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Final Report: Algorithms for Point Set Congruence
ARO Grant No. DAAL03-92-G-0378

Under the support of this grant, the investigator studied the question of
congruence between two sets of points. The problem draws its motivation
from computer vision. One point set can be thought of as a model, and
the other as an image. A given model could represent a symbol, such as a
letter of the alphabet, or a landscape or other environment. An image is that
which is seen by an observer. We wish to know if an observed image matches
a certain model.

Before the tenure of this grant began, this investigator had begun research
into several formulations of this problem. The investigator had improved
upon results of other researchers by introducing a technique that perturbs
the input points slightly in order to exploit the resulting geometric structure
of the point sets. The investigator had applied this technique to the case
of equal cardinality, planar point sets. The resulting algorithms were called
"approximate algorithms," because they traded some precision for faster run-
times.

The primary purpose of the project supported by this grant was to ex-
pand research in point matching, by applying the perturbation technique and
the approximate algorithm paradigm to more complex problem formulations.
During the tenure of the grant the investigator has successfully worked to-
wards this goal. The main results of this research are contained in the paper
"Generalized approximate algorithms for point set congruence". This paper
is still undergoing revisions, and a copy of the most recent draft is included
in this report. The paper introduces a device called the (e, k)-map, whic'
is a more general measure of point set congruence than the one previous4y
examined by the investigator. The paper discusses ways to construct the
(e, k)-map. While the investigator's previous work was limited to er~ual car-
dinality, planar point sets, this current work has expanded atteiition both
to point sets of unequal cardinality and to point sets in higher dimensions.
The investigator has even begun the study of projective congruence, in which
one compares a 2-dimensional image with the family of )rojections of a 3-
dimensional model.
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1 Equal cardinality, planar point sets

The case of equal cardinality, planar point sets was the main focus of this
investigator before the tenure of this grant. The major results of this work
are contained in the paper "Approximate decision algorithms for point set
congruence," written by this investigator with Stefan Schirra. Final revisions
on the paper were made by the authors during the period of the grant, and
the paper has been accepted in revised form by the journal Computational
Geometry: Theory and Applications. The content of this paper is important
to the main body of work pursued under the grant, since the recent work
has studied generalizations of the problem formulated in this paper. We
summarize below the problem studied in "Approximate decision algorithms
for point set congruence," and the approximate algorithm paradigm.

The paper studies the problem of c-congruence. Assume that we are given
two planar point sets A and B of equal cardinality, n, and a tolerance value
e. An isometry is a mapping in R2 that preserves distances. We say that A
and B are c-congruent if there exists an isometry I and a bijection e : A --+ B
such that dist(f(a), 1(a)) <_. c, for all a E A, where dist(.,.) is the distance
function of our chosen metric (typically L 2). Intuitively, we can approach
this problem by thinking of each point set being put on a piece of paper;
the sets are c-congruent if it is possible to slide one piece of paper over the
other and match the points in such a way that the points of each pair are
within distance E of each other. Important special cases of this formulation
are obtained by restricting the isometry to be a translation, T, or a rotation
around a fixed point d, Rd.

Determining if point sets A and B are c-congruent for a given e is referred
to as the decision problem. The optimization problem asks for c,,t(A, B),
the smallest value c for which A and B are c-congruent. It is possible to
use any algorithm for the decision problem to approximate c0,t(A, B), by a
search procedure.

Early algorithms for the c-congruence decision suffered problem from
large run-times. A concept introduced by Stefan Schirra to obtain more
efficient algorithms is the approximate decision algorithm. A decision algo-

rithm is (or,1f)-approximate, if, for any c f [,pt(A,B) - a, cept(A,B) + 01],
it correctly answers a query, and for c E [eo, t(A, B) - a, copt(A, B) + 1], it
either answers correctly or chooses not to answer. As we intuitively believe
that it is more difficult to test for c-congruence if e is close to -,pt(A, B), we
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would be willing to accept an algorithm that correctly answers queries for
values of e not near eopt(A, B), but sometimes chooses not to answer when
c is near 0opt(A, B), if that algorithm provides substantial time savings. An
(a, #)-approximate algorithm has the desirable property that it will not re-
turn an incorrect answer; if it is not sure, it will simply say that it does not
know the answer. For this reason, the designation "approximate" is perhaps
a misnomer; an alternate title for an algorithm that sometimes chooses not
to answer is "incomplete decision algorithm" (as opposed to a "complete
decision algorithm," which answers all queries).

2 Generalized approximate algorithms

While "Approximate decision algorithms for point set congruence" develops
approximate algorithms for the original formulation of --congruenc), this
formulation is unnecessarily constrictive, which motivates the desire to gen-
eralize results. This generalization has been the main activity of the project,
and the principal results are presented in the paper, "Generalized approxi-
mate algorithms for point set congruence." While this paper is attached to
this report, we will summarize briefly its content.

First of all, the work of this project has dropped an assumption of the
earlier work: the point sets are not required to have equal cardinality. This
greatly enlarges its applications. Secondly, the work examines point sets
not only in 2-dimensional space but in 3-dimensions also; it even begins an
examination of comparing a 2-dimensional set to a 3-dimensional set.

The present work also introduces a stronger measure for congruency. The
original decision problem merely tells whether it is possible to match the
points such that each point is within the tolerance distance; the present
work asks for the maximum number of pairs that can be placed within the
tolerance distance.

This notion is formalized as follows. We are given two point sets A and
B in Rd, with JAI = n, IBI = m, n < m, a family of isometries 1, and a
metric dist(., .) on W. We define two functions,

k,,a : IR+ --+ {2,..., n} and copt : {2,...,n- I+R+

which describe the congruence between A and B. The definitions are as
follows.
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"* We say that A and B are (e,k)-congruent if there exist I E I and an
injection (1-to-I function) i : A --+ B such that dist(e(a), 1(a)) < e for
at least k points a E A.

"* For e > 0, kma(e) (or kax(,, A, B)) is the maximum value k such that
A and B are (e,k)-congruent.

"* For k E {2,. .. , n}, -,,pt(k) (or ept(k, A, B)) is the smallest value c > 0
such that A and B are (e,k)-congruent.

Combining the notions behind the functions km., and et leads naturally to a
structure called the (e,k)-map, which summarizes the congruency relationship
between two point sets,

The investigator has generalized the definition of an approximate deci-
sion algorithm to correspond to the generalized definition of approximate
congruence. The result is a powerful framework for studying congruence of
point sets. The investigator has developed some algorithms for the various
formulations of the generalized point matching question, and these are given
in the attached paper. The investigator hopes to continue to improve the
algorithms for this problem.

3 Other work

While the work of this project has been primarily concerned with point set
matching, the investigator has benefitted from the support of the grant while
pursuing research on some related topics. Point matching is a topic in com-
putational geometry, since it asks for algorithmic solutions to geometrical
problems. The investigator has recently worked on some other computa-
tional geometry topics as well.

The investigator has studied a question in polygonal visibility known as
the two-guard problem. Given a simple polygon P with vertices s and t, the
straight walk problem asks whether we can move two points monotonically
on P from s to t, one clockwise and one counterclockwise, such that the
points are always co-visible. In the counter walk problem, both points move
clockwise, one from s to t and the other from t to s. Optimal 0(n) con-
structive algorithms for both problems are found. The results are obtained
by examining the structure of the restrictions placed on the motion of the
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two points, and by employing properties of shortest paths and shortest path
trees. The results are described in the paper "An optimal algorithm for the
two-guard problem," which has been submitted to the journal International
Journal on Computational Geometry;, copies of the paper were furnished to
the A.R.O. at the time of the paper's submission to the journal. This paper
will be presented at the 9th ACM Symp. on Computational Geometry, May
1993.

The investigator has researched the topic of t-spanners. Let V be a set of
n points in 3-dimensional Euclidean space. A subgraph of the complete Eu-
clidean graph is a t-spanner if for any u and v in V, the length of the shortest
path from u to v in the spanner is at most t times d(u, v). The investiga-
tor, with Gautam Das and Giri Narasimhan, has shown that for any t > 1,
a greedy algorithm produces a t-spanner with 0(n) edges, and total edge
weight 0(1). wt(MST), where MST is a minimum spanning tree of V. This
result is described in "Optimally sparse spanners in 3-dimensional Euclidean
space," which will be presented at the 9th ACM Symp. on Computational
Geometry, May 1993.

The investigator recently made final revisions on "Linear-time algorithms
for weakly-monotone polygons," which has been accepted in revised form by
the journal Computational Geometry: Theory and Applications. The paper
introduces a new class of simple polygons called the weakly-monotone class.
It provides a linear-time algorithm that determines whether a simple polygon
is weakly-monotone, and a brief, linear-time algorithm that triangulates a
weakly-monotone polygon.



4 Papers

"Generalized approximate algorithms for point set congruence," manuscript,
1993.

"Approximate decision algorithms for point set congruence," in Proc. of the
8th ACM Symposium on Computational Geometry, 1992; to appear in Com-
putational Geometry: Theory and Applications.
"An optimal algorithm for the two-guard problem," to be presented at 9th
ACM Symposium on Computational Geometry, San Diego, 1993.

"Optimally sparse spanners in 3-dimensional Euclidean space," to be pre-
sented at 9th ACM Symposium on Computational Geometry, San Diego,
1993. Co-Authors: G. Das and G. Narasimhan.

"Linear-time algorithms for weakly-monotone polygons," to appear in Com-
putational Geometry: Theory and Applications.

6



Generalized Approximate Algorithms
for Point Set Congruence

Paul J. Heffernan *
Dept. of Mathematical Sciences, Memphis State University, Memphis, TN 38152

Abstract

We address the question of determining if two point sets are congruent. This
task consists of defining the concept of point congruence, and developing algorithms
that test for it. We introduce the (e,k)-map, a device which pictorially represents the
degree of congruence between two point sets. Point set congruence has been studied by
previous researchers, but we feel that our definitions offer a more general and powerful
approach to the problem. By using the paradigm of approximate algorithms, we are
able to construct tha (-,k)-map efficiently.

1 Introduction

In this paper we address the following question: given two point sets in Rd, what do we mean
when we say that they are "congruent," and how do we determine congruency? To answer
this question, we must define congruency, and provide efficient algorithms that test for it.
The practical motivation behind our study comes from computer vision, where an observed
image is compared to a hypothesized model. While previous researchers have formalized
and studied this problem, we feel that the formulations often have been too restrictive. In
particular, an elegant formulation has been introduced by [AMWW] (also [Bal) and studied
further by [HS]. It is this formulation, which we call e-congruence, which we generalize here,
in an attempt to lessen its restrictions while preserving its strengths.

Roughly speaking, the e-congruence formulation is as follows. The input is assumed to be
two equal cardinality, planar point sets, with a given metric (usually L2 or L") and a given
family of isometries (an isometry is a mapping from Wd to itself that preserves distances).
There are two problem versions, decision and optimization. In the decision problem, one
asks for a given value e > 0 whether an isometry from the family can be applied to one point
set and a matching found between the sets such that the points in each matched pair are
within distance - of each other. In the optimization problem, one asks for the smallest value

e that returns an affirmative answer in the decision problem.

"Supported in part by the U.S. Army Research Office, Grant No. DAAL03-92-G-0378



Formulation of the model as a point set is appropriate in applicartions where the model
consists of a number of small pieces, such as locations on a map, or the model is a figure
that can be represented by its key boundary points, such as letters of an alphabet. The
c-congruence formulation has both advantages and drawbacks. One of its main strengths is
that is allows for the real-world possibility of noisy input-that is, imprecisions in recording
the image points-by considering a pair of points to be matched if they are merely within a
tolerance distance E of each other. Every point of both the model and image is important,
since each point must be matched to a nearby partner. This allows us to distinguish between
models that vary in only a few points. On the other hand, if even one image point encounters
an amount of noise exceeding the tolerance value, we may falsely answer that an image
does not resemble a model. Another concern with the strict definition of [AMWW] is the
requirement that the two point sets have equal cardinality. Among the imperfections of
image registrations are missing points, which fail to appear on the image, and spurious
points, which are erroneously introduced into the image. The possibility of such events
renders the equal cardinality assumption impractical. Additionally, in [AMWW] attention
is limited to 2-dimensional point sets.

Our goal in this paper is to abandon the rigidity of the traditional definition of e-
congruency. In lieu of the decision problem, we propose the following generalized version:
for a given E > 0, find the largest number of point pairs that can be placed within distance
e of each other, under some matching and isometry from the family. The generalized op-
timization problem asks, for a given value k, to find the smallest E for which the decision
problem returns a value of at least k. We introduce and show how to compute a structure
called the (e,k)-map, which stores the complete generalized solution. We drop the assump-
tion that the point sets must be of equal cardinality, and we expand our methods to higher
dimensional point sets. We consider a variety of metrics and families of isometries. We even
consider the case of projection congruency, in which a 2-dimensional image is compared to
a 3-dimensional model. As a result of these efforts, we build a more powerful framework for
congruency of point sets.

While Alt, et al. [AMWW] give algorithms for the c-congruence problem, most suffer
from high worst-case run-times. A way to obtain efficient algorithms while preserving the
formulation is through the use of approximate algorithms for --congruence, first introduced
by Schirra [Scl, Sc2]. Faster approximate algorithms have subsequently been developed by
Hleffernan and Schirra [HSI. In order to develop algorithms for our generalized definition of
point set congruence, we draw on the techniques of [HS], and develop a body of approximate
algorithms.

2 Generalized approximate congruence

In the point set congruence problem, we are given sets A and B. We wish to match points
of A to points of B so that as many pairs as possible are as close as possible. In this sense
we have a bicriteria problem with a trade-off between the two goals. In order to obtain
workable formulations, we can fix one goal while optimizing the other. Under this approach,
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one problem consists of matching the points in order to maximize the number of 'dose"
pairs, where "close" is determined by a fixed tolerance value. The corresponding problem
fixes the number of close pairs and asks for the minimum possible closeness parameter. In
either problem, we are allowed to impose an isometry from a given family on one of the point
sets.

We formalize these notions as follows. We are given two point sets A and B in Rtd, with
IAI = n, IBI = m, n < m, a family of isometries -", and a metric dist(.,. ) on IRd. We define
two functions,

kma, :IR+ --+ {2,...,n} and ete: {2,...,n} --- R+,

which describe the congruence between A and B. The definitions are as follows.

"* We say that A and B are (E,k)-congruent if there exist I E -" and an injection (1-to-I
function) t: A -- B such that dist(e(a), I(a)) <_ - for at least k points a E A.

"* For E > 0, kma(E) (or kmax(E, A, B)) is the maximum value k such that A and B are
(E,k)-congruent.

"* For k E {2,...,n}, eoc0 j(k) (or c0p,(k, A,B)) is the smallest value - > 0 such that A
and B are (6,k)-congruent.

Combining the notions behind the functions kma and eom leads naturally to a structure that
we call the (e,k)-map, an example of which is pictured in Figure 1. The (E,k)-map plots
k against E, and it consists of both a YES region and a NO region of ordered pairs (6.k).
such that A mnd B are (c,k)-congruentif and only if (e,k) is in the YES region. The (e,k)-
map allows one to see the interaction between the two goals of obtaining a small closeness
parameter and a large matching. One "vishes for a point in the upper-left corner Df the map,
while the YES region is anchored in the lower-right corner. The boundary between the two
regions is a step-wise curve from lower-left to upper-right (the peculiarity of a discontinuous
curve serving as a boundary occurs because k assumes discrete values). In essense, the
(Ek)-map is a picture of the congruence between A and B.

The (e,k)-map offers some clear advantages over the traditional definition of c-congruence.
The latter deals only with matchings of size n, ?nd therefore limits its perspective to the top
line of the (e,k)-map. Much additional information is contained in the full (e,k)-map: two
pairs of point sets may have the same value of eorn(n) but a sharp difference at eopi(n - i) for
a small integer i. Indeed, large recording errors for a few image points can increase ot(n)
greatly, while -op,(n - i), where i equals the number of such "outliers," gives a much truer
picture. We should also note that the (e~k)-map drops the assumption of equal cardinality
point sets. The relaxation allows the formulation to encompass the case of los. or spurious
points in the image. Once such points exist, the idea of a "perfect matching" between the
two point sets becomes less meaningful, and the concept of the (E,k)-map more appropriate.
For these reasons we feel that the (e,k)-map is the true manner in which to think about
approximate congruence.
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k
n

NO 0_ _

YES

2 0-:

Figure 1: The (c,k)-map

3 Generalized approximate algorithms

Approximate decision algorithms were introduced in [Scl, Sc2], and expanded in [HS]. Here
we present a generalized description of approximate algorithms suitable for (E,k)-congruence.
For fixed e and k, the decision problem asks whether input point sets A and B are (E,k)-
congruent. It is natural to believe that this question is most difficult when C is near •o.t(k),
so we will allow an approximate algorithm not to answer in such a situation. An (o, /)-
approzimate decision algorithm for (E,k)-congruence of A and B is one which (1) correctly
determines whether A and B are (e,k)-congruent whenever e ý [e-vt(k) - a,e"Pt(k) + /1,
and (2) either correctly determines (e,k)-congruence or chooses not to answer when C E
[Eopi(k) - a,eopt(k) + /]. We call [opt(k) - a, ept(k)+ +,] the imprecision interval. A major
strength of approximate decision algorithms is that they never return an incorrect answer; if
a particular query (e,k) is too difficult, the algorithm simply says that it is unsure. Previous
approximate decision algorithms have been defined only for k = n.

Earlier, we stated two optimization problems: maximizing k for fixed e (i.e. computing
k,,,,(-)) and minimizing e for fixed k (computing -,,t(k)). We wish to extend the concept
of an approximate algorithm to these optimization problems.

Let us first consider kma(e). For a fixed -, the ordered pair (-,k) is an instance of the
decision problem, for k = 2,..., n. For all k < kma.(e), A and B are (e,k)-congruent, while
for all k > kmax(6) they are not. Therefore, a (complete) algorithm for the kmi-opt.imization
problem partitions the set {2,..., n} of values for k into two sets: {2,... , kma.(C)}, which
we call the YES set, and {kx (E) + 1,..., n}, the NO set (one of these sets may be empty).

An approximate algorithm for the kmax(e) problem partitions {2,..., n} into three sets,
{2,...,k 1 }, {k, + 1,...,k2 }, and {k 2 + 1,...,n}, labelled YES, MAYBE, and NO, respec-
tively, where k, < kmx(e) < k2 (one or two of these sets may be empty). For values of k in
the MAYBE set, the algorithm is unable to determine whether k < kmaz(c). We call such
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k MAYBE
n

NO

- YES

2

Figure 2: The (e,k,v)-approximate map

an algorithm (a, 3)-approximate if, for every k in the MAYBE set, e is in the corresponding
imprecision interval, i.e. 6 E [eop,(k) - a, eot(k) + #].

Now let us consider the situation of a fixed value k. The interval R+ of possible values
for e is divided into the NO subinterval (0,e,,t(k)) and the YES subinterval fc0pt(k),oo);
these intervals are returned by a (complete) algorithm for t;,,• -,t(k) problem when it is
given input k. An approximate algorithm for the pt(k) problem, when given k, returns
intervals (0,c 1), [11 ,62 ), and [s2,oo), labelled NO, MAYBE, and YES, respectively, where
61 < Eopt(k) _< -2. As above, the MAYBE set represents those values of E for which the
algorithm is not able to determine (e,k)-congruence. Such an algorithm is (a,p)-approximate
if, for every e in the MAYBE set, e is in the corresponding imprecision interval; that is,
1 - [E g(k) - a,e0 t(k)±+ ]1.

4 Building the (E,k,v)-approximate map

In this section we show how to use a (-f, y)-approximate algorithm for the kma(e) problem
in order to build a (e,k,v)-approximate map (see Figure 2). A (e,k,v)-approximate map
is similar to an (e,k)-map, except that in the approximate map, EoPt(k) for a given k is
represented, not as a single point, but as an interval of length no more than v that contains
E,,t(k). The (e,k)-congruent region is separated from the non-congruent region not by a
step-wise curve, but by a region, which we call the imprecision region (or, the MAYBE
region).

Our approach consists of a two-part search. The first part, which we call Phase I, finds
for each k E {2,..., n} an interval (c,2c) that contains eopt(k). In Phase II, a binary search
is performed on each interval (c, 2c) until the interval size is at most v.
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Since a (',-y)-approximate algorithm is more precise for small values of -Y, we expect
its run-time to vary inversely with -y. Actually, we will see that the run-times for our
approximate algorithms for the k,,,(e) problem vary directly with -/-Y, so we attempt to
keep this value small when constructing our (E,k)-map algorithm. We will see that the timle-
complexity of Phase II dominates that of Phase I. We will describe the general (e,k)-rnap
estimation method now. Later we will give (7, -/)-approximate algorithms for the kma.(c)

problem in various dimensions [Rd and under various families of isometrics I, and after
analyzing each such algorithm we will compute the time-complexity of the corresponding
(e,k)-map estimation.

The idea behind Phase I is simple: compute km,(e), initially for a small value e, then
repeatedly double e and recompute k,,,(e), until e is as large as -oPt(k). At each step we
use a (-y, )')-approximate algorithm, where we set -t = E/2. Let us first describe how Phase I
works for a single value k, and then generalize the approach for all k.

We begin by setting e = v, and then alternating the steps of testing for (e,k)-congruence
by using a (e/ 2 ,E/2)-approximate algorithm, and doubling e, until a test returns an answer
of YES or MAYBE. (Note that an answer of YES (NO) to an (e,k)-congruence test implies
that E > cop(k) (e < e0 ,,t(k)).) At this point, we suspect that ept(k) is roughly within a
factor of 2 of e, since the test for (e/2,k)-congruence returned a NO answer while the one for
(E,k)-congruence returned YES or MAYBE. If the answer for (e,k)-congruence is YES, then
we realize that e, t(k) E (e/2,e), which is an interval of the form (c,2c). If the answer is
MAYBE, we see that ept(k) E (e/2,U3/2), since we used a (e/2, -/2)-approximate algorithm
to test for (e,k)-congruence. This interval is not of the form (c,2c), but we can trim it to
this form through one additional test for (e,k)-congruence with -y = c/4: an answer of YES.
MAYBE, or NO, respectively, yields an interval (e/2,e), (3c/4,5U/4), or (e,3e/2).

There is one special case, obtaining a YES or MAYBE answer on the initial test, when
v =. Either answer implies that we are immediately finished not only with Phase I, but

with Phase II as well. An answer of YES implies ept(k) E (0, v), while MAYBE implies
Eopt(k) G (v/2,U3/2); thus, in either case we have found an interval of size v that contains

If we use a (d', -y)-approximate algorithm for the kma.r(E) problem, then we can perform
Phase I simultaneously for all values k = 1,..., n. The (-y, y)-approximate algorithm returns
an answer of NO, MAYBE, or YES for each k, so we alternate performing this algorithm
with doubling E until all values of k have received a YES or MAYBE answer (k = n will be
the last to receive one of these answers).

Phase II is quite simply a binary search. Beginning with c0 ,pt(k) E (c, 2c), we proceed
to narrow the interval to width v. A step begins with ept(k) E (t,u). We test for (E,k)-
congruence, where e = (f+u)/2, and y = (u-1)/4. With a YES answer we set u 4- (C+u)/2
and repeat, with NO we set t 4- (' + u)/2 and repeat, and with MAYBE, our choice of -,
allows us to set t 4- (3t + u)/4, u -- (f + 3u)/4, and repeat.
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5 Algorithms for kmaxl(E)

In this section we describe (-y,,y)-approximate algorithms for km,(&), under various isom-
etry families. We will use the Euclidean metric, although our algorithms work for any Lp
metric. Our algorithms are based largely on the (-t, -y)-approximate decision algorithms for
s-congruence of [HSI.

All approximate algorithms employ a similar strategy; they (1) discretize the set of
isometries, 1, into a finite set of candidates, C, and (2) test the point sets for congruence
under each candidate. The methods of [HS] employ an additional tactic of perturbing each
point in A and B in order to impose structure; the resulting multisets are denoted A# and
B#. This method consists of laying a lattice onto lRd, with adjacent lattice points distance
A apart, where A is proportional to -/. A# and B# are obtained by moving each point of A
and B to the nearest lattice point. Note that no point is perturbed more than VdA/2. We
will see later how working with A# and B# instead of A and B allows an improvement in
time-complexity.

Each algorithm requires that the following conditions hold for some fixed 11, -y2.

Condition 1: For each I E 2 that admits (e,k)-congruence for some k E {2,. .. , n}, there
exists a candidate isometry C E C such that dist(C(a#), I(a#)) <_ 7y for all a# E A#.

Condition 2: For each k < n, if A# and B# are (e - 72, k)-congruent for a candidate
isometry C E C, then A and B are (e,k)-congruent.

Condition 3: For each k < n, if A# and B* are (e + 71 + 72, k)-congruent for no candidate
isometry C E C, then A and B are not (e,k)-congruent.

In the discussion that follows, we let k,,,,(p, A#, B#; C) represent the size of the largest
matching between A# and B# with tolerance y under isometry C. Table 1 gives an approx-
imate algorithm for k,,,(e, A, B), assuming we have constructed C and have a procedure
that computes k,,(1L, A#, B#; C).

[1] Compute set of candidates C
[2] kyEs -- 1, kMAYBE - I
[3] for all C E C do
[4] if k,,,ma( + 7i + -y2 , A#, B#; C) > kMAYBE

then kMAYBE +- kma.(C + 71f + 7 2 , A#, B#; C) fi
[5) if km•ax( - 7t, A#, B#; C) > kyEs

then kYES + kmo.(e - -' 2, A#, B#; C) fi od;
[6] YES +- {2,.. ., kyEs}
[7] MAYBE {kEs . 1...1 , kMAYBE}

[81 NO +- +kMAYBE+1....n

Table 1: (7, 7)-approximate algorithm for k,,,(eA, B)
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Theorem 1 If Conditions 2 and 3 are satisfied, then the algorithm of Table I is a (y, ))-
approximate algorithm for km,,(e, A, B), where -y = -yi + 2 "Y2.

In our algorithms, -Y2 = 2Vd/A/2, since no point of A or B is perturbed more than VfdA/2.
We will also choose 7i proportional to A for each algorithm, so -y = O(A).

Implementation of an algorithm of this form requires (1) a method for constructing C,
and (2) a method for computing kax(pA#, B#; C). The first question depends on the
family of isometries 1, and will be explored below. The second question leads us a graph
theoretic formulation and solution.

The matching problem between A# and B# can be formulated as a max-flow problem.
To represent graph networks, we will use the notation (V, E, c), where V and E are the
vertex and edge sets, respectively, and c : -E IN gives the edge capacities. Consider the
network

G(C, , A#, B*) = ({s,t} U U V,E,c)

where C is a candidate isometry, U = {ul,. .. ,u,} represents the points in A# and V =
{Vi,.. . ,V } the points in B#,

E = {(s, u,) I I < i < n} IU {(vi, t)1 1 <• j 5 m} U {(ui, v,) I dist(I(ar), bf) <_ /},

and c(e) = 1 for all e E E. The max-flow on G is equal to k,,ax(p, A#, B#; C).
At this point, we exploit the special structure of the perturbed sets A* and B#, in order

to efficiently compute a max-flow. Feder and Motwani [FM] have presented a technique for
improving graph algorithms called the compression graph, which is well suited to A* and
B#. Let Uk = {ui I ai is moved onto a*} C U and V/° = {tv I b6 is moved onto b•'} C V.
If C moves gridpoint a* into the i-neighborhood of b*, this generates a complete bipartite
subgraph with node sets Uk* and V1'. For every such bipartite clique, we remove the edges in
Uk x V1/, add a new node wki, and add edges {(ui, wik) I ui E U,} and {(wkL,vj) v, E V1°}
with capacity 1 each. Thereby we replace IUZI. IV"1I old edges by IU•I + 1V1°] new edges. We
call the resulting graph G* p( ,A#, B#).

A max-flow in Gomp(C,/P, A#, B#) corresponds to a max-flow in G(C, i, A*, B#). We

can show that Dinic's algorithm computes a max-flow on Gomp(C, , A*#, B#) in 0( + )
phases, each in time proportional to the new number of edges. The reason for this is that
Dinic's algorithm takes U( /number of nodes) phases in a simple 0-1 network. A node is called
simple if it has indegree 1 or outdegree 1, and a network is called simple if all nodes are simple.
Note that the nodes wkl are not simple in the compression of a graph; however, in a manner
analogous to the proof on the number of phases of Dinic's algorithm for simple 0-1 networks
in [Me, page 811, it can be shown that Dinic's algorithm takes O(,/number of simple nodes)
phases in a 0-1 network, if no edge connects non-simple nodes.

The p-neighborhood of any point contains Q((O//f)d) grid points (since -y = O(A)). Hence
each point of A* U B# contributes to O((t/z/')d) bipartite cliques. Thus the number of edges
in graph G#mp(C, p, A*, B#) is O((n + n1)(U//y)d), which yields a total time of O((n +
rn) 15 (p//y)d) to compute kmax,(A, A#, B#; C). The graph G#mp can be constructed in time

O((n + m) logd-1 (n + m)) using standard range-searching techniques IPS].
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Note that the original graph G is a simple 0-1 network, for which a max-flow can be
computed in 0((n + m)'/ 2 nm) time. Since m = O(n) for a typical problem instance, we see
that the use of the compression graph Gomp that is enabled by the structure of the perturbed
sets A# and B# reduces the run-time in terms of n.

We now discuss the construction of the set of candidates C for various isometry groups.
Throughout this section, we let 6 = max{diam(A), diam(B)} be the larger of the diameters
of the sets A and B. For each isometry group I we must find a set of candidates C that
satisfies:

Condition 1: For each I E 1" that admits (e,k)-congruence for some k E {2,... ,n}, there
exists a candidate isometry C E C such that dist(C(a#), I(a#)) < 7y for all a# E A#.

If 2I equals the set of translations on lRd, then let T,, represent the translation that maps
point x to point y. By fixing point x and choosing as candidates all translations T,, where
y is a lattice point, we satisfy the above condition, with -i = v,,iA/2 (recall that each point
of IRd is no more than distance /d-A/2 from the nearest lattice point). In order to obtain
a finite set of candidates, we note that if a candidate C admits (e,k)-congruence for some
k > 2, then C maps the convex hulls of A# and B# within a distance e of each other. Thus,
a collection C of [Cl = 0(((e + 6)/A)d) = O((by/7 )d) candidates suffices.

Let I be the set of isometries on IRd. Since an isometry is an affine mapping, it can be
described by its action on d + 1 affinely independent points. We will construct a collection C
that satisfies Condition 1, where each candidate isometry is a set of d+ 1 affinely independent
points. Fixing the first point is equivalent to choosing a translation. Once the first point is
fixed, each remaining point is free to move on a d-dimensional hypersphere centered at the
first fixed point, and after d' < d - 1 affinely independent points have been fixed, each point
not in the affine subspace of the fixed points is free to move on a (d - d' + 1)-dimensional
hypersphere. Once d affinely independent points have been fixed, each point not in the
affine subspace can assume one of two possible values, since only a reflection remains to be
determined.

We construct the candidates by choosing fixed points one at a time. For the first point
we choose 0 ((5/,1)d) points in such a manner that every translation that causes the convex
hulls of A# and B# to intersect has its fixed point within distance 0(yf) of the fixed point
of a candidate. When d'•< d - 1 points have been fixed, the set of potential choices for the
next fixed point is represented by all points on a hypersphere. Since no free point moves
on a hypersphere of radius greater than 6, we choose Q((6/Y)(d-d'+,)) candidate points
on the hypersphere of radius 6 centered at the first fixed point, such that xio point on
this hypersphere is more than distance 0(y) from a candidate point. The last fixed point
represents selecting a reflection and therefore presents only two choices. If the dimension d
is a constant, then by choosing A and the constant in the O(-I) term above sufficiently small,
Condition 1 is satisfied. The total number of candidates is Q((5/1.)d(d+i)/2).
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6 Time complexity

The run-time of a (-y,-y)-approximate algorithm for kmaz(e) is equal to O(T. JCJ), where
ICI equals the number of candidates, and T the time to test each candidate of C. We saw
above that T = O((n+ m)1-'(C/,y)d). The value I(C varies with the isometry family, and with
the above observations we obtain the following time-complexities for a (-Y,-')-approximate
algorithm for k0az(e): O((n + m)I.'(e/")jd(6/y)d) if I is the set of translations in IRd for
A, B E IRd, and 0((n + m)I'5(e/3y)d (S/-y)d(d+1)/1) if I is the set of isometries in fRd for
A, B E R.

Let us examine the total run-time to construct a (e,k,v)-approximate map. To compute
the number of Phase I tests for a given k, consider that we test for (c,k)-congruence for all
valuese = 2'vi, = 0,... ,j, where eop(k) E (2j-'v,3.2'1 -v]. This impliesj = log 2(e,,e(n)/u)
tests until we receive a YES or MAYBE answer for all k, since k = n will be the last to
receive such an answer. Also, at each value e = 2'v, one additional test may have to be
performed because certain values of k receive for the first time there an answer of MAYBE,
but one test suffices even if several values of k receive a MAYBE at the same value 6 = 2Tv.
Thus, the total number of values of e tested in Phase I is O(log(eopt(n)/V,)); since -Y = e/2
or -y = e/4 at all times during Phase I, the total time is O((n + m)'S(,5/v)M log(eopt(n)/v)),
where the exponent x is determined by the family of isometries I and the dimension d.

Phase II, for a given k, is a binary search on an interval (c, 2c] that contains eo,, (k). Each
search query is a test for (e,k)-congruence, where e is in (c, 2c] and thus approximately equal
to Eopt(k), while -y is cut in half after each query. Therefore, since T = O((n + m)'S(e/3y)d)
and ICl varies inversely with 'y for isometry families that we considered, the sum of all
k,max() tests always will be dominated by the last one, for which -Y is approximately the
same size as v. If we perform Phase II over all n values of k, we get a total time of
O(n(n + m).s(6/,)x(eot(n)/v)'), with x as above, since e0pt(n) > e for every test value e.
We see that Phase II dominates Phase I.

In summary, implementing Phase I and Phase II together builds a (e,k,v)-approximate
map. Using the (-I, 7)-approximate algorithms for kma(e) that we have described yields the
following time-bounds for constructing (e,k,v)-approximate maps:

O(n(n + m)'-S(eopt(n)/v)d(6/v)d) if I is the set of translations in IRd, for A, B E Rd;
O(n(n + m)15 (eopt(n)/V)d(,5/V)d(d+i)/ 2) if I is all isometries in IRW, for A, B E Rd.

7 Projective congruence

In projective congruence, we compare a 2-dimensional point set B to a 3-dimensional set
A. Rather than choosing just an isometry and a matching (between the elements of the
point sets), finding a congruence between the points sets now consists of first choosing an
orthogonal projection of the 3-dimensional set A to R'2 and then choosing an isometry on the
resulting 2-dimensional set, and finally a matching. We develop an approximate algorithm for
this problem by approaching it in a similar manner as before. The Phase I-Phase II approach
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motivates a version of the km,,a() problem, in which the set of all possible compositions of
projection and isometry on A must be discretized into candidates that closely approximate
all reasonable choices. Discretizing the candidates resembles the same task for isometries in
R3, except that the projection of the point set to an affine space of one lesser degree results in
the loss of one degree of freedom; in fixing the first point (which determines the translation),
we realize that we have two dimensions of freedom and not three, since motion parallel to
the direction of projection is irrelevant. The total number of candidates on the last test of
Phase 11 is O((6/v)5 ), and the max-flow problems here are between point sets in 1R2, so the
total run-time is O(n(n + m)1 "(eop,(n)/v)2 (5/v) 5 ).

8 Conclusion

We have generalized the concept of e-congruence in order to encompass a greater number of
situations; our generalized definition is called (e,k)-congruence, and it is represented pictori-
ally by the (e,k)-map. Because we desired small run-times, we chose to develop approximate
algorithms that test for (E,k)-congruence, using many of the techniques of [HSI. While
we did not discuss complete algorithms for (e,k)-congruence, such algorithms would extend
naturally from some of the complete algorithms for e-congruence given by [AMWWJ.

While we have achieved run-times with small exponents for n and m, it is troubling that
the diameter b appears. This suggests that our approximate al :rithms are best suited for
relatively dense point sets. Ironically, for E-congruence, complte algorithms perform best
on point sets that are e-separated [AMWW, AKMSW] (i.e. no two points of the same set
are within distance e of each other). One open question is to explore which types of point
sets are best suited to our approximate algorithms and which to complete algorithms. As a
final open question, we ask if there are ways to reduce ICI for the various isometry families
we studied, since any reduction leads automatically to improved algorithms for kmax(E) and
the (e,k,v)-approximate map.
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