
T form Approved
Or~r~ CUMENTATION PAGE OM oI7408(;ý

4r tion is stimated to averagje I hour "er response. including the time for reuveviong instructions. searching existing data IOiurces.
completing aSnd r ~.njthe c oleto f informlationl. send commiints regarding this burden estimate or any other asmei of thisA D A 6 1 4 4 o"r's'eucing this burdf tOWt ýagtt edcuare~rs Services. Oirectorate for InforenaVion n"ratiornsand keports.1 Q 5 Jet fertn

4. TITLE AND SUBTITLE 5. FUNDING NUMB5RS

Understanding the Applicability of Sequential Data

Analysis Techniques for Analyzing Usability Data

6. AUTHOR(S)

Donna L. Cuomno

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

The MITRE Corporation
202 Burlington Road

Bedford, MA 0173-0-1420 li 93BO00D018

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

The MITRE Corporation
202 Burlington Road M 93B30000018

12a. DISTRIBUTION I AVAILABILITY STATEMENT 112b. DISTRIBUTION CODE

Approved ior public release; distribution unlimioted A

13. ABSTRACT (Maximum 200 words)j

The applicability of exploratory sequential data analysis (EISDA) techniques for

analyzing usability test data is examined. ESDA techniques include trauisitii)n
matrix analysis, lag- sequential analysis, frequency of cycles, graphicýal
summarization techniques, and pattern analysis techniques. A subset of eaca
was used in analyzing the data from three usability studies. The encoding
schemes used, the analysis routines run, software tools to support encodin~g and
analysis (SHAPA and the Maximal Repeating Pattern analysis tool), and their
interactions are discussed and the differentl types of usability problems whiolh
can be extracted from the data when analyzed with ESDA techniques are illustrated.
It is d'oncluded that the ESDA techniques wiil be useful once the stace of the
art in software support is able to provide the analyst greater flexibility in
applying thp analysis routines.

14. SUBJECT TERMS 15. NUMBE~R OF PAGES
I

ESI)A; sequential data~ anralys is; SHAPA; MaxittuJ Rcpew t ing 16. PRICE CODE
Pattern analysis tool

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19- SECURITY CLASSIFICATION 20. LIMITATION OF A3STRACT
:' il EPORT OF THIlS PAGE OF ABSTRACT

Unclassified I Uriclassif ied j Unclassi J.iLed
NSN 7540.-01-280.5500 Stan~dard Foirm 298 (Rev 2-89)

,21 -1'02

Understanding the Applicability of M 93B0000018

Sequential Data Analysis Techniques March 1993
for Analyzing Usability Data

Donna L. Cuomo

42(93-08431

202 Burlington Road
Bedford, Ma•hscutts 01730-1420

Understanding the Applicability of M 93B0000018

Sequential Data Analysis Techniques March 1993

for Analyzing Usability Data

Donna L. Cuomo

Contract Sponsor MSR
Contract No. N/A
Project No. 9162A
Dept. D047

Approved for public relewse;

distribution unlimited.

202 Burlington Road
Bedford, Massachusetts 01730-1420

Deportment Approval, 6 C 40 --
Nancy C. oodwin

MITRE Project Approval: ~ _ _ _ _

Donna L. Cuomo

Accessio~n For
NtIS (JRA&I2

IDTIC TAB1

JustIcflnt ion_

D...D "4:. but.!o0n/

- Avt.. 1 ud/o-

"bisI

Table of Contents

Section Page

1 Introduction 1

2 ESDA Techniques 1

2.1 Sequential Data Analysis 2
2.2 Graphical Summarization 3
2.3 Fncoding the. Data 4
2.4 Software for Supporting Data Encoding and SDA Techniques 4

3 Usability Testing of Three Software Systems 5

3.1 Computer-Aided Architectural Design System 5
3.2 Simulation and Rapid Prototyping System 6
3.3 Airspace Scheduling System 6

4. Applications of ESDA Techniques to the Collected Usability Test Data 8

4.1 Transition Matrices/Lag Sequential Analysis 9
4.2 Frequency of Cycles 10
4.3 Gr"phical Summarization Techniques 11
4.4 Value List ;1nd the Collection of Predicate Instances 11
4.5 MRP Analysis 12

5 Conclusions 13

Acknowledgments 15

References 15

111

List of Figures

Figure Page

1 Outputs from Three SDA Techniques, (a) First-Oider Transition Matrix, (b) Lag
Sequential Analysis, and (c) Frequency of Cycles 2

2 Outputs from Thire Graphical Summarnzauion Techniques, (a) Task Movement Graph,
(b) Task Rate Graph, and (c) Inter-Eveat Interval Graph 3

3 Samnple of the Encoded Data from the Airspace Usability Study 8

4 Sample Output from the MRP Tool Showing a Single MRP of Length 19, Occurring
in 3 Different Positions 12

List of Tables

rabies Page

1 Encodings Used for the Airspace Scheduling Study 7

iv

Absteact

The applicability of exploratory sequential data analysis (ESDA) techniques for analyzing usability test
data is examined. ESDA techniques include transition matrix analysis, lag sequential analysis, frequency of
cycles, graphical summarization techniques, and pattern analysis techniques. A subset of each was used in
analyzing the data from three usability studies. The encoding schemes used, the analysis routines run,
software tools to support encoding and analysis (SHAPA and the Maximal Repeating Pattern analysis tool),
and their interactions are discussed and the different types of usability problems which can be. extracted from
the data when analyzed with ESDA techniques are illustrated. It is concluded that the ESDA techniques will
%e useful once the state of the art in software support is able to provide the analyst greater flexibility in
applying the analysis routines. Without the ability to apply analysis routines to multiple data levels, too
much work is involved in obtaining a complete analysis of usability problems at all levels,

1 Introduction the use of automated analysis tools. This paper
describes three systems for which we have

A potential problem with some usability performed usability tests and applied a subset of
test methods, such as verba. ,rotocol techniques these ESDA techniques during the data analysis
and user observation, is subjectivity in the data phase, and our lessons learned from these
analysis and interpretation (Hollera, 1991: 352). experiences. Our intent is to provide a
To address this problem, we have been perspective in this area that will help other
experimenting over the years with understanding usability analysts decide whether it is worth the
the applicability of exploratory seuential data effort to apply these techniques, and which
atalysis (USDA) techniques for analyzing techniques are most likely to produce meartingful
usability data. ESDA is a family of tools and results for them. Our experiences may also help
techniques for exploring sequential data collected developers of usability test tools understand the
in complex, dynamic, event-driven environments practitioner's needs, in terms of the type of
(Sanderson 1991). Applying the techniques information we should extract from our usability
typically involves transcribing and encoding data when evaluating the tsability of software
recorded events, and applying statistical analysis systems.
routnes such as Markov analysis, lag sequential
analysis, cycle analysis, and pattern analysis 2 ESDA Techniques
techniques to the encoded data. It has been
proposed by various researchers (Siochi et al. Sandcrson (1991) explains ESDA as
1991, Holleran 191) 1) that such techniques could encompassing concepts from explorato| y data
prove useful in die area of human-computer analysis philosophy. sequential data analysis
interaction analysis. (SDA) techniques, and human-computer

interaction. She proposes ESDA as a way of
While several studie.s have beet documented analyzing data that is rich, complex and multi-

in which Markov analysis, for example, has been dimensional and cannot be readily analyzed with
used (e.g.. Hammer and Rouse 1979, Penniman conventional statistical techniques.
1975, and Good 1985), we were unable to find a Characteristics of such data are. that evenLt unfold
comprehe-nsive guide or discourse on the various over time and preservation of the temporal
ESDA techniques available and how they should dimension is important, the data can usually be
be used in the context of usability testing. If analyzed at many different levels, and you may
these types of techniques prove useful in not initially know the questions to be answered.
usability test data analysis, they would enhance SDA techniques include methods for sampling,
the process of converting logged usability test coding and analysis. 'The analytic methods
data into information that is less subjective, and include time series, Markov, lag sequential,
more rigorous and quantifiable, and would permit causal, cycle, granmmars (Sanerson et al. 19911)

and pattem analysis and idetiification techniqum another state, at various removes. If state 1 is
Below we briefly describe the techniques we have the target state, the analysis displays the
used, whether or not data needs to be encoded. and frequency with which state 2 occurs directly
the manual versus software-aided options for data before state 1, two steps before state 1, directly
encoding and applying SDA techniques. after state one, two steps after smat• 1, etc. This

helps determine patterns of behavior that may not

2.1 Seqa,',al Data Analysis be strictly sequential (Sanderson et al. 1989).

Tie mo -ment between states can be Frequency of cycles (originally developed by
explored by mnodeling them as a finite Markov Fisher 1988, in Sanderson ct al. 1989), looks for
chain, which is defined by Kemeny and Snell regularities in behavior sequences. This fonr of
(1960: 201) as "a stochastic process which analysis provides a report of actually occurring
moves through a finite number of states, and for sequences of commands or states in a single cycle
which the probability of entering a certain slate defined by a target command or state. That is, if
depends only on the last state occupied." Matrix the target state is suate I, the first and second
atnlyses involve constructing transition occurrences of state 1 are identified and all tie
frequency or probability matrices to examine events in between are stored as a cycle. This is
whether there are dependencies in the data. The repeated for the seceild and third occurrences of
analysis may reveal habitual or stereotyped state 1, and so on until all the cycles are.
patterns of behavior (Sanderson et al. 1989). identified. Eah cycle is then compared for

matches, and the frequencies of each cycle are

Lag sequential analyses (originally developed counted. The result is a listing of all cycles, the
by Sackeu 1974, in Sanderson et al. 1989) number of times each occurred, and the sequence
pennit vague patterns to be discern•d hi a data in which they occurred (Sanderson et al., 1989).
sequence. Such analyses display the frequency Each of these is illustrated in figure 1.
with which one state occurs with respect to

E D S P Dr S D B
Emir .15 .05 .00 .05 .18 .54 .03 .00 Frequency of state 2 with
Draft .19 .15 .00 .08 .08 .50 .00 .00 respect to state 1
Sp/Join .5 .00 .00 .00 .00 .00 .00 .50
Percep .00 .57 .00 .05 .00 .38 .00 .00
Draw .02 .00 .00 .00 .68 .19 .10 ,)0
System .06 .03 .01 .06 .32 .46 .1 0\. -4-3-2-1 Si 1 2 3 4
Delete .08 .02 .00 .00 .49 .16 .24 .02
Back .06 .00 .00 .13 .13 .69 .00 .00Pt,

(a) (b)

#Freg cycle
A. I lnt.task -> oval. -> int.task

1nInt.task->ki inexce -> cva,. -> int.percept -> eval. -> eval. -> int.task

C. 5 Inviask -> int.exec -> tape ->tapc -> command -> button -> eval. ->

int.exec -> menu -> command -> eval. -> eval. -> int.task

(c)

Figure 1. Outputs from Three SDA I echniques,
(a) First.Order Transition Matrix, (b) Lag Sequential Atnlysis, and (c) Frequency of Cycles.

2

Another pattern analysis technique, maximal
repeating p'tterns (MRP), wac devoloped by 30.

Siochi and Ehrich (1991). MRP maysis woAks 00 20"
on the premise that repetition of user actions is E
at important indicator of potential user interface > 10.
problems. The technique detects the longest
repeating sequences of command strings in user 0 ,l 2 , 1 , 3 : 4
session transcript it works on the user inputs 11 21 31 41 51

only. The method is unique in that the analyst Event #
does aot identify a priori the patterns or strings
the technique should search for; all repeating 0)

patterns are identified. 300oo

2.2 Graphical Sunmarization E200

We have previously proposed graphical 1 00-
summarization techniques to aid in analyzing
sequential data in the computer-aided design task 0 .

domain (Cuomno and Sharit 1989). These ideas, 0 1 00 200

based on the humnan problem solving concepts Timo (MlIn)
presented by Newell and Simon (1977), included
task movement graphs, task rate graphs, and (I))
analysis of inter-event intervals, together with
Mcu-kov pvroccess artalysis. TV, gi-aph.1 I OOT
of these routines is illustrated in figure 2. s 0

The first two graphical techniques are based -. 0
on the concept of moving through a design or 1 10 19 28 37

task state space toward a goal. Recorded subject- Event Interval
input events are coded in terms of whether the
event moved the user a step forward toward a (c)

goal, whether tie command was a result of using
a computer and did not move the user forward a Pigum i 2. Outputs From Three Graphical
step (e.g., moving a window), or whether tie Summarization Techniques, (a) Task Movement
event caused the user to move backwards, away Graph, (b) Tal k Rate Graph, and (c) inter-Event
front the end goal (e.g., delete something). The Interval Graph.
overall slope of the graph indicates the efficiency To apply any of these analyt. routines,
with which a task is performed. Rate measures Sofare an of ttesi any con ional
can also be constructed which show absolute so.tware can be written in any conventional
forward movenment of task progress ,,ver a time software language and results output and

period, where time periods are the total time for displayed with commercial database and graphing

discrete task segments. Finally, inter-event packages. For some routines. e.g.. inter-event

interval analysis involved plotting the elapsed interval awittysis, this approach is straightforward

time between subject-input events against and easy. Having several stand-alone analysis

interval numbers. Long delays between events routines, however, does not readily support the

can then be identified, flagging potential problem exploratory spects required for a coniplete

area quiring further invetigation, analysis of the (Lain, and writing ,inalysis code cianadd time to an already tine-consuming process.

3

Nevertheless thee maty nKt be alternatives. POw 2.4 Software for Supporting Data Encoding and
mature software tools designed to support IESDA SDA Techniques
technique's are available. The tools we were able
to obultin anw di'scusscd later in the plapr. As it is not practical to apply these ESDA

tec.huique.R or complex encoding shemers
2.3 Encodfing the Data manually, software support is required for both

the daut encoding and application of the analysis
The type of data collected, the analytic routines. How the software applies the

technique. itself, and the questions to be answestd techniques to the data, and tho atount of
deterntien whether the teclinique canl be applied flexibility in the softwarc, however, affect the
directly to the collected usability data, or whether resultant usefulness of the analysis romine
the data needs to be encoded first Wien outputs.
collecting verbal protocols, for instance, the
content of thl e.nt ence, and actions of interest One tool we were able to obtain that supporls
need to be extrmted and enc"dd before ,ISDA both encoding and analysis was StlAPA (Sofware
techniques can be applied; statistical techniques for Heuristically Aiding Protocol AnalP,,Is)
obviously cannot be applied directly. When filts Version 2.0, developed by the University of
of acttd inmouse anl koystrokes or comanand Illinois at Urbana-Chatupaign 12fginevring
input file are collected, some of the analysis Psychology Researh cLa-boratory. SItAPA is a
techniques can be applied withott encoding the protocol analysis environment permitting
data. Siochi et al. (1991), for instance, applied resear•hers to encode data in any way they choose.
their MRP routines to unencoded command input It works on single-stream, un-timestamped verbal
files; such files nmay need somc filtering to be and non-verbtl protocols, running on an IBM PC
put in a forti acceptable to tile 'maiysis pro)gralll, or Co$mtpsiiiti, A i i ew version cUrcnslyu.
The task rate and task movement graphs, development, MACSIIAPA, will include the
although applied to similar types of usex input ability to analyze multiple stream, tinie-stam.ped
files, must be encoded as the task catovement data front video records as well as ASCII tiles
implications of each input must be detemiined. (Sanderson et al. 199 1).
For a technique such as arwisition matrices, the
purpose of the anlysis will (letetrmine whether To eicod data with SItAPA, the re-sarcher
the daita needs to be encoded. If the. goal is to first d-ecides on the :-ncoding scheme, then
detenrine the most commonly occurring input specifics the codeks, called predicates, on tOw
pairs, for instance, the. technique should be predicates screen. A plr-dicate consists of the
applied' to the actual uWsr input seuelences. If name followed by its argunieats or values in
patterns of higher-level behavior are sought, thie parentheses, and might look like: INT.TASK (I -
data should be coided appropriately; in fact data 1.1 -setiii.ie), or MELNU(view, in). fy laving the
from several sources may be used to support data analyst pi-,tefine, the predicates andl their
application of the encodings to the dLata. values. St IAPA can allow the user to type in nan

abireviation for each predicate, leaving the
When encoding data files, selection of the software to complete tie name. Once all thle

encoding scheme is a critical factor influencing the files are encok-.d, running the analysis routines is
questions that can N-, answered by the data. An as easy as s•lecting tile desired routine from nite
appropriate scheme is usimlly established itetatively. Reports menu. SlIAPA supports tnansition
Once decided upon, the analyst can apply it niauually matrix analysis, lag sequential analysis,
by examining the data files, choosing the apl)ropria'e lrequency of cycle;s, valise lists, and predicate
code for each input or group of inputs, and typing tile instances. The value list routine generates a
software code-,s into a new file. Alternatively, tools to report which, for eah purAleicate, lists all tile
Stll)IX)it data encoding can be written, or e;isting Constalt vale,; used as predicate argullents and
tools UlAd. their frequency of use. Tho collection of

4

prdicate instances routine collects segments 3 Usability Tes•ting of Three Softww-v
encoded with We same predicate and displays dte Systems
line nmntxr on which they occurmrd; valuis ¢mtn

also be sleifried is. bWing of interest (James ct al. In die pist four years. We have coilducted
1990). Except for thos last two routines, which te fonial usability studies (o a variety of
(to take. w-count of the pmdlcale values, the other systems and, for each, have used some subset of
routines all report on predicates only, no their ESDA tlec.hniques to analyze the collccted
specific viwues, (Seo any of the Sanderson ct al. usability data. All systems wore similar in
referenacs of James, Sanleason, a1n Soldier 1990 ipssessing graphical, direct manipulation style
for momo dMtailed dcscriptiows of SHIAPA and its uset interfaces, All supported rmalistic tasLs that
capabilities.) woe, user-conttolled a: opposed to system-

controlled, and none of the tasks were time
A second software package we. were able to critical, All the tasks were also ill-defined, in the

obtain for our u•ability lab was the Maximal sense that thexe could be many corrm.t sohtions to
Repeating Pattern (MRP) Tool developed at the the problems- we expected high degrees of
Deparmnent of Computer Science at Virginia variability across participants in tenns of both the
Polytechnic Institute and State University, which problem-solving approach taken and the computer-
supports extraction of MRPs from logged user use strategics. Task times for eact test ranged
input dlta. We used the version designed to run fromn one and a half hours to approximately four
on UNIX-based systems, To use the application, hours. Finally, all participanlts were
tie logged user input data is nonnalized to representative of the intended user population, anl
conver1 raw transcripts to a standard forni, the participants in eMch tost were trainled to use the
Siochi ct al. (1991) used the tool to analyze data system by th.e ,iability testers. They had not
puitterns oil coilicut UU esons F a ue syste~mn"*''""'
commtatvd-based innige |rcec-ing system called

GIPSY. They nonitaized tle raw transcript files Fach system ano tho usability test procedures
by extracting inputs fron the collceted user used are described briefly blvow. UDetailed
inputs and system outputs, and then extracted de•sciptions of procedure and usability problems
single-word cMm1a)dS fro0n) the COnMAaIWd ideiitified can be fouml inl die refewnced usability

argument pairs in the transript. The software te"It repxorts. Our focus here is on the way in
then identifies all the MRPs in the file. MRPs which dhita Cncoding wzas performed and the
arc defined as repeoting paitterns that arc as long etffetiveneiss of applying ESDA techniques.
as possible, or we independen•tly occurring
substrings of longer pitterns (Siochi et al. 199 1: 3.1 Computer-Aided Architectural Design Systen
316). Their outputs include each identified MRP
ini order of dccreasing length, and the. number of A usability study of a commercial computer-
instances. Summary iniOmnnation includes the aided architctural design (CAAD) system was
nuniber of MRPs found and their minimum, performeci, in which six architectural (dsign
maximunt, and average length. Thc analyst can studcLs performed two design tasks at one otf
filtor MRPs, examine specific instances of each, three levels of complexity (Cuomo and Sharit
and get mnote details on a specific one, following 1989). AltIough verbal protocols, user
a Iointer back to its instance in the raw transcript keystrokes ard stylus inputs were collected, only
file. This technique tends to generate large tlh keystrokes aod stylus inputs were. used for the
aniounts of data which nc-d to be filtered. The application or SDA techniques.
MRP developers e,6timate that one MRP is found
for every 20 to 25 command lines. Two encoding schemes were used in this

study, otte a subset of the other. In the first
scheme, each user inpulit action was assirined one

code. The tcn original codes were: error,

drafnting, siih/join, IPxcC1)Um, t1o01r, que0y0, s'lecdton. mid prowess Inudificaition; auid usef

diawihg. systeni. Imckwaid Ono step, backwaixf ativities (disptly Cxumitatimoln, error, error

many stops. Sorni cod", reflccted actiotiS taken cofn. .i ui"d ideltification. materials reference,

On the. pat of the user to reduce diffegr•nt typos pauses, i ,jcct comments. reqtnsts for lt),

of information processing loads such as sea•ches) and oxperimenter comment. Some of

ierceptual (W.g., Yoomlng kedUcCs pr•ce.ptual tie predicatos had values defined as well. Thie data

wort"-ad) and molor loads, while other codes was encoded using SHAPA. All the SDA

rot ed forward or bookward movement to techniques available in SIIAPA we= run on thle

produce a design drawing, and fiially, cods encoded data, in addition to catIculatiji of thet moor

were. applied to inputs which ai. an anriftct of trdiltona usability maasures such as frequency of

using a computer (system Co&), usability tester intervention.

When the codos were applicel to the data It 3,3 Airspace Scheduling Sysx'nj

transpired that two of the cxdes were used veory

inftequently; for subsequent analysis, the codes of Our most. recent and sopliiticated usability

query and split/join were collapsed into 6.t test, macasured by attcntion given to developing

systent code. For each usor's encoded data file, an encoding language and assessing the

we genated first-order transition matrices such applicability of the ESDA techniites., wa;

as the one shown in figare 1. To apply the perfoinred on a prototype military airsplcr

gniplhical summarization techniques, Nre further scheduling system (Cuomo and Bowen 1993).

simplifiled the encoding techniques so that each Four subject.matter experts and a user-system

input was classifid into one of thre states: a interfaco (USI) expert participated In this

forwa.rd movee•int, a backward moveincut of usability study. Vermil protocols, a videotape of

S..... ,,u','n . "'er-,vent thre display. Lnd Jmnwe-stjvmnpue4 it',er kevtroke" a.tw:

interval analysis was applied to the time stamps moue inlputs were. collected. The two d6a

of each input, and the encoded data was not streams were integrated before apl)licatioei of an

involved. Tho. daw enc(xhing for this studIy was enco(linlg schlnle, allowing thl user actions to be

perfornted nmanualy and the analysis routines sti-tcturc (within a task context. Many of the

were wiittett it) FORTRAN. users' psychological intentions were identifled

allowing hierarchical segmentation of the input

3.21 Simulation apul Rapid Prototyping Systemn actions.

We perfornied a second usability study which Die 21 encodings tLused, winch were loosely

involved ESDA techniques on a beta version of bitsed on Nornan', (1986) stages of user activity

software .,ystem ldeveloped to support prototyping mnodel, were divikAd into two level.% anl are

and simulations with graphical display. Five shown in table 1. Che first level inchlued the

participmnts with vacying degrees of computer anid semantic-level predic4ttes; they provided

simulation experience piaticilmted. For this information on ftle imisr's overall strategy, wheire

usability study we were able to collect only vertml and what types of errors were made and whether

protocols and a videotape, of the display. 'lie they were recovered from, what tasks were

videotape was transcribed, including both pie'formed within Mchi goal (task intentions),

participants' comments and actions, and then what computer steps (intentionis to execute) were

segmented and encoded with 25 predicates. The attempted in performing each task, and an

ieMlicates we-re a imix of ux.r interlace object evaluation of the success of cacht task and cah

related encodings (e.g., menu .selections, new execution sequence pe fuonned within that task.

interface, diahL-g completion, save): task activities Tlhe articulatory-lvel enlc(xhngs foclsed on the

related to building ihe, simulation model, such as actual wquences of coninarnds and user inputs for

load MIXlel entity, ob)JeC-t and)roceSs definition eac-h intention to execute, and reflected gencrrc

and manipulation. statement modification and iser interface object usý" ". |Fach of the

6

predicates also had detailed values whi:h usually actual commhand name selected followed by the input
included te actual instance of the more generic device code. The predicate "fields" had the name of
predicate type. For instance, the "task intention" the dialog box it resided in, the field name, and the
piedicate included values for the goal number, the user function performed in it (data entry into blank
task number, and the name of the task the subject field, deleted information in the field, edited
was perfonning (e.g., scheduling a particular information in a populated field, or field was selected
mission, resolving a conflict). The "evaluate" but not modified) as its three values. The encoding
predicate values included the goal, task, and scheme and its hierarchical nature are illustrated in
execution number, the name of the task or figure 3. SHAPA was again used as the encoding
execution being evaluated, and the evaluate state; tool; its analysis routines were run on some of the
possible states were abort, incomplete, OK, or encoded data files. We also experimented with the
wrong. MRP tool by applying it to the participants' uncoded

data files. The data files contained the numbered lines
The articulatory-level values included the actual shown in the right-hand side of figure 3, but with the

instance of the user interface object type being time information removed.
wlected as well as the input device code (whether the
inouse or keyboard was used, "m" or "k"). The
"command" predicate, for example, had as values the

"Table 1. Encodings Used for the Airspace Scheduling Study

Encoding Definition
Goal Scenario step.

Task intention (Int.task) An intention to complete one task contributing to the completion of a goal.
Perception intention An intention to improve the perceptibility of a display.

(Int.per)
Intention to execute One computer step (may be comprised of multiple actions) leading to the
(Int.exe) completion of a task intention. Several steps may be required per task intention.

Evaluate (Eval) The success with which the intention was accomplished.

Error in intention (Err.int) The intention was incorrect and will not accomplish the goal.
Error in action specification (Err.acsp) Wrong sequence of %ctions to accomplish the intention to execute.
Error in execution Manual, motor error in executing.
(Err. exec)
Error in perception Break-down in human perceptual processing of information on a display.
(Err. per)
Error in interpretation User fails to interpret system state correctly.
(Err. inter)
Error in evaluation (Err.eval) User mistakenly thinks has or has not moved closer to the goal.
Recovered erro! (Rec.err) Error was detected and recovered from.

Menu A menu was opened
Command A command was selected

List-select An item is selected from a list

Button A button was selected
Field An action was taken in a field
Scroll A scroll bar action was performed
Tape A mission icon

Tinebar Manipulation of the timebar which controls horizontal scrolling in schedule
Form The background area of the schedule

7

GOAL(l-stditde) Alright. Okay, so I wrnt to see that week."
INT.TASK(1 -1-setdate) 001 11:32:19 000 Pressed Piitton on View Button

INT.EXEC(1-l.l-sctdatc) in Main Menu Bar
MENU(viewm) 002 11:32:41 002 Released Button on Date Button
CO"MIAND(dne,m) in View Menu
BUITON(date-cancel) 000 11:32:43 002 Pressed Button on Cancel Butten

ERR.EVAL (el*1-1.1-setdate- in Date Dialog
thought needed airspaces on display) "Well, I probably need airspaces up there first."
EVALUATE(I-1.1 -setda-1-abort)

004 11:32:45 002 Pressed Buuon on View Button
in Main Menu Bar
005 11:32:47 002 Released Button on Change

IqT.EXEC(l-l.2-setlayout) Layout Button in View Menu
"Who am I again? Phoenix"

MENU(view,m) 006 11:32:52 005 Pressed Button on Undisplayed
SUA List in General Leyout Dialog

COMMAND(Iayout•m) "Ah. Yankee 1."
IIST.rSELECT(layout-umdis) 007 1:32:58 006 Pressed Button on Add Button in
BUTION(layout.add) General Layout Dialog
LISTSELECr0ayout-undis) 008 11:32:59 001 Pressed Button on Undisplayed
BUTrON(layout-add) SUA List in General Layout Dialog

"Ah, Yankee 2."
BUTrON(layout.ok) 009 11:33:01 002 Preqsed Button on Add Button in

General Layout Dialog
EVALUATE(1-1.2-setlayout-ok) 010 11:33:02 001 Pressed Button on OK Button in

General Layout Dialog

Figure 3 Sample of the Encoded Data from the Airspace Usability Study

The first study using the CAAD system had strategies and understanding how well the system
a slightly different focus than the other two. It meets the user's needs to carry out each task
looked at the interaction between an architect's intention and convey information. Data files of
mental design activities and the use of a actual input actions can provide only some of
computer tool to support those activities. It was this information. Performing SDA on unencoded
the only study that had variables: two different data files of user input actions will reveal
types of design tasks at three different levels of information on usability at a low level, and only
complexity. The second two studies were basic on certain types of problems. Repeated patterns,
usability studies performed to identify areas in execution errors, etc. can be seen, but the context
the system design that hindered users' task of the user's intentions are lost. Performing the
pertormance. There were no conditions to wrong sequence of actions to accomplish an
compare results across, and no pre-determined intention, for instance, is a type of error that will
questions to answer or hypotheses to prove. not be detected since the intention is not known.

4 Applications of ESDA Techniques to Choosing a complex, hierarchical encoding
the Collected Usability Test Data scheme such as that used for the airspace

scheduling study offered potential for data
Sequential data analysis techniques are analysis at several levels. The generic encoding

potentially useful for analyzing usability data. scheme used, however, was a poor match with
To fully analyze the usability of a system, SHAPA, which uses only predicate names for
however, requires analysis of, and information many of its routines and ignores the predicate's
on, the human-computer interaction process at values. Much of the detailed information was in
several levels. At the highest level is the predicate values, so the resulting outputs of
information on the user's goals, intentions, atnd the SDA techniques were ambiguous and hard to
other high-level psychological processes. "71e interpret. Furthermore, some information useful
next level involves the user's computer-use

8

to assessing usability was not generated with any on the actual instances of each action. From
of the software supported techniques. patterns such as "menu menu" or "button button"

we could not de-termine which menus and buttons
To fully analyze the airspace usability data, were activated, or even be sure if they were the

we were therefore forced to resort to manual same cr different objects.
methods (Cuomo et al. 1993). SHAPA also had
file size limitations which forced us to break a Analyzing data of this type is also difficult
single user's encoded data file into many separate because of the large number of natural patterns
files; hence report outputs had to be manually that occur during the use of direct manipulation
integrated. Below we discuss the different ESDA interfaces (e.g., command follows menu). The
techniques we tried and explain the types of large number of these obvious or expected
usability problems they were able to detect as patterns, with their high frequencies, make it
well as their shortcomings. difficult to identify the often less-frequently

occurring potential usability indicators; there is
4.1 Transition Matrices/Lag Sequential Analysis much noise in the data.

The usefulness of the transition matrices Reviewing the literature to detetaine other's
varied from study to study. In the CAAD study, success using transition matrices in human-
enor-to-error transition probabilities turned out to computer interaction analysis revealed that it was
be the most useful usability indicator as it used most frequently to describe users' behavior
reflected an important aspect of usability, error patterns but not necessarily to determine
recovery. The most skilled partic,.iint had a 0% usability problems. Good (1985) used uncoded
probability of moving from one error state ii. command transition fivquency data to determine
another, while some participants had the most common transitions between keys.
probabilities as high as 21%. The simulation This information was used in designing a new
study usability analyst was able to discern only keyboard layoput. Hammer and Rouse (1979)
one usability problem from the trnsition matrix used the. technique to assess how researchers used
technique, and it was identified from the second ,e- .ors in writing their own programs and
order transition matrix output. For all users, the is. They created 16 states for their Markov
frequency of the combination "new interface, .1 involving functions such as typinr
save, new interface" was high. This sequence itioning, deleting and inserting, and
reflected the modal nature of this system design., s• hing. They found differences in patterns of
which only allowed users to save their work fror. bcf. or between editors, between tasks, and
one screen. Users would switch screens, peifo- ,uong users. They did not appear to use the data
their save function, and switch back to thei, . identify usability problems. Finally,
original screen. Penniman (1975) used the technique to analyze

users' search behavior on an oi-line retrieval
Transition matrices were zlso not very useful system. He used both an 11 state and a 4 state

in analyzing the military airspace system data. model. Again, he found variations in users'
One type of usability problem that could be patterns of behavior in comparing both sessions
extracted was the frequency with which a "menu" of different length and different parts of single
activity followed another "menu" activity, or any sessions. As Penniman noted, the technique
redundant double action. The menu example may provides a quantitative, statistical rigor for
indicate that menu being searched in an comparing behavior across samples of different
attenipt to locate stk sired command. types, and thus helps to describe user bet 'ior.
Repetitions of other actions could indicate a lack
of system feedback or st, system response For transition matrices to be useful in
time. For the airspace study, the generic nature analyzing, tility data, behavior must be
of the predicate names provided no information compar.- ",eep two sy3tems or across time, or

9

there have to be certain defined, and detectable longer be identical (unless the user scheduled the

behavior patterns that alone can indicate usability same missiop 62 times, which is not likely but

problems. For instance, if users ame studied for P also cannot be determined from this analysis).

long time. changes in their pttemrs of behavior On the other hand, if the detailed value

can reflect 'vstem learnability or the effect of information is nnt included, there could be
increased cxperience. Examples of behavior important differnces in these cycles which are

patterns that reflect potential usability problems not identified. We do not know, for example, if

were the err-to-error transiti"m in the CAAD the command slecled was the approve or deny

study, excessive switching between interfaces to command.

plrform a single function in the simulation
study, or repeating the same action successiv-ly. Another example illustrating the need for

more analyst control over the level of cycle to be

The lag sequential analysis revealed no feund was: intention tu execute -> menu ->

usability problenms for th- airspa•e schieduling command ->field -> field -> field ->fied ,>

study. For the simulation study, which used button -> evaluate -> intention to execute. This

more detailed predicates, this routine was found cycle indicates that a dialog box was opened

to be useful when run with respect to errors, as it (menu, command), four da:a fields were accessed,

helped to identify what activities preceded errors, and the box was closed (button, evaiaate). We do

not know specifically which dialog box was

4.2 Frequency of Cycles opened, which fields were accessed, or even
whether they am- the same or different fields.

In addition to the predicate name-only Little is therefore learned from this cycle. On the

limitation, SHAPA had the additional other hand, the generic cycle intention to execute

shortcoming of calculating frequency of cycles -> menu -> comantud -> button -> intention so

only between instances of the same predicate - execute, if it occurs repeatedly, suggests that

for example, goal to goal or menu to menu, but users are openin_ dialog boxes but not physically

not menu to button. This greatly limited the interacting with them or changing any data in

usefulness of this analysis technique for our their fields. This could mean that users are

studies. In the airsp:,ce scheduling study, in one opening dialog boxes for the sole purpose of

participant's (the USI expert) data we found a reading information contained in them, or that

pattern that occurred 62 times: intention to they opened the wrong box, realized it, and then

execute -> mission icon -> menu -> command-> closed it. The former could mean that some

evaluate -> intention to execute. This was the critical task information needs to be moved up to

basic sequence of activities needed to schedule the the main display or the next higher level, so it is

displayed airspace requests (also called mission more readily available. The lauer may mean that

icons), Acting on the intentior0, the user selects the names of the commands for accessing the

first a mission icon, then the schedule menu, and dialog boxes are confusing, so that users are

then the appropriate scheduling command (deny, having difficulty discriminating among them.

approve, describe conflict, etc.). The user's cycle

was completed with an evaluation of the success While for both instances we can detect a

of the intention. How often this cycle recurs is general trend, we do not know which dialog

important, as it indicates a highly repetitive boxes are affected or how many. If we encoded

pattem of behavior that could be reduced or the data along specific occurrences only, the

eliminated by allowing a single command to be general pattern would not show up. With the

applied to many simultaneous objects. If the example given in the transition matrix section

detailed values of each of these commands had for the simulation usability study, the encoded

been included, for instance the name of each command "save" allowed us to discover the

mission icon, this cycle would not have occurred problem of having to switch interfaces for the

with high frequency, since the cycles would no sole purpose of saving. If the users were also

10

switching interfaces to perform some other on a prototyped system and its software
command, we would miss this activity unless we performance was not maximized. Thus,
selected that command to be encoded as well. redrawing the complex screens caused a longer
Using the more generic predicate "command" as than normal time delay and introduced a lot of
an encoding would have showed all occurrences noise into our graphs. Some of the long time
of this pattern, but further invetstigation would be lags were, however, due to the users referencing
needed to determine which commands were written manuals and provided materials or
involved. The optimal condition to maximize attempting to recover from usability problems.
this routine's effectiveness would be to allow the
analyst to run the frequency of cycles at a variety 4.4 Value List and the Collection of Predicate
of levels. IhL•ances

4.3 Graphical Summaridon Techoiques The SHAPA value list routine generates a
report on the number of occurrencij of each

The task movement and task rate graphing constant for each predicate. One of two SHAPA
techniques, which were used only in the CAAD routines where values were used, this is a detailed
study, were found to be a good way of frequency counter that is always helpful for
summarizing the users' progress toward their usability testing. The value list for the "task
goals, in terms of both the time and number of intention" predicate, for instance, lists all the
user inputs. Global usability problems, such as instances of the users' task intentions and their
a high ratio of system commands to actual task frequencies. This was useful in the airspace
commands, can be seen. These techniques, study for counting error types, as six error
however, are too generic and high-level for classifications were used as predicates; it also
directly indicating specific usability problems. provided counts of the spccific instances of each
Again, unless two or more systems are being error type within the six classifications. The
compared, many users' data is needed to determine value list is also helpful for providing
whether these problems am due to the system information on the most frequently used
desigp or the users' use of the system. commands, as well as the frequency of events

which arc considered to be usability problems.
We generated inter-event interval graphs for In the airspace study, for instance, when we

the CAAD and airspace studies. These graphs encoded the data we tried to differentiatc the
plot the time lags between each user input event. reason for certain event's occurrence. Some
The presence of long delays may point the events are executed routinely in the normal
analyst to areas of human-computer intemracion course of interaction, but sometimes the same
where the users are experiencing difficulty and events arc performed, for example, to improve
which may warrant further investigation. This perceptibility. The distinction is important,
technique was useful in the CAAD study, as we because in one case it indicates a potential
could see the effect of task complexity on the usability problem or an area that could be
freouency and duration of the long inter-event improved, while in the other case it may not.
times. In this case, the long lag times were dae For instance, when the timebar was moved to
to the designers using the time to proble'i solve control the part of the schedule that is viewed,
and think up design solutions to meet the the length of time for which the bar was
requirements. We were also able to divide the manipulated was recorded, and the constant "p"
graph into discrete task activity areas, to see was added as a value if users were thought to be
which activities were most affected by the performing the action to improve the
increasing task complexity. perceptibility of missions on the display.

Similarly, we had a predicate named "evaluate" in
The technique was less effective for the the airspace study with four states: OK, abort,

airspace study, because this study was performed incomplete and wrong. The frequencies of the

II

lauer three helped to point out when sequences of usability study. The data was very detailed, with
activity were not progressing well. By also each data fine containing information about the
including as a value the activity name that was user action (pressed, released, typed, moved), the
being evaluated, we were able to correlate the. object type (button, field, scroll bar, time bar),
evaluate state information to the activity being the specific name of the object (Bravo77, "Add"
performed - e.g., Evaluate (2-3-secachedule- button, string typed), and the location of the
abort) [3]. object (in Build folder dialog box, in Create/Edit

dialog, etc.). The five data files ranged from
Collection of predicate instances gathers 1841 to 3317 lines in length, with 238, 386,

segments that have been encoded with the same 420,422, and 534 MRPs generated. A sample
predicate. In the airspace study, we found this MRP is shown in figure 4.
extremely useful for supporting ow error analysis.
We had defined six predicates related to errors. mp# 6
Using the collection of predicate instances for each 0) Released Buton on Bravo77 in an Sua Pane
error predicate for each subject, we could easily I) P•sedHu Btton on Bravo77 in an Sum Pane
determine the number of enrors of each type that 2) Released Button on Bravo77 in an Sua Pane

occurred, along with the specific error descriptions 3) Pressed Button on Sua Description Field in Create/Edit Dialog

and the line number where the predicate was 4) Pressed Button on Sua Description Field in Create/ldit Dialog

located in the file. The line number was useful, 5) Typed "0900" in Sua Description Field in Create/Edit Dialog
as we often needed to go back to the original 6) Pressed Button on Sua Description Field in Create/Edit Dialog
encoded file to collect more information on 7) Pressed Button on Sum Description Field in Crease/Edii Dialog
activities associated with the error. 8) Typed "0900" in Sua Description Fi•ld in Creatc/Edit Dialog

9) Pre-sed Button on Sua Description Field in Create/fAit Dialog

Use of the e.,or code across studie% ks also 10) Piessed Button on Sum Description Field in Create/Edit Dialog
interesting. In the first two studies, the error 11) Typed "0900r in Sum Description Field in Create/ldit Dialog

code was used in the traditional way. If the 12) Pressed Button on Sum Description Field in Cyeatefidit Dialog

system responded to a user input with an error 13) Pressed Button on Sum Description Field in Create/Edit Dialog
message, the event is coded as a general error. In 14) Typed 0900" in Sua Description Field in Create/Edit Dialog

the air• wc study, we used a more advanced error 15) Pressed BuUto on Create Request Button in Create/Edit
coding scheme. By integrating the data from the Dialog
verbal protocols on the users' intentions and their 16) Pretsed Button on OK or Cancel Button in Confimisation Box

actual inputs, we were able to not only assess 17) Pressed Button on Bravo77 in an Sua Pane
errors of the physical or execution type, but also 18) Released Buttor on Brvo77 in an Sua Pane
those in which the user's sequence of activities at: 1661 1679 1755

did not correspond with their intentions (errors in Total ntmsber of positions = 3.
action specification), a type of error that does not
cause the system to generate an error message.
We also had classifications for other cognitive Figure 4 Sample Output from the MRP Tool
errors, such as errors in intention, and errors in Showing a Single MRP of Length 19, Occurring
perception, interpretation, and evaluation, as well in 3 Different Positions.
as the more traditional execution error. This is a
good example of where the encoding process is To assess the MRPs, we tried using the
itself a form of analysis. heuristics provided by Siochi et al. (1991) to

narrow down the number of MRPs that need to
4.5 MRP Analysis be examined. These included examining the

longest MRPs, the most frequently occurring,

The MRP analysis technique was applied and anomalies departing from the expxcted
separately to the five participants' collected patterns of MRPs (expected patterns are few long
unencoded input data files from the airspace MRPs and many short MRPs). Unfortunately,

12

this limited set of MRPs did not reveal any will not find those. It also generates a large
usability problems, and we had to examine every amount of output with a lot of noise; e.g., many
generated MRP. In general, rie more meaningful MRPs were generated relating to scroll bar
patterns seemed to relate to five types of activity: activity or tabbing through data fields.
scroll bar movement, time bar movement, data
editing sequences in dialog boxes, list selection, The technique does have some good points.
selecting or moving the mission icons, and Many of the problem specifics missed by
approving mission sequences. SHAPA's frequency of cycles because values

were not considered were made somewhat
For some participants' data sets it was harder apparent with this analytic technique (particularly

to find potential usability problems in the since we knew what to look for), since it was
generated MRPs, because the participants did not operating on much more detailed data, The
work methodically. Few meaningful repetitious technique is relatively easy and quick to apply if
patterns could be identified among the, many the appropriate data can be collected: no data
repeating sequences identified. Some repetitious encoding is required. The program had no trouble
patterns concerning usability issues could be accommodating large data files. Finally, the
seen, however, in the MRPs relating to the command usage statistics could be useful for
ability to select only individual items from a list, providing frequency information at a very detailed
having to schedule each mission part and each level; the formatting of this particular output,
mission individually, and the dialog box however, could use some improvement.
problem. The dialog box problem wass
previously discussed as the case in which 5 Conchlsions
SHAPA generated a high-level cycle showing
dialog boxes being opened and then immediately We hoped to shed light on the types of
closed, but yielding no information on which system usability information each of the
dialog box was used. With MRP analysis, some sequential data analysis techniques revealed, the
MRPs were generated showing the actual patterns trade-off of questions answered and level of
of actions for this occurrence for the create/edit encoding used, arid whether it was worth
dialog box. To find all the specific occurrences, applying the techniques. Overall, we conclude
however, involves looking across all the MRPs, that we did not have a great deal of success in
because problems of the same type, or even effectively utilizing most of the sequential data
identical patterns, are not necessarily grouped analysis techniques for analyzing our usability
together. If the sequence of interest was study data. Many interacting variables affect
sometimes part of a larger repeating sequence, what can be learned from application of the
that larger sequence would be located in a techniques, including the types of data that can be
different MRP. Given the large number of collected, the encoding scheme used if dte data is
MRPs generated, it can be difficult to find all encoded, the flexibility with which the SDA
instances, routines can be applied, and the types of usability

problems to be addressed. If we had to rank-order

This technique provides only one potential the techniques discussed here from best to worst
indicator of usability problems - that of for identifying usability problems based on our
repetitive sequences of activities. Problems with experiences, we would put hierarchical data
the technique include the random approach to encoding as the most useful activity, and MRP
pattern identification, which precludes frequency analysis second (because it is quick and easy to
counts of a particular pattern, and the patterns apply), followed the value list, collection of
identified, which are totally context free and predicate instances, frequency of cycles, transition
unrelated to any task or user interface sequences. matrices, and lag sequential analysis. To indicate
Many usability problems can only be identified if overall system usability, the graphical techniques
user intentions are known, and this technique are somewhat useful.

13

Nevertheless, we are still atlracted to the idea (1991) had to supplemenit their MRP analysis of
of patlem analysis ard analytic techniques for the GIPSY system by interviewing the users.
analyzing usability data and feel the problems we
encountered are due mostly to limitations of the When using verbal protocols in conjunction
currently available software packages -- with data logging techniques, the user's thought
specifically, their lack of flexibility in specifying processes can be extracted to supplement the
the data parts and levels for the routines to act logged mous4eystroke data during encoding;
on. To effectively utilize routines such as this puts structure on what would have been
transition matrices, lag sequential analysis, and otherwise difficult to interpret data. The process
frequency of cycle analysis, the usability analyst of encoding the data was found to be the most
needs to be able to apply the routines at various useful analytic activity, particularly in the
levels, without having to recode the data. As we airspace study, where we used codks that allowed
have shown, we need to be able to identify both us to hierarchically break down the user input
generic and specific patems in the data with a sequence into goals, tasks, intentions to execute,
single tool. This could be achieved by having actual sequences of inputs within each task and
frequency of cycles, lag sequential, and transition execute intention, and evaluation of each activity.
matrices routines operate on both the predicates We also learned much from the detailed eror
and their values, permitting use of wild cards for codes used. This coding scheme did not lend
particular values. This would provide the itself to use of SHAM's SDA techniques, but
flexibility needed to get at a large variety of neither did the coding schemes we tried for the
useful patterns, or to follow up leads indicated by other studies. Moreover. with the encoded data in
the general patterns. this easy-to-read form, patterns were easily

detectable by the usability analyst. In fact, it
For the frequency of cycles routine, allowing was easier first to manually detect patterns, then

identification of both a start and an end predicate figure out which SDA analysis routine to run and
would allow analysts to better define the types of with what purameters, and finally run the SDA
patterns we want the system to find. There seem routines to generate iard frequency counts. To be
to be at least two types. One is a task activity able to say a repetitive pattern occurred 62 times
pattern in which we might want to specify task- in 90 minutes creates much more impact than
related start and stop points, such as between just noting that such a pattern exists.
specific user intentions to execute or task
intentions and their corresponding evaluate state. During the airspace study we also identified
This would depict activity within a task-domain and manually extracted other measures of interest
cycle. It would also be helpful to be able to that we felt reflected system usability but were
identify user-interface object usage patterns across not supported by any software packages, such as
task activities. Here we would like to specify a the number of computer actions per intention to
cycle, such as from dialog box opening to execute. Some patterns of user activity could be
closing, which would find all dialog box usage recognized by human analysts might not be
patterns along with the usage of objects identified by a software pattein recognizer because
contained within them. they do not repeat exactly or regularly. For

instance, users often looked up information on a
The problem with the MRP routines which mission icon in a dialog box before scheduling

work on the unencoded command files is the loss it. but did not always do so sequentially or with
of context or user intention information. The the same exact set of actions; also, the mission
data cannot be easily aggrega.ted along task lines, icon was different in every case. The computer
and the users goals and inwrdions are not known. programs do not identify these as repetitive
This makes identification s.-f many types of activities.
usability problems very difficult. Siochi et al.

14

Software to support application of SDA
techniques for usability testing is still in its James, J. M., Sanderson, P. M. and Seidler,
infancy. As programs become morw flexible and K. S. 1990, SHAPA Version 2.0 Instruction
powerful, and usability analysts identify Manual and Reference, EPRL-90-16/M,
measures and routines of interest and use to University of Illinois at Utbana-Chamnpaign.
them, these tools should become more effective.

Kemeny, J. (, and Snell, J. L. 1960, Fi ite
Acknowledgments Markov Chains (New York: Van Nostrand Co.).

The simulation and prototyping usability Newell, A. and Simon, H. A. 1977, Human
study was conducted by janet S. Blackwell. Problem Solving (New Jersey: Prentice-Hall,
Supportt for the airspace study was provided by Inc.).
Charles D. Bowen, Scott E. Blomquist, and
Elizabeth Wadick. Norman, D. A. 1986, Cognitive Engineering, in

D. A. Nomian and S. W. Draper (eds) User
References Centered System Design: New Perspectives

on Human-Computer Interaction., (Hillsdale.
Cuomo, D. L. and Bowen, C. D. 1993, NJ: Lawrence Erlbaum Associates).

Measures of User-System Interface
Effectiveness: An Encoding Scheme and Penniman, W. D. 1975, A Stochastic Process
Indicators for Assessing the Usability of Analysis of On-Line User Behavior, in
Graphical, Direct Manipulation Style Proceedings of the 38th Annual ASIS
Interfaces, MITRE Technical Report Meeting, Boston, 147-148.
92R000047, Vol. 3, Bedford, MA.

Sanderson, P. M. 1991, ESDA: Exploratory
Cuomo, D. L. aiW Sharit, J. 1989, A Study of Sequential Data Analysis, EPRL-91-04,

Human Perfonnance in Computer-Aided University of Illinois at Urbana-Champaign.
Architectural Design, International Journal of
liwnan.Computer Interaction, 1, 69-107. Sanderson, P. M., James, J. M., and Seidler,

K. S. 1989, SHAPA: An Interactive
Good, M. 1985, The Usc of Logging Data in the Software Environment for Protocol Analysis,

Design of a New Text Editor, in Proceedings Ergonomics, 32, 1271-1302.
of CHI '85, Co.:,r-eneo c,, iuman Factors in
Computing Systems, Apr, 14-18, San Sanderson, P. M., Watanabe, L. M., James,
Francisco (ACM, New York), 93-97. J. M. 1991, Visualization and Analysis of

Complex Sequential Data Using SHAPA
Hammer, J. M. and Rouse, W. B. 1979, (MAC), Proceedings of the 3rd European

Analysis and Modeling of Freedom Text Conference on Cognitive Science Approaches
Editing Behavior. in Proceedings of the to Process Control, September, 121-135.
International Conference on Cybernetics and
Society, Denver, CO, 659-664. Siochi, A. C. and Ehrich, R. 1991, Computer

Analysis of User Interfaces Based on
Holleran, P. A. 1991, A Methodological Note Repetition in Transcripts of User Sessions,

on the Pitfalls in Usability Testing, ACM Transactions on Information Systems,
Behaviour & lp~formnaion TechLology, 10, 9, 309-335.
345-357.

15

