
AD-A263 754
?Y KEEP THIS COPY FOR gggKOWCXiug ruKruaca

MENTATION PAGE
form Approved

OMB No. 0704-0188

i ««mated to average 1 «our per responw. including the time for reviewing instruction«, tearchmg einting data tourer?
ig and reviewing the collection of information Send comments regarding thit burden estimate or any other awed of thu
ig thn Ouroen. to Wathington HeatMuarten Service». Directorate for information Ooeratiom and Aeooru. 12 IS jeffenon
to tne Office of Management and Cudgel feperwork «eduction Project (07044 IBS). Washington. OC M503.

MX
CO z
111
&
X
111

z
UJ s
z
tr
UJ
>
o
o
r-
<
o
UJ
Ü o
D
O
CC
0.
Ui
OC

1. AGENCY USE ONLY (Lew bUnk) 2. REPORT DATE

19-JtsU 3X
4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

A DESIGN MANAGEMENT AND JOB ASSIGNMENT SYSTEM.

6. AUTHOR(S)

S. FUNDING NUMBERS

ARO-145-91

LL Colonel Salah M. Badr, Egyptian Army
Valdis Berzins

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)

Computer Science Department
U. S. Naval Postgraduate School
Monterey, California 9394?

S
DTIC
ELL
MAY!

V,
'äiill RGANIZATION

ER

9. SPONSORING /MONITORING AGENCY NAME(S) ANO ADDRESS(ES)

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

frfuo anii-i-**/*-

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not he construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

g^7
in
0)j
oi
CO
ov

^
<s^ STRACT (Maximum 200 words)

12b. DISTRIBUTION CODE

3
-> a

This report introduces the basic approach taken in designing the design management and job
assignment system (DMJAS)for CAPS93. This approach uses a model of software evolution [8]
which defines how a software change, once has been approved, will be applied to the software
release (version) to produce another version of the software incorporating this change. This pro-
cess is called an evolution step. The proposed system represents a management layer between the
user interface (supporting two user classes, managers and designers) and the design database. The
DMJAS controls the software evolution process in an incrementally evolving software system
where The job steps to be scheduled are only partially known: time required, the set of sub-tasks
for each step, and the input/output constraints between steps are all uncertain, and are all subject
to change as steps are carried out. Models of design database and manager/designer interface are
explained followed by the proposed system.

H^UBJECT TERMS m J
A \

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

IB. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED
NSN -SAc-cr ;so ssoo

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Stancarc -o"*i ;98 -«ev :-89!

T
NPS CS-92-020

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Acceston For

NTIS CRA&I
OTIC TAB
Unannounced
Justification

D
0

By
Distribution (

Availability Codes

Dist

'tv\
Avail and/or

Special

L'TIG QUALIJ INSPECTED 8

A Design Management and Job
Assignment System

Salah M. Badr

Valdis Berzins

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School
Monterey, California 93943

o
O
< m x x s
m

m
x
■o m
z
(/>
m

NAVAL POSTGRADUATE SCHOOL
Monterey, California

REAR ADMIRAL R. W. WEST JR.
Superintendent

HARRISON SHULL
Provost

This report was prepared for and funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Valdis Berzins
Professor of
Computer Science

Reviewed by: Released by:

C THOMAS WU
Associate Chairman for
Technical Research

PAUL MJQRTO

S
m
■o
33
o
a c
o m
a
>
H
a
o
<
m
3J
z
S m
z
H
m
x
•o m
z
</>
m

PAUL MAIRTO
Dean of Research

REPORT DOCUMENTATION PAGE
1Z REPORT SECURITY CLASSIFICATION UNCLASSIFIED"

5 SECURITY CLASSIFICATION AUTHORITY

lb. RESTRICTIVE MARKINGS

4. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;
distribution is unlimited

ft. PECLASSIFICATION/BOWNGRAPING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NPS CS-92-020

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF
Computer Science Dept
Naval Postgraduate School

ERFöRMlNG ORGANIZATION
cience De

6b. OFFICE SYMBOL
(if applicable)

cs
7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Naval Postgraduate School

eb. OFFICE SYMBOL
(if applicable)

ft. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ib. SOURCE OF FUNDING NUMBERS 8c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000
PROGRAM
ELEMENT NO.

PR6JECT
NO. NO.

WORK UNIT
ACCESSION NO.

11. TITLE (Include Security Classification)

A Design Management and Job Assignment System
it PERSONAL AUTHORS)

SALAH M. BADR, VALDIS BERZINS'
EOF REPORT
cal

13b. TIME COVERED
FROM 05/89 TO 03/90

\i. PAGE COUNT 14. DATE OF REPORT (Year, Month, Day)
December 1992

16. SUPPLEMENTARY NOTATION
11

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SU BJECT TERMS (Continue on reverse if necessary and identify by block number)
SOFTWARE EVOLUTION, JOB ASSIGNMENT, DESIGN DATABASE,^

EVOLUTION STEP, SOFTWARE PROTOTYPING.

n

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report introduces the basic approach taken in designing the design^ [

management and job assignment system (DMJAS)for CAPS93. This approach uses a«|
model of software evolution [8] which defines how a software change, once has
been approved, will be applied to the software release (version) to produce
another version of the software incorporating this change. This process isf j
called an evolution step. The proposed system represents a management layer:
between the user interface (supporting two user classes, managers and design
ers) and the design database. The DMJAS controls the software evolution pro->>
cess in an incrementally evolving software system where The job steps to ber 1
scheduled are only partially known: time required, the set of sub-tasks forj j
each step, and the input/output constraints between steps are all uncertain, 1
and are all subjfc~t to change as steps are carried out. Models of design data-
base and manager/designer interface are explained followed by the proposed
system.

M DISTHIBUnOMVAILAaLITY OF ABSTRACT
[3 UNCLASSIFIED/UNLIMITED QSAMEASRPT. Q OTIC USERS

i\. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

msimmF INDIVIDUAL ^cflFEICE SYMBOL Msnar* Area Code)

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted
All olher editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

A Design Management and Job Assignment
System1

Salah Badr
Valdis Berzins

Naval Postgraduate School
Department of Computer Science

Monterey, California 93943-5100 USA

ABSTRACT

This report introduces the basic approach taken in
designing the design management and job assignment system
(DMJAS)for CAPS93. This approach uses a model of software
evolution [8] which defines how a software change, once has
been approved, will be applied to the software release (ver-
sion) to produce another version of the software incorporat-
ing this change. This process is called an evolution step.
The proposed system represents a management layer between
the user interface (supporting two user classes, managers
and designers) and the design database. The DMJAS controls
the software evolution process in an incrementally evolving
software system where The job steps to be scheduled are only
partially known: time required, the set of sub-tasks for
each step, and the input/output constraints between steps
are all uncertain, and are all subject to change as steps are
carried out. Models of design database and manager/designer
interface are explained followed by the proposed system.

KEYWORDS

SOFTWARE EVOLUTION, JOB ASSIGNMENT, DESIGN DATABASE,

EVOLUTION STEP, SOFTWARE PROTOTYPING.SOFTWARE ENGINEERING.

1. Introduction

"The Computer Aided Prototyping System (CAPS), an inte-

grated set of computer aided software tools, has been

1. This research was supported in part by the Army Research Office under grant number ARO-145-91

A Design Management and Job Assignment System I-'ebr ,,iy 12. 1993

designed to support prototyping of complex software systems.

CAPS can increase the leverage of the prototyping strategy

by reducing the effort of the designer puts into producing

and adapting a prototype to perceived user needs." [7]

In the context of the CAPS system, there are three main

entities that interact to develop a software system. These

main entities are the project manager, the CAPS system, and

the software designers. Currently CAPS92 has only two of these

main entities: the designer and CAPS system. The designer can

select a tool, then select a prototype to work with. The

designer can commit his work to the design database whenever

he wants. When a designer is modifying a prototype no other

designer can access the same prototype for modification. Cur-

rently CAPS does not have any mechanisms for coordinating

parallel efforts by different designers. This paper presents

the design of such a mechanism for CAPS93.

The inter-relation between these three main entities in

CAPS93 is depicted in figures 1, 2, and 3.The project manager

should be able to enter/edit description of top level evolu-

tion steps. An evolution step has many properties and

operations such as base version, change description, primary

input, initial conditions, commit, abandon/suspend, and any

optional data such as priority, or deadlines. The manager

A Design Management anJ Job Assignment System February 12. 1993 2

should be able to monitor and control all the activities of

the development team through making all the control informa-

tion accessible to him such as the incremental task schedule

describing who is supposed to do what and when. The Manager

can act as a designer and can be assigned some development

tasks.

Manager

Change List
Suspend List
Incremental Sch.
Assign Task

Base Version
Change description
Primary input
Initial Conditions
Commit
Abandon/Suspend
Optional data.

FIGURE 1. The DMJAS Manager Interface

The designer interface with the DMJA system is simplified

to keep the designer's attention on doing the tasks assigned

to him. This interface can assign tasks from the system to the

designer and gets back his commit response. Designers can work

on parallel on different tasks related to the same software

A Design Management and Job Assignment Sytlcxn February 12. 1993

version, or on the same task splitting different variations

(alternatives) .

r
Designer

Assign Task
Release Task

DMJAS

Commit
Suspend
Release

FIGURE 2. DMJAS Designer Interface

Version control and design management are also part of our

contribution as tasks of the DMJA system as well as preserving

data consistency through propagating change consequences. In

section 2 some concepts used in the database schema for our

work are defined.. A comparison to the previous work is pre-

sented in section 3. In section 4 the underlying design

database is defined. Sections 5 and 6 introduce both the

designer and manager interfaces. The CMJA system is presented

in section 7. Finally conclusions and suggestions for future

work are presented in section 8.

A Design Management and Job Assignment System February 12, ! 93

2. Definitions

Since the DMJAS is a management layer on top of the

design database, it gets most of its input data and sends

most of its output data from/to the design database. It logs

the evolution steps with their relevant information to the

history log, assigns variation and version numbers to the

new versions resulting from applying the evolution steps,

queries the design database for the decomposition as well as

the dependency relations between different objects, copies

the tasks to be modified to the assigned designer's work

area, and controls commitment of completed modifications to

the database. The underlying database schema for our work

includes the following concepts [8]:

An object is a software component that is subject to

change. Objects can be either composite or atomic. Objects

can be changed only by creating new versions. Object is a

generalized type with many specialized subtypes that can

include requirements, specifications, designs, code, test

cases, etc.

A version is an immutable snapshot of an object. Versions

have unique identifiers. New versions can be created, but

versions cannot be modified after they are created.

A Design Management and Job Assignment System Fcbruuy 12. 1993

A variation of an object is a totally ordered requence of

versions of the object which represent the evolution his-

tory of an independent line of development.

An evolution step represents the activity of creating a new

version of the source description of a software object.

Evolution steps usually require creativity and human

effort from the manager responsible for the step.

A software component or step is composite if it can be

viewed as a collection of related parts, and is atomic oth-

erwise.

A top level Evolution Step represents the activity of ini-

tiating, analyzing, and implementing a change request in

the system.

X uses Y: a relationship that is true if and only if the

semantics or implementation of one software object X

depends on another software object Y [4].

X uaad-by Y: same as Y uses X.

3. Previous Work

According to {11] representations of the versioning pro-

cess can be classified into two main models. The first model

is the conventional Version Oriented Model VOM in which a

A Design Management and Job Assignment System l-'cbruaiy 12, 1993 6

System is divided into modules each of which is versioned

independently from the other modules. To configure a system

one has to select a version of each module of the system.

This makes version a primary concept while change is a sec-

ondary concept as a difference between versions. Both SCCS

and RCS belongs to this model.

The second model is the Change Oriented Model COM. In

this model the functional change is the primary concept.

Versions are identified by a characteristic set of func-

tional changes. To configure a system in this model one has

to select a set of.mutually compatible functional changes.

Versions in this model are global, meaning that to examine a

module one has to specify a single version of the system

first, then proceed to the required module. On the other

hand, in a VOM system, to examine a module one has to select

the module first then individually select which version of

this module is the target. Our work utilizes concepts from

both models. A set of a changes to a base version of a soft-

ware system leads to the versioning of both the individual

objects involved in the changes and also acts on the entire

software system producing a new release (version of the

whole system).

A Design Management and Job Assignment System February 12, 1993

According to Kaiser and Perry [12] the main tools that

propagate changes among modules are the following. However,

none of these support the enforced model of cooperation

among programmers necessary for large maintenance/evolution

projects or automatically assign tasks to programmers:

Make: a UNIX tool that rebuilds the entire software system.

It invokes the tools specified in the 'makefile' on changed

files and their dependent files. Make is used for regener-

ating up to date executables after source objects have been

changed.

Build: is an extension to make that permit various users to

have different views of target software system. A View-

path' defines a series of directories to be searched by

make to locate the files listed in the makefile.

Cedar: the Cedar System Modeler uses an advanced version of

the Make tool with version control to invoke the tools on a

specific versions of files. This System informs the

'Release Master', a programmer, about any syntactic inter-

face errors. The Release Master is responsible for making

work arrangements with responsible programmers.

A Dcugn Management and Job Atiignmcni System February 12, 1993

DSEE: the Apollo iDomain Software Engineering Environment

also uses a Make-like tool with version control. DSEE also

has a monitoring facility that permits programmers and/or

managers to request to be notified when certain modules are

changed.

Masterscope: Interlisp's Masterscope tool maintains cross-

reference information between program units automatically.

It also approximates change analysis of potential inter-

ference between changes by answering queries about syntac-

tic dependencies among program units.

SVCE: the Gandalf System Version Control Environment per-

forms incremental consistency checking across the modules

in its database and notifies the programmer of errors as

soon as they occur. The consistency checking is limited to

syntactic interface errors. It supports multiple program-

mers working in sequence but does not handle simultaneous

changes.

Kaiser and Perry [12] also describe Infuse, a system that

automates change management by enforcing programmers cooper-

ation to maintain consistency among a sequence of scheduled

source code changes. Infuse automatically partitions these

modules into a hierarchy of experimental databases. This

partitioning may be done according to the syntactic and/or

A Design Management and Job Assignment System Febniuy 12,1993 9

semantic dependencies among the modules or according to

project management decision. Each experimental database pro-

vides a forum for the programmers assigned to its modules or

their managers, and provides also for consistency checking

among those modules (meaning that the interface between the

modules must be correct and that the modules can compile and

link successfully). Consistency checking among the experi-

mental database modules is a pre-condition for merging a

database back to its parent experimental database. Infuse

automatically partitions the database into experimental

databases but programmers are assigned to the these data-

bases manually. In our system tasks are assigned directly to

designers (programmers) according to their (uses) dependen-

cies. Versions are generated automatically as soon as the

work is done. Syntactic and semantic consistency checking

for source code can be implemented by associating declara-

tions of consistency constraints with steps, and triggering

the required checking actions as part of the commit proto-

col.

4. Design Database

The main goal of the CMJA system is to provide automated

design data support for software development through all

phases of the software life-cycle and to provide bilateral

A Design Management and Job Assignment System February 12, 1993 10

communication between designers/programmers [7] as well as

providing for the management control over all the ongoing

activities. Keeping this objective in mind besides complying

with both the Graph Model Of Software Evolution [8] and the

ANSI/IEEE standard [5], the design data base should have the

following characteristics [7]:

• Minimize the communication time between designers/program-

mers through keeping the development documents on-line.

• Propagate change consequences to maintain the global con-

sistency of the database.

• Produce nondisruptive status reports for an ongoing

project.

• Provide a way of tracking the development history via keep-

ing an up-to-date history file on-line that has all the

design decisions and all relevant information to develop-

ment history.

• Support planning and scheduling any proposed changes/main-

tenance by keeping the relationship between different data

objects.

• Support software reusability to save both cost and effort.

The proposed system will take care of the following

function:

A Design Management and Job Assignment Syslan February 12, 1993 II

• Propagate change consequences.

• Schedule evolution and maintenance tasks to maximize con-

currency and minimize rollbacks.

Record development history.

• Provide version and configuration management,

The interface between the DMJAS and the design database

is illustrated in figure 3.

DMJAS

Create Mutable Copy
Decompose
Uses, Used-by
Read/ Add Version
Commit

FIGURE 3. The DMJAS Design Database Interface

The design database is divided into two main parts:

• Shared data space where ehe frozen software objects are

stored, and

• Private workspaces where the development of new software

objects/versions takes place.

A Design Management and Job Assignment System Februaiy 12,1993 12

4.1 Shared data space

The shared data space is the repository that keeps all
t

of the verified software objects (versions or configura-

tions) [5]. The versions in the shared data space are frozen

and may not be changed under any circumstances. Any changes

to any of the objects must be authorized by the management

and this will produce new versions. The shared data space

contains the public releases of the software objects and

these objects may be checked out in write-protect mode only.

The relations between the objects in the database are kept in

a form accessible to the design management and job assign-

ment system (DMJAS).

4.2 Private workspaces

Since the data in the shared data space is frozen and

may not be changed, the private workspaces are used for pro-

duction of new versions of existing objects or adding new

objects to existing software systems.

The mutable data contains a copies of the specific ver-

sions of the software to which the changes are to be imple-

mented (base versions). Only the designer responsible for an

evolution step has access to the mutable copy of the base

version in that designer's private workspace. The process of

copying objects to and from the designer's workspace is done

""'"■'"" "■'" ■ ' ' '" '---—A. '■ — ■■■■ — - —.- ■■ —■ .. ■■ ...- ——■ -■. I.

A Design Management and Job Assignment System February 12,1993 13

automatically by DMJAS, and these objects continue to be

under its control until either all the changes are done and

the DMJAS commits them to generate the new version. When a

mutable version in the design database is committed by the

DMJAS it becomes a immutable version in the shared data

space. If the changes are suspended/abandoned then the muta-

ble versions are appended to the abandoned or suspended log

respectively.

5. Designer Interface

The designer interface with the proposed system is meant

to be very simple, where the system assigns tasks to each

designer according to the initial data it has about the

design team and the constraints given by the project man-

ager. The DMJAS copies those tasks automatically to the

designers working areas. As soon as the designer finishes

his task he can commit it by issuing the commit command upon

which the DMJAS moves the task back to its internal database.

The DMJAS keeps track of the status of the sub-steps of a top

level evolution step and releases a new version to public

view only when all of the sub-steps have been committed. The

DMJAS can then assign new task to the designer (if it has

any). The designer can also suspend a task for some time then

release it back when he is ready. The DMJAS adds the sus-

A Design Management and Job Assignment System February 12, 1993 14

pended task to the suspend log, and does not assign the

designer any more tasl.s until he releases the suspended one

and commits it.(Such cases may happen if a designer takes a

short leave and his work may not affect the rest of the team,

otherwise the manager should appoint someone else to do the

job) .

A typical scenario illustrating the operation of the

designer interface follows. A designer Dl receives a message

from the system that he has been assigned a task Tl with

information about the parent step, whether these tasks are

primary or induced, the specification of the changes

required, and the time of the assignment. When Dl is ready to

commit his task he would invoke the system and commit the

task which may lead to another assignment if there is any.

The designer can also receive messages from the DMJAS

directing him to abandon a task or to suspend activity on a

task and switch to some other task. Such messages are

responses to policy decisions made by the project manager.

6. Manager Interface

The manager interface is a super-set of the designer

interface. Change requests are analyzed and entered into the

DMJAS through the analyst's interface, which is beyond the

A Design Management and Job Assignment System February 12,1993 15

scope of this paper. The analysis of a change request deter-

mines a precise description of the changes required as well

as the primary inputs of the objects to be changed are

defined. The manager approves a change request, reviews the

primary inputs, and the change description, and may specify

optional information about a step regarding its priority

relative to other steps, preference about who should do a

step, and deadlines. The manager also has to decide up front

if committing the changes has to pass any automated checking

procedures or any manual review procedures that are tracked

by the DMJAS. The DMJAS responds with:

• A list of the objects that have to be changed by decompos-

ing the primary input (s) (if any is composite) and listing

those objects that use any of the primary objects (steps to

update these objects are called induced changes) .

• A list of the objects in lower-priority ongoing changes

that have to be suspended because of a dependency relation

on the objects of this evolution step.

• An incremental job schedule derived from the number of jobs

to be assigned, the available designers, and their current

work loads, taking into consideration any currently sus-

pended jobs. The manager can also add new sub-steps to an

ongoing step, and suspend or abandon the whole step or its

A Design Management and Job Assignment System February 12, 1993 16

sub-steps for any-.management reasons. As a designer the

manager can be assigned an object, edit it and commit it.

Figure 1. shows the DMJAS Manager interface.

7. A Design Management and Job Assignment System
(DMJAS).

The design management and job assignment system rep-

resents a management layer between the interfaces to manag-

ers, analysts, and designers, and to the design database.

The DMJAS controls the software evolution process in an

incrementally evolving software system with the following

special characteristics:

a. The job steps to be scheduled are only partially known:

time required, the set of sub-tasks for each step, and the

input/output constraints between steps are all uncertain,

and are all subject to change as steps are carried out.

b. The method must support incremental replanning as addi-

tional information becomes known, and it must minimize

lost work due to reorganization of the schedule as well as

workers forced to wait for completion of sub-tasks in this

uncertain environment.

A Design Management and Job Assignment System February 12,1993 17

c. Rescheduling of some jobs is required if new dependency

constraints arise during scheduling of new jobs which

needs the completion of the newly scheduled job before

already scheduled (in-progress) jobs. This will lead to

the suspension of the dependent jobs and rescheduling them

accordingly. This function must be integrated with the

design database access protocol because rescheduling can

imply restarting an ongoing job step on different versions

of its input objects (documents).

d. Allocation of agents (designers) can vary to fulfill the

deadline constraints, and in response to changing esti-

mates of the effort required for each step.

e. For those jobs that do not have a deadline the system

should provide for earliest possible completion subject to

the other constraints.

f. The goal is to determine and carry out a feasible sched-

ule that meets the deadline requirements, provides for

maximum concurrency, reduces/avoids rollbacks, and insures

system integrity, while minimizing the amount of details

that must be explicitly considered by the project manager.

The functions of the proposed system are concerned with

three main tasks: version control, job scheduling and job

assignment. This system is intended to support a prototyping

A Design Management and Job Assignment System February 12,1993 IB

environment where frequent changes to evolving system are

requested/proposed, evolution steps are triggered after ana-

lyzing the change requests, primary inputs are decomposed,

induced changes are inferred, then jobs are incrementally

assigned to the designers. When a designer finishes his job,

it is committed producing new version of the committed

object. When an evolution step is committed it produces a new

version on a specific variation line. The following are the

DMJAS detailed functions:

• Get and document the change request information in the

software history file.

• Prepare the mutable copy of the defined software version

for incorporating the required changes by a given evolu-

tion step and assign a new version identifier to it accord-

ing to a well defined labeling function. This labeling

function has the following restrictions:

a. The ordering of the version identifiers
must be the same as the serialization order
of the changes that produced the version on a
variation line.

b. Changes to versions that are not the most
recent, on their variation line split off a
new variation line and produce the first ver-
sion on the new variation.

• Get the primary inputs of the evolution step then

A Design Management and Job Assignment System February 12,1993 19

a. decompose them if they are composite by
querying the database for the image in the
decomposition relation.and

b. find the induced changes by querying the
database for the used-by relation for each
input object resulted from step a above.

c. repeat step a, b until no further objects
are found.

d. check if any of the above objects is
wused-by" any of the objects of the ongoing
changes (by any of the previous evolution
steps that is not committed yet) . If any is
found either issue a warning to the manager
or suspend the corresponding step according
the policies specified by management (auto-
suspend or warning).

• Build the dependency acyclic graph of the resulting

objects from step 3.

• Build the lists of the changes that can be done concur-

rently and the dependencies between these changes. Display

a copy to the manager [as a dependency graph].

• Assign the objects to the designers according to the fol-

lowing:

a. The author of each object.

b. Names of the designers, and

c. The status of the designer [free or busy].

d. If list X2 depends on list XI start by
assigning the objects of list XI, after
each object in XI is committed, check if an
object in X2 can be assigned, if so assign
it, as soon as the objects of list XI are com-

A Design Management and Job Assignment System February 12. 1993 20

mitted, assign the remaining objects of list
X2, and so on.

• Commit the step: as soon as all the objects of a top level

evolution step are committed and according to the speci-

fied management policies either:

<.. commit the step generating a new version
of the software, or

b. Notify the manager that all the modifica-
tion are done and ask for permission to com-
mit.

• Respond to the manager commands commit, suspend, abandon

with the corresponding action.

a. commit: commit the step generating a new
version by changing the mutable data to
shared data space and update the history file
by the date and time the version is commit-
ted.

b. Suspend: by copying the modified data to
the suspended log with the reason why? and
keep the version labeling.

c. Abandon: by copying the modified data to
the abandoned log with the reason why? and
release the version labeling.

d. Respond to the designer commands with the
corresponding action: a. "Suspend" by copying
the suspended object to suspend log. b. "Com-
mit" by copying the object back to the muta-
ble database and check it done. c. "Release"
by releasing the suspended object if there is
one and copying it back from the suspended
lcj to the designer's work area.

7.1 Management Issues

Tht DMJAS partially automates most of the management

functions whe her they are design data management or human

A Design Management and Job Aitignmcnl Syilcm February 12,1993 21

management (design team). The proposed system automatically

creates mutable software versions in the private workspaces

from the immutable base version, automatically constructs

breakdowns of evolution steps to their atomic components

both primary and induced, incrementally assigns tasks to

designers and keeps track of which jobs are assigned to which

designer, when assigned and when committed. This information

is available to the software manager who can judge the status

of the project and the productivity of the team. The system

also automatically produces the new versions or splits off

new variations depending on the base version.

7.2 Job Scheduling

Job scheduling is completely automated since the sys-

tem builds the dependency graph, prepare the dependency

lists and assign a task to each designer based on his status,

and his name. A task is chosen for a designer if he is not

busy and the priority goes to the task with his name as the

author if there is one, otherwise to the task with the maxi-

mum wused-by" relations (to release as many dependency con-

flicts as possible) . As soon as a designer is done with a

task by committing it he will be assigned another task on the

same basis. The committed task is checked done, its commit

time is recorded and its dependency relations are released.

A Design Management and Job Assignment System February 12.1993 22

The suspension of jpbs because of dependency conflicts is

done automatically and those jobs are copied to the sus-

pended log, the corresponding designers are assigned new

jobs. These suspended jobs are placed in the corresponding

dependency list to be assigned later. When a suspended job is

assigned again it is copied from the suspended log back to

the assigned designer's work area, and the validity of the

saved work is determined based on whether the input docu-

ments were bound to new versions since the time when the job

was suspended and the version bindings for its inputs were

released.

8. Conclusion

Our design management and job assignment system is a

design management layer between the manager/designer inter-

face and the design database that contains all the project

software objects. The goal of this system is to help the

project management to efficiently direct the efforts of the

design team and to assure data consistency by propagating

the change consequences to all the affected objects, auto-

mating the identification of implied sub-steps, automating

job assignment and keeping track of the activity of each

designer so the project manager can watch the progress of the

team closely and determine when corrective actions become

A Design Management and Job Assignment System February 12,1993 23

necessary. Vers_on control and design management are also

automated. Creation of new versions on the same variation

line with a serializable effect or splitting a new variation

to do parallel updates without locking are done under the

control of the system. Work on automated support for bring-

ing a split variation lines back together is in

progress. [13] [14] .

A Design Management and Job Assignment System February 12,1993 24

LIST OF REFERENCES

[1] Berzins and Luqi, "Software Engineering with Abstractions", Addison-
Wesley 1990

[2] Borison E., "A Model of Software Manufacture", in Advanced Programming
Environment, Springer-Verlag, 1986, pp. 197-220.

[3] Feldman S. I., "Software Configuration management: Past Uses and Future
Challenges" Proceedings of 3rd European Software Engineering Conference,
ESEC '91, Milan, Italy, October 1991

[4] Heimbigner D. and Krane S., "A graph Transform Model for Configuration
Management Environments", Proceedings of the ACM SIGSOFT/
SIGPLAN, Nov. 28-30,1988.

[5] "IEEE Guide to Software Configuration Management", Std 1042-1987,
American National Standards Institute/IEEE, New York, 1988.

[6] Ketabchi M. A., "On the Management of Computer Aided Design
Database", Ph. D. Dissertation, University of Minnesota, Nov. 1985.

[7] Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer 22,
5. May 1989, pp 13-25.

[8] Luqi, "A Graph Model for Software Evolution", IEEE Transaction on
Software Engineering. Vol. 16. NO. 8. Aug. 1990

[9] Mostov I., Luqi, and Hefner K., "A Graph Model for Software
Maintenance", Tech. Rep. NPS52-90-014, Computer Science Department,
Naval Postgraduate School, Aug. 1989.

[10] Narayanaswamy K. and Scacchi W., "Maintaining Configuration of Evolving
Software System", IEEE Trans, on Software Eng. SE-13,3. Mar. 1987, pp.
324-334.

[11] Lie A. et al, "Change Oriented Versioning in a Software Engineering
Database", Proceedings of 2nd International Workshop on Software
Configuration Management, Princeton, New Jersey, Oct. 24,1989. pp. 56-65.

[12] Kaiser G. E., and Perry D. E., "Workspaces and Experimental Databases:
Automated Support for Software Maintenance and Evolution", Proceedings
of IEEE conference on Software Maintenance 1987. pp. 108-114.

[13] D. Dampier, "A Model for Merging Different Versions of a PSDL Program",
MS thesis. Computer Science, Naval Postgraduate School, June 1990.

[14] D. Dampier, Luqi, "A Model for Merging Software Prototypes", Technical
Report, CS, NPS, 1992.

A Design Management and Job Assignment System February 12,1993

DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Director of Research Administration, Code 08 1
Naval Postgraduate School
Monterey, CA 93943

Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943

Egyptian Military Attache 2
2308 Tracy Place NW
Washington, DC 20008

Egyptian Armament Authority - Training Department 2
c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation
Box 29 (TNG)
FPO, NY 09527-0051

Miliiary Technical College (Egypt) 5
c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation
Box 29 (TNG)
FPO, NY 09527-0051

Military Research Center (Egypt) 5
c/o American Embassy (Cairo, Egypt)

Office of Military Cooperation
Box 29 (TNG)
FPO, NY 09527-0051

LTC. Salah M. Badr 10
Computer Science Department, Code CT.
Naval Postgraduate School
Monterey, CA 93943

Dr. Luqi 1
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

A Design Management and Job Assignment System February 12.1993 26

Dr. Valdis Berzins \ 10
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

Dr. Mantak Shing 1
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, CA 93943

Michael L. Nelson, Maj. USAF 1
HQUSCINCPAC/J66
Box 32A
Camp H. M. Smith, HI 96861

Dr.Tarek Abdel-Hamid 1
Administrative Science Department, Code AS
Naval Postgraduate School
Monterey, CA 93943

Dr. J. T. Butler 1
Electrical and Computer Engineering Department, Code EC
Naval Postgraduate School
Monterey, CA 93943

A Design Management and Job Assignment System February 12. 1993 27

A Design Management and Job Assignment System February 12,1993

