avave of the wave., duci to a source.

In anty case, we should compute zorn - %xves due to dipfoles- and (separatcl~v som di)nw
to Rankine ovoids of the samne vol::une. and see if there is any differencve. Lfple irsc.
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Appendix 8: 12 March 1992.

A review of the DREP report by T.W. Dawson

The 1988 Canadian report DREP T.16,Q-7 by T.W. Dawson is very relevant to, ,ir
project. This note is a sunmmarv of some importailt feat ures of it

Overview
DREP T.\18e-7 is about 90 pages long, aid very detailed. It I: an 1mt1ressive docutuent

in its accuracy aid coverage. It reads like a Ph.D. tvesisý and I would rate' It as deserving
of a Ph.D. if it was one. On that basis and others. I assess its cost a- about 3 high-levc!
man-years. though this could be conservatrive, since there are references to sulpporting, wo •rk
that was obviously done in parallel. The cost of the research directly repo rted in T.,IM,,-7
alone must therefore exceed a half million dollars: if the supportint work is al,( included.
perhaps the total cost would run to several million dollars. Compare our iapprox.aat,-iv
6-week times -1person effort!

The good and bad news is that this report is highly -elevant to our .r ject and use a
comparable methodology. I do not believe that we will be able to come up with anvt ning

significantly better than the Canadians. Hence one serious alternative strate"y would
have been simply to buy in their finished product. If that was not possible. we could hart'
attempted to duplicate it using TM88-7 as our guide. I hope to make it clear that tet
latter would have been infeasible in the time a%-ailable-

That is probably the bad news. The good news is that we are on the right track in
our independent approach. In particular. I am absolutely amazed that my prehiminarv
note "Source in a stratified fluid" (call it EOT92-1 here: it is reproduced as Appendix 1
of the final report) which was written without benefit of stirtyding T-\s•-7 first. describt-,
a methodolog" that is quite like Dawson's. There are many other things one could dho.
and some in our group thought we might be doing them. ranging up to supercomputer
Naviei-Stokes solutions. But I chose a more conservative approach. and so did Dawson.
We could both be wrong, of course, but there is some experimental evidence at the end of
"I M 88-7 that Dawsons results are good. which is another piece of good news.

Summary of TM88-7

1. "Introduction." A nice summary of the problem. Note Ipl) the discussion of
two separate generating mechanisms. -wake collapse" and -'hull effect", and an important
remark that the methodology allows both mechanisms to be studied. although the illus-
tration is only for the second. This also applies to our approach. The approximations and
assumptions (p.2) are as I would make. and (to mv surprise, since I thought fe"v others
had even heard of it!) Dawson also chose a Rankine ovoid model of the submarine

2. "Model and basic equations." This repeats derivations that are for example
given in Yihs (196.5-) textbook (see bibliography. Appendix 2). On p.8 the Boissinesq
approximation is introduced. I do not propose to use this approximat ion exphicit ly. though
I am sure that it is a good approximation for realistic stratifications. However. as a
practical matter. it does- not provide any numerical simplification to the ODE that has to
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be solved for the vertical distribut ion of velocity. and henice nl(:4d not he1 1 iade except aLs
an analytic tool. The comparison is between miv E0T92- 1 eq oat iou ('2.- i and iDaw! ii -

TNISZ-7 equation (3.4) x1sbject ttý (3,2)). MY equat ion redluce.: to DIMi . f M-l
is replaced by pit"'. which is the BoussinesqI approxiinivio~n, valid in the hiiri .. aflluJ

stratification. Note that hiis N; A -2 p f ad Ilv (T='elc

3. -General solution of the basic equations." One dithirence hw on~u ap-
proaches is that Dawson uses, rigid lid conditio ns IV ' (0 I)oTh at the -fr", - I- ' I
and the --bottom" - = d (hlis zis downward). I use neit her. \1 ' fri4, surfaceý 1,~.~-zu firl
one. where It" = (711. and myx -otmtorni is flot really a bottoui. buii rat her ii !ivel whecre
tie density becomies uniform. and is assumed uniforai for ever below in an iahliwt, dept h
ocean. Neither of these differences- is too importanit in practice. 'Ibe 1)apparenT rl_0ldirv of
the free surface is consistent with the ~o~ussitiesq approxaimatitin; tilt, bvottolii (onfiditloll I'

probably not too important ill practice uniles.s the submarine, i!. clt)e t 0tt
Dawson~sequation (:3.11) looks faniiliar to irue. IT is ('ios('iV ('otlte('e with li nv Ua

1 (4.3). thoughl arLingia veryr ditferentlv. In both case-s. the 16trniula involve:, iill~ it el~t( 11iriii-
tor. the partial derivative with respect to a wave- patrameter. of the, Wron-skian lwtwetx~ Two)
s olutionsý of the fundamental homogeneous ODE. Thes'e soilototis X Ire -iti enral) 1iineArmv
independent (so the Wronskian is non-zero) but are of wail. interest to 11.5 whetn tlepv!idf ut

,'-o the Wronskian is zero). In that c-we. the wave numbiier k and niiv paranicteraeqi-
alentlv the wave speed 6) are connected nutilericall- by the- (. spersioi! rclatiou. [)awroi ý
avoids actual different iat ion of the Wroniskian by omemanpulation arolund p. 13. ho)
don't see any problem doing it by brute force nutmerical differentiationi.

The sumnmation over modes in (3.11) and throughout T'%Is-7 rvprt-esitý Ht-e major
point of departure between the philosophies of Dawson and tue aidA I think it numlber
of others are with me on this). T\8"-7 adopts the view that one must Colmpoteý mrally
internal waves. There are infinitely many. They are ordered with respect To spee-d. there
being a maximum-speed miode j= 1 (niiinimum t7 in my,% notation). then a slower mode,
j = 2 (larger (7) etc. Roughly- speaking. the speeds go,( down like- the, irrvpr,ýt of the, mole
number j (a goes up like j2 ). Since e7is already rather large even for the first mod 1 .
the act ual (7 numbers for hIngher modes pretty quickly get huge. It is my view that alniost
all that one wants to know about internal wave generation is availail bye aSSuming11 That
only the first mode is generated. We can calculate several mode,- if we want to: the re-sults
are in any case just additive. so we can test this hypothesis easily: I wonder if Dawsoil d1udf.

4. "UVniformly translating source: frequency inversion.- Dawson hsassumted
a general source distribution doing somewhat general thingsz tip to now. Nsow he specialises'
to steady horizontal translation, as, I have done from the oultset . and first does an isoliated
Source.

.5. "Extraction of steady-state fields." More spevialisation.

6. "Evaluation of k, integrals". It appears that Dawson is ambitious enough to
try to evaluate the whole thing. That is. in my terminolog-y, lie evaluates, not onldy the
free wave single-integral contribution fromr the reidues-- at the poles k =KJ (a j, but also
the double integral local dlistuarbances near the source. .As I ,,ay' on p. 41 of E0T192- I. hi-
is a truly --maninuoth task- I (-an only have admtiration for Dawson for attenipting it



anrd more. Perhaps we ill the ship-hydrodyvannc crinnllunt have bevin too colServatlvV.
but I do have my doubts about whether one can really do it with accuracy and efficiemcvY
J.N. Newman has, been quite scathing in the past about soene attempts. Anyway. if onei,

is mainly interested in the far field. the free-wave integral EOT92-1 (4.3, .,hiold suffice.
Here I a(n calling upon decades- of ship-hydrodynarnic experience. with a -light wrrv that
some of this experience might not translate directly to internal waves.

7. "Ntimerical considerations". This is a very long and detailed chapter. It
describes Dawson's technique for solving the ODE. his (3.4). equwvalent to EUT92-1 (2. 7,
Namely. simply represent the ocean by many layers, in each of which the, density is assiiiiid

to vary exponentially, so _V-2 is constant. Fit thtee layers together with suitabl-e contlilnItY
conditions, and you have a tool for ODE solution.

Much of this chapter is taken up with concern for the accuracy of his teclihmque
related to things like "'evanescent modes- fcomplex eigenvalues ). and clohe approach of the
real eigenvalues for one mode to those for another.

I believe to a certain extent these worries are an artefact of the method Dawson i-s
using to solve the ODE. though they are a warning to us also. WV are uzing a dir('
numerical solution method of Runge-Kutta type (not for any" rea.son, other than ease of
programming) and I don't think we are seeing any sinmilar difficulties.

Figure 2 on page 38 is very important. It provides a benchmnark density distributhin
(indirectl" via the Brunt-Vaisala frequency N = C'q-j). We ar , using it to recover the actual
density p by integration and exponentiation. and then inputting that to our proeraiie. Thi-
is a bit silly, since in effect our program just differentiates p immediately to give v again.
but is justifiable on convenience grounds. After some effort. I think we have quite god

data for p at intervals of 10 metres. as used by Dawson in his Figure 2. and also interpolated
to 5 metre intervals. This density data is shown as a Figure here.

Dawson's Figure 3 on p.41 is one that we should be able to reproduce. It is in effect
the dispersion relation plot. equivalent to our k versus a plots. Indeed there is considerable
equivalence. Dawsons variable s is proportional to our a. and (see his eq. t.13)) his pr
is proportional to /2.,'¢. So, apart from nsome possible conflsion over the proportionality
coefficients. once we find k versus (7. we have his Figure 3.

Of course. there are 21 modes on his Figure 3: we are rather more modestlh thinking
of computing about 3 modes! One difficulty I find with Figure :3 is that I cant tell which
mode is which. The lowest curves should be the eaxliest modes. but the first 3 of these
are incomplete. The logarithmic scale doesn't help. Anyway. the sooner we attempt this
comparison the better.

The rest of Chapter 7 is special numerical techniques. and perhaps not too interest in_
Figure 7 (p.64) starts to be interesting again, and all the remaining Figures should be
reproducable by us.

8. "W'ake examples". Here on p.71 Dawson introduces the Rankine ovoid idea.
and gives a concrete example with submarine-like dimensions. He then gives final results
for that example. at several speeds and depths of submersion. in the stratification of' his
Figure 2. Figures 12-14 are 3D plots which we should he able to reproduce of the surface
currents. However. the actual scale of these plots is not easy to pick up. though there are
Tables of extreme values provided.
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In the caption to Figure 12. the -local" effect near tht- subliuarinc is notd We can't
reproduce that. since we neglect the local effect via the double integral terli iIn The wave
field. if the local effect is as smnll as that shown in Figure 12. thiý h!,hfim nor tie too inlich
of a worrn.

9. "Comparison with measured data". Figure 16 i• a very ivteresting voipar-
ison between computation and experiment, the experillieltal inlterllrd waves ' being shit;

generated. The agreement is very encouraging, both qualltati-VVly aid quiuttativeh. ,(C

could not directly reproduce this without more inforniation. presunial)lyv Ohtanable, f ,Mn
Reference 1. which is a DREP report of 1985. I would like to know hom• a in tevrn'al
wave modes were significant. and whether "loca'" effects the doulble integral t'ernis wiere,
signiificant.

10.+ "Concluding remarks, Reference and Distribution Lists.- Useful, The
US reports under the name Milder seein likely to be interesting. There are somer, liltrti.,T ,In
inclusions (Cartwright. Reed) and omissions (Tulin) in the distriNbution list.
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Appendix 9: 13 March 1992

Direct 0-integration

After some thought. I have decided that Iat least for the tinm beiin) we will it) ihe.
0 integration directly. i.e. without the change of variable to k canvassed in Appendix 7
The alternative is still worth considering, but lets go with --itvgTation first.

Hence the vertical velocity made by a Raakine ovoid of length L a( imaixiniim radIuS
R moving at speed U is given by

/U = 21 >oslkxcostLcoslkqsIin' i L 2

where V = 2R2 L is its volume.
The lower limit of integgration is 0,. which is the mimimum H value. corresponding T(,

the minimum a = rn, value for each (separate) internal wave niode j. Naniiel'

0 --- arcn ,--

WVe assume for validity of this formula that K < (7 m. which is not a severe requirement sýice-
Ur is numerically large. This is what Tulin and Miloh (1990: s(N, bibliography. Appendix 2;,
call (misleadingly) the "supersonic'" range. This just means that the subnri-rine is moviIIn
faster than the fastest internal wave. namely faster than abo•)ut one inetre per second.
Absence of small-8 contributions means absence of 1Tansverse waves. If the sulbiikarine is
moving so slowly that this condition is violated ('subsonic" motion in the senoc of T-ulin
and Miloh 1990). the generated wave amplitude is probably too low to detect anYwav.
However. if we did need to compute it. we would just set 0, = 0. since then all 0 valuit
occur. and there are transverse waves.

Since am is large. 0, is very close to ,/12 The range of integration above is therefore
a very narrow one with respect to 0. 1 think this is good news for convergence of the
integration. Actually, that convergence is also illustrated by the k transformation, which
leads to an integration on an infinite k-range. but with k- 2 rate of decay of the integrand.
In some sense this decay rate with respect to k is equivalent to the small H-range.

Traditionally (for surface waves) we are worried in evaluating this sort of integral
about the effect on our integration method of a rapidly-varying character to the integrand.
This comes from the trigonometric functions when x and y are large. strictly when kx and
ky are large. That occurs when we are in the far field of the disturbance. strictly many
wavelengths from it.

There are several reasons to suspect that this won't be a problem in our case. First. the
internal wavelengths are much greater than those for surface waves. so at a fixed (perhaps
large) x. y. the value of kx. ky may not be so large. Second. there is an actual upper bound
on the coefficient of x. namely kcos9 < vrKv (see Appendix 7) which is small. Hence
there cannot be a rapidly varying character to the contribution from the factor ii x. no
matter how large x is. Since 0 is close to r/2. the y factor is essentially cos(ky). and will be
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rapidly varying when y is large. However. we art, rather lh.S interested Ill large q, tfal t') T i,
side of the submarineI than we are, in large .r (far astern ft he •ibiaru,. '-ii P h,.r
only one point 0 of stat ionary phas,, so to.na a. K < ,i n. a hak t i -i i it ,
since all 0 values have that property.) If we were to be wo rried atl u T I ht-t•lji ,, Ili )t ,

of points of stationary phase. we would be worrying abo)utit thle nltih ullii 6, 1, 11 t -

where there is no contribution at all from the r factor. Tilt. -, .i.... p-

facile: but anyway. all I am arguing is that we Should prt-,- ahlead (bIng ti- ? :14'r,,,
without worrying too mucIh, and the proof of the putdding i- n the tilat nltl.

In Appendix 7. it was argued that. as generators of internal wav:s all -uiibaiarmn-- t,

the same volume are indistinguishable. irreswctiwe of shapw ýaui lengi. iI think thli, - ,t:
important principle that we can check, most directly for the Rankine boht>- bh VarvItIf
their length/idiameter ratio L (2R). In partirular, in thi, limit as- kL no.t. legti
tending to zero relative to wavelength. not nectssarinix relative t, dianitter! we 1t0over
the internal waves generated by a sphere. where the qu1antitv in :.qiiare hrajket: i: -impplv
replaced by kcosH. and the result is independent of L. It would, bte verY ilnterestinig t,.

check this by computations at a sequence of L values
Some comment on dimensions is appropriate here. ObViouslv the ot'utpult ir mU I111st

be dimensionless. The volume factor outside- the integral has (finienision:-, of lengt' ulbId.
so the integrand must have dimensions of length to the power --3. Thln- is true sinice, iT I,•

not hard to see that A has dimensions of length to the power -2 tse" Appendix 1. below
(3.4): 1-'0i D is dimensioniess).

I suggest that we use consistent SI dimensions. i.e. input and use L in metres etc.
Up till now we have normalised "all variables ;o that the apparent depth of t he oceatn H i..
unity. I think this is no longer appropriate in the produkction program. so we should input
the actual depth H in metres. etc. Since all results are proportional to the submarine
volume V, that factor need not be inputted. If it is omitted. we are comiputing the wave
made by a submarine of vO]Ullume one cubic metre: a submarine of volume 1000 cubi" metre:
makes ,1000 times that wave. Otherwise. all v-ariables are i11 true SI units.
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Appendix 10: 17 March 1992

Density data

As seen in Appendix GF (a preliminary note by Graham Furnellh. the data is- iio,
always presented to us directhl in tile form of density versus depth p( --). It Imay e shei vhllt

or temperature profiles, or it may be speed of sound data or even Brunt-Vaisala frequemies
whose square is proportional to our intermediate variable v( Z ,.

Generally though. we expect to see a p(z) that increases with depth (anrYthing else
being statically unstable) and our results only depend oil the ratio betweeni two densiti-s.
so without loss of generality we can assume that the density at tihe free surface iý, norinalised
to units". Then it will increase with depth and the act ual increases are generally less tliaii
one percent.

The action takes place in the first few hundreds of metres. There may' be a nmii, n zone
for the first few tens of metres where p is essentially constant. then pnerhaps a relatively
rapid increase with a peak density gradient in the next few tenls of metres, (tihe thermoclhie .
then less dramatic increases in density, with a levelling off at about 2MXJ-300 metres toi a
final density of p = 1.0015 to 1.0070. (times the free surface valueý at leazst in the examples
I have seen.

There are interesting examples where tile Brunt-Vaisala frequency N(t z is quoted InI
radians per second. ISometimes it is given in cycles per hour. which must be first converted
by multiplying by 2; i36001. One way to proceed with th-se would be to put this data
directly into our program. Instead. however, it is possible to recover the actual derL-itv
profile from N(z).

Namely. since
Ni = - = gv

then (normalised to unity at z = 0)

p(z) exp(- j N2 (ti)gdt i

We have done this integration for a few sample data sets The most inmportant is
Dawson's Figure 2. reproduced here as Figure 10.1. The consequent density curv, is
Figure 10.2. A decision has to be made as to where to cut off the data. Dawson shows V
as non-zero even down to depths of the order of kilometres. It is a good questtion whether
this data is believable. but in any case. the actual values of N 2 are small. of the order of
hundreds of times less than the maximum of N 2 . so the density is only increasing verv
slowly at great depth. We have to do some numerical experimentation to verify this. but
I would expect that we would be making very little error if we were to assume that the
density was constant whenever z is greater than about 300( metres in the conditions of
Dawson's data. and also for some other examples we have seen. There are some ca.ses
where there does seem to be significant variation down to order of a kilometre. btut I doubt
its significance for our problem.
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Figure 10.1: Dawson's Brunt-Vaisala frequency.
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Figure 2. The layered Brunt-Vaisala frequency profile used for the examples

in this report. It is based on a smoothed version of measured data taken at

Ocean Station P during the summertime.
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Figure 10.2: Re-constructed Dawson (lensity profile.
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Appendix 11: 20 March 1992

Early output

We are now in a position to produce some preliminary oui put qum itiies that ran and
in some cases have been checked against existing results.

In the first place. regarding just the kinematics. namely the dispersion relation, we-
have checked a number of Dawsons results, using our own re-conStruction (F•gure 101.2) of
his density profile. That reconstruction is a potential source of error. but the results seem
pretty good. so I think our reconstruction must be OK.

For example. Figure 11.1 reproduces Dawson's Figure 3. as anticipated in Appenuix
8. We have to pick a value for -, Na2 . as used in TM18-7. p. :37. According to Figure
2 of TM88-7.,\'Max = 14.6 cycles per hour ý at least that is the largest value of tih
Brunt-Vaisala frequency displayed on that step-like Figure. and we believe it is likelY that
that was the value used bv Dawson for his calculations leading to Figure 3. Interesit ln .
however. our first choice was to --smooth" the steps in Figure 2. which leads to a -bet ter
estimate Nax = 15.9 cycles per hour. since there is a very sharp maximum thal is not
well captured by the -teps in Figure 2. The result was to shift all our results by a small
constant amount. which (on the logarithmic scale used) corresponded to the approximately
20% factor in Xax

In any case. with what we believe was Dawsons choice of .Nrmax. we are always spIt ,n
his g-aph for modes 1 and 2. Dawson gives 21 modes, but only incomplete graphLs for the
most important first 3 of .. ese. We show (dashed) the complete graphs for modes 1.2 and
3: those for mode'- ., 2 merge smoothly with Dawson's and extend Dawsons results
correctly toward P . i.e. towardk =k 0

The sam ,:- aue for mode 3 with the results shown in Figure 11.1. which was based
on use of di'sitv data extending down to about a kilometre depth. However. it is worth
noting t-.at our first computations using data extending down to only 500 metres depth
diverged from Dawson's mode-3 curve near its bottom end. This is because mode 3: has
a maximum at about 600-800 metres. and is not adequately captured by 500 metre data.
T1-owever. the actual generated amplitude (see the sample curve of Figure 11.7) is smaller
by a factor of about 10 than the corresponding mode I and 2 signal reflecting the faci
that a submarine at about 100 metres depth is not an efficient exciter of a mode whose
maximum is much deeper.

As of this date. we are rapidly producing graphs of A4 z. 0). The•veg."' a very good
picture of dependence on parameters like submarine depth. mode number. for a part icular
stratification. VWe are presently using Dawsons. but that is a bit weird. and we should shift
to some more realistic stratifications. The Figures to follow are preliminary indicatimns of
behaviour of A(z) for various (T (equivalently k) values. The first 4 Figures show meode-l.
for various submarine depths. Figure 11.6 is a mode-2 for depth 100 metres. and Figure
11.7 mode-3 for depth 100 metres,
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Figure 11.3: Modle-I at h 100.
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Figure 11.2: at h-i at -
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Figuire \1.: od(-i1 at h 20(1
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Figilre 11.:- Nl(de(-2 at h10
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Figure 11.71: Mode-3 at h 100 (260-metre data).
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Figire 11I.8: Mode-3 at h 280 (1120- mlet re dat a)
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Appendix 12: 23 March 1992.

Other components of velocity, and large wavelength.
For reasons associated with the exact linear theory (see Appendix I1 we have coii-

centrated on the vertical conmponient wt so far. A somewhat disappoint mn(, a--IC (,f ! iat
concentration is that the value of this component is very small at the fret sur:,ve IT 1-
not actually zero. but appears so on tile plots. relative to ith' value. at depth.- o)f I 'corder
of 100 metres or so.

In fact. it is consistent with the Boussines.I approximation that Ir : 0 at ( th- free
surface. a result that can be seen by noting tile linear free s.zrface c(ndrttion 11" = oi" in
the limit of large a.

From the pactical point of view. the other two velocity comnponent> u. ;are Inaort,
significant, and their values are at least as great in order of magiur ude at he tfit surface
as they are at depth. These two components are the gradient of a potential with Fourir
transform t available from the equation above (2.3) of Appendix I. nanwlv P = k-'I".
Hence as well as the leading equation of Appendix 9. namely.

21" firk( L
U= • cosikxcosO)cos(kysinfW L- d1,9-." L "2 •i •"' d

we have

2- f ~irlfkcosNt.L 2.1 A-B o- 1? = - sin(tkx cos N,: cos(kq sin 0) L . '2

and

?'-,U = 2f cos(kcosr sin(kk cs .Ls in B(::k HfHde

[7 - L 2 j

where 1 = A',ik IV 0iDk. the prime as usual meaning 0 0:.
That is. to compute these velocity components. just substituie the : derivatnve I.' for

the function 1-0. and delete the factor k in the original definition A =kit', Dk to eive a
new amplitude function B. Then replace A by B in the inte,rals, and for u inchie a factor
- cos0 and for r a factor - sin6. Finally. the r and .q factors are swapped appropriately
between cosines and sines. The result is no more difficult to compute than ii.

Estimates of orders of magnitude are interesting. First note that ii i, the (list urbant,,
--cofnponent of velocity due to the submarine, the total being .U u in a framne ,)f reference,

moving with the submarine. Then. at least in the far 'supercritica" speed range when
K << Ta. and hence 0m is close to -/2. we must have u << ?. since theln cosH ,

sinft. Thus the lateral velocity disturbance should be more ,igrnificant than the, alona-
track disturbance. This does seem to be in rough agreement with Dawson's resiflt --.

At the same time. there are a couple of arguments ..aggestir•g that r and ? are of
the same order of magnitude. Recalling that W is essentlallv zero at the free surface.
wherea&, 1, is not. this means that the value of r at the free surface may be comparable in
magnitude with that of t: at depths like 100 metres. In tile first place, we may consider
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that the important values of the wavelength 27 'k are comparable with signiticant dvpT 1
scales for rates of change of the density stratification. Hence t he order- if Iltild•it ide of k
is comnparable to that for 0,0-: Hence B and A should have coniparablh rnaigc 1he:: and
thus so do r and u.

Another related intuitive idea is expressed by, the attached Figure 12.1. which is niot
new. but appears in other publicatioiL- on internal waves gveierated by steadliv moving
bodies. Namely. when we have neglected u. continuity iIn the cross-flow planeW deliianid.-
that a snapshot of the flow field takes the formn of closed loops

I do not believe that this means that Ituid pasticl.es zletessaril- un1dergo :-uch lo•&p.
there would not in any case be time for particles to move round such loopý. aL the sUbma-zne

passed. This matter calls for further study. But nevertheles.- one gets the impression troin
such pictures that there must be a rough balance between the magnitudes of r and (

Wave-like behaviour occurs in each of the components r. a as ftunct ions of q. and thesc
waves are iiiely to be nearly out of phase. Hence when ir i.- at it- greatest upward value aT
depth. meanwhile r should be nearly zero. In between two such values of q there will bN a
near-zero point for u" (at depth: i is alwavs near zero at the fre, surfawce). At that value ,) -f
y,. then r will be near maximum. and that will be especially true at the free %u face itself.
etc.

Figure 12.1 applies to the first internal wave mode only. and the ioop., exrend down
to the effective end of stratification for that mode. A similar picture must hid t,,r higher
modes., e.g. Figure 12.2 for mode 2. with two loops in the depth direction- The•-. loops
are pure speculation. We can compute them. though. and should do, so ASAP

It is always we.l to keep in mind that the general length scale ,f interest folr these
internal waves is that of the stratification. namely the order of about one hundred netre-s.
This scale starts life as a scale in the --direction. and always correctlv indicates that scale.
so that any disturbance penetrates up and down over these rather large distance,- with
ease. In particular. whatever internal wave is present at the surface will al-,( bW present
at several metres depth with essentially no change in amplitude. and will only act ualhv
attenuate at depths of the order of many hundreds of metres.

Meanwhile. this scale is also determining the horizontal length scale of the wave Other
factors (such as the u. r disparity above) suggest some disparity between it.-s manifestation
in the x andy ldirections. Roughly speaking. I believe that the .- wise wavflength preserves
the depth scale of about a hundred metres. But the i-scale may be stretched to several
hundreds of metres. so that the internal wave appears to be propagating mainly sideways
to the submarines track: a mainly 'diverging- wave pattern. In any case, these are very
long waves, compared for example to surface waves made by a ship (or even a submarine .
which have wavelengths of the order of only several metres. nearly two order, of imiagiT udf
smaller.

Internal waves are thus qualitatively unlike ship waves: they could be said to boo, ::iore
like -currents". They are unlikely to be observed directly, but rather via their influence on
other observable quantities like capillary waves. Indeed. one (perhaps controversial'!) sug-
gestion has been that these roughness-like elements of the micro-scale free surface pattern
become bunched together (higher?) where there is an up-current in Figure 12.1 .J.e wher,
Wt ha.s a (positive) maximum. and become lower in magnitude where there is a {negatmve
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mlninunm of u'. Hence on image, which detect thi• ro ghm.i.-. there mav be a visible
indirect image of the internal wave.
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Figure 12.2: Sketch of conljecturedi rode-2 cross-sections.



Appendix 13: 24 March 1992

Further effort

1. Mode number effects.

I would have liked to do more comparative work on the intfluence of the various internal
wave modes. Does the generating efficiency decrease significantly with ni de number'7
How many modes does one in practice have to consider' How does the numerical accuracy
vary with mode number - since there is more structure with re.spect to depth in the higher
modes. do we need a finer numerical grid for t hem.' The present program is rat her lrintre
in the way that it picks out the particular mode that is desired. It could be improved in
that respect.

2. Fourier outputs.

The quantity A(k) on which we have spent most time is a measure of wave-generatin
efficiency in the space of the wave-number k. However. our use of it has been directed
toward subsequent integration to give the actual point-wise flow field wcx. q. --). There are
other possibilities. In particular. there may be ways to detect .4(kl itself. in effect. Snie
of these ideas are contained in the Tuck. Collins. Wells !1971) paper (see Appendix 2,.
and essentially I am suggesting that the present work be combined with that.

3. Kelvin angles

Another related matter that we gave some thought to early in the project but never
found the tinme to pursue further. is the simple Kelvin stationary phase angle. This i-
discussed in Appendix 1. and there is no reason why the -, versus .0 curves could not be
computed routinely as additional output from our program. There is a separate curve for
each internal wave mode and (for internal waves as distinct from surface waves in water
of infinite depth) a distinct curve for every separate speed of the disturber. I believe that
the results may be in some way similar to those for the Kelvin waves in shallow water. at
supercritical speeds. for which (as part of my seminar) I drew up the attached curve.

4. Other stratifications

We have given perhaps unwarranted attention to a particular stratification, natnelv
that used by Dawson. The only reason for this is so that we can compare with soome of
Dawson's results. But that stratification is not typical, and is perhaps somewhat bizarre.
There are many other more typical stratifications that should be tried. including some of
direct interest for the present application to detection. A related numerical matter is the
question of how deep to truncate the data. We have used data from Dawson of up to 4,SO
metres. but this seems unnecessary: only the first 300 metres is really significant. but more
testing is needed.

5. Dispersion relations

Appendices 3 and 6 contain ideas for analytic work of a novel nature on the character
of the dispersion relations for internal waves. Just what features of the stratification
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do the parameters of the dispersion relation depend upon" Phillhp. formula igae•-ts
things about the separate dependence on depth and thickness of tihe thermochnc. but
this depends on a particular assumption about the stratitication. and the whole idea of
a --depth or a -'thickness or even a "*therinocline ls not nece(sarilv nie•aingflll fo r a
general stratification. The ideas in these Appendices could form the basis for publishabie
research on internal waves, In particular. the nature of the lar-,e-r (or k, lmit iicould be
clarified using idea-; from Appendix 6. This appibes not ontnV o the dispersin relatiiua. i'
is possible to use the method of Appendix 6 to deterinine all ou outplpt paralinterv in
the short-wave limit, but thiý. has not yet been donte. There is a1s, a iiutn1lericlil t'ieleultn

to this: our program has difficulty in distinguishing miodes iii the short -wave hnuit - et, 1
above). If it could be guided by the asvriptotic analytic work. it might he ablt, t, d, tihat
job more systematically.

6. Graphical output

There has not 1 *,en time to do as good a display job azs we wo~uld have liked )n t.it,
output data. Several options were investigated briefly. e.-. the Sun Vision package..Matai,.
etc. We shoudd be able to produce quite nice views of the flow field. includin.e 'rutdw'r
sheet plots. perspective views from any direction. etc. Ani important view of thte ou put
is the 'cellular or looped" structure in the cross-flow ..r=constant i plane. discussed In
Appendix 11. We have not had tine to prepare accurate plots of this structurv. Another
form of output not pursued is the actual wave displacement. e.g particie motions.

7. Other output and detection matters. Indirect effecrt! of ti T nitrWNa wa've
field should be given more t ime. These include electromnagnet ic effeci s effect, on capfilla-
wave size and location, and other determinants of the radar return.



Figure. 13.1: Kelvin angles for finite-(.epth surface waves.
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Appendix 14: 26 March 1992

EOT post-mortem

"Post mortem" is not an accurate description of the fate of this project, I hope' Therei•
is much more that can and should be done.

In the beginning, everyone involved had a lot to learn about wakes and internal wave.
If we knew more to begin with. we could have avoided soine pitfalls. We zni'lt in fac't
have chosen to do little of what was eventually done, relvinw. instead for examrip"e on tile
Canadian study (Appendix S). which adopts a similar methodology.

I believe that would have been a mistake. It was necessary for our own computfr
program to be developed, in order that we could build up our own kwl, dge and inrui:in
This nas now been done. It is possible that our program is better than those of previous-
investigators. It is certainly comparable. and is producing results of comparable quality.
This in less than 2 months at a very small total cost.

Internal waves are not very big. Some of us woulC like to have seen vwaves wiýL
velocities of the order of metres per second instead of millimetres per second. It is not fo,
me to judge whether these are measureable or detectable signals. Certainly it app,-'ars that
detection must be indirect, and that has also been appreciated by a number of previou,
investigators.

At the beginning, it was felt that more of my time might be spent on non-internaa
wave aspects of the wake. This has not proved possible in a direct way. However. indirect lv
we are covering some parts of the general problem. In a crude sense. the viscous wake cak
be interpreted as a "-tail" added to the stern of the submarine, iv which case one can iet
information about its effect by studying a "'non-balanced" source-sink pair in the Rankiie-
ovoid model. Immediate properties of the actual turbulent wake are another matter.

From the personal point of view, this has been a most challenging and interesti~nt
project. I thank David Cartwright for organising it. and my colleagues while working on
it. Graham Furnell. Tony Legg and Michael Carroll. I have not been easy to work with.
being ever conscious of the limited time available for me to contribute. Now that this time
is up. I hope that the work can be carried on within DSTO.

'4



Appendix 15: 27 March 1992. (informal)

Final results.

This section of the report is w-ritten .;eparatelv ftron the resT In part bease ,
minute interruptions to the computing system that prevented its !nI(o'' .. , ntu the
main report, and in part because the same interruptions prevented us from obtaining (in
time) as high a quality of final output as we would have preferred. IT is piamned that a
separate report will be produced by Grahamn Furnell when a couiple,, set f fully-che:ked

final results are obtained.
By -final" output, we mean actual comnputations of the flow field tu. r. w) components.

as functions of the spatial co-ordinates (x.r. z1. This "only requires numerijal integral I orl
of the integrals appearing in Appendix 12. since we now -,rc cont'de-ii 4f otr abiitiy to
compute accurately the generation amplitude- A and B.

However, there are pitfalls in that numerical integration task. The main ditficultY i-
that when x and y are large. the integrand of this 0-integration is rapidly varying. This
is no surprise, of course: it is the basis for Kelvins stationary phazse argumnent. There. are
several methods to account for it numericallh. One (see Tuck, Collins and Wells 1971 is
to mimic the method of stationary pha&e. This was used b- ,Madurasinghe in producing
Figure 1.2.

Another more brute-force method is to n-e many values of f in tile discretisation.
However. we don't want or need to compute A and B at many f ihence ri and ki values
since these are not very rapidly varying functions. though expensive to compute It Is
only the sine and cosine functions involving x and y that are rapidly varv::. Hence a
good procedure. also tried by Madurasinghe. is to interpolate within (sav. 30 computed
values of A. while dividing the integration range of the H integral into many thousands of
sub-intervals.

We have had time to do neither of these things yet. Hence the results attached are
onlv reliable for re. ivelv small values of x and y. In particular, it is not possible to
demonstrate any asymptotic decay as T - x or y - x unless this rapid oscillation is
accounted for numerically. so our results display spurious osci'lations that do not decay aT
infinity.

The Figures attached show the lateral velocity r(x.y, 0) at the free surface. as a
function of V for fixed x. They were computed for a submarine of length L = 100 metres
and radius R = 5 metres, travelling at U = 2.5 metres/second at depth h = 35 metres II
an ocean with the stratification of Dawson's report. These results were computed usuing
Simpsons rule on either 30 or 60 intervals.

For example. the first two figures are at r = 500. which is probably already too
large. with 30 and 60 0-points respectively. The 30-point output is smoother. for reasonsL
not entirely appreciated at this time. and there is general order of magiutude agreement.
There is good quantitative agreemnent between these curves about the major nininmni of
about -0.00075 (nearly a millimetre per second) at about y = 25 metres and (perhaps) a
subsequent maximum of +0.0002 at about .y = 100 metres, but this quantitative agreement
vanishes for larger y. and the results are no longer to be believed at these y values.

______________________________________
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Figure 15.2: (50 y. oThisilig )O.
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Figure 15.3: v(x. y. Q) versus y for x 0 to 100 rietres.
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Figure 15.5: u(x,y,O) versus y for x = 0 to 100 meters.
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Figure 15.7: t'(xy,0) versus y for x = 0 to 100 meters. Speed U = 10 ms-1. Note
smaller wave! (and almost independent of x - to be expected, see formula: more and
more diverging waves as U -o).
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Figure 15.8: v(x,y,0) versus y for x = 0 to 100 meters. Speed U = 1.5 ns-1 . Note biggqr
wave! ("Critical speed" where K = a-- -1.7 is U = 1.5!) i.e. this is when 0 ,,, 0.
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