
AD-A263 152hu'i iltk liii tuii H! lii til ~II•t IELD CTEI
_•ELECTE 1

NASA Contractor Report 191430 APR22 1993

ICASE Report No. 93-5 C

ICASE U
ISOMORPHIC ROUTING ON A TOROIDAL MESH

Weizhen Mao
David M. Nicol

DWW=rA 'oTrLV3EL A
Afwoyved U puzac reile-aq

D1D=Une-- Urdt-ied

NASA Contract Nos. NAS I- 19480 and NAS I -18605
February 1993

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Ae.'onautics and 93-08640
Space Administration

Langley Research Center \IIU UIUI
)apo.Vrii (34ý tA W1\(

ISOMORPHIC ROUTING ON A TOROIDAL MESH

Weizhcn Mao and David M. Nicoll

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23185

ABSTRACT

We study a routing problem that arises on SIMD parallel architectures whose communication

network forms a toroidal mesh. We assume there exists a set of k message descriptors {(x,, y,)},

where (xi, yi) indicates that the ith message's recipient is offset from its sender by x, hops in one

mesh dimension, and yi hops in the other. Every processor has k messages to send, and all processors

use the same set of message routing descriptors. The SIMD constraint ;replies that at any routing

step, every processor is actively routing messages with the same descriptors as any other processor.

We call this Isomorphic Routing. Our objective is to find the isomorphic routing schedule with least

makespan. We consider a number of variations on the problem, yielding complexity results from

0(k) to NP-complete. Most of our results follow after we transform the problem into a scheduling

problem, where it is related to other well-known scheduling problems.

Accesion For

NTIS CRAW
OTIC TAe

ke SUnannounced Q
Justification

Distribution J

Availability Codes

Avad and lor
Dist Special

'Research was supported by the National Aeronautics and Space Administration under NASA Contract Nos.
NASI-18605 and NASI-19480 while the second author was in residence at the Institute for Computer Applications
in Science and Engincering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction

The issue of routing messages in a parallel computer network has attracted a considerable

amount of attention. A host of problem variations exist. For example, some models presume
that every processor i holds a number and that one wishes to implement some permutation

(e.g., [6]). Another variation is to assume that each processor i has a list of messages each

of which is destined for an arbitrary processor, this is known as "all-to-all personalized
communication" [4]. Our problem is a constrained case of all-to-all personalized communi-

cation, on an n x in toroidal mesh. It is also a constrained case of the general "compiled

communication" problem studied in [11, where the problem is to construct a communication

schedule for an irregular computation.

To begin with, in our problem, we can always describe -I message's destination in terms
of the offset in both mesh dimensions X and Y of the source processor. Thus, a pair (x, y)

describes a message's routing requirements. Observe however that a message needn't travel

exactly x units in the X dimension and y in the Y-because of wrap-around, it may equally

well choose to travel m - x units in X and/or n - y units in Y. Now imagine a parallel

computation where every processor performs the same computation, but on different data.

Further suppose that the pattern of messages every processor sends is the same, e.g., pat-

terns associated with discretization stencils [7]. We may thus describe the communication

requirements of the entire computation in terms of the offsets {(xj, yr), .-. , (Xk, Yk)} of the

k messages a single processor sends. We will say that the n x m different messages with a

common offset pair are all isomorphic.

Every processor has four communication ports, referenced as North, East, West, and

South (N, E, W, and S). We assume the communication links are full-duplex. We are inter-

ested in SIMD (Single Instruction Multiple Data) architectures, where processors execute
the same instruction stream in lock-step. Unless the architecture provides special support

for local indirect addressing (which is much slower even when provided), an implication of

SIMD processing is that at every instant, the set of messages moving through all ports of
a common type (e.g., N) are isomorphic. We desire a routing schedule that minimizes the

time required to complete the communication, i.e., the makespan.

We will examine variations of the problem, finding they have a surprising range of

complexities. The variations derive from assumptions concerning how many communication

ports may be active at a time, and whether a message must be fully routed once it begins

moving or if it can be temporarily buffered at an intermediate processor. The assumptions

and associated complexities are given below.

* One port active at a time: 0(k);

* All ports active, temporary buffering allowed: 0(klog k);

* All ports active, no temporary buffering: NP-complete.

Let us now state the problem more formally. In a toroidal mesh of n x in processors, a

set of messages M = {nImv 2,...,mk} is to be sent from each of the n x 7n processors (the

sources) to some other processors (the destinations). Each message mn is represented by a

pair of integers (xi, yi) giving the relative offset of its destination from At source. Assume

0 < x, • rn - 1 and 0 < y, _< n - 1. We wish to design a schedule so that all messages at

each processor are sent to (and received by) their destinations in the mi,)iyrum amoinit ,f

time. Dcpending on the problem variation, at any time a processor can send one message

in one of four directions (N, E, W, or S), or at any time a processor can send up to four

messages, one in each direction. We assume it always takes one time unit for a message

to traverse one link. We notice that for any message rni = (xi, yi) there are four possible

ways to send it, East and North (xi,yi), East and South (xi, -(n - yi)), West and North

(-(in - xi),y:), and finally, West and South (-((m - xi),-(n - yj)). Because the mesh

is toroidal, they all reach the same destination. Depending on the problem variation, we

either assume that a message must be routed to completion in a successive series of steps,

or that a message's movement can be fragmented, e.g., one step N, two steps buffered, one

step W, another step N, and so on.

For example, in a 2 x 3 toroidal mesh shown in FIG. 1(a), 3 messages are to be sent,

they are m, = (1,0), m 2 = (2, 1), and m 3 = (0, 1). Assuming that all ports may be active

simultaneously, we easily determine that the makespan of the optimal schedule, denoted by

C* is 2. From time 0 to time 1, each processor sends in, East to its destination, 7712

West, and m3 North to its destination. From time I to time 2, each processor sends 7n2

North to its destination. The schedule is illustrated in FIG. 1(b). Under our assumption of

isomorphic message passing, each processor does exactly the same thing at the same time.

Any time a processor sends out a message on one port, (e.g., N), in the following time step

a message isomorphic to it is received on the opposite port (e.g., S), save that one unit of

routing service in one dimension (e.g., Y) has been given. This observation suggests that we

can approach the scheduling problem in terms of a single processor giving routing service

to each of its k messages. The schedule for one processor can be shown by the tiaditional

Gantt chart as in FIG. 1(c).

2

"I I

(a)

TimeO--1 Time 1--2

(b)

W
M

N M

S

0 1 2

(c)

FIG, 1. An example.

A message may travel either direction within a dimension. This allows the possibility of

schedules that cause a message to "backtrack", e.g., move 3 units W, and later move 4 units

E. In the case when temporary buffering is provided at each processor, such a schedule can

always be improved (at least not degraded) by removing the backtracking loop, whence if

C.*ax is the minimized makespan for an instance of the isomorphic routing problem, there

exists a backtracking-free schedule with cost . When there is no temporary buffering,

backtracking may be needed just to keep a message moving until it reaches its destination.

In the remainder we will confine our attention to backtracking-free schedules.

The problem defined above can be converted to an equivalent problem similar to the

open shop scheduling. We are given four machines E, W, N, S, in which E, and W are

identical in function but give different service times, as do N and S. There are k jobs,

J1 , J2... ., Jk. Each job Ji consists of two tasks Xi and Yi, where Xi can only be executed

by E or W (but not both, because there is no backtracking), taking xi or in - xi time

units, respectively, and Y1 can only be executed by N or S, taking yi or n - yi time units,

respectively. The integers m, n, xi's and yi's are as defined in the original problem above.

3

Tasks Xi and Yi cannot be executed simultaneously at any time, but may be broken into

unit-time slices. However, in some problem variations a job Ji may be suspended once it

has begun execution, a feature that corresponds with a message being buffered en route.

All task execution periods occur on the same machine. Our goal is to find a schedule to

execute all jobs so that the makespan or the maximum completion time (',, is minimized.

This problem definition suggests a new group of problems, which we call multi-operation/

multi-machine scheduling problems. In the classical multi-operation model [51, each job re-

quires execution on more than one machine. In an open shop the order in which a job

passes through the machines is immaterial, whereas in a flow shop each job has, the same

machine ordering and in a job shop the jobs may have different machine orderings. In

the multi-operation/multi-machine model, instead of having just one machine to perform

a certain kind of task for a job, there is a back-up machine with the same function and a

possibly different cost.

We can distinguish the situations in which a task requires identical service at either

common function machine, or has different service requirements that depend on the machine.

Our problem is a special case of the latter. In particular, we assume that for each pair of

common function machines there exists an integer c (c = m for N-S, c = n for E-W) such

that a task with demand xi requires xi units on one machine and c - xi units on the other.

In this case we will say that the machines give complementary service.

In the remainder we will refer to problem variations by the following names.

PI: Only one machine (out of all four) may be executing at a time.

P2: All four machines may execute simultaneously, jobs may be suspended, common func-

tion machines give complementary service.

P3 : All four machines may execute simultaneously, jobs may not be suspended, common

function machines give complementary service.

P4: All four machines may execute simultaneously, jobs may be suspended, common func-

tion machines give uniform service.

P5: All four machines may execute simultaneously, jobs may not be suspended, common

function machines give uniform service.

P1, P2, and P-3 have meaning in the context of the isomorphic routing problem; P4 and

P5 are natural variations of the multi-operation/multi-machine scheduling problem. We

will establish complexity bounds on each of these problems.

We organize this paper as follows. In Section 2, we study the complexity of all the

problems above, save P2. P1 is shown to be 0(k), while the other variations are shown to

be NP-complete. Section 3 develops an algorithm for problem P-2, and Section 4 develops

4

an 0(klogk) implementation of the algorithm. Section 5 presents our conclusions. The

Appendix proves some useful lemmas in detail.

2 Complexity results for P1, P3, P4 , and P5

Problem PI allows only one machine to be executing at a time. The solution is trivial. Step

through the jobs sequentially, giving exhaustive service to one task, and then the other, in
each case selecting the machine which serves the task most quickly. 2k comparisons are per-

formed in the course of selecting machines, giving the algorithm complexity 0(k). While

not very interesting in the scheduling -ýontext, the situation follows from the isomorphic

routing problem under the constraint that at any step, only one communication port can

be active. This is a seemingly natural constraint, but is not always required. For exam-

ple, the Thinking Machines CM-2 is able to communicate on all ports simultaneously [1].

Indeed, the problem studied in [1] is similar to ours, in that it seeks to schedule communica-

tion (albeit irregular, as opposed t(, our isomorphic assumption) on the CM-2's hypercube

communication network.

Next we show that P3 , P4 and P5 are NP-complete. First consider P4 , where common

function machines give uniform service. Assume that machines M 1 , M 2 are identical, as

are M 3 , M 4 . There are k jobs, J 1 , J 2 ,..., Jk. Each job Ji consists of two tasks Xi and Y,,

where Xi can only be executed by M1 and M 2 , taking xi time units on either machine,

and Yi can only be executed by M 3 and M 4 , taking yi time units on either machine. A

job may be suspended, but may never have both its tasks receiving service simultaneously.

Our goal is to find a schedule with the minimum makespan Cma,. We shall next prove

that whether we allow preemption of tasks or not, the problem is always NP-complete.

Note that the NP-completeness of this formulation (an open shop scheduling problem of

identical back-up machines with or without preemption) implies the intractability of all

general multi-operation/multi-machine scheduling problems.

THEOREM 1 P4 is NP-complete.

PROOF. Consider the corresponding decision problem, in which given a bound B, we are

asked whether there is a schedule with Cmax < B. For any instance of the NP-complete

problem PARTITION [2], given A = {ai,a 2 ,...,ak} (positive integers) we construct an

instance of the decision problem, in which there are k + 2 jobs, xi = ai and y1 = 0 for i =
1, 27,...,k, Xk+1 = Xk,+2 = ½ EýIk~ ai + 1 and Yk+1 = Yk+2 =0, and finally B == ai + I.

We claim that there exists A' C A such that ,-EA' ai 2 = ai if there is a schedule

with Caz: < B for the instance defined.

If there exists A' C A such that TEA, a, = r_ ai (for notational simplicity assume

that A' = {al,a2,...,ah}), then we can construct a schedule with C,'ax = B as shown in

FIG. 2. Even though the schedule constructed does not preempt any task, it is also feasible

for the instance that allows preemption since non-preemption is considered as a special case

of preemption. As a matter of fact, the schedule in FIG. 2 is the best possible since for any

feasible schedule Cm, [! +.]=Z ai + 1= B

I/2(B-I)

M, X .1 . X .1 X

MF: h T -xh.J X I X-
M3

0 B

FIG. 2. A schedule with Cm, = B for the instance of the decision problem of P4 .

If there exists a schedule with Cm, = b, then the two big tasks Xk+ 1 and Xk+2 cannot

be scheduled on one machine since otherwise Cma. >_ Xk+ 1 +x•k+ 2 _i=l ai +"2 > B. With-

out loss of generality, assume Xk+1 is scheduled on M 1 and Xk+2 is scheduled on 1'2 . For

the remaining k X-type tasks X 1 ,. . ., Xk, because = i ai = 2B-((+i +xk+2),

M1 and M 2 are not idle from time 0 to time B. Without loss of generality, assume tasks

X 1 ,. .. ,Xh are scheduled on M 1, and tasks Xh+l,...,Xk are scheduled on M 2 . We have

_i= = i=h+l Xi =: 1 ai. This is true regardless of whether preemption of tasks is

allowed or not. So there exists A' = {a 1,..., ah} C A such that ZCA' ai = i a. I

Now let us consider Ps, in which a job's service must be continuous, and common

function machines give uniform service. The requirement of continuity does not prohibit

the tasks from being broken into slices which are independently scheduled, so long as a

job's execution is not interrupted. It is easy to see that the proof of Theorem 1 can be

used without any change to prove the NP-completeness of problem P.5 in both cases of

preemption and non-preemption. Thus we have the additional result:

THEOREM 2 P5 is NP-complete.

Now suppose that a job's service must be continuous, and that common function ma-

chines give complementary service. We assume that a task can be broken into unit-time
slices. This formulation corresponds directly to an isomorphic routing problem where we

require that once begun, a message continues to move at each step until it reaches its

destination. It turns out that this variation is also intractable.

THEOREM 3 R3 is NP-complete.

PROOF. Consider the corresponding decision problem, in which given a bound B, we are

asked whether there is a schedule with Cma, _ B. For any instance of the NP-complete

6

problem PARTITION, given A = {al,a2, ... ,ak} (positive integers) we construct an in-
stance of the decision problem as follows. Let rn and n be two integers much larger than

_=1 ai + 2. Given four machines M1 , M2, M3, M4, where M1 and M2 are identical in func-
tion but give complementary service (x and in - x for workload x respectively), as (10 M3

and M4 (y and n - y for workload y respectively). There are k + 4 jobs, J1 , J 2 -, .. k+4,
each of which consists of an X-type task and a Y-type task. Let xi = ai and yi = 0 for
i: 1,2,...,k, x+ = m- IZU- a, and Yk+, = _ •_ a + 1, Xk,2 = M,- I j=1 m-
and Yk+2 = 1- ½_i=ai- 1, xk+ 3 = and yk+:3 dia, xk+ 4 = m - I and

Yk+4 = I - 2 •I aj. Finally, let B = E=I ai + 1. We claim that there exists A' C A such

that Za,,A' ai = ý ai if there is a schedule with (x_< B for the instance defined.
If there exists A' C A such that EaEA' aj 2 - ai (for notational simplicity, assume

A'= {ai,a 2,. . ., ah)) then we can construct a schedule with ('=,,, B as shown in FIG.
3. As a matter of fact, the schedule in FIG. 3 is the best possible since for any feasible
schedule C,,,, [Fj Ek+4(min{xj, m - xi} + min{yi, n - yi})j =U= ai + I = B.

I/'2(B-.)

M1 i X 2 IXh.Xk+31XhT+I Xh+2 X
M2 Xk+1 Xk4 1 Xk+2

M3 .. Yk+3 Y k+1

M 4 Y k+2 Y k+4

0 1/2(B-1) +1 1

FIG. 3. A schedule with Cm... B for the instance of the decision problem of P3.

If there exists a schedule with C,,,, B, then X1, X 2,..., Xk and Xk+3 must be sched-
uled on M1, Xk+l, Xk+ 2, X,+ 4 on N12, Y:•+1, Yk+ 3 on WM3, and Yk+2, Yk+4 on M4. Since X.+ 1

and Yk+1 can not be executed simultaneously, M2 executes Xk+m at the same time M!3 exe-
cutes Yk+3. So we say that the executions of Xk+1 and Yk+3 are completely parallel. Since
the executions of Xk+3 and Yk+3 are continuous, so are the executions of Xk+3 and Xk+m.
Similarly, we can show that the executions of Xk+4 and Xk+2 are also continuous. How can
the schedule have Xk+ 3 on M1 and Xk+l, Xk+2, and Xk+4 On M2 such that the continuity
of Xk+3 and Xk+l and the continuity of Xk+4 and Xk+ 2 are both respected? It is not hard
to see that Xk+ 3 must be scheduled from time 2 _i a to time _ aj + 1. Therefore
set {X1, X 2,. . .,X} is divided into two sets of equal sums. So there exists A' C A such
that a,,EA'ai = j aj.

We are left now with the problem of analyzing P2. This will require most of the remain-
der of the paper. Our approach will be to recognize that P2 is a variation on a scheduling
problem, denoted by P,, where the decision of which machimcý to use for any given task i•

7

a given input parameter; the sign of xi or yi determines which machine to use. In the iso-
morphic routing problem this is equivalent to specifying the specific directions the message
must travel. This might arise, for instance, if the N and E ports could be used only for
sending messages, whereas the S and W ports could be used only for receiving them.

Assuming that machine usage is pre-specified, the resulting problem P,' is related to a
paper by Gonzalez and Sahni [3]. The paper studies the general open shop scheduling with
preemption, and proves that C;x = a = maxi,j{Ti, L.), where Ti is the sum of execution
time of all tasks scheduled on machine Mi and Lj is the sum of execution time of all tasks
of job Jj. To construct the optimal schedule for any instance with in machines, 71 jobs, and
r nonzero tasks, an O(r(min{r, rn2 } + i log n)) algorithm is presented.

It is easy to see that P.2 is in fact a special case of this open shop scheduling problem, in
which parameters are integers and preemptions are only allowed at the integral points. Fur-

thermore, we also notice that the minimum makespan for any instance of P:.', C,*., is at least
a = maxi~j{Ti, Lj} = max{wvx,>o xi, Z•V,<O(-x,), Evy,>0 Yi, XV,,<0(-Yi), maxj{fxil +

KlJJ}. When we apply Gonzalez and Sahni's algorithm to P2, we have an optimal pre-
emptive schedule with Cnax = a. Since all preemptions occur at the integral points, this is

actually the optimal solution to P2 . The time complexity of Gonzalez and Sahni's algorithm
when applied to P2' is O(klogk).

In view of this result, our approach will be to take a problem instance of P2, and
determine the machine assignments that minimize the a. Gonzalez and Sahni's algorithm

may then be applied to construct the actual schedule.

3 An algorithm for P2

As pointed out in last section, solving P2 can I- reduced to the problem of finding the
task-to-machine assignment that minimizes the makespan. The actual schedule can then be

determined in O(klogk) time using the algorithm of Gonzalez and Sahni. In this section
we develop an algorithm that makes the needed assignment.

We abstract our problem as follows. We are given two sets of items, X = {X 1 , X 2 ,...,

Xk}, and Y = {Y1, Y2,...,Yk}, and nonnegative integers x 1,x2 , . .. ,Xk, Y1,Y2,.. .. ,Yk, in,

and n, where x, < rin- I and yi < n- 1 for all i's. We must define a function F : X UY - IV
with F(Xi) = xi or m - xi, and F(Yi) = Yi or n - Yi such that a = maxj,,CT,-,L} =

max{al, a-2,o 3} is minimized, where

a, = max{ Z xi (rn-xi)}
Vi(F(X,)=x,) Vi(F'(X,)=,n-x,)

a2 = max{ > my, F (n - y)}
Vi(F(Y,)=y,) Vt(F(Y,)=n-y,)

8

a3 = max{F(Xj)+F(Y,,}vi

We first describe an algorithm A that defines a function f : XUY - IV with f(X,) = x,

or ti - xi, and f(Y1) = yi or n - y, such that the resulting a, and (t2 are both minimized.

Following this, we look at how F may deviate from f, and show how to modify f so as to

create F.

Algorithm A

1. Sort x1 , x2,..., xk and yl, y2,..• -, yk in nondecreasing order, separately.

2. Do the following to each sorted list. The pseudo-code below defines fx : X - A•' with

f(Xi) = xi or m-xi such that the resulting a, is minimized. To define fy : Y - IV for

the minimum a2, we simply replace the notations for the X-list by the corresponding

notations for the Y-list.

For notational simpliciy, assume x1 , x 2 , ... ,xk are in nondecreasing order:

a+ - O; a- -- O; i --- 1; j - k;

while i <j do

if a++t + !< al + (m - xJ)

then { fx(X,) -- xi; a+ a+ + zi;, + }

else { fx(Xj) - m - xj; a, - at- + (m - xj); j + + };

a , ,- ,ax{at, a};

3. f: X U Y - IV is the combination of fx and fy.

We recognize a, as accumulating the first term in a,, and a- as accumulating the

second. Given the sorted ordering of the xi's, the algorithm finds a turning point t. where

f(Xi) = xi for i < t, and f(Xi) = rn - xi for i > t; furthermore, among all such turning

points the one chosen minimizes max{a+,a-}. That this algorithm defines a*, follows from

the fact that the optimal schedule must have this structure, for suppose not. Assume there

are p and q with I < p < q < k such that f(Xp) = in - xp, and f(Xq) = Xq. Since

Xp < Xq and m - x, > m - Xq, it follows that max{m- Xp,xq} > max{xp. m - Xq}, so that

changing the assignment for XP and Xq does not increase al. We may apply this argument

repeatedly until the resulting assignment exhibits a turning point, as claimed.

FIG. 4 shows an example of using algorithm A to compute the optimal value of al. The

numbers in the circles are the values of function fx of the corresponding tasks. We also

illustrate at and a- as functions of index, even though the algorithm will not generate

all such values we display. From now on, we shall use the diagrams similar to FIG. 4 but

without the a+, a,- values to represent the definition of f, which we will also call assignmcnt

diagrams.

Cý Xi m- xi %ý

2 18 53 X1

13 9 35 X2

Bad choice 25 8 26 X3

Turning point
X 40 15 (D 18X4

S56 16 (13 G ood choice

S72 16 rA 9

S99 17 5

S117 18 2

FIG. 4. An example of using algorithm A to compute tv4.

We see from the above discussion that a*, and at, the optimal values of a, and a2, can

he obtained by algorithm A in time O(klogk). while oa, the optimal value of a 3 , can be

obtained by choosing min{xi, m- xi} for task Xi and min{yi, n- yj} for task Yi. However,

the difficulty we face is that these optimalities may not be achieved at the same time, i.e.,

the assignment minimizing a* and a* may not be consistent with the assignment minimizing

ct. To highlight the differences we will say that f(Xi) (alt., f((YO) is a bad choice. if f(Xi) $
min{xi, m - xi} (alt., f(Yi) $ min{yi, n - yi}), and that f(Xi) [it., f(Yi)) is a disastrous

choice if f(Xi) min{xi, m - xi} (alt, f(Y,) j min{yi, n - yi}) and f(Xi) + f(Yi) > cv*,

where a* = max{at, a*, a;}. In the example in FIG. 4, the shaded circles represent the bad

choices. It is easy to see that bad choices always form a contiguous block which includes

the turning point. Without loss of generality, assume that the block of bad choices is in

the left column of the assignment diagram and ends at the turning point. We observe that

if f contains no disastrous choices, then a* -- max{a1,a7,a*} ? max{a*,a*J} >_ a*, and

F = f. Should f contain disastrous choices, we need to consider modifying it in order to

find the function F with the minimum a.

Let us assume then that we have computed an assignment f by applying Algorithm A

to the X list (and so find the X assignment function fx), and to the Y list (and so find

the Y assignment function fy), and have identified at least one disastrous choice. f may or

may not be the optimal assignment F. We have developed a number of results that help us

to identify jobs Ji for which it may be possible that f(Xi) X F'(Xi) or f(Yi) $ F(Yi). Most

importantly, these results severely constrain the number of tasks whose assignment. in f can

differ from their assignment in F. Given f, we will identify a set of possible assignment

10

switches to consider: the least cost assignment among these %ill he the optimal assignment.

We show that for the given f, only O(k log k) alternative assignments must be considered.

whence the optimal assignment is found in O(k log k) time.

We proceed now by making some definitions, and stating certain results founded upon

them (proofs are relegated to the Appendix). Without loss of generality, we asSumoe M > I

in the remainder.

Given f, let Bx and By be the sets of bad choices in fx and fy., respectively, and 1DX

and Dy be the sets of disastrous choices in fx and fy, respectively. Now, in the assignment

diagrams of fx and fy, let XL and YL be the sets of choices in the left columns of fy and

fy, respectively, and XR and YR be the sets of choices in th- right columns of fx and

fy, respectively. We denote the sets of tasks whose assignment differs under f and F as

UX C_ XL, Vx C XR, U[V C_ YL, Vy C YR. We use CI(Ux. I)) (alt. ac2(U,'y. V)) to denote

the corresponding ct (alt., o2) resulting from the switches in Ux, Vx (alt. Cy, 1.11). Finally,

we will say that assignment f(Xi) (alt., Jf(Yj)) is a potential switch if either f(X.) (alt..

f(Y 1)) is a disastrous choice, or f(Xi) (alt., f (1')) is a bad choice while f(Y,) (alt., f(X,)) is

in Vy (alt., VX), and f(Xi)+n-f(Yi) > a 2 (Uy, Vy) (alt., in-f(X,)+f(Y1) > oI(Ux, ' ° V)).

The next three results serve to constrain the number of switches we must consider.

LEMMA 1 If BxI >! 3, then F = f.

LEMMA 2 1I K_ 2.

LEMMA 3 lUxi _ IVxl and IUl _> IYVI,•

LEMMA 4 All mrernbers of Ux and Uy are potential switches.

Now consider the implications of these results. By Lemma I we only have tc worry about

situations when IBxI _< 2. By Lemma 4 we know that Ux contains only potential switches,

which are recognizable bad choices. There are at most 4 different combinations of changing

or not changing the assignments of bad choices in the left column of fx. By Lemma 3 we

know that at most two assignments in the right column of fx may change. For each fixed

combination of changes to fx's left column we need consider no more than O((k)) pairs of

possible changes to assignments in fx's right column. We also need to consider possible

changes to fy. Lemma 2 tells us IDyI < 2; Lemma 3 tells us I y _< I Uv1; Lemma 4 tells us

that Uy may contain only potential switches, which again are either disastrous choices in fy,

or bad choices f(Y) with f(Xi) E Vx. It follows that IVyI <_ IUvI _ jDyj + IVxj < 4. This

means that for every fixed combination of switched/non-switched assignments of potential

switches in the left column of fy, we need consider no more than all switched/non-switched

combinations of four good choices from the right column of fy. There are O((ý)) of these.

11

Considering all combinations of possible changes to fy and possible changes to fy requires
time 0((k) (k))= =(k 6).

We describe this algorithm for problem P2 formally as follows.

1. If •n < n, rotate the mesh by 90 degrees, and redefine the parameters in the new

coordinate system.

2. Use algorithm A twice to define f which minimizes max~al, 02)

3. If the block of bad choices in an assignment diagram is not in the left column, rotate

the diagram by 180 degrees, and exchange the roles of the two machines involved in

the assignment.

4. If there are no disastrous choices in both fx and fy, let F be f and go to step 6.

Otherwise continue in step 5.

5. List all possible definitions of Ux, VX and Uy, Vy. For each possible combination of

Ux, Vx, Uy, Vy, compute its a. Let F be the function determined by the Ux, Vx, Uy,
l'y, which together result in the smallest a.

6. Use Gonzalez and Sahni's algorithm to construct the schedule with a -.

In this algorithm, steps 1, 3, and 4 each take 0(k) time, while steps 2 and 6 each take

0(klogk) time. We also know that for step 5, even if we use the brute-force method of

checking all possible combinations of UX, Vx, Uy, Vy, the time needed is still polynomial,

0(k 6). In the next section, we shall show that step 5 can in fact be implemented in time

0(klog k), thus yielding an 0(klog k) algorithm for P2 .

4 An O(k log k) implementation of the algorithm

The previous section demonstrated that the routing problem has polynomial complexity. We

can drive the asymptotic complexity to 0(klogk), but at the price of tremendous comipli-

cation in the algorithm. Our results may be primarily of theoretical interest; our algorithm

can be impiemented, but suffers from a lack of elegance. One hopes that additional wo-k

on the problem may yield a more intuitive solution.

Let us now consider the following three cases: lBxl = 0, lBxi = 1, and IBxJ = 2.
We shall prove that in each case the function F, which minimizes a, can be obtained in

0(klogk) by switching some assignments in the function f. We will use the next three

lemmas to help reduce the number of possible combinations we must consider. Their proofs

can be found in the Appendix.

LEMMA 5 If IBxI = 0, then lUxi = IVxl = 0 and IDyI < 2.

12

LEMMA 6 If IBxI = 1, then IVxI < JUxI < 1 and jDyj < 2. Furthermore, if Dy =

{f(Y 1),f(Y2)}, then a* < f(X 1) + f(X 2) and one of f(XI) and f(X 2) is the largest bad

choice in fx.

LEMMA 7 If IBxI = 2, then IDxI :S I and IDDy < 1. Furthermore, if Dx = {f(X 1)}, then

Dy = {f(Y 1)}; if Dy = {f(Y 1)I and f(X 1) ý Bx, then f(XI) must be in the right column

in the assignment diagram of fx.

We first consider Case 1: lBxl = 0.

By Lemma 5, Ux = VX= . Since VX = 4, only disastrous choices in fy can be

potential switches for Uy. We consider two subcases: (a) IDyI = 1; and (b) IDyI = 2.

(a) If Dy = {f(Yj)}, then f(Y1) is the only potential switch in fy. Consider the

following possible combinations of Ux, Vx and Uy, Vy, each of which determines a feasible

definition of F, and choose the one with the smallest a to be F. The entire process takes

0(k) time.

Ux IVX Uy Vy Time

1 0 1 0 0 0(1)

2 0 .- ({f(Y,)} € 0(1)

3 4 0 {f(Y1)} {f(Yi)},Vf (Y,) E YR 0(k)

(b) If Dy = {If(Y 1),f(Y2)}, then f(YI) and f(Y 2) are the two potential switches in fy.

Without loss of generality, assume f(X 1) + f(Y 1) > f(X 2) + f(Y 2). This means that if

JUyI = 1, it must contain f(Y 1), not f(Y2). Consider the following feasible definitions of F.

(X Uy Vy Time

1 € 4) 4 4 0(1)

2 4 4 {f(Yo)} 0(1)

3 4 0 {f(Y1)} {f(Yi)},Vf(Yi) E YR 0(k)

4 41 4) {f(Y1),f(Y2)} .0 0(1)

5 f 4 {f(Y1),f(Y2)} {f(Yi)},V'f(Yi) E YR 0(k)

6 I{f(Yi),f(Y 2)) {f(Yi),f(Yj)},Vf(Yi),f(Yj) E YR 0(klogk)

In the sixth situation, if we check all combinations of f(Yi),f(Yj) E YR for Vy, there

will be 0(k 2) possibilities. However, not all combinations need to be examined. Our goal is

to choose f(Yj) E YR for each fixed f(Yi) E YR so as to minimize max{ta2(Uy, Vy), f(Xj) +

n - f(Y)}, where a2(Uy, Vy) = ca* + 2n - f(Y 1) - f(Y 2) - f(Y') - f(Yj). First, sort in

time 0(klogk) all f(Yj) E YR according to the value f(Xj) + n - f(Yj) nondecreasingly.

Then in the sorted list discard those choices no greater than their left neighbors, yielding

a list of f(Yj)'s sorted by nondecreasing f(Xj) + n - f(Yj) and nonincreasing oa + 2n -

13

f(Y) -f (Y2) - f(Yi) - f(Y 3) for any fixed f(I). This step takes O(k) time. Finally, for

each fixed f(Yi), perform a binary search in the list to locate the f(l,) with the minimum

max{ja + 2n - f(Y 1) - f(Y 2) - f(Y 2) - f(Y,),f(Xj) + n - f(Yj)}, taking 0(klogk) for all

f(Yi)'s. We can then check the IYR4 feasible definitions of F' with V1' {f(fl,f(Y3)} as

defined above.

Case 2: 1x= 1.

By Lemma 6, when Dy {=f(Y 1),f(Y2)), one of f(X 1) and f(X 2) must he a bad choice

in fx, which implies that it is a disastrous choice. Therefore, if IDy' = 2, then !Dxi = I.

We consider four subcases: (a) IDx! = 0 and IDVy = 1, (b) ID~X = I and IDyj = 0; (c)

JDxl = I and jDy! = 1; and (d) JDx! = I and jDyj - 2. We notice that in any situation

with Vx = 0, only disastrous choices in fy can be potential switches for Vy, and that

whether jDy! = 0 or 1 or 2, we can use the same method as in Case I to determine V in
0(klogk) time. Let us now assume IVXj = 1, i.e., Vx = {f(Xj)},Vf(Xi) E XR. which also

implies Ux = Bx.

(a) If Dx = 4), and Dy = {f(Y1)}, then f(X 1) can not be a bad choice. Assuming

Bx = {f(X 2)}, we have Ux = {f(X2)}. Because f(X 2) is a potential switch that is not a

disastrous choice, we have f(Y 2) E V1 and f(Y 1) E Uy. Note that f(Yi) may also be in Vy

if f(Y-) is a bad choice. Consider the following feasible definitions of F.

Uy Vy Time

S {f(Y 1)} {f(Y2)} O(k)
2 {f(Yg),f(Yi)),i i 1 {I(IY2)} O(k)

3 {f(YV),f(Yi)},i $ 1 {f(Y2),f(Yj)},Vf(Yj) E YR,j 2 O(klogk)

In the second and third situations, we only need to check those feasible definitions

of F with Vx = If(Xi)), for which f(Yi) E By and m - f(X,) + f('l) > at (UxVx) =

o, + m-f(X.2)-f(X,). In the third situation, we can avoid checking all O(k 2) combinations

of f(Xi) E XR with i $ I and f(Yj) E YR with j 54 2 by using the same method developed

in the sixth situation of subcase (b) in Case 1.

(b) If Dx = {f(X,)}, and Dy = 4, then UX = {f(X,)}, and Vx {f(Xi)},Vf(X2) E

XR. Consider the following feasible definitions of F.

Uy Vy Time

1 ____ __ O(k)

2 {f(Yi)} __o(k)

3 1f(Y,)} {f(Y1)},Vf(Yj) E YR O(klogk)

In the second and third situations, we only need to check those feasible definitions of

F with Vx = {f(Xi)}, for which f(Yi) E By and m - f(X,) + f(YI) > al(Ux,Vx) =

14

al + in - f(XI) - f(Xi). In the third situation, we use a method similar to that in the sixth
situation of subcase (b) in Case I to avoid checking all 0(k 2) combinations of f(X,) E .\?
and f(f) E YR. The only differences are that n 2(Uy, Vy) = ao + ni - f(Y;) - f(l') and
that if f(Y 1) E YR we use in - f(X 1) + n - f(11) instead of f(X 1) + ?i - f(Y1) for choice

f(Y 1) in the sorting part.
(c) If Dx = {f(X1)}, and Dy = {f(Yh)}, where h is a fixed index equal to or not equal

to 1, then Ux = {f(Xi)}, Vx = {f(Xi)},Vf(Xi) E XR. Note that f(lf) E Uy only when
f(Yi) E By and rn- f(Xi) + f(Yi) > ac(Ux, Vx) = a7 + n - f(X 1)- f(NY). Consider the

following feasible definitions of F.

Uy vy Time

1 0 0 (k)
2 {f(Yi)) 0 0(k)
3 {f(Yi)} I..{f(Y,)},Vf(Yj) E YR 0(klogk)

4 {f(Yh)} 0 o(k)

5 {f(Yh)} {f(l)},Vf(Yj) E Y•,j $ i 0(klogk)
6 {f(Yh),f(Yi)},i h 6 0(k)

7 {f(Yh),f((Yi),i i h {f(Yj)},Vf(Yj) E YR 0(k/log k)
8 {f(Yh),f(Yj)},i h {f(Yj),f(YI)},Vf(Yj),f(Yj) E YR 0(klogk)

The reason whyj € i in thefifth situation is that iff(Yi) E YR and we let t'y = {f((I)}.
then m - f(Xi) + n - f(Yi) > f(XI) + f(Yh) > max{f(XX) + f(Yj), f(X,) + f(Y1)}, which
indicates the resulting assignment is even worse than the original assignment without any
switches. The method used in the sixth situation of subcase (b) in Case 1 can be applied to
the third, fifth and seventh situations in this subcase to achieve the 0(k log k) bound. In the
eighth situation, if we check all combinations of f(Xi) E XR and f(YK). f(YI) E YR, there
will be 0(k 3) possibilities. We will show that not all combinations need to be examined.

Our goal is to choose f(Yj),f(Y1) E YR for each fixed f(Xj) E XR so as to minimize
max{ca2(Uy,Vy),f(Xj) + n - f(Yj),f(XI) + n - f(Y 1)}, where a 2 (Uy,y•V) = a. + 2n, -

f(Y) - f(Yi) - f(Yj) -f(Y 1). Without loss of generality, assume f(Xj)+n- f(2) ? f (XI) +
n-f(YI). First, sort in 0(k log k) time f(Yj) E YR according to the value f(X 3)+ n- f(¾j)
nondecreasingly. Second, in the sorted list, for each f(Y-), except the first one, let f(Y1)
be the largest choice among those on the left side of f(Yj). This can easily be done in

0(k) time. Now, we have a list of IYRI - 1 choice pairs f(Yj),f(11) ordered according to
the value f(Xj) + n - f(Y3) nondecreasingly. Third, in 0(k) time discard those pairs with
their sum f(Yj) + f(YI) no greater than that of their left neighbors in the list. Finally.

for each f(Xi) E XR, use binary search to find the pair f(Yj),f(V1) with the minimum
max{aý +2n - f(YI) - f(Yi) - f(Yj) - f(YI),f(X)±+ n - f(Yf(X1)+n-f(11)} among
the remaining pairs in the list, which altogether takes 0(k log k) time. In the above process,

15

if f(Yi) E YR, use m - f(XI) + n - f(YI) instead of f(XI) + n - f(Y 1) for choice f(Y1) in

the sorting part.

(d) If Dx = {f(XI)}, and Dy = {f(YI),f(Y 2)), then by Lemma 6 f(XI)+f(X2) > o.

and f(XI) and f(X 2) are in the different columns of fx. Since f(Xl) is the bad choice,

then f(X 2) E XR. By assumption Ux = {f(X 1)}, and Vx = {f(X,)},Vf(Xi) E XR. We

notice the following properties of the feasible definitions of F.

First, for the situation in which Vx = {f(X 2)}, the number of feasible definitions

we need to check is bounded by O(k log k) time. In the following discussion, we assume

Vx = {f(Xi)), where i 3 2.

Second, we do not need to consider those situations where Vx = {f(X,)}, for which

f(Yi) E By. Assume Vx = {f(Xi)}, for which i $ 2 and f(Yi) E By. We have f(X,2) +

f(Y 2) > a* > aý Ž_ f(YI) + f(Y 2) + f(Y4), therefore f(X 2) > f(Y 1) + f(Yi). We also have

f(X 2) + f(Y 2) > a* > a* > f(X 2) + f(Xi), therefore f(Y 2) > f(Xi). We can show that

m- f(Xi)+n- f(Yi) > f(X)+ f(Yj), because f(X 1) <_ m- f(X 2) < m- f(Y 1)- f(Y) <

m-f(YI)-f(Y,)+n-f(Xi). We can then show that m-f(Xi)+n-f(Yi) > f(X 2) +f(Y 2),

because f(X 2)+ f(Xj) !_ a' < f(X) + f(Y 1) < f(XI)+ f(X 2)- f(Y,) _ -f(fl M-

min{ f(Y 2), f(Y)) < m - min{f(Y2), f(Yj) + n - max{f(Y 2), f(Y')} = m + n - f(Y 2) - f(Y).

This means that in - f(Xi) + f(Yi) > m - f(Xi) + n - f(Yj) > max{f(XI) + f(Y 1), f(X 2) +

f(Y 2)}, which indicates that whether we switch f(Y 1) or not the resulting assignment is

always worse than the original assignment without any switches.

Taking the above facts into account, we only need to consider the following feasible

definitions of F. Without loss of generality, assume h = 1 or 2, where f(Xh) + f(Yh) =

max{f(XI) + f(Y 1),f(X 2) + f(Y 2)). This means that if IUi = 1 then Uy = {f(Yh)}.

Uy Vy Time

1 0 0 O(k)

2 {f(Yh)} O(k)

3 1 {f(Yh)} f {f(Y3)},Vf(Yj) E YR,J 5 i O(klogk)

4 {f(Yi),f(Y 2)} _ O(k)

5 {f(Y,),f(Y 2)} {f(Yj)},Vf(Yj) E YR,j j i 0(klogk)

6 {f(Yi),f(Y 2)} I {f(Yj),f(Y1)},Vf(Yj),f(YI) E YR,j,I i O(klogk)

Similar to the previous subcases, the number of situations we need to check in this

subcase is also bounded by 0(klogk).

Case 3: 1BxI = 2.

By Lemma 7, IDxI • 1 and fDyj < 1, and if there is a disastrous choice in fx, there is

also a disastrous choice in fy. We consider two subcases: (a) IDxI - 0 and IDyl = 1; and

(b) IDx- = 1 and jDy1- 1.

16

(a) If Dx = 0, and Dy = {f(Y1)}, then by Lemma 7 f(X,) E XR, and Vy, if nonenipty,

only contains f(Yi) with f(Xj) . Bx. Otherwise, f(X,)+n-f(Yi) > m-f(Xi)-i -f(Y,) >

f(XI) + f(Y1), which implies that the resulting a is even larger than that for f. So there

is no potential switches in fx. Consider the following feasible definitions of F.

Ux Vx Uy Vy Time

1 4 4 4 0 0(1)

2 4 € {f(Y1)} 0. 0(1)

3 4) 4 {f(Yl)} {f(Yi)},Vf(Y,) E YR with f(Xj) 0 BX 0(k)

(b) If Dx = {f(X1)}, and Dy = {f(Y1)}, then we notice the following properties of the

feasible definitions of F.

First, we do not have to consider the situation in which both f(X 1) and f(Y 1) are

switched. Because assuming f(X 2) is the other bad choice in fx, m - f(XI) + n - f(Yj i <

f(X 1) + n - f(Y 1) < f(X 1) + f(X 2) <_ a*, which suggests that switching just f(Y 1) is

already good enough, why bother to switch both f(XI) and f(Y 1)?

Second, lUxI _< 1. Assume Ux = {f(XI),f(X2)}. This case happens only when

f(Y 2) E Vy, f(X 3) E Vx for some f(Y3) E Uy, and f(X 2) + n - f(Y 2) > a 2(Uy, Vy) =

a2 + n - f(Y 3) - f(Y2). Then f.(Y1) + f(Y3) <_ a; < f(X 2) + f(Y 3). So f(YO) < f(X 2). On

the other hand, f(Xi)+ f(Y 1) > a* -> f(X 1)+ f(X 2). So f(YI) > f(X 2). A contradiction!

Taking the above facts into account, we only need to consider the following feasible

definitions of F.

Ux Vx Uy Vy Time

1 4 4 € 4 0(1)
2 4 4 {f(YO)} 0 0(1)

3 If {f(Y 1)) {f(Y2)},Vf(Yi) E YR 0(k)
4 {f(X2)} .. {f(,Y)} {f(Y2)} 0(1)

5 {f(X2)} {f(Xi)},Vf(Xi) E X {If(Y,)} {f(Y2)} 0(k)

6 {f(Xi)} € 4 4 0(0)

7 {f(Xi)} {f(Xi)},Vf(Xi) E XR 0 "' 0(k)

8 {f(X,)} {f(Xi)},Vf(Xi) E XR {f(Y)} 4) 0(k)
9 {f(XM)} {f(Xi)},Vf(Xi) EX {f(Y2 i)} {f(Yj)},Vf(Yj) E YR 0(k)

We check the fourth and fifth situations only when f(Y 2) E YR, and f(X 2) + n - f(Y 2) >

a,(Uy, Vy) = a* + n - f(Y 1) - f(Y 2). In the eighth and ninth situations, we only need to

check those combinations with Vx = {f(Xi)}, for which f(Yi) E By and m-f(Xi)+f(Yi) >

al (Ux, Vx) = a* + m- f(XI) - f(Xi). We shall prove that there is at most one such f(Xi).

Assume there are two, say, f(Xi) and f(Xj). Then ?n - f(Xi) + f(Yi) > a* + m - f(X 1) -

17

f(X 2). So f(X 1) + f(X 2) K c7 < f(XI) + f(K). Therefore f(X.2) < f(l). Similarly, we

have f(X.2) < f(Yý). However, f(X0)+f(Y0) > > >-: Ž f(Yi)+J(Yi)+ f(Y). We have

m > f(XI) > f(Y1) + f((Yj) > 2f(X2). So f(X,2) < M, which is a contradiction to that

f(.X2) is a bad choice. In the eighth situation, we spend 0(k) to find the f(X) E X1 , if

it exists, and 0(1) to check the corresponding situation. In the ninth situation, we spend

0(k) to find the f(Xi) E XR, if it exists, and spend 0(k) to check the feasible definitions

with Vy = {f(Yj)},Vf(Y2) E YR.

5 Conclusion

This paper studies a problem of routing messages on an SIMI) parallel architecture whose

processing elements (PE) are connected as a toroidal mesh. In our problem the sets of

messages processors send are isomorphic, meaning that if some processor i has a rnerCr*gC W

send which must traverse xi PEs in the East-West dimension and Yt PEs in the North-South,

then all PEs have a message to send with identical routing offsets. We examine variants of

the problem having differing assumptions concerning simultaneous use of communication

channels, and the ability to buffer a message temporarily en-route. Our solution approach

is to view the problem as a scheduling problem, related to a previously studied open shop

scheduling problem. Our results provide new results not only on the motivating routing

problem, but on a new class of scheduling problems as well.

A spectrum of complexities are obtained, from linear in the number of messages (k) per

processor to NP-complete. The variation where all ports may be used simultaneously and

messages may be buffered en-route is of particular interest; we first show quickly why the

problem has a polynomial solution, and then do an extensive case analysis to show that

the complexity is 0(k log k). The case analysis lacks elegance; our hope is that future work

may provide a more direct solution to the problem.

Appendix

LEMMA 1 If IBxl >3, then F= f.

PROOF. We shall prove that Dx = ¢ and Dy = ¢. Suppose that f(X,), f(X 2), f(X 3),...

are the bad choices in fx, and that f(XI) is the largest among all. Assume that there is at

least one disastrous choice in fx (alt., fy), say, f(Xi) (alt., f(Yi)). Then f(Xj) + f(Yi) >

& > c >- f(X,) + f(X 2) + f(X,3). So f(Yi) > (f(X 1) - f(Xi)) + f(X 2) + f(X 3) >

f(X 2) + f(X 3) > 2 x M = m, which is impossible. U

LEMMA 2 1DyI < 2.

18

PROOF. Assume Dy = {f(Yi),f(Y2),f(Y 3),...1. Then at least two of f(Xi), f(X.2),

f(X 3) are in the same column in the assignment diagram for fx, say, f(XI) and f(X 2).

Since both f(Yt) and f(Y 2) are disastrous choices, we have f(Xl) + f(Y 1) > a*, and

f(X 2) + f(Y 2) > a*, therefore,

f(X 1) + f(Yl) + f(X 2) + f(Y-2) > 2a*.

However, we know f(Xi) + f(X 2) < a* < a*, and f(Yl) + f(Y 2) <_ a.2 <_ n, th,,rfore,

f(XI) + f(X 2) + f(Y 1) + f(Y 2) < 2a.

This is a contradiction. U

L.jEMMA .U: Ž, I an~d 1 Uy _ IVy .

PROOF. We only prove JUxI Ž_ IVxj, since the proof of IJUyI <_ jVy is totally symmetric

and hence can be omitted. For notational simplicity, we ignore th subscript X in the

discussion below.

Assume IUI < IjV. Define any V' C V with IV'I = jUj. Let a,(U,V) be the corre-

sponding a, resulting from switches in U and V, and al(U, V') be the corresponding a,

resulting from switches in U and V'. Let a* = max{jc+,o-}, where at+ = Zf(x,)=x zi,

and a- = Ef(x,)=m-x,(m - xi).

a,(U, V) - max{a+ - Eu f(Xi) + Ev(m - f(Xi)), a1 - v f(Xi) + EU(m - f{(Xi)}
= a+ - EU f(Xi) + Ev(On - f(Xi))

(Since al - OI > m([Uj- IVD.)

al(U, V') - max{a+ -- u f(Xi)+ v,(m-f(X), a- -Ev, f(X,) + u(m- f(Xi))}

= at - EU f(Xi) + Zv,(m - f(Xi))

:- a+ - EU f(X 1) + Ev(m - f(Xi))

(Since aI - a+ Zvv'(m - f(Xi)) if a- > a+.)

= ai(U,V).

Therefore, al(U, V') <_ al(U, V), and it has fewer bad choices. Why not try a"(U, V')?

in other words, the choices in V - V' do not have to be switched to the opposite column

since this does not lower a,, and instead creates some new bad choices. a

LEMMA 4 All members of Ux and Uy are potential switches.

PROOF. As declared earlier, we only prove the lemma for Ux, and omit the subscript X.

If jUl = IVI, and U contains some choices that are not potential switches, let (I' be the set

of potential switches in U, and V' be any subset of V with IV'j = JU'J.

19

o,(U, V) = max{at - EZ f(Xi) + Ev(m - f(Xi)), a - Ev f(X,) + Eu(m - f(Xi))I
= a; - 2U f(Xi) + Ev(m - f(Xi))

a (U', V') = max{a+ -Zu, f(X i)+Zv,(m-f(Xi)), a- e- v, f(Xi)±+2u,(m-f(X0))}
= a7 - EU' f(X,) + Ev,(m - f(Xi))

< ai - EU f(Xi) + Ev(m - f(Xi))
(Since riu-u' f(Xi) < Ev-v,(m - f(Xi))

= a(U, V).
Therefore, a,(U, V') _< a,(U, V), and U' does not contain any unnecessary switches.

If JUl > IVI, and U contains some choices that are not potential switches, let U' be the
set of potential switches in U, and V' be any subset of V with [V'i = max{O, lVi - U- U'l}.

al(U, V) = max{fa - Eu f(Xi) + Zv(m - f(Xi),a- - Ev f(Xi) + u(rn - f(Xi))}

= al - Ev f(Xi) + Eu(m - f(Xi))
(Since al - a, K m(jUl - IVI).)

ao(U', V') = max{a+ - Eu, f(Xj)+Ev,(m- f(Xi)), a- - Ev, f(Xj) +Eu,(m- f(X,))}

= al - Ev' f(Xi) + Eu,(m - f(Xi))

(Since a+ - a- <m(lUl - IV'l).)
0 1- - Ev f(Xi) + Eu(m - f(X,))

(Since)iv-v, f(Xi) <_ EZUv,(m - f(Xi)).)
= a(U, V).

Therefore, a,(U', V') <_ a,(U, V), and U' does not contain any unnecessZry switches. I

LEMMA 5 If lBxl = 0, then lUxI = IVxJ = o, and IDylS 2.

PROOF. By Lemma 3 and Lemma 4, IVxI 1 IUxI = 0. By Lemma 2, 1 DyI < 2. 1

LEMMA 6 If lBxl = 1, then IVxI < IUxl <5 1 and IDyl <_ 2. Furthermore, if Dy =

{f(Y1),f(Y2)}, then a* < f(X 1) + f(X 2) and one of f(XI) and f(X 2) is the largest bad
choice in fx.

PROOF'. Assume a* >_ f(XI) + f(X 2), then f(XI) + f(YI) > a* > f(X 1) + f(X 2). So

f(Y 1) > f(X 2). On the other hand, f(X 2) + f(Y 2) > a* >_ a2 > f(YI) + f(Y 2). So

f(X2) > f(Y 1). A contradiction!
We notice that when a* < f(XI)+f(X2), f(X 1) and f(X 2) are in the different columns,

and one of them, say, f(XI), has to be the largest bad choice in fx. I

LEMMA 7 If IBxi = 2, then lDxl I I and IDyI •< 1. Furthermore, if Dx = {f(X1)}, then

Dy = {f(Yl)}; if Dy = {f(Yj)} and f(XI) 0 Bx, then f(X 1) is in the right column of the

assignment diagram of fx.

20

PROOF. Suppose that f(Xi) and f(Xj) are two bad choices in fx. First, we notice that if

f(X 1) (I = i or j) is a disastrous choice, f(Y1) is also a disastrous choice, because f(X1) +

f(YI) > a* >_ o* > f(Xi) + f(X3), and therefore f(Y 1) > _> .1'

Assume that there are at least two disastrous choices in fx. They must be f(Xi) and

f(Xj). Since both f(Yi) and f(Yj) are disastrous choices, they are in the same column in

assignment diagram of fy. Then f(Xi) + f(Y 2) > a* > a' > f(Yi) + f(Yj). So f(X,) >

f(Yj). On the other hand, f(Xj) + f(Yj) > a* > a* > f(Xi) + f(Xj). So f(Y 3) > f(X 2).

A contradiction!

Assume that there are at least two disastrous choices in fy, say, f(Yl) and f(Y 2). Then

f(X 1) + f(Y 1) > a* >_ t >_ f(YI) + f(Y 2). So f(XI) > f(Y 2). On the other hand.

f(X 2) + f(Y 2) > a l 4 >- f(Xi) + f(Xj) >- f(X 1) + f(X 2). So f(Y 2) > f(X 1). A

contradiction!

If Dx = {f(X,)}, then Dy {f(Y,)}. If Dy = {f(Y1)} and f(X,) V Bx, then f(X 1)

must be in the right column. Otherwise, f(X 1) + f(Y 1) > f(Xi) + f(Xj) + f(XI). So

f(Y 1) > f(Xi) + f(Xj) > rn, which is impossible. U

21

References

[1] E. D. Dahl. Mapping and Compiled Communication on the Connection Machine Sys-

tem, Proceedings of the 5 1h Distributed Memory Computing Conference, Charleston,

SC, 1990.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Francisco, 1979.

[3] T. Gonzalez and S. Sahni. Open shop scheduling to minimize finish time, J. A.ssoc.

Comput. Mach., vol. 23, 1976, pp. 665-679.

(4] L. Johnson and C. Ho. Spanning graphs for optimum broadcasting and personalized

communication in hypercubes, Yale Computer Science Technical Report TR-500, 1986.

[5] E. L. Lawler, J. K. Lenstra. A. H. G. Rinnooy Kan and D. B. Shmoys. Sequencing

and scheduling: algorithms and complexity, in Handbooks in Operations Research and

Management Science, Volume 4: Logistics of Production and Inventory, S. C. Graves,

A. H. G. Rinnooy Kan and P. Zipkin, ed., North-Holland, 1990.

[6] G. F. Lev, N. Pippenger, and L. G. Valiant. A Fast Parallel Algorithm for Routing in

Permutation Networks, IEEE Transactions On Computers, C-30(2), February 1981.

(7] D. Reed, L. Adams, and M. Patrick. Stencils and problem partitionings: their influence

on the performance of multiple processor systems, IEEE Trans. on Computers, C-

36(7):845-858, July 1987.

22

S form 4pproved

REPORT DOCUMENTATION PAGE OMS No o0'o4 0,18

I1 AGENCY USE ONLY (Leave blark) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1993 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ISOMORPHIC ROUTING ON A TOROIDAL MESH C NASI-18605

C NASI-19480

6. AUTHOR(S) WU 505-90-52-01

Weizhen Mao
David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
Institute for Computer Applications in Science REPORT NUMBER

and Engineering
Mail Stop 132C, NASA Langley Research Center ICASE Report No. 93-5
Hampton. VA 23681-0001

9, SPONSORING, MONITORING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING, MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-191430
Hampton, VA 23681-0001 ICASE Report No. 93-5

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card Submitted to ORSA Journal
Final Report on Computing

12a DISTRIBUTION AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Unclassified - Unlimited

Subject Categoiy 61

13. ABSTRACT (Maximum 200 words)

We study a routing problem that arises on SIMD parallel architectures whose communi-
cation network forms a toroidal mesh. We assume there exists a set of k message
descriptors {(xi, yi)}, where (xi, yi) indicates that the ith message's recipient is
offset from its sender by xi hops in one mesh dimension, and yj hops in the other.
Every processor has k messages to send, and all processors use the same set of mes-
sage routing descriptors. The SIMD constraint implies that at any routing step,
every processor is actively routing messages with the same descriptors as any other
processor. We call this Isomorphic Routing. Our objective is to find the isomorphic
routing schedule with least makespan. We consider a number of variations on the
problem, yielding complexity results from 0(k) to NP-complete. Most of our results
follow after we transform the problem into a scheduling problem, where it is related
to other well-known scheduling problems.

14. SUBJECT TERMS IS. NUMBER"OF PAGES

message routing; network; scheduling; complexity; algorithms 24
16, PRICE COD!

A03
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION `19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified I I

NSN 7540 01200 5500 Standard :rrm 2'98 (Rev 2 89)

P,- ~tW- t~vAN% ,11 9 '

