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ABSTRACT

This thesis analyzes the sway, yaw, and roll dynamic stability of neutrally
buoyant submersibles. Utilizing the hydrodynamic coefficients for a Mark
IX Swimmer Delivery Vehicle (SDV) as a base-line model, the linearized
equations of motion for the decoupled steering and roll systems are
compared to the coupled system. Two different configurations of
hydrodynamic coefficients are considered along with the effects of varying
the vertical (Z;) and longitudinal (Xg) centers of gravity of the vehicle while
the longitudinal center of buoyancy (Xp) is held constant. Results
demonstrate the significant effects on stability of coupling the steering and
roll equations of motion, and the importance of Z; and X, selection in
minimizing those effects while retaining stability. Perturbation analysis
results confirm the essential dependence of the linearized coupled

equations on the separation of X; and X,
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1. INTRODUCTION

A. GENERAL

As the missions for submersibles become more complex and
demanding, the requirement for a highly stable platform becomes
increasingly important so the operator(s) can concentrate on matters other
than station-keeping. Submersible simulators have not been employed to
any great extent thus far, since the actual system is relatively inexpensive
and the dynamics are usually very non-linear and difficult to model. The
analysis of a submersible can be significantly more complex than the
analysis of a conventional submarine or aircraft, since the presence of
ancillary equipment such as manipulators, video devices, and tethers
introduce extra cross-coupling terms usually abser%t in other, more
symmetric, vehicle dynamic analyses. [Ref. 1] Additionally, all
mathematical models include simplifying assumptions and errors in the
model's hydrodynamic coefficients.

Submersibles typically have a variety of complex dynamic interactions
that can severely inhibit maneuverability and control performance. The
goal of this thesis is to present an undersianding of the coupling effects on
straight line motion stability in the horizontal plane using a linearized
model, and the primary means of minimizing these effects. Development of
the mathematical models for both the coupled and uncoupled maneuvering
and roll egquations of motion is presented in Chapter II. Utilizing two
different configurations of hydrodynamic coefficients, the degree of stabhility,
regions of etability, and linear simulations for the coupled and uncoupled




systems are presented in Chapter III. A Hamming method nonlinear
simulation [Ref. 2], which is similar to a fourth order Runge-Kutta
integration technique, is conducted on both configurations to compare with
the results obtained for the linearized models. Chapter IV develops a
perturbation analysis to demonstrate the strong degree of dependence on
the separation between the longitudinal centers of buoyancy and gravity to
the solution of the linearize. coupled equations of motion. Chapter V
summarizes the results and provides recommendations for future
submersible modelling research. Appendix A contains the computer

programs utilized for the lin:ar and nonlinear simulations.

B. PARAMETER DEFINITION
The values for the hydrodynamic derivatives and vehicle dimensions
are from Smith, Crane, and Summey [Ref. 3], with the following exceptions:
* Y, - the force in sway due 10 a change in yaw rate A
* N, - the moment due to a change in sway velocity.
These two coefficients were modified to produce two different models that
would have one eigenvalue change sign for a reasonable range of

longitudinal and vertical centers of gravity. A comparison between the

actual non-dimensional values and those used in this thesis is as follows:

. —Nv_
Configuration ‘A’ -3.500E-02 -1484E-03
Configuration ‘B>  -5.940E-02 -1484E-03
Actual SDV 2.970E-02 -7.420E-03




The effects of changing these coefficients are illustrated in Figures 1 and 2
on the following pages. Additionally, the analysis presented herein is
conducted in dimensional form; hence the nominal forward longitudinal
velecity ‘U’ appears in the equations of motion. All calculations and
sirculations utilize a value of 5 ft/sec for ‘U’. The coordinate system
convention is the standard body-fixed. right -hand orthogonal axis system

employing the Euler angle approach.

1. Variables

X, ¥, 2 Distances along the body fixed principal axes.

u,v,w Translational velocity components of model relative to
fluid along body axes.

P,qQ,T Rotational velocity components of model along body axes.

X, Y, 2 Hydrodynamic force components along body axes.

K,M,N Hydrodynamic moment components along body axes.

v, 0,0 Yaw, pitch, and roll angles; positive values following the
right-hand rule.

Xg,Yg, Zg Center of gravi'y coordinates along principal axes.

Xb, Yb, Zp Center of buoyancy coordinates along principal axes.

Inxs Iyy, 122 Moments of inertia about the principal axes.

Xnoser Xtail Distances from body center along the longitudinal axis
used in the crossflow force and moment integrals.
Values are located within the nonlinear computer
simulation program in Appendix A.

h(x), b(x) Model width and height values used in the crossflow

force and moment integrals. Values are located
within the nonlinear computer simulation program
in Appenuix A.
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II. STABILITY OF MOTION

A. EQUATIONS OF MOTION

The horizontal plane, nonlinear equations of motion for a submersible
as developed by Smith, Crane, and Summey [Ref. 1] are shown below in
Equations (2.1).

Sway: m[v+ur-wp+Xg(pq + 1) - Yg(p? + r?) + Ze(qr-p)| =
@12 [Yop+ Yt + Yoopq + Yorar] +[Youv+ Y, ,vw+ Y5,u28r] +
[Yov + Youp+ Yeur+ Yyqvg + Yupwp + Yy ,wrl + (W -B)cos 6 sin ¢ -

Xnase
f [CDy h(x)(v+x1? + CDz b(x)(w -xq )2] (I\; :f(xxx;) dx

Xail

Yaw: Lt +(1,,-L,)pq - Ixy(p2-q2) - L, (pr+q) +
(2.1b) I.(qr-p) + m{Xg(v+ur-wp) - Yg(u-vr+wq)] =
[Npp + Nit + Npgpq + Ngrqr] +
[Nvv + Npup + Npur + Nygvg + Nyowp + Nyrwn +
(Nyuv + Nyww + N&u28r] + (XgW-XbB)cos 6 sin ¢ + (YgW-YbB)sin 8 -

Xnpse
T [CDyh(x)(v+x1? + CDz b(xXw -xq)?] (I‘;':(x;) (x) dx + uNprop
cflX

Xtail




gﬁlc:) Lib+ qrily; - Iyy) + Iy (pr- @ - 1,,(q2 - r%)-
Ix:(pq +1)+m[Yg(W-uq+vp)-Zg(v+ur-wp)] =
(Kpp +K:it + Kpgpq + Kqrqr] +
(Kiyv +Kpup+Krur+ Kygvg + Ky pwp+ Kwwr] +
(Kvuv+ Kywvw] + (Y;W -Y,B)cos 6 cos ¢ -

(ZgW - ZpB)cos 6 sin ¢ +u2Kprop

B. SIMPLIFICATIONS
In order to obtain the linearized equations of motion about a level flight

path, the following simplifications were utilized:

¢ The translational velocity (w) and acceleration (w ) in the z-direction
are zero.

¢ The rotational velocity (q) and acceleration (q) in the y-direction are
zero.

¢ The acceleration in the longitudinal direction (u ) is zero.

¢ The cross-products of inertia are zero by virtue of a body-centered
coordinate system.

¢ The submersible is neutrally buoyant so B = W.

* The longitudinal center of buoyancy (X,) and the vertical center of
buoyancy (Z,) are located at the origin of the body-fixed coordinate
system.

* The lateral center of buoyancy (Y},) and the lateral center of gravity
(Yg) are located at the origin of the body-fixed coordinate system.

¢ Dynamic stability analysis is performed with all controls fixed;
hence, all forz¢s and moments due to control surfaces are zero.

* The angle of pitch (0) is sufficiently small for sin(8) to equal zero.




* From Smith, Crane, and Summey [Ref. 1] the propeller coefficients
Kprop and Nyyqp are zero.

C. COUPLED STABILITY EQUATIONS
When the simplifying assumptions from the preceeding section are

applied, the resulting linearized equations are:

(2.2a) Sway: m[v+ur+ X (1)-Z; )] = %
(2.2b) Yaw: Izt + mXg(V+ur) = Ny
(2.2¢) Rolk Lixp - mZg (v +ur) = K¢

where the force and moment representations are given by:

(2.3a) Sway Force: Y = Yov+Yov+ Yir+ Yer+ Ypp+ Yop

(2.3b) Yaw Moment: Nr = NyVv +Nyv+ Nit+ Ner+ Npp+ Npp + (X W- X, Blo
(2.3c) Roll Moment: Kf = K;v+K,v+ K, r+K;r+ Kyp+Kpp +(Z;W-Z,B)g
Equations 2.2 and 2.3 may be combined to form the state space

representation:

Ax = Bx (2.4a)

where x=p ov oI (2.4b)




Ixx- Kp 0 -(Kv+ M&) -Kr

A = 0 1 0 0 (2.4c)
(Yp+MZg) O M-Yv MXg-Yi| |

-Np 0 MXg-Nv Izz - Nr

KpU ZbB-ZgW KvU UMZg+ Kr)

1 0 0 0
B = 24d
YpU 0 YU U(Yr-M) ( :

pU XgW-XbB NvU U(Nr-MXpg)

The stability of the coupled, linearized system depends on the location of the
four eigenvalues of det(B - AA) = 0, which has a characteristic equation of
the form

AM+BA3+CA2+DAL+E=0, (2.4¢)
where the coefficients are complicated permutations of the elements in
matrices A and B. The values for A, B, C, D, and E are given in Equations
(2.4f - 2.4j) in terms of lower case letters that represent entries in matrices A

and B; they are explicitly defined in Table 1.

A=a-Gu-lr)+d(uh+ol) - fi(rh+oj (2.4
B= e(uh+ol)-d(ui-wh+om-pl)-a@Gw+ku-1x-rm)
- b-Gu-Lr) + f(ri - x-h + 0k - pj) - g(rh + o) (24g)
C=a-k-w - m-x) + b-G-w + keu - I-x - rm) + g-(ri - x-h + o'k - pj)
+c¢(Gu-lr)-d(ql-wi+mp)-e(ui-wh+om-pl

+ f(qJ -Xi 4+ pk) (2.4h)




D=g(qj-xi+pk)-fqk+dqgm-e(ql-wi+mp)-b(kw-mx)
-¢w+ku-1x-rm) (2.41)

E= c¢(k'w-mx)+eqm-gqk (2.4

Ixx-Kp ¢ = ZgW-7ZbB d = MZg+ Kv

KvU g = MZgU h = MZg+Yp
YU j ' k = WU 1 = MXg-Yr
i m = U(Yr-M) ‘ NpU q

= UNr-MXg) x

D. UNCOUPLED STABILITY EQUATIONS
Using matrices A and B from the preceeding section (Equations 2.4c and

2.4d), uncoupling the steering and roll equations is straightforward:

STEERING EQUATIONS
[ M- Yy MXg-Yr] [v] _ [YVU U(Yr-M) Mv]

MXg-Nv Iz-Nr J|f NvU U(N:r-MXg)Lr (2.5a)
ROLL EQUATIONS
[Ixx-Kp o] [p] _ [KPU ZbB-ZgW] [p]
0 Ule) L1 0 ¢ (2.5b)




The characteristic equations for the uncoupled steering and roll equations
are much simpler than that for the coupled system, and are given as
Equations (2.5¢ and 2.5d) in terms of the hydrodynamic parameters rather

than the descriptors used in the previous section.

The steering characteristic equation form is: Ale + BrLA + Cp, = 0, where

Ap = (M-Yi )Xz -N;) - (MXg - Y+ )JMX; -Ny)

By = -[g-Ni )XY, U)+ (M- Ys XNy - MXg XU)+ 25¢)
(Y - M)(Ny - MXg XU)+ (¥; - MXg )Ny U)]

CL = (YWUXN; -MXg) - (NyUP)(Y:-M)

The roll characteristic equation form is: ARk2 + BrA + Cr = 0, where

Ar = kx-K;
Br = -K,U (2.5d)
Cr = Z;W

11




H1. RESULTS AND DISCUSSION

A. DEGREE OF STABILITY

The effects of changing the longitudinal and vertical centers of gravity
(while keeping the center of buoyancy fixed at the vehicle center) on the
degree of stability for configuration ‘A’ is illustrated in Figure 3. Degree of
stability as utilized in this thesis is defined as the maximum real value of all
characteristic roots, with negative values indicating a stable situation. The
degree of stability for the uncoupled system is represented by the dashed line.
It can be seen that the critical value of X; for which motions become unstable
is clearly a function of the metacentric height Z;, whereas the uncoupled
system predicts a constant value of X;. Figure 4 displays the variation of the
imaginary part of the root value for configuration ‘A’.

Figures 5 and 6 are analogous to Figures 3 and 4 for configuration ‘B’;
they show the degree of stability for varying X; and Z; values. For this
configuration, the degree of stability has a stronger dependence on the
location of X; and the value of Z;. For almost all positive values of Xg, the
complex conjugate roots are increasing in value and eventually becoming
positive; this indicates an oscillatory response that diverges when the degree

of stability is positive.

B. REGIONS OF STABILITY

Figure 7 shows the region of stability for configuration ‘A’, with the
uncoupled system represented by a dashed line. The uncoupled system
predicts stability for all values of X; greater than 0.18 ft, while the coupled
system predicts an additional region enclosed by the triangular area to the

12
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left of the dashed line. Figure 8 is analogous to Figure 7 for configuration ‘B’.
The large discrepancies between the predicted regions of stability in this case
occur for Z; values less than 0.045 ft. For small values of Zg, there are
corresponding small regions of X; where stability is predicted by the coupled
equations but not by the uncoupled equations. The root values in this region
are complex conjugates with very small real parts. Figures 9(a) and 9(b)
illustrate the effect of co-locating X, and X; This results in a degree of
stability for the coupled system that is nearly identical to the uncoupled
system.
C. INTERPRETATION OF RESULTS

It may be shown by applying Routh’s criterion [Ref. 4: pp. 211-218] that
for a fourth order equation of the form AL* + BA® + CA2 + DA + E to have
roots with all negative real parts the following must apply:

i.) BCD-AD?-EB? > 0
ii.) E > 0.

If the quantity ‘E’ is less than zero, the system will become unstable and the
resulting motion will be a simple divergence. If, however, the value of the
quantity BCD - AD?-EB? is negative, the resulting instability will result in
an oscillatory motion due to the presence of complex conjugate roots with
positive real parts.

For the coupled system of equations, the condition E = 0 yields:

Zg = Xg [ KA Y- M)/(Y,N; - NCY-M))].
while the uncoupled system of equations reduces to a constant term
expression for Xg:
Xg = [(MYV/(Y,N; - No(Y-M))].
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This explains the differences in the regions of stability illustrated in Figure 7,
since the above equations show a linear relationship between Z; and X for
the coupled equations and a constant value for X; for the uncoupled
equations. When the value for X; coincides with the value for X, the
constant term ‘E’ in the coupled equations is reduced to that of the constant
associated with the uncoupled equations, and the resulting predicted degree
of stability no longer depends on the value of Z;. Substituting the coefficient

values for ‘E’ serves to clearly illustrate the reduction:

E = ZWVUXNMX) - NUNY-M] +
(KUY - MXXpB-XgW) - (MZUXYUXXpB-X W),

When X, = X; and B = W for the neutrally buoyant case, the second and third
terms are reduced to zero. When ‘E’ is then set equal to zero (the condition
for determining where the real roots change from negative to positive), the
dependence on the value Z; is removed and the expression for X; is the
constant given for the uncoupled equations. This reduction is the explanation
for the appearance of Figures 9(a) and 9(b). When the longitudinal centers of
buoyancy and gravity coincide for a neutrally buoyant vehicle, the degree of
stability for the coupled system of equations covering all metacentric height
values is equivalent to the uncoupled system of equations.

A simple reduction of the equation resulting from Routh’s criterion to
determine when a pair of complex conjugate roots crosses the zero axis is not
easily accomplished. Figure 10 is presented as confirmation that the
locations of Xz for which BCD - AD? - EB? = 0 matches the locations given

graphically in Figure 5.
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D. LINEAR SIMULATIONS

Figures 11 through 14 present comparisons of the coupled and uncoupled
system responses for configuration ‘A’. For the stable cases Xz = 0.40 ft and
for the unstable cases X = -0.20 ft, while Z; is 0.20 ft for both. The unstable
coupled case (Figure 11) illustrates a simple divergence for both angle of drift
and roll angle. This is expected since the roots are not complex conjugates.
The unstable, uncoupled case accurately predicts the divergence in angle of
drift, but the roll response is predicted to be stable. This may be explained by
examining the uncoupled equation of motion in roll:

¢" - ¢' KpU)fUxx -Kp) + ¢ (ZgW)/(Ix -K;) = 0.
Substituting values for configuration ‘A’ yields:
¢” + ¢'(1.475) + ¢ (0.720) = 0.
The solution of this equation results in a natural frequency of 0.85 rad/sec
and a damping factor of 0.869. This is an underdamped case, since both roots
have negative real parts and are complex conjugates. Substituting values for
configuration ‘B’ yields:
¢” + ¢’ (1.475) + ¢(0.144)=0.

The solution for this case results in a natural frequency of 0.380 rad/sec and a
damping factor of 1.941, which represents an overdamped situation. This
also demonstrates that a vehicle’s natural frequency in roll may be increased
by increasing the metacentric height. The effects of the underdamping may
be seen in Figures 12 through 14.

Figures 15 through 20 provide a comparison between the coupled and
uncoupled equations for configuration ‘B’. The effects of the overdamping are

evident in figures 15 through 17. This set of figures demonstrate the

p.2 3
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magnitude of the discrepancies when the coupling effects are not considered.
The comparison below summarizes the results of the figures representing

simulations for configuration ‘B’, where ‘C’ stands for coupled and ‘UC’ for

uncoupled.
C UucC C UcC C UC
Xg 0.20 0.20 1.00 1.00 1.50 1.50
Roll Stable Y Y N Y N Y
Drift Stable Y N N N N Y

As was seen before, the effects of the coupling on the system results in
complex conjugate eigenvalues with positive real parts. Therefore, the larger
values of X result in increasingly divergent oscillations instead of the
stability predicted by the uncoupled system.

Figure 21 is a three-dimensional presentation of the roll amplitude vs
time for configuration ‘B’ as X; varies from 0.15 ft to 1.50 ft. This mesh
capability of MATLAB allows a comparative view of several solutions, and

the behavior of the roll response for the coupled system is easier to discern.

E. NON-LINEAR SIMULATIONS

In order to provide a measure of the accuracy of the results obtained
utilizing the linearized equations of motion, a simulation program for the
non-linear equations of motion was developed using Hamming’s method
[Ref. 2]. Hamming’s method utilizes a Milne predictor and incorporates a
modifier step prior to the correction step. The primary advantage of using

Hamming’s method is that only two derivative function evaluations are

b
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required per step rather than the four or more normally required by other
popular methods. The local error is of the same order of magnitude (h?) as a
more time consuming process such as a fourth order Runge-Kutta, but the
reduction in function evaluations results in a faster simulation. The formula
is presented below, and may also be found in the nonlinear computer

program simulation in Appendix A.

HAMMING’S METHOD
y(i+1predicted = ¥(i-3) + (4h/3)[2f0i) - fli-1) + 2f(i-2)]
Y(i+Dmodified = y(i+1)predicted - (112/121)[}’ (i)predicted - ¥ ()eorrected]

Y(i+corrected = (1/8)[9y() - y(i-2) + 3h{fli+ Dmodified + 2fi) - Ri-1)}]
y(i+1) = y(i+1D)corrected + (9/12D[y(i+1)predicted - Y(i+1)corrected)
The first four values must be determined by another method; the Euler
linear solution with a small step size ‘h’ proved sufficient.

Figure 22 represents the simulation for the unstable representation of
configuration ‘A’. Rather than the exponentially increasing roll angle and the
-90 angle of drift computed with the linear simulation, the nonlinear solution
predicts an angle of drift that reaches -15 degrees, and then slowly diverges.
The roll angle reaches a steady state value of approximately three degrees.
Figures 23 and 24 are the nonlinear simulation results for stable
configurations of ‘A’ and ‘B’, respectively. They are nearly identical to the
results obtained using the linear simulation and displayed as Figures 12 and
18.

Figure 25 is the simulation for an unstable configuration ‘B’. Quite
notable are the steady state roll angle and angle of drift after approximately

250 seconds rather than the exponentially increasing divergence apparent in

37
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the corresponding linear simulation. Figure 26 provides a comparison
between the linear and nonlinear solution for angle of roll. The enlarged
view of the steady state region provided in Figure 27 better illustrates the
constant limits of oscillation. By plotting the roll angle versus the angle of
drift, an elliptical trajectory is apparent in Figure 28. This result is similar
to the results obtained by Schmidt and Wright in their analysis of high
performance aircraft wing-rock [Ref. 5]. They postulate that a possible
explanation for the limit cycle is the inertial coupling between a stable
longitudinal and an unstable lateral mode. Similar results in tho work are
attributed to dynamic as well as hydrodynamic coupling. Figures 25 and 28
indicate that the nonlinear interactions for the unstable conditions of
configuration ‘B’ provide a significant amount of damping to the rolling
motion. The limiting of the rolling motion accomplished by including the
nonlinear terms then serves to limit the buildup of the angle of drift and the
result is an eventual stable limit cycle.

The ocean environment can be expected to introduce many combinations
of disturbance forces, which may or may not be periodic. A preferred method
for simulating many disturbances such as sensor noise, ocean current
fluctuation, and vehicle acceleration fluctuations is to model thcm as ‘white
noise’. Figure 29 is presented to demonstrate the effects of including
constant, zero-mean disturbances in sway and yaw on the marginally stable
system of configuration ‘B’. The disturbances are developed using MATLAB’s
random number gensrutor with a uniform diztribution. Che rnrndom numbers
are then scaled to simulate values that may be « spected. The variance of the
sway and yaw acceleration disturbances, resoectively, for Figure 29 are 0.003

(f/s?)? and 0.002 (rad/s%)%. The resulting simulation bears little resemblance

45




to Figure 24, although the initial conditions and values for X, and Z; are the
same. With even these relatively minor disturbances acting on the system of
configuration ‘B’, a rather large, non-symmetric oscillation in both roll and
angle of drift is evident. Although the system is still stable, with the mean of
both the roll angle and angle of drift equalling zero, a limit cycle similar to
that of the unstable configuration (Figure 25) has developed. As the angle of
drift fluctuates between positive three degrees and negative four degrees, the
angle of roll varies between positive and negative two degrees. Increasing
the scaling (which increases the variance) for the disturbances would be
expected to increase the fluctuations until stability is lost. Similarly, it is
true that the small disturbances acting in Figure 29 have a greatly reduced
effect on the system of configuration ‘A’, which has greater stability.
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IV. PERTURBATION ANALYSIS

A. BACKGROUND

The previous section demonstrates that knowledge of the separation
between longitudinal centers of buoyancy and gravity is critical in
determining system stability. If this quantity is the dominant factor in a
stability analysis, then an approximation for the degree of stability may be
developed by applying perturbation theory. Although perturbation results
are only approximations, their advantage over numerical methods is in
illustrating the degree to which a solution depends on the variable(s)

involved. From the fundamental theorem of perturbation theory [Ref. 6], we
seek a solution to the characteristic equation Ax* + BA + CA2 + DA + E = 0 of

the form:

n=oo

Ae) = an¢e”
2:0 (4.1)

where € is the variable of interest and the solution approximates the
numerical solution in the region where ¢ is smalll. The constant coefficients

(ao, ay, ..., an) are all independent of &, and are all .equal to zero for small ¢.

B. PERTURBATION FORMULATION
Recalling Equations 2.4f - 2.4j, which defimed the coefficients of the
quartic characteristic equation, it would obviously be desirable to simplify the

equations as much as possible prior to formmulating the perturbation




approximation. The wvariable of interest will be defined as:

where the nominal value for X, is zero and the perturbation will be

performed around € = 0. By comparing Figures 30 and 31 it is clear that by

allowing the hydrodynamic coefficients Kv, Ky, ¥, Ny, Yo, and Ny to equal

zero a very good approximate solution to Equation (2.4e) is obtained for both
configurations ‘A’ and ‘B’. This simplification reduces the descriptor

[ 2 o}

coefficients ‘f, ‘i, ‘0’, and ‘p’ from Table 1 to zero, which simplifies the
coefficients of the coupled equations of motion to Equations (4.3a) - (4.3e)

below.

A = (- K)IM- Y -Np)-(MX - Ye)MXg -No)j +
(MZg)%(I,; -Ny) (4.32)

B = (K UYXMZg )1, - Np)+ (MZ (N, - MX X U)-
MZg)(MZg + K )MXg - N J(U) - (xx - Kp XM - Y3)(N; -MX)(U) +
(Y UXI;; - Ni ) -(N,UXMX - Y3) - (MX g - N )XY -M)(U)]-
(KpU)M- Yo )1, - N;) - (MX g - ¥: XMX g - Ny (4.3b)

C = (U - Kp)(Y UDN -MX)- (N U (Y, - M) +
(ZgWI(M- Yy Xzz - Np) - (MXg - Y X(MXg -Ny)J +
Kp UM - Yo )Ny - MXg )(U) + (Y, UNIz - N;) -
(NJUXMX - Yy) - (MXg-No )Y, -MXU)] +
MZ (X, WXMX, - Y:)- (N, UZ)MZg + K,.) + (K, UAN; - MX)]

(4.3¢)




D = -(Z;W)I(M- Y )N,y -MX)(U) + (Y U1, -Ny)-

(NvU)(MXg - Yr) - (MXg - Nv)(Yr - M)(U)] -

(KpUH[(Yy)(Ny - MXg) - (N (Y -M)] + (K UX(XW)MX - Y;)-

MZ )X WYU)Y: - M) - MZg +K )UNXWYM -Yy) (4.3d)
E = Z WY(Y, UHN, -MXp)-(NyUEXY, -M)] - K XgWUXY, -M) +

(Y, XgWUZXMZ, +K,) (4.3¢)

Recalling the definitions of the coefficients for the uncoupled systems:

AL (M 'Y\")azz-Ni-) - (MXg-Yr')(MXg'Nv)

BL = -[(dz -N:)(YvU) + (M- Yi)(Nr - MXg)(U) +
(Y - M)(N; - MX X(U) + (Y; - MX )N, U)]

CL = (YWUD(N:-MXg) - (NvUZ)(Y: -M)

Ar = Ix-K; Br =-K,U Cr=2ZW
Substituting in Equations (4.3a) - (4.3e) yields:
A = ARAL + MZg)% (12 -N;) (4.4a)
B = ARBL + BRAL + (MZ;?(N, -MX)U) + (4.4b)

(MZg YT, - N: XK U) - (MZg + K XMX; - N XU)]

C = ARCL + CRAL + BrBr + MZI(X,W)MX,-Y;) +
(K UZXN, - MX,) - (N, U)MZ, + K;)]

CrBL + CLBr + (KyUXXgW)MXg-Y:) -
MZ; + K )X WHUXM - ;) - MZ)(XgWXUXY, -M) (4.4d)

(4.4¢)

=)
"

E = CrCL + (WU“XXgW)MZg +Kr) - RvXgWUINY: - M),
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In order to further simplify these coefficients, terms of order (Zg)2 and (Xg)2

will be neglected; the effects of doing this are small and may be seen in

Figures 32 and 33. This reduces the coefficients to:

A = ApAL (4.5a)
B = ARBL + BrAL + a (Xg) + K1 (4.5b)
C = ARCyL + CrAL + BrBL + B (Xp) + K2 (4.5¢)
D = CgBp+ CLBR +y(Xg) (4.5d)
E = CgCL + 8 (Xp) (4.5¢)
where: o = -M?ZKU (4.62)
B = -(MZg)(WYr) + (MK U?)] (4.6b)
Y = (WUXMZg(Ys - Yo) + Kr¥o -K:M-KyYr] (4.6¢)
8 = (WUS(Y)MZg+Ko) - (K )(YrM)] (4.6¢)
K1l = MZg)[(Izz- N:)KvU) + (NvK:U)] (4.6f)
K2 = (MZU»(NK, - NJKy) - (4.6g)

Carrying through the computations results in he following expressions:

(ARAL) ao® + (ARBL+BRAL+K1) a¢° + (ARCL+CrAL+BrBL+K2) a0? +

(CrBL+C1Br)ag + CrCL = 0 (4.7a)
3 2
= rgioae t Pag’ a0 s B @b
(4A)ag® +3(B-aXg)ap” +2(C-BXgap + (D-vX )
a 'alz(C‘Bxl) - a12a0(6A +B-0X;) - Klaoa,® - 30ao?a;-2paoa;-va;
2 -

(4A)ao® + I(B - oX g)ag” + 2C-PXglao +(D- yXg)
(4.7¢)
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The characteristic equation AA? + BA2 + CA2 + DA + E = 0 may now be
expressed in terms of a second order perturbation which depends on a single
variable ¢ as:

Me) = ag + a1 € + ag €2 (4.8)

Figures 34 through 37 depict the results for both first and second order

perturbation analysis about X close to zero. Results for both configurations
‘A’ and ‘B’ demonstrate that this method for representing the degree of
stability in the vicinity of a nominal (X; - X},) is quite satisfactory, provided

the roots have no complex conjugates. In the region where the roots become
complex, the problem is no longer a regular perturbation, and methods to

solve the singular perturbation must be developed.
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V. CONCLUSIONS AND RECOMMENDATIONS

e When considering an inherently stable situation for an analysis of sway,
yaw, and roll response, the linear simulations compare favorably with
the nonlinear simulations. For a marginally stable or unstable system,
only the nonlinear simulation can predict the existence and extent of any
non-zero steady states or limit cycles that may occur.

e Obviously, in the design of a submersible, careful attention must be paid
to selection of both the metacentric height and the separation between the
longitudinal centers of gravity and buoyancy. Instability associated with
the dynamic coupling effects can be minimized by increasing the
metacentric height. The uncoupled system stability predictions are not
reliable when there is separation between X; and X,

e It can be concluded from the analysis that the coupling of roll into sway
and yaw for the linearized equations of motion is not very significant
when X; equals X,

¢ Recommendations for future modelling research include an expansion
to incorporate coupling effects between the vertical and horizontal planes.
It is well known that the coupling between translation and attitude is a
severe limitation in the design of submersibles.

¢ The effects of varying hydrodynamic derivatives and initial conditions, as
well as incorporating disturbances in the nonlinear simulations deserve
more attention. Additionally, the complexity of the nonlinear system
resulting from including the vertical plane is greatly increased. More
studies of the nonlinear system resulting from this union are also

required.




APPENDIX A
NON-LINEAR SIMULATION PROGRAM:
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% THIS PROGRAM USES HAMMING’S METHOD TO SOLVE A SYSTEM
% OF NONLINEAR EQUATIONS. SIMILAR TO A FOURTH ORDER

% RUNGE-KUTTA IN TERMS OF LOCAL ERROR, IT REQUIRES ONLY
% TWO FUNCTION CALCULATIONS PER STEP VICE FOUR.

function[v,phi] = nonlinsim_hamming(U0,Xg,Zg)
% VEHICLE PARAMETERS FOLLOW
W = 12000.0; Ixx = 1760.0; Iyy =9450.0; 1zz=10700.0; L = 17.425;
RHO=1.94; G=32.2; M = W/G; BUOY = W; Zb=0.0; Xb =0.0;
ZZ = 0.5*RHO*L"2;

% SWAY HYDRODYNAMIC COEFFICIENTS

Ypdot = 1.270E-04*ZZ*L"2; Yrdot = 1.240E-03*ZZ*LA2;
Ypqg = 4.125E-03*ZZ*L"2; Yqr =-6.510E-03*ZZ*L"2;
Yvdot =-5.550E-02*ZZ*L; Yp = 3.055E-03*ZZ*L;
Yvq = 2.360E-02*ZZ*L; Ywp = 2350E-01*ZZ*L;
Ywr =-1.880E-02*ZZ*L; Yv =-9.310E-02*ZZ,

Yvw = 6.840E-02*ZZ;

% NOMINAL VALUE FOR Yr = 2.970E-02*ZZ*L
% CONFIGURATION ‘A’ Yr = -3.500E-02*ZZ*L
% CONFIGURATION ‘B Yr = -5.940E-02*ZZ*L

CC = input(‘enter model configuration choice; either 1 for A or 2 for B’)

if CC<2

Yr = -3.500e-02*ZZ*L;
else

Yr = -5.940e-02*ZZ*L,;
end

% ROLL HYDRODYNAMIC COEFFICIENTS

Kpdot =-1.01E-03*ZZ*LA3; Krdot = -3.37E-05*ZZ*L"3;
= -6.93E-05*ZZ*L"3; Kgr = 1.68E-02*ZZ*L"3;
Kvdot = 1.27TE-04*ZZ*LN2; Kp =-1.10E-02*ZZ*L"2;
Kr = -8.41E-04*2Z*L"2; Kvq =-5.115E-03*ZZ*L"2;
Kwp =-127E-04*ZZ*L"2; Kwr = 1.39E-02*ZZ*L"2;
Kv = 3.055E-03*ZZ*L; Kvw =-187E-01*ZZ*L;

(V4




% YAW HYDRODYNAMIC COEFFICIENTS

Npdot =-3.370E-05*ZZ*L"3;

Npaq =-2.110E-02*ZZ*1L"3; Ngr
Nvdot = 1.240E-03*ZZ*1."2; Np

Nr = -1.640E-02*ZZ*L."2; Nvq
Nwp =-1.750E-02*ZZ*LA2; Nwr
Nv = -1.484E-02*ZZ*L,, Nvw

Nrdot =-3.400E-03*ZZ*LA3;

= 2.750E-03*ZZ*L"3;
= -8.406E-04*ZZ*L"2;
= -9.990E-03*ZZ*L."2;
= 7.350E-03*ZZ*L"2;
= -2.670E-02*ZZ*L,

% THE FOLLOWING ARE USED FOR EVALUATING THE INTEGRALS
% IN THE SWAY AND YAW EQUATIONS OF MOTION. X' IS THE

% DISTANCE IN FEET ALONG THE LONGITUDINAL AXIS AND ‘HH’
% IS THE VEHICLE HEIGHT. ALL VALUES ARE IN FEET.

X(1)=-105.9/12;
X(4)=-94.3/12;
X(7)=-66.3/12;
X(10)=79.2/12;
X(13)=91.2/12;
X(16)=101.2/12;

HH(1)=0.0/12;
HH(4)=13.96/12;
HH(7)=29.36/12;
HH(10)=30.00/12;
HH(13)=21.44/12;
HH(16)=9.12/12;

X(2)=-104.3/12;
X(5)=-87.3/12;
X(8)=-55.8/12;
X(11)=83.2/12;
X(14)=95.2/12;
X(17)=102.1/12;

HH(2)=2.28/12;
HH(5)=19.76/12;
HH(8)=31.85/12,
HH(11)=27.84/12;
HH(14)=17.12/12;
HH(17)=6.72/12;

X(3)=-99.3/12;
X(6)=-76.8/12;
X(9)=72.7/12;
X(12)=87.2/12;
X(15)=99.2/12;
X(18)=103.2/12;

HH(3)=8.24/12;
HH(6)=25.1/12;
HH(9)=31.85/12;
HH(12)=25.12/12;
HH(15)=12.0/12;
HH(18)=0.00/12;

% THE INITIAL CONDITIONS ARE SET PRIOR TO INTEGRATION
% BY CALLING A LINEAR INTEGRATION PROGRAM NAMED

% ‘EULER’. THE ERRORS ASSOCIATED WITH USING LINEAR

% SOLUTIONS FOR THE FIRST FIVE TIME INTERVAL STEPS ARE
% SMALL AND DO NOT AFFECT THE NONLINEAR SOLUTIONS.

[p.pdot,v,vdot,r,rdot,phi,phidot] = euler(dt);

p(1:5)=p;
pdot(1:5)= pdot;
pdotmod(5)=pdot(5);

v(1:b)=v;
vdot(1:5)= vdot;
vdotmod(5)=vdot(5);




r(1:5)=r;
rdot(1:5)= rdot;
rdotmod(5)=rdot(5);

phi(1:5)= phi;
phidot(1:5)= phidot;
phidotmod(5)=phidot(5);

% THE TIME INTERVAL IS ‘dt’, THE FINAL TIME IS ’tfinal’, AND A
% VALUE CALLED ‘stopnumber’ IS SET TO ALLOW ACCESS TO THE
% DATA AFTER THIS NUMBER OF ITERATIONS. THE VALUE FOR
% ‘stopnumber’ MAY BE CHANGED WHILE THE KEYBOARD IS

% ACTIVE TO ALLOW SUBSEQUENT PROGRAM INTERACTION.

% RETURN TO THE PROGRAM IS ACHIEVED BY TYPING ‘return’
% FOLLOWED BY THE ‘enter’ KEY.

dt = input(‘enter the time interval step size’)
tfinal = input(‘enter the final time’)
stopnumber = input(‘enter the value for stopnumber’)

% THIS SECTION ALLOWS FOR RANDOM DISTURBANCES IN SWAY
% AND YAW
rand('uniform')
vdotdist = rand(1,(tfinal/dt)+1);
vdotdist = 0.05*(vdotdist - mean(vdotdist));
rdotdist = rand(1,(tfinal/dt)+1);
rdotdist = 0.04*(rdotdist - mean(rdotdist));

% THIS SECTION PROVIDES FOR CONTINUATION OF SOLUTIONS.
% IF THE MATRICES BECOME VERY LARGE, IT IS RECOMMENDED
% THAT THE CURRENT VALUES BE SAVED AND A NEW

% SIMULATION BEGUN AS MATLAB SLOWS NOTICEABLY WITH
% LARGE MATRICES.

% vcorr(5)= ; rcorr(5)= ;
% pcorr(5)= ; phicorr(5)= ;
% vpred(5)= ; rpred(5)= ;
% ppred(5)= ; phipred(5)= ;
% pdotmod(5)= ; rdotmod(5)= ;




% COMMENCE INTEGRATION
for j = 6:(tfinal/dt) + 1;

% THIS SECTION USES A HAMMING PREDICTOR-CORRECTOR TO
OBTAIN VALUES

vpred(j)=v(j-4)+(4*dt/3)*(2*vdot(j-1)-vdot(j-2)+2*vdot(j-3));
rpred(j)=r(j-4)+(4*dt/3)*(2*rdot(j-1)-rdot(j-2)+2*rdot(j-3));
ppred()=p-4)+(4*dt/3)*(2*pdot(-1)-pdot(j-2)+2*pdot(j-3));
phipred(j)=phi(j-4)+(4*dt/3)*(2*p(j-1)-p(-2)+2*p(-3));

ifj<7
vmod(j) = vpred(j);
rmod() = rpred(j);

pmod()= ppred();
phimod(j)= phipred(j);

else
vmod(j)= vpred(j)-(112/121)*(vpred(j-1)-veorr(j-1));
rmod(j)= rpred(§)-(112/121)*(rpred(j-1)-rcorr(j-1));
pmod(j)= ppred(j)-(112/121)*(ppred(j-1)-pcorr(j-1));
plcllimod(i)= phipred(j)-(112/121)*(phipred(j-1)-phicorr(j-1));
en

tmplmod=vmod(j); tmp2mod=rmod(j);
[SWAYMOD,YAWMOD]=crossflowintmod(tmp 1mod,tmp2mod,X,HH);
vdotmod(j)=  (1/(M-Yvdot))*((Ypdot+M*Zg)*pdotmod(j-1)+...
Yp*U0*pmod(j)+(Yrdot-M*Xg)*rdotmod(j-1)+...
Yv*UO*vmod(§)+(Yr-M)*U0*rmod(j)+SWAYMOD);

veorr(j)= 0.125*%(9*v(j-1)-v(j-3)+3*dt*(vdotmod(j)+2*vdot(j-1)-...
vdot(j-2)));

rdotmod(j)=  (1/(Izz-Nrdot))*(Npdot*pdotmod(j-1)+...
(Nvdot-M*Xg)*vdotmod(j)+Np*U0*pmod()+...
(Nr-M*Xg)*U0*rmod()+Nv*U0*vmod(G)+...
Xg*W+*sin(phimod(j))+ YAWMOD),

rcorr(j)= 0.125*(9*r(j-1)-r(j-3)+3*dt*(rdotmod{j)+2*rdot(-1)-...
rdot(j-2)));

pdotmod(j)=  (L/(Ixx-Kpdot))*((Kvdot+M*Zg)*vdotmod(j)+...
Krdot*rdotmod(j)+Kp*U0*pmod(j)+...
(Kr+M*Zg)*U0*rmod(j)+Kv*U0*vmod(j)-...
Zg*W*sin(phimod(j)));




peorr(j)=

0.125*(9*p(j-1)-p(j-3)+3*dt*(pdotmod(j)+2*pdot(j-1)-...
pdot(j-2)));

phicorr(j)= 0.125%(9*phi(j-1)-phi(§-3)+3*dt*(pmod(j)+2*p(-1)-...

pG-2)));

veorr(j)+(9/121)*(vpred(j)-vecorr(j));
rcorr(j)+(9/121)*(rpred(j)-rcorr(j));
peorr(j)+(9/121)*(ppred(§)-pcorr(j));
phicorr(j)+(9/121)*(phipred(j)-phicorr(j));

beta(j) = -atan(v(j)/5)*180/pi;

% THIS SECTION HAS THE NON-LINEAR EQUATIONS OF MOTION.
% REMEMBER TO REMOVE THE DISTURBANCES FROM THE SWAY
% AND YAW DERIVATIVES IF THEY ARE NOT DESIRED.

tmpl=v(j); tmp2=r(j);
[SWAY,YAW] = crossflowint(tmpl,tmp2,X,HH),

vdot()= ((1/(M-Yvdot))*((Ypdot+M*Zg)*pdot(j-1)+Yp*U0*p(j) +...
(Yrdot-M*Xg)*rdot(j-1)+ Yv*UO*v(i)+(Yr-M)*U0*r()+...
SWAY))+vdotdist(j);

rdot(j)= ((1/(Izz-Nrdot))*(Npdot*pdot(j-1)+(Nvdot-M*Xg)*vdot(§)+...
Np*U0*p()+(Nr-M*Xg)*U0*r()+Nv*U0*v(j)+...
Xg*W*sin(phi(§))+YAW))+rdotdist(j);

pdot(j)= (1/(Ixx-Kpdot))*((Kvdot+M*Zg)*vdot(j)+Krdot*rdot(j)+...
Kp*U0*p()+(Kr+M*Zg)*U0*r(§)+Kv*U0*v(j)-...
Zg*W*sin(phi(3)));

if j == stopnumber

keyboard

end

end

return
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% THIS PROGRAM IS THE LINEAR EQUATION OF MOTION
% INTEGRATION EMPLOYING A SIMPLE EULER METHOD TO
% OBTAIN STARTING VALUES FOR THE NONLINEAR SIMULATION.

function{p,pdot,v,vdot,r,rdot,phi,phidot] = euler(dt)

% THE MATRIX ‘A’ CORRESPONDS TO THE DAMPING MATRIX AND
% MATRIX ‘B’ CORRESPONDS TO THE MASS MATRIX.

A(1,1) = Kp*U0; A(1,2) = -((Zg*W)-(Zb*B));
A(1,3) = Kv*U0; A(1,4) = (Kr+(M*Zg))*U0;
A(2,1)=1.0; A(2,2)=0.0;

A(2,3)=0.0; A(2,4) =0.0;

A@3,1) = Yp*UO; A(3,2) =0.0;

A@3,3) = Yv*UO, A(3,4) = Yr-M)*U0;
A(4,1) = Np*U0; A(4,2) = (Xg*W)-Xb*B));
A(4,3) = Nv*U0; A(4,4) = (Nr-(M*Xg))*U0;
B(1,1) = Ixx-Kpdot; B(1,2)=0.0;

B(1,3) = -(Kvdot+(M*Zg)); B(1,4) = -Krdot;
B(2,1)=0.0; B(2,2)=1.0;
B(2,3)=0.0; B(2,4)=0.0;

B@3,1) = -(Ypdot+(M*Zg)); B(3,2)=0.0;

B(3,3) = M-Yvdot; B(3,4) = M*Xg)-Yrdot;
B(4,1) = -Npdot; B(4,2) = 0.0;

B(4,3) = M*Xg)-Nvdot,; B(4,4) = Izz-Nrdot;

C = [inv(B)*A];
% INITIAL CONDITIONS

time(1) = 0.0;

p(1) = 0.0; pdot(1) = 0.0;
phi(1) = 1.0*pi/180;  phidot(1) = 0.0;
psi(1) = 0.0; psidot(1) = 0.0;
v(1)=0.0; vdot(1) = 0.0;
(1) =0.0; rdot(1) = 0.0;
x(1)=0.0; y(1)=0.0;
xdot(1) = 0.0; ydot(1) = 0.0;
tfinal = 1;




% THIS SECTION ALLOWS FOR RANDOM DISTURBANCES IN SWAY
% AND YAW FOR THE LINEAR EQUATIONS AS WELL. MATLAB

% ALLOWS FOR EITHER A UNIFORM OR NORMAL DISTRIBUTION
% OF RANDOM NUMBER.

rand(‘uniform’)
vdotdist = rand(1,(tfinal/deltat)+1);
vdotdist = 0.05*(vdotdist - mean(vdotdist));
rdotdist = rand(1,(tfinal/deltat)+1);
rdotdist = 0.04*(rdotdist - mean(rdotdist));

% COMMENCE EULER INTEGRATION
for j = 2:(tfinal/deltat) + 1;

p() = p(-1) + pdot(-1)*deltat;
phi(j) = phi{j-1) + phidot(j-1)*deltat;
psi() = psi(j-1) + psidot(j-1)*deltat;
v() = v(§-1) + vdot(j-1)*deltat;
beta(j) = -atan(v(j)/U0);

) = r(j-1) + rdot(j-1)*deltat;

30 50D+ oty Tl

pdot(j) = C(1,1*p() + C(1,2)*phi() + C(1,3)*v(j) + C(1,47*r();
phidot(j)= C(2,1)*p() + C(2,2)*phi() + C(2,3)*v(j) + C(2,4)*r(j);
vdot(j) = C(@3,1)*p() + C(3,2)*phi() + C(3,3)*v(j) + C(3,4)*r(j);
rdot(j) = C(4,1)*p(j) + C(4,2)*phi() + C(4,3)*v(j) + C(4,4)*r(j);
psidot(j) = r(j)*cos(phi(j));

xdot(j) = U0*cos(psi(§)) - v(j)*sin(psi(§))*cos(phi(j));

ydot(j) = U0*sin(psi()) + v(G)*cos(psi(j))*cos(phi(j));

time(j) = (G*deltat) - deltat;

end

return




CROSSFLOW INTEGRAL PROGRAM:
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% THIS IS A NUMERICAL INTEGRATION PROGRAM TO CALCULATE
% THE DRAG FORCES IN THE HORIZONTAL PLANE UTILIZING THE
% TRAPEZOIDAL RULE. THE CALL TO ‘crossflowintmod’ IS

% IDENTICAL, ONLY USING DIFFERENT VARIABLE NAMES AND

% VALUES FOR THE MODIFICATION PORTION OF HAMMING'S
% METHOD.

function[SWAY,YAW]=crossflowint(tmp1,tmp2,X,HH)

RHO=194; CDy=0.35, SWAY=0.0;, YAW =0.0;
v =tmpl; r = tmp2;

fork = 1:18;
if abs(v+X(k)*r) < 1e-6
UCF(k) = 0.0;
else
UCF(k) = (v+X(k)*r)/abs(v+X(k)*r));
end

CFLOW(k) = CDy*HH(k)*((v+X(k)*r)*2);
SWAY1(k) = CFLOW(k)*UCF(k);
YAW1(k) = CFLOW(k)*X(k)*UCF(k);
end

=117
SWAY = -0.25*RHO*sum((SWAY1Gi)+SWAY1(j+1)). %X +1)-X(G5)));

YAW = -0.25*RHO*sum((YAW1(jj+YAW1({j+1)).¥(X(j+1)-XG)N);
return

EIGENVALUE CALCULATION PROGRAM:
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% THIS PROGRAM DETERMINES THE FOUR ROOTS FOR THE ROLL
% COUPLED EQUATIONS OF MOTION OVER A RANGE OF Xg.

function[all_roots,xg] = findroots(U0,Xgmin,stepXg,Xgmax)

W =12000.0; Ixx=1760.0; Iyy=9450.0; 1zz=10700.0;
L=17425; RHO=194; G=322; M=W/G;
BUOY =W, Zb=0.0;

ZZ = 0.5*RHO*L"2;




% SWAY HYDRODYNAMIC COEFFICIENTS
Ypdot = 1.27E-04*ZZ*LA2; Yrdot = 1.24E-03*ZZ*L"2;
Yvdot = -5.55E-02*ZZ*L; Yp = 3.055E-03*ZZ*L,;
Yv = -9.31E-02*ZZ;

CC = input(‘enter model configuration choice; either 1 for A or 2 for B’)

if CC<2

Yr = -3.500e-02*ZZ*L;
else

Yr = -5.940e-02*ZZ*L;
end

% ROLL HYDRODYNAMIC COEFFICIENTS
Kpdot =-1.01E-03*ZZ*L"3; Krdot =-3.37E-05*ZZ*L"3;
Kvdot = 1.27E-04*ZZ*L"2; Kp =-1.10E-02*ZZ*L"2;
Kr =-841E-04*ZZ*L"2; Kv = 3.0L3E-03*ZZ*L;

% YAW HYDRODYNAMIC COEFFICIENTS
Npdot =-3.370E-05*ZZ*L*3; Nrdot =-3.400E-03*ZZ*L"3;
Nvdot = 1.240E-03*ZZ*LA2; Np =-8.405E-04*ZZ*L"2;
Nr =-1.640E-02*ZZ*LA2; Nv  =-1484E-02*ZZ*L;

rows=(abs(Xgmax-Xgmin)/stepXg)+ 1;

all_roots = zeros(rows,4);  xg = zeros(rows,1);

Zg = input('enter value for Zg')

a = (Ixx-Kpdot); b = (Kp*U0); ¢ = (Zg*W)-(Zb*BUOY);
d = (M*Zg)+Kvdot; e = Kv*U0Q; f = Krdot;

g = (M*Zg*U0) + (Kr*U0); h = Ypdot + (M*Zg);

i=Yp*UO; j=M - Yvdot; k = Yv*UO;

o = Npdot; u =Izz - Nrdot; p=Np*UOQ;

m = (Yr*U0) - (M*U0); x = Nv*U0;

Xg = Xgmin:stepXg:Xgmax;
Xb = input(‘enter either 0.0 or Xg for value of Xb);

1= (M*Xg) - Yrdot; q = (Xb.*BUOY)-(Xg*W);
r = (M*Xg)-Nvdot; w = (Nr*U0)-(M*Xg*U0);

A = (((@).*@*u-1.*r)+{d).*(u*h+0.*1)-(f). *(r.*h-r0*}))y;
B = ((e).*(u*h+0.*1)-(d).*(u*i-w.*h+0.*m-p.*1)-(a) * ..

G.*w+k*u-1.*x-r.*m)-(b).*G*u-1.*r)+(f). *(r.*1-x...
*h+o*k-p*j)-(g).*(r.*h+0%)));
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C = ((a).*(k.*w-m.*x)+(b).*G. *w+k*u-1.¥x-r.¥m)}+(c).*...
G*u-1.*r)-(d).¥q.*l-w.*i+m.*p)-(e).*(u*i-w.*h+...
o.*m-p.*)+(f).*(q.*j-x*i+p*k)+(g). *(r.*i-x.*h+0*k...
p.4);

D = ((g).*(g.*5-x. ¥i+p*k)-(f.*q*k +(d.*q.*m)-(e).¥(q.*]...
-w. *i+m. *p)-(c).*(. *w+k*u-1.*x-r.*m)-(b).*(k.*w-m. *x));

E = ((¢).*k . *w-m.*x)+(e.*q.*m)-(g.*q.*k));

z={A'B'C'D' E;
j = lirows; poly(,:)=z(j,:); rts = roots(poly(ij,:))’;
for jj = 1:rows;

all_roots(jj,1:4) = eval(rts);
end

xg=Xg’;
end;
returm
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% THIS PROGRAM DEVELOPS THE 1ST & 2ND ORDER PERTURBATION
% APPROXIMATION SOLUTIONS FROM SECTION IV

function[xlocation,perturbrootl,perturbroot2,xg] =perturbanalysis(U0)

W = 12000.0; Ixx = 1760.0; Iyy = 9450.0; 1zz=10700.0;
L=17425; RHO=1.94; G=32.2; M = W/G;
BUOY =W; Zb=0.0; Xb =0.0;

ZZ = 0.5*BHO*LA2;

% SWAY HYDRODYNAMIC COEFFICIENTS
Ypdot = 0.0; Yrdot = 1.24F-03*ZZ*[/2;
Yvdot = -5.55E-02*ZZ*1; Y =00
Yv =-931E-02*ZZ,

CC = input(‘enter mode] configuration choice; either 1 for A or 2 for B’)

ffCC<c2
Yr = -3.500e-02*ZZ*;




else
Yr = -5.940e-02¥ZZ*L;
end
% ROLL HYDRODYNAMIC COEFFICIENTS
Kpdot =-1.01E-03*ZZ*1."3; Krdot = 0.0;
Kvdot = 0.0; Kp =-1.10F02*ZZ*1."2;
Kr = -8.41E-04*Z7Z*1L/2; Kv = 3.055E-03*ZZ*L;
% YAW HYDRODYNAMIC COEFFICIENTS
Npdot = 0.0; Nrdot =-3400E-G3*ZZ*[/3;
Nvdot = 1.240E-03*ZZ*1./2; Np =0.0;
Nr  =-1.640E-02*ZZ*L~"2; Nv  =-742E-03*Z7*L;

Zg = input(‘enter value for Zg')

% THIS PERTURBATION PROGRAM SOLVES FOR THE SOLUTION
% ABOUT Xg=0

index = 1;

for Xg =-1.0:0.05:0.2;

a = (Ixx-Kpdot); b = (Kp*U0); ¢ = Zg*W)-(Zb*BUOY);
d = (M*Zg); e = Kv*U0; f = Krdot;

g = (M*Zg*U0)+(Kr*U0); h= Ypdot+ M*Zg); i=Yp*UQ;
1=M-Yvdot; k = Yv*UOQ; 1= (M*Xg) - Yrdot;
m= (Yr*U0) - (M*U0); o = Npdot; p=Ng*UG;

q = Xb*BUOY)-Xg*W); r=M*Xg)-Nvdot; u = Izz - Nrdot;
w = (Nr*U0)-(M*Xg*U0); x = Nv*UQ;

Al = G*u)-(I*r); Bl = -(W*k)+{*w)-(m*n)-0*x)); Cl = (k*w)-(x*m);
Ar=a;, Br=-b; Cr=c

K1 = d*u*e + d*Nvdot*Kr*Uo;
K2 = d*(Nr*Kv*UGA2)-(Nv*Kr*U0A2));

aglpha = -M*M*Zg*Kr*Uo;

beta  =-d*(W*Yrdot)}+(M*Kv*U0*U0));

gamma = (d*W*U0*(Yvdot-Yr))+(W*U0*(Kr*Yvdot-Kr*M-Kv*Yrdot));
delta = g*Yv*W*UO0 - m*Rv*W*U0;




% P QR S &T SOLVE THE 4TH ORDER POLYNOMIAL FOR a0

P = Ar*Aj;

Q = Ar*Bl + Br*Al +K1;

R = Ar*Cl +Cr*Al +Br*Bl +K2;
S =Cr*Bl + CI*Br;

T = Cr*Cl;

A=P;

B = Q+alpha*Xg;
C = R+beta*Xg;

D = S+gamma*Xg;
E = T+delta*Xg;

z =[ABCDE]; tem).1(index,1:4) = roots(z)",
xg(index,1) = Xg; index = index + 1; end

2zz=[PQRST] temp2(1,1:4) = roots(zz)’;
a0 = temp2(1,4)

% THIS PART SOLVES FOR al IN THE 1ST ORDER PERTURBATION

numl! = -(alpha*(a0”3)+beta*(a0”2)+gamma*a0+delta);
denl =(4*P¥*(a0*31+3*Q*a0*2+2*R¥(a0N-S);
al = numl/denl

% THIS PART SOLVEL FOR a2 IN THE 2ND ORDER PERTURBATION

num?2a= -(al*2*(6*P*a0*a0+Q*av A +al*(gamma+2*teta*al+...
3*alpha*a0*a0));
a2 = numZ2a/denl

index = 1;
for X = -0.8:0.04:0.4;

7% PERTURBROOT1 IS 1ST OKDER PERTURBATION APPROXIMATION
perturbrootl(index) = a0 + al*X;

% PERTURBROOT2 IS 2ND ORDER PERTURBATION APPROXIMATION
perturbroot2(index) = a0 + a1*X + a2*X*X;

xlocation(index) = X;
index = index+1;
end

return
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