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1. INTRODUCTION

Several techniques have been applied to the study of low-pressure flames (Penner, Wang, and
Bahadori 1984; Limbaugh 1985). One of the least used is Fourier transform infrared spectroscopy (FTIR),
even though a major advantage of using FTIR spectroscopy is that the technique is non-perturbing to the
system under investigation (Thome and Melius 1990). However, drawbacks inherent to FTIR experiments
on combusting systems such as line-of-sight limitations (McNesby and Fifer 1991), lack of sensitivity,
difficulty in quantifying species and temperature (Anderson and Griffiths 1977), detector nonlinearity
(Solomon et al. 1986), and limitations imposed by spectrometer resolution and apodization (Anderson and
Griffiths 1975) (if any) have discouraged many investigators. It is not surprising that mass spectrometry,
even though it is an intrusive technique, has become a more widely used tool for flame diagnostics
(Howard et al. 1992).

The most ubiquitous of the limitations for FTIR transmission spectroscopy of flames is that it is a line-
of-sight technique. Recently, Best et al. (1991) published a paper reporting the first use of tomography
coupled with FTIR spectroscopy for reconstruction of localized spectra of an axisymmetric flame from
line-of-sight absorption measurements. Previously, nonmedical applications of computed tomography
have been mainly single wavelength studies in emission and absorption of reacting flows (Emmerman
et al. 1980; Best et al. 1991; Hughey and Santavicca 1982).

Although the body of literature on the subject is extensive (Barrett and Swindell 1981; Cormack 1963;
Dasch 1992; Penner, Wang, and Bahadori 1984; Limbaugh 1985), tomographic analysis has not become
a standard analytical tool in chemistry. In this report, we recount our own efforts at applying tomographic
analysis to line-of-sight spectra of low-pressure flames. This work is an extension of our initial efforts
reported previously at tomographic reconstruction of FTIR flame spectra (McNesby and Fifer 1992).

2. BACKGROUND

Computed tomography allows the reconstruction of a three-dimensional image of an object by the
stacking of two-dimensional "slices” of that object (Shepp and Logan 1974). In computed tomography,
obtaining the "slices” is accomplished by computer manipulation of a series of sets of evenly spaced
parallel projections through an object. Each set of parallel projections is taken from a different angle or

view of the object. When the object is axisymmetric, only one set of parallel projection data is necessary.




Reconstruction of the image of an axisymmetric object from a single set of parallel projections may
be accomplished algebraically (the “onion peel” method) using Fourier transforms or by using Abel's
equations (Hughey and Santavicca 1982). In the work reported here, Abel’s equations are used to analyze
FTIR transmission spectra (the raw data input to the reconstruction program are absorbance data) of low-
pressure bumer flames.

The line-of-sight absorbance at a given frequency for a single absorbing species through an optically
thin, axisymmetric medium may be given by

g(x) = 2_[: f(ryrdr / (r? - x2)2 )

where g(x) is the line-of-sight absorbance (projection) through the medium at lateral position x and f(r)
is the product of the absorption coefficient times the pressure at radial position r within the axisymmetric
medium (Hughey and Santavicca 1982) (see Figure 1). If more than one species absorbed, then f(r) would
be a sum of absorption coefficients times pressure. Equation 1 may be solved for f(r) using the Abel
transformation

£(r) = -m:fr1 g/ dx / (x2 - r2yl/2

where g’(x) denotes the derivative with respect to x of the function g(x). In general, the greaier the
number of projections, or, in other words, the more parallel line-of-sight spectra obtained, the better the
reconstruction (although oversampling may increase error (Dasch [1992]). However, errors in original data
tend to be amplified by the transformation process (Hughey and Santavicca 1982), and reconstruction of
regions of abrupt change such as at the edge of a flame where large temperature, species, and density
gradients occur may be inaccurate (Hughey and Santavicca 1982). Several investigators have tried to
determine the best method of overcoming these limitations (Hughey and Santavicca 1982; Dasch 1992).

The general method of solution when Abel’s equations are used is to divide the data g(x) into
segments and then to fit each of these segments to a polynomial for which an analytical solution to
Equation 2 may be obtained (Hughey and Santavicca 1982; Dasch 1992). The process of fitting the data
to a function is equivalent to smoothing the data. Smoothing is usually necessary to minimize the noise
amplification in the reconstruction mentioned above. Such smoothing or filtering is common to most

methods of reconstruction from projection data (Hughey and Santavicca 1982; Dasch 1992).

2




T /\
T ‘ line of sight
T / path
/ »
/ // s " g(X)
/
T [ S \ (line ot sightabsorbance)
+ 0 ! R ¢ }
| ! (radial coordinate) :
\ /
I ‘\ /
- .\\\\ /
_+ cross section of flame
— -1
X
(lateral coordinate)

Figure 1. By moving the line-of-sight path to different values of the lateral coordinate, x, different
line-of-sight absorbances, g(x), may be obtained.

3. EXPERIMENTAL

A stoichiometric methane/nitrous oxide (CH,/N,0) flame was used in all experiments reported here.

Total flow rate was 1.8 standard litres per minute. The overall chemical reaction was
CH;+4N,0-CO, +2H,0+4N, .

Gases were from Matheson Industries, Inc., and were used without further purification. Pressure within
the bumer chamber was maintained at 17 (+/-0.2) torr. No shroud gas was used in the experiments
reported here. Once the flame had stabilized, the pressure within the chamber slowly increased as the
chamber heated up. Over the course of an experiment (several hours), the pressure within the chamber
typically rose a few hundred millitorr. The stainless steel frit upon which the flame was supported and
through which the premixed gases flowed was 70 mm in diameter. Line-of-sight spectral data were
collected for 200 scans at 8-cm™! resolution for each projection on a Mattson Polaris FTIR spectrometer.
The spectrometer and beam path external to the bumer chamber were purged with dry nitrogen gas to




eliminate absorbance from atmospheric gases. The light beam from the interferometer was directed
through a low-pressure housing which contained a McKenna Industries flat flame bumer modified for
low-pressure operation. Beam size was regulated by 0.75-mm circular apertures on interferometer and Hg-
Cd-Te detector sides of the low-pressure housing. Combustion gas flow was controlled by an MKS Inc.
Model 147B flow controller. Pressure was controlled using a hand-operated valve in the exhaust line
between the vacuum chamber and the Leybold Inc. Model 100 vacuum pump. It was found that for the
experiments reported here, hand regulation of the pressure was often better than that achieved using an
exhaust line mounted butterfly valve slaved to the MKS capacitance manometer used to monitor pressure.
No correction was applied to account for beam divergence or for beam walking in any of the spectra
collected (Griffiths and de Haseth 1986). The rest of the experimental apparatus has been described in
detail in a previous report (McNesby and Fifer 1992).

Reconstruction was accomplished using a nonderivative solution to Abel’s equations employing a least
squares fit of spline functions to the experimental data (Deutsch and Beniaminy 1983). For each "slice”
of the flame investigated, 20 projections were obtained on one side of the burner axis, with the first
projection taken through the bumer axis. The beam through the bumer flame was 1.3 mm in diameter
(95% of the radiant power of the apertured interferometer beam was contained within this diameter).
Projections were spatially separated by 2 mm (beam center to beam center). Because of space restrictions
within the bumer chamber, it was not possible to obtain a complete set of spectra for each side of the
bumer axis. So, prior to reconstruction, the projections through one side of the bumer axis were reflected
about the burner axis. A check of parallel projections taken at equal distances from opposite sides of the
bumer axis (where possible) gave spectra which were superimposable.

4. RESULTS AND DISCUSSION

The appearance of the 17-torr CHy/N,O flame used in these experiments is shown in Figure 2. Note
the curvature exhibited at the underside of the luminous region of the flame. This curvature indicates that
the flame is approaching the "blow off" point (Thomne and Smith 1988), i.e., the pressure and flow rate
combination are such that the bumer frit will no Ionger support the flame. Also evident is a nonluminous
zone approximately 4 mm in height immediately above the bumer surface. Figure 3 shows a series of
parallel line-of-sight absorbance spectra (evacuated chamber used as reference), separated by 4 mm,
through the flame shown in Figure 2, at a height above the bumer (HAB) surface of 0.65 mm. The
constant CO, absorbance (centered at 2,349 cm”l) due to "cold” gases (i.e., not within the vertical cylinder
proscribed by the bumer diameter) outside the flame region is evident in each spectrum. Figure 4 shows
the tomographic reconstruction using the spectra shown in Figure 3. This figure is dominated by the
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asymmetric and symmetric stretches of N,O (at 2,223 cm™! and 1,285 cm™!, respectively) and by the CH
stretch of methane (Herzberg 1950) (3,020 cm™!). This figure shows that just above the bumner surface
there is a higher concentration (absorption coefficient times pressure) of methane and nitrous oxide at the
edge of the bumer than at the center of the bumer. The luminous portion of the flame may affect the
density of the fuel-oxidizer mixture in the nonluminous region by creating a temperature gradient within
the nonluminous zone. The curvatre of the luminous zone may be responsible for the varying
concentration profile of methane and nitrous across the face of the bumer at levels immediately above the
bumner surface. The spike in the reconstruction around 2,360 em~tis probably spurious and due to noise
in the line-of-sight data. The error in all reconstructions, based on reconstructions of synthetic data (round
off error used to simulate noise (Hughey and Santavicca 1982}), is believed to be approximately 10%.

Figure 5 shows relative peak absorbances (at one selected frequency for each species) for N,O, CH,,
CO,, CO, and NO as a function of distance from the bumer center through a "slice” of the flame 0.65 mm
above the burner surface. The actual spatial resolution can be no better than the diameter of the probe
beam, in this case equal to 1.3 mm. Figures 6 through 10 show relative peak absorbances (at one selected
frequency for each species) for N,O, CH,, CO,, CO, and NO, respectively, at HAB surface from 0.65 mm
to 13.05 mm as a function of distance from the burner center. The contour at the top of each figure is
due to absorbance nearest the burner surface. Figures 9 and 10 show that for this flame, the region of
highest CO and NO concentration, respectively, occurs approximately 3 mm above the burner surface in
the nonluminous region of the flame. These results are in agreement with recently reported resuits on
CH4/N,0 low-pressure flames obtained using mass spectrometry (Vandooren, Branch, and Van Tiggelen
1992), although the peak in NO concentration followed by a decrease in the burned gas region has not
been reported previously.

Obtaining absolute species concentrations requires knowledge of local temperatures and the
dependence of the absorption coefficient for each species upon temperature (Ouyang and Varghese 1990).
Work is presently being performed in which tomographic reconstruction of infrared diode laser spectra
of CO will be used to obtain local temperatures.

5. CONCLUSION

We have shown that tomographic reconstruction using line-of-sight transmission spectra of low-

pressure flames can be of use in evaluating the chemistry occurring within low pressure flames. At
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present the technique is labor intensive, but with improved optics and array detectors, and improved
signal-to-noise ratio, the technique may become routine. We are presently working on obtaining
quantitative results by extending the technique to infrared diode laser spectroscopy, and using the
information obtained as a calibration for tomographic reconstruction using FTIR line-of-sight spectra.
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