OMB No. 0704-018

' ' nraner ~ocUMENTATION PAGE Form Approved (2

4 rmatron 15 estiMated 0 average ¥ hout per response. inclyding the time for reviewing instructions, searching 2xsting data soyr<es,
o . «ompleting and reviewing the collection of information. Send comments rc?arqu this burden estimate or any other aspect of this
or reducing this buraen. to Washington HeadGuarters Secvices, Oirectorate for inforina*ion Qoerations and kKeports, 1215 Jeffersin

| !} ‘m "I ') (! 1302. 'nd to the Office of Management and Dudget, Papurwork Reduction Project (0204-0188), Washingtun, C_)f 20503.
LT e
March 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Understanding the Applicability of Sequential Data
Analysis Techniques for Analyzing Usability Data

6. AUTHOR(S)

Donna L. Cuomo t

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

, REPORT NUMBER
The MITRE Corporation

202 Burlington Road
Bedford, MA 01730-1420 M 93BO000C18

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10, SPONSORING / MONITORING
AGENCY REPORT NUMBER

The MITRE Corporation
202 Burlington Road

M 93B0O000018
Bedford, MA 01730-1420

11. SUPPLEMENTARY NOTES

12a, DISTRIBUTION/ AVAILABILITY STATEMENT e '12b. DI TRIBUTION CODE

Approved tor public release; distribution unlimited A

pnset———
13. ABSTRACT (Maximum 200 words)

The applicability of exploratory sequential data analysis (ESDA) techniques for
analyzing usability test data is examined. ESDA techniques include trausiti-on
matrix analysis, lag sequential analysis, frequency of cycles, graphizal
summarization techniques, and pattern analysis techniques. A subset of each
was used in analyzing the data from three usability studies. The encoding
schemes used, the analysis routines run, software tools to support encoding and
analysis (SHAPA and the Maximal Repeating Pattern analysis tool), and their
interactions are discussed and the different types of usability problems which
can be oxtracted from the data when analyzed with ESDA techniques are illustrated.
It 15 concluded that the LSDA techniques wiil be useful once the stace of the
art in software support is able to provide the analyst greater flexibility in
applying the analysis routines.

14, SUBJECT TERMS 15. NUMBER OF PAGES
15
ESDA; sequential data analysis; SHAPA; Maximal Repeating 16. PRICE COOF
Pattern analysis tool
17. SECURITY CLASSIFICATION 18 SCCURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20, LIMITATION OF A3STRACT
CT RIPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassidied
NSN 7540.01.280-5500 Standard Form 298 {Rev 2-89)

Proscribnd by ANSH Sto £39-18
29802

{ ™

' —".“3 ,

e

- A R

-, Ve T g T o

Understanding the Applicability of
B Sequential Data Analysis Techniques
j for Analyzing Usability Data

Donnz L. Chomo

-
-,
.0:_-\
9% 4 20 0%l
MITRE

B 202 Builington Road
B Bedlord, Massachusetts 01730- 1420

M 9380000018
March 1993

93-08431
MARRBNIR, o, o

Understanding the Applicability of M 9380000018
Sequential Data Analysis Techniques March 1993
for Analyzing Usability Data

Donna L. Cuomo

Contract Sponsor MSR
Contract No. N/A
Project No. 9162A
Dept. DO4?

Approved for public release;
distribution unlimited.

MITRE

202 Burlington Road
Bedford, Massachusetts 01730-1420 &

) Depariment Approval: Mn«&. C 9:/00&-

Nancy C. éoodwux

MITRE Project Approval: /‘/7(‘977//'4' M

Donna L. Cuomo

—l-cocssion For

- ys
BTIS CRART W
DTIC TAB d
Unannouuced 1

Justirication e

T v,

TITTRY By ...

JDistridution/ '
ﬂ‘”\t“\"”"?v fodao

! © lAvesl endzor]
Vigt Spealal

|| %
\"\x\

PN |

Table of Conteats

Section

1

2

Introduction
ESDA Techniques

21 Sequential Data Analysis

2.2 Graphical Summarization

23 Encoding the Data

24 Softwarc for Supporting Data Encoding and SDA Techniques

3 Usability Testing of Three Softwarc Systems
3.1 Computer-Aided Architectural Design System
3.2 Simulation and Rapid Prototyping System
3.3 Airspace Scheduling System
4. Applications of ESDA Techniques to the Collected Usability Test Data
4.1 Transition Matrices/Lag Sequential Analysis
4.2 Frecuency of Cycles
43 Graphical Summarization Techniques
4.4 Value List and the Collection of Predicate [nstances
4.5 MRP Analysis
5 Conclusions
Acknowledgments
References

Page

E- -V &)

[= = W,

10
11
11
12

13

15

15

List of Figures
Figure

1 Outputs from Three SDA Techniques, (a) First-Otder Transition Matrix, (b) Lag
Sequential Analysis, and (¢) Frequency of Cycles

2 Outputs from Three Graphical Summarization Techniques, (a) Task Movement Graph,
. (b) Task Rate Graph, and (¢) Inter-Event Interval Graph

3 Sample of the Encoded Data from the Airspace Usability Study

4 Sample Output from the MRP Tool Showing a Single MRP of Length 19, Occurring
in 3 Different Positions

List of Tables

Tables

1 Encodings Used for the Airspace Scheduling Study

Page

12

Page

The applicability of exploratory sequential data analysis (ESDA) techniques for analyzing usability test

Abstiact

datais examined. ESDA techniques include iransition matrix analysis, lag scquential analysis, frequency of
cycles, graphical summarizauon techniques, and pattem analysis techniques. A subset of cach was used in
amalyzing the data from three usability studies. The encoding schemes used, the analysis routines run,
software tools to support encoding and analysis (SHAPA and the Maximal Repeating Pattern analysis tool),
and their interactions are discussed and the different types of usability problems which can be extracted from
the data when analyzed with ESDA techniques are illustrated. It is concluded that the ESDA techniquos will
he usefu! once the staie of the art in software support is able to provide the analyst greater fiexibility in
applying the analysis routines. Without the ability to apply analysis routines to multiple data levels, too
much work is involved in obtaining a complete analysis of usability problems at all levels,

1 Introduction

A poicential problem with some usability
test methods, such as verba. protecol techniaues
and user obscrvation, is subjectivity in the data
analysis and interpretation (Holleran 1991: 352),
To address this problem, we have been
experimenting over the years with understanding
the applicability of exploratory sequential data
analysis (ESDA) techniques for analyzing
usability data. ESDA is a family of tools and
techniques for exploring sequential data collected
in complex, dynamic, event.driven environments
(Sanderson 1991). Applying the techniques
typicaliy involves transcribing and cncoding
recorded events, and applying statistical analysis
routincs such as Markov analysis, lag sequential
analysis, cycle analysis, and pattcrn analysis
techniques to the encoded data. It has been
proposcd by various researchers (Siochi et al.
1991, Holicran 1991) that such techniques could
prove useful in the arca of human-computer
interaction analysis,

While severaf sidies have been documented
in which Markov analysis, for cxample, has been
used (e.g., Hammer and Rouse 1979, Penniman
1975, and Good 1985), we were unable to find a
comprehensive guide or discourse on the various
ESDA tcchnigucs available and how they should
be used in the context of usability testing. If
these types of techniques prove useful in
usability test data analysis, they vould enhance
the process of converting logged usability test
data into information that is less subjective, and
more rigorous and quantifiable, and would pesmit

the use of antomated analysis tools, This pager %
describes three sysiems (or which we have '
performed usability tests and applicd a subsct of
these ESDA techniques during the data analysis
phase, and our lessons learned from these
experiences. Our intent is to provide a
perspective in this arca that will help other
usability analysts decide whether it is worth the
cffort 1o apply these techniques, and which
technigues are most likely to produce mearingful
results for them. Our expericnces may also help
developers of usability test tools undersiand the
practitioner's needs, in terms of thic type of
information we should extract from our usability
data when evaluating the usabihty of software
systems.

2 ESDA Techniques

Sandcrson (1991) explains ESDA as
encompassing concepis from exploratory data
analysis philosophy, sequential data analysis
(SDA) wechnigaes, and human-computer
interaction. She proposcs ESDA as a way of
analyzing data that is rich, complex and muki-
dimensional and cannot be readily analyzed with
conventional statistical techniques.
Characteristics of such data are that events unfold
over time and preservation of the temporal
dimension is important, the data can usually be
analyzcd at many different levels, and you may
not initially know the questions to be answered.
SDA techniques include methods for sampling,
coding and analysis. The analytic methods
include time serics, Markov, lag sequential,
causal, cycle, grammars (Sandeeson et al. 1991)

and pattern analysis and identification techniques,

Below we briefly describe the techniques we have
uscd, whether or not data needs to be encoded. and
the manual versus softwarc-aided options for data

encoding and applying SDA techniques,

2.1 Sequ-ntial Data Analysis

The mo -ment between siates can be
cxplored by inodeling them as a finite Markov
chain, which is defined by Kemeny and Snell
(1960: 201) as "a stochastic process which
moves through a finite number of states, and for
which the probability of entering & certain state
depends only on the last state occupicd.” Matrix
analyses involve constructing transition
frequency or probability matrices to cxamine
whether thege are dependencies in the data. The
analysis may reveal habitual or stereotyped
patierns of behavior (Sanderson et al. 1989).

Lag sequential analyses (originally developed
by Sackett 1974, in Sanderson et al. 1989)
pennit vague patierns to be disceined in a data
sequence. Such analyses disblay the frequency
with which onc state occurs with respect to

another state, at various removes. If state 1 is
the target state, the analysis displays the
frequency with which siate 2 ocours direcily
before state 1, two steps before siate 1, directly
after state one, two steps after state 1, ets. This
helps determine patteens of behavior that may not
be strictly sequential (Sanderson ot al. 1989).

Frequency of cycles (originally developed by
Fisher 1988, in Sanderson ct al. 1989), looks for
regularitics in behavior sequences, This form of
analysis provides a report of actually occurring
sequences of commands or states in a single cycle
defined by a target command or state, That is, if
the target state is staie 1, the first and second
occurrences of state 1 are identificd and all the
events in between are stored as a cycle. This is
repeated for the secotd and third occurrences of
state 1, and 50 on until all the cycles are
identificd. Each cycle is then compared for
matches, and the frequencics of each cycle are
counted. The resuit is a listing of all cycles, the
number of times ¢ach occurred, and the sequence
in which they occurred (Sanderson et al,, 1989).
Each of these is illustrated in figure 1.

E D S P D S D B
Emor A5 05 00 .05 .18 .54 .03 .00 Frequency of state 2 with
Draft A9 15 00 08 08 50 00 .00 respect to stato 1
Sp/oin |.5 0 00 00 00 00 00 50
Peccp |00 57 OO0 05 00 .38 .00 .00 gi II I| I
Draw 02 00 00 00 68 19 10 N
System |06 03 01 06 32 46 wi 05 -4.3-2-1811 2 3 4
Delete .08 02 00 .00 49 .16 24 .02 -
Bak .06 00 .00 .13 .13 .69 0000 Position

6 (b)

Freq Cycle 7

A. 1 Int.task -> cval. -> int.task

B. 1 Int.task-> int.exec -> cval, -> int.percept -> eval. -> eval, -> int.task

C. S Ins.iask -> int.exec -> tape ->tape -> command -> button -> eval. ->

int.exec -> menu -> command -> ¢val, -> eval. -> int.task

©

Figure 1. Outputs from Three SDA Techniques,
(a) First-Order Transition Matrix, (b) Lag Sequential Analysis, and (¢) Frequency of Cycles.

Another pattern analysis technique, maximal
repeating patterns (MRP), was dovoloped by
Siochi and Ehrich (1991). MRP analysis works
on the premise that repetition of user actions is
an important indicator of potential user interface
problems. The technique detects the longest
repeating sequences of command strings in user
session transcripts; it works on the user inputs
only, The method is unique in that the analyst
docs aot identify a priori the patems or sirings
the technigue should scarch for; all repeating
pattems are identified.

2.2 Graphical Summarization

We have previously proposed geaphical
summarization techniques to aid in analyzing
scquential data in the computer-nided design task
domain (Cuomo and Sharit 1989). These ideas,
bascd on the human problem solving concepts
presonted by Newell and Simon (1977), included
task movement graphs, task rate graphs, and
analysis of intcr-cvent intervals, togcther with
Maikov process analysis. The grapiicat Outpiat
of these routines is illustrated in figure 2.

The first two graphical techniques are based
on the concept of moving through a design or
task state space toward a goal, Recorded subjoct-
input events are coded in terms of whether the
event meved the user a step forward toward a
goal, whether the command was a result of using
a computer and did not move the user forward a
stey (e.g., moving a window), or whether the
event caused the user 0 move backwards, away
from the end goal (¢.g., delete something), The
overall slope of the graph indicates the efficiency
with which a task is performed. Rate measures
can also be constructed which show absolute
forward movement of task progress wver a ime
period, where time periods are the total time for
discrete task scgments. Finally, inter-cvent
interval analysis involved plotting the clapscd
time between subject-input events against
interval numbers, Long delays between events
can then be ideatified, flagging potential problem
areas requiring further investigation.

Movement

Event #

@

Mcvement

100
Time (Min)
)

Time {sec)
(6,]
o

o

10 19 28 37
Event Interval

©)

Figure 2. Outputs From Three Graphical
Summarization Techniques, (a) Task Movemeni
Graph, (b) Task Ratc Graph, and (¢) Inter-Event
Interval Graph.

To apply any of these analylic roatines,
software can be written in any conventional
software langnage and results output and
displaycd with commercial database and graphing
packages. For some routines, ¢.g., inter-gvent
interval analysis, this approach is straightforward
and easy. Having several stand-alone analysis
routines, however, docs not readily support the
exploratory aspects required for & complete
analysis of the data, and writing analysis code can
add ume to an alrcady time-consuming process.

Nevertheless there may not be alternitives, Few
mature soflware tools designed (0 support BSDA
eehniques are available. The tools we weee able
10 obtin are discussed later in the papes,

2.3 Encoding the Data

‘The type of data collected, the analytic
icchnique itself, and the questions to be answersd
dotermine whether the technigue can be applied
directly 10 the collocted usability daw, or whether
the data needs 10 be encoded first,. When
coliecting versbal protocols, for instance, the
content of the sentences and actions of interest
necd to be extractd and encoded before ESDA
techniques can be applicd; statistical techiviquos
obviously cannot be applied directly. When (iles
of actual mouse and koystrokoes or command
input files arc collected, some of the analysis
techniques can be applicd without encoding the
data. Siochi ¢t al. (1991), for instance, applicd
their MRP routines to unencoded command input
files; such files may need some filtering to be
put in a iorm acceptabic o the angiysis program,
The task rte and task movement gravhs,
although applied to similar types of user input
files, must be encoded as the task imovement
implications of cach input must be dotcrmined.
For o wehnique such as transition matrices, the
purpose of the analysis will determine whether
the data needs to be encoded. I the goal is 10
deteoming the most commonly occurring input
paits, for instance, the techaique should be
applicd Lo the actaal user input sequences, 1f
patiems of higher-level behavior ars sougiit, thk
data should be coded approgwintely: in fact data
from scveral sources may be used to support
application of the encodings to the data,

When encodling data files, selection of the
cncoding schemie is a critical factor influencing the
questions that can b answered by the data. An
appropriate scheme 1s usually establisticd iteratively,
Once decided upon, the analyst can apply it manually
by examining the daia files, choosing the appropriate
codde for cach input or group of inputs, and typing the
software codes into a new file. Alticmatively, tools to
suppoit data cncoding can be written, or existing
1ols used,

2.4 Sofeware for Supporting Data Encoding and
SDA Techniques

As it is not praciical to apply these ESDA
techniques or complex encoding schemes
manually, software support is required for both
the data encoding and application of the analysis
routines. How the software applics the
technlques (o the data, and the amouat of
flexibility in the software, however, affect the
resultant uscfulness of the analysis rondne
outputs.

One 1ool we were able to obtain that supports
both encoding and analysis was SHAPA (Software
for Heuristically Aiding Protacol Analyris)
Version 2.0 , developed by the University of
Iinois at Urbana-Champaign Engincering
Psychology Rescarch Laboratory. SHAPA isa
protocol analysis environment permitting
rescarchers to encode data in any way they choose.
It works on singles-stream, un-timestamped verbal
and non-verbal protocols, running on an IBM PC
OrF compatinie, A Rew version cumenily wnder
development, MACSHAPA, will include the
ability to analyze mukiple stecam, time-stamped
data from video records as well as ASCI files
(Sanderson ct al, 1991).

To encode data with SHAPA, the rescarchier
first decides on the sacoding scheme, then
specifies the codes, called predicates, on ke
predicates screen. A predicate consists of the
namc followed by its arguments or values in
parenheses, and might look like: INT.TASK (1-
1.{-setiiae), or MENU(view, m). By having the
data analyst prodefine the predicates aixl their
vatues, SHAPA can allow the user o type in an
abbreviation for cach predicate, leaving the
software to complete the name. Oance all the
files arc cucoded, running the analysis routines is
as casy as selecting the desired routine from e
Reports menu, SHAPA supports transition
matrix analysis, lag scquential analysis,
trequency of cycles, value lists, and predicate
instances. The value list rontine generates &
report which, for each predicate, lists all the
constant values used as predicate arpuiments and
their frequency of use, The collection of

predicate instances routine collects segments
encoded with the same predicate and displays the
line number on which they occumred; values can
also bo specificd as belng of intcrest (James ct al,
1990), Except for these Jast two routines, which
do take account of ths predicate valucs, tho other
routincs all report o predicates only, not their
specific vidues. (Sco any of the Sanderson £t al.
referencos of James, Sanderson, and Soidler 1990
for more detailed descriptions of SHAPA andl its
capabilitics.)

A second software package we were able to
obtain for our usability lab was the Maximal
Repeating Patern (MRP) Tool doveloped at the
Departmeont of Computer Science at Virginia
Polytechaic Institute and State University, which
supports extraction of MRPs from logged user
input datn. We used the version desigaed to run
on UNIX-based systems. "To use the application,
the logged user input data is normatized to
convert raw transcripts to a standard fonm,

Siochi ¢t al. (1991) used the tool to analyze data
paterns oh COHCCICd usEr sGssions o &
command-bascd image processing sysiem called
GIPSY. They nomaalized the raw transcripy filos
by exiracting inputs from the collected user
inputs and system outputs, and then extracted
single-word conmimands from the command
argument pairs in the wanscript. The software
then identities all the MRPs in the file. MRPs
arc defined as repeating patiems that are as long
as possible, or are independently occurring
substrings of longer pattems (Siochi et al. 1991:
316). Their outnuts include cach identiticd MRP
in onder of decreasing length, and the number of
instances. Summary intormation includes the
number of MRPs found ang their minimuny,
maximum, and average length. The analyst can
filtee MRPs, examine specific instances of each,
and get more details on a specific one, following
a pointer back to its instance in the raw transcript
file. This technigue teads to generate large
amounts of data which naed (o be filtered. The
MRP developers estimate that one MRP is found
for cvery 20 10 25 command lines.

3 Usabllity Testing of Three Softwacs
Systems

In the past four years, we have conducted
three formal usability studics on a varicty of
systeins and, for each, have uscd some subset of
ESDA techniques to analyze the collected
usability dats. All systems waore similar in
possessing graphical, dircct manipulation style
user interfaces, Al supported realistic tasks thot
were user-controlled as opposed 10 system-
controlled, and none of the tasks were time
critical. All the tasks were also ill-defined, in the
sense that there could be many correct solutions to
the problems; we expested high degrees of
varinbility across participants in lorms of both the
problem-solving approsch taken and the computer-
use strategics. Task times for each test ranged
from one and a half hours 1o approximaicly four
hours. Finally, all participants were
reprosentative of the intended uscr population,
the participants in cach tost wore trained (o use the
system by the asability testers. They had not

sigaet tha gugtany, neavinnely
USCU Wi SYSSt pUOVIGUSY.

Each systom and tho usability test procedures
used are described bricfly below. Dewited
descuptions of procedure and usability problems
identificd can be foudd in the referenced usability
test reports. Our focus here is on the way in
which data encoding was performed and the
effectivencss of applying ESDA techniques.

3.1 Computer-Aided Architeciural Design System

A usability study of a commercial computer-
aided architectural design (CAAD) sysiem was
pecformad, in which six architectoral design
students porformed twao design tasks ot one of
three levels of complexity (Cuomo and Sharit
1989). Although verbal protocols, user
keystrokes ard stylus inputs were collected, only
the keystrokes and stylus inputs were used for the
application o SDA techniques.

Two encoding schemes were used in this
study, one a subset of the other. In the first
schemg, cach user input action was assigned one
code. The ten oniginal codes were: ervor,

drafting, split/join, perceptaat, motor, query,
dawing, system, buckwagnd oiie step, backwand
many stops. Some codes reflected nctions taken
on the part of the user o reduce differcat typos
of information processing loads such as
perceptual (6.6., zooming reduces perceptual
wosttaad) and molor loads, while other codes
ol od forward o backward inovement (0
produce a design drawing, and finally, codus
were applicd 10 inputs which are an anifoct of
using a computer (system code),

when the codes were applied o the data it
transpired that two of the codes were used very
infrequently; for subscquent analysis, the codes of
quory an spliv/join wers collapsed into the
systom code. For each usor's encoded data file,
we generated first-order transition matrices such
as tho onc shown in figure 1. To apply the
praphical summarization techniques, we funther
simplified tho encoding techniquos so that eich
input was classificd into ono of three states: a
forward movemaent, a backward movement of
msgnitade n, of no movement, The inter-ovent
intcrval analysis was applicd (o the time siamps
of cach input, and the cocoded data was not
involved. The data encoding for this snxdy was
performed manually and the analysis routines
were writien in FORTRAN,

3.2 Simulation anid Rapid Prototyping Sysiem

We parformed a second usability sudy which
involved ESDA technigues on a bt version of o
software sysiem developed o support prototyping
and simuladons with graphical display. Five
participants with vicying degroes of computer and
simutation expericnce participated. For this
usability study we were able to collect only verbal
protocols and a videotape of the display. The
videotape was transcribed, including both
participants' comments and actions, ikl then
sepmeited and encoded with 25 predicates, The
predicates were a mix of user intenace vbject
rclated encodings (¢.8., menu selections, new
interface, dialeg completion, save); sk activitics
related 10 building the simulation model, such as
load model eatity, object and process definition
and manipulation, statement modification and

selection, and process mudification; and user
activities (display examination, ereor, ¢ffor
cocroct o wd identification, materials neference,
PAVSES, SLLHOCL COMMEDLS, Fequesis for belp,
searches); and experimenter comment. Some of
the predicatos had values defined as well. The data
was cncoded using SHAPA. All the SDA
techiniques available in SHAPA were run on the
ecoded data, in addition to caleutation of the mone
iradlitionail ngability measures such as frequency of
usability tester intervention,

3.3 Airspace Scheduling System

Our mos: recent and sophisticated usability
test, meusured by aticntion given to developing
an encoding language and assessing the
applicability of the ESDA techaiques, was
performed on a prototype military airspace
scheduling system (Cuomo and Bowen 1993),
Four subject-matter experts and a uscr-system
interfoce (USH eapert participated in this
usability study. Verbal protocols, a videotape of
the disnlay, and time-gamned user keystrokes aw:d
mouxe inputs were collected, The twe daa
streams were integraied before application of an
encoding scheme, atlowing the user actions to be
stuctured withio i task context. Many of the
users' psychological intentions were identified.
attowing hicrarchical segmentation of the inpul
actions.

The 21 encodings used, which were loosely
based on Nomian's (19806) stages of user activity
model, were divided into two levels and are
shown in table 1. The first level included the
semantic-level predicaes; they provided
information on the user's overal! steategy, where
and what types of ervors were made and whether
they were recovered from, what tasks were
performed within cach goal (task intentions),
what computer steps (inentions 1o execuie) were
attempied in performing cach task, and an
evaluation of the success of cach task and cach
execution sequence performed within thae task.
The articulatory-level encodings focused on the
actual scquences of commands and usee inpuis for
each ingestion to execute, and reflected genenie
user interface object usaw . Each of (he

predicates also had detailed values which usually
included the acteal instance of the more generic
predicate type. For instance, the "task intention”
predicate included values for the goal number, the
task number, and the name of the task the subject
was performning (e.g., scheduling a particuiar
mission, resolving a conflict). The "evaluate”
predicate valuces included the goal, task, and
execulion number, the name of the task or
execution being evaluated, and the evaluate state;
possible states were abort, incompleie, OK, or

actual conviand name selected followed by the input
device code. The predicate "fields” had the name of
the dialog box it resided in, the ficld name, and the
user function performed in it (data entry into blank
field, deleted information in the field, edited
information in a populated ficld, or ficld was sclected
but not modified) as its three valucs. The encoding
scheme and its hierarchical nature are illustrated in
figure 3. SHAPA was again used as the encoding
tool; its analysis routines were run on some of the
encoded data files. We also experimented with the

wrong,

The articulatory-level values included the actual
insiance of the user interface object type being

MRP tool by applying it to the participants’ uncoded

data files. The data files contained the numbered lincs
shown in the right-hand side of figure 3, but with the

time information removed.

selected as well as the input device code (whether the
inouse or keyboard was used, "m" or "k"). The
"command"” predicate, for example, had as values the

Table 1. Encodings Used for the Airspace Scheduling Study

Encoding

Definition

Goal

Task intention (Int.task)
Perception intention
(Int.per)

Intention to execure
(Int.cxe)

Evaluate (Eval)

Erzor in intention (Err.int)
Error in action specification (Err.acsp)
Error in execution

(Err. exec)

Error in perception

(Exr. per)

Error in interpretation
(Err. inter)

Error in evalvation (Etr.eval)
Recovered erro: (Recierr
Menu

Command

List-select

Button

Ficld

Scroll

Tape

Timebar

Form

oEror was detected and recovered from.

Scenerio step.
An intention to complete one task contributing to the completion of a goal.
An intention to improve the perceptibility of a display.

One computer step (may be comprised of multiple actions) leading to the
completion of a task intention. Several steps may be required per task intention,
The success with which the intention was accomplished.

The intention was incorrect and will not accomplish the goal.

Wrong sequence of actions to accomplish the intention to execute.

Manual, motor error in executing.

Break-down in human perceptual processing of information on a display.
User fails to interpret system state correctly.

User mistakenly thinks has or has not moved closer to the goal.

A menu was opened

A command was selected

An item is selected from & list

A button was sclected

An action was taken in a field

A scroll tar action was performed

A mission icon

Manipulation of the timebar which controls horizontal scrolling in schedule
The background area of the schedule

GOAL(1-sewdzte)
INT. TASK(1-1-setdate)

INT.EXEC(!-1.1-setdatc)
MENU{view,m)
COMMAND(dzie,m)
BUTTON(date-cancel)

ERR.EVAL (e1*1-1.!-setdate-

thought needed airspaces on display)

EVALUATE(1-1.1-setdate-abort)

. INT.EXEC(1-1.2-setlayout)
MENU(view,m)

. COMMAND(layout,m)
1IST_SELECT (layout-undis)
BUTTON(layout-add)
LIST_SELECT(layout-undis)
BUTTON(layout-add)

BUTTON(layout-ok)
EVALUATE()-1.2-setlayout-ok)

The first study using the CAAD system had
a slighty different focus than the other two. It
tooked at the interaction between an architect's
mental design activitics and the use of a
computer too! to support those activities. It was
the only study that had variables: two different
types of design tasks at three different levels of
complexity. The second two studies were basic
usability studies performed to identify arcas in
the system design that hindered users' task
pertomance. There were no conditions to
compare results across, and no pre-detenmined
quecstions to answer or hypotheses to prove.

4 Applications of ESDA Techniques to
the Collected Usability Test Data

v Scquential data analysis techniques are
potentially useful for analyzing usability data.
To fully analyze the usability of a system,
however, requires analysis of, and information
on, the human-computer interaction process at
several levels. At the highest level is
information on the user's goals, intentions, and
other high-level psychological processes. Tl
next level involves the user's computer-use

Alright. Okay, so I went to s2¢ that week.”

001 11:32:79 000 Pressed Eitton on View Button
in Main Menu Bar

002 11:32:41 002 Released Button on Date Button
in View Menu

003 11:32:43 (02 Pressed Button or Cancel Butten
in Date Dialog

“"Well, I probably neced airspaces up there first."

004 11:32:45 002 Pressed Button on View Button
in Main Mcqu Bar

005 11:32:47 002 Released Button on Change
Layout Button in View Menu

"Who am [agsin? Phoenix"

006 11:32:52 005 Pressed Button on Undisplayed
SUA List in General Leyout Dialog

“Ah, Yankee 1."

007 i1:32:58 006 Presscd Button on Add Button in
General Layout Dialog

008 11:32:59 001 Pressed Button on Undisplayed
SUA List in General Layout Dialog

“Ah, Yankee 2."

009 11:33:01 002 Pressed Button on Add Button in
General Layout Dialog

010 11:33:02 001 Pressed Button on OK Button in
General Layout Dialog

Figure 3 Sample of the Encoded Data from the Airspace Usability Study

strategies and understanding how well the sysiem
mects the user's needs to carry out each task
intention and convey information, Data files of
actual input actions can provide only some of
this information. Performing SDA on unencodcd
data files of user input actions will reveal
information on usability at a low level, and only
on certain types of problems. Repeated patterns,
execution ¢rrors, etc. can be seen, but the context
of the user’s intentions are lost. Performing the
wrong sequence of actions to accomplish an
intention, for instance, is a type of error that will
not be detected since the intention is not known,

Choosing a complex, hicrarchical encoding
scheme such as that uscd for the airspace
scheduling study offered potential for data
analysis at scveral levels. The generic encoding
scheme used, however, was a poor match with
SHAPA, which uscs only predicate names for
many of its routines and ignores the predicate's
values. Much of the detailed information was in
the predicate valucs, so the resulting outputs of
the SDA techniques were ambiguous and hard to
interpret. Furthermore, some information useful

to assessing usability was not generated with any
of the software supported techniques.

To fully analyze the airspace usability data,
we were therefore forced to resort to manual
methods (Cuomo et al. 1993). SHAPA also had
file size limitations which forced us to break a
single user's encoded data file into many separate
files; hence report outputs had to be manually
integrated. Below we discuss the different ESDA
techniques we tried and explain the types of
usability problems they were able to detect as
well as their shortcomings.

4.1 Transition MatricesiLag Sequential Analysis

The usefeiness of the transition matrices
varied from study to study, In the CAAD study,
cnor-lo-error transition probabilities turned out to
be the most usef! usability indicator as it
reflected an important aspect of usability, error
recovery. The most skilled partic,_ant had a 0%
probability of moving from one error state i ..
another, ‘while some participants had
probabilities as high as 219%. The simulation
study usability analyst was able to discern only
onc usability problem from the transition imatrix
technique, and it was identified froin the second
order transition matrix output. For all users, the
frequency of the combination "new interface,
save, new interface” was high. This sequence
reflected the modal nature of this system design,
which only allowcd users 1o save their work fron.
one screen. Users would switch screens, peifor
their suve function, and switch back to their
original screen.

Transition matrices were zlso not very useful
in analyzing the military airspace system data.
One type of usability problem that could be
extracted was the frequency with which a "menu”
activity followed another "menu” activity, or any
redundant double action. The menu cxample may
indicatc that men:: being searched in an
attemipt to locate the _sired command.
Repetitions of other actions could indicate a lack
of system feedback or slc - system response
tirne. For the airspace study, the generic nature
of the predicate namcs provided no information

on the actual instances of each action. From
patterns such as "menu menu” or "button button”
we could not determine which menus and buttons
were activated, or even be sure if they were the
same cr different objects.

Analyzing data of this type is also difficult
because of the large number of nawvral pattems
that occur during the use of direct manipulation
interfaces (e.g., command follows menu). The
large number of thesc obvious or expected
patterns, with their high frequencies, make it
difficuit to identify the often less-frequently
occurring potential usability indicators; there is
much noise in the data.

Reviewing the literature to deteririne other's
success using transition matrices in human-
computer interaction analysis revealed that it was
used most frequently to describe users' behavior
pattems but not necessarily to determine
usability problems. Good (1985) used uncoded
commangd transition frequency data to determine
the most common transitions between keys. -
This information was used in designing a new
keyboard laysut. Hammer and Rouse {1979)
uscd the technique to assess how researchers used
e -ars in writing their own programs and

18, They created 16 states for their Markov
+ 1 involving functions such as typins
- ~tioning, deleting and inserting, and
se..“hing. They found differences in patterns of
bsh or between cditors, between 1asks, and
» uong users. They did not appear to usc the data
+ identify usability problems. Finally,
eenniman (1975) used the technique to analyze
users’ search behavior on an cxi-line retrieval
system. He used both an 1! state and a 4 state
model. Again, he found variations in users'
patterns of behavior in com:paring both sessions
of different length and different parts of single
sessions. As Penniman noied, the technique
provides a quantitative, statistical rigor for
comparing behavior across samples of different
types, and thus helps to describe user bet - ior.

For transition matrices to be uscful in
analyzing* oility data, behavior must be
compar= " weeh two s; 3lems Or across time, or

therc have to be certain defined, and detectable
behavior paitems that alone can indicate usability
problems. For instance, if users are studied for @
long time, changes in their paiterns of behavior
can reilect Lysiem leamability or the effect of
increased experience. Examples of behavior
pattems that reflect potential usability problems
were the error-to-error transition in the CAAD
study, excessive switching between interfaces to
perform a single function in the simulation
study, or repeating the same uction successivzly.

The lag sequential analysis revealed no
vsability problen.s for the airspace scheduling
study. For the simulation study, which used
more detailed predicates, this routine was found
to be useful when run with respect 1o erors, as it
helped to identify what activities preceded errors.

4.2 Frequency of Cycles

In addition to the predicate name-only
limitation, SHAPA had the additional
shortcoming of calcuiating frequency of cycies
only between instances of the same predicate -
for cxample, goal to goal or menu to menu, but
not menu to button. This greatly limited the
usefulness of this analysis technique for our
studies. In the airspice scheduling study, in one
parniicipant’s (the USI expert) data we found a
pattern that occurred 62 times: intention to
execute -> mission icon -> menu -> command ->
evaluate -> intention to execute. This was the
basic sequence of activitics needed to schedule the
displayed airspace requests (also called mission
icons). Acting on the intention, the user sclects
first a mission icon, then the schedule menu, and
then the appropriate scheduling command (deny,
approve, describe conflict, cic.). The user's cycle
was completed with an evaluation of the success
of the intention. How often this cycle recurs is
important, as it indicates a highly repetitive
patiem of behavior that could be reduced or
eliminated by allowing a single command to be
applied to many simultancous objects. If the
detailed values of cach of these commands had
been included, for instance the name of each
mission icon, this cycle would nct have occurred
with high frequency, since the cycles would no

longer be identical (unless the user scheduled the
same missiop 62 times, which is not likely but
also cannnt le determined from this analysis).
On the other hand, if the detailed value
information is wt included, there could be
importznt differcnces in these cycles which are
not identified. We do not know, for example, if
the command selected was the approve or deny
command.

Another example illustrating the need for
more analyst control over the level of cycle to be
found was: intention tw execuse <> meny ->
command -> field -> field -> field -> field ->
buston -> evaluate -> intention to execuie. This
cycle indicates that a dialog box was opened
(menn, command), four data fields were accessed,
and the box was closed (button, evaiaate). We do
not know specifically which dialog box was
opened, which ficlds were accessed, or cven
whether they arc the same or different ficlds.
Little is therefore learned from this cycle. On the
other hand, the generic cycle intention to execute
-> menu -> conunand -> bution -> intention 16
execute, if it occurs repeatedly, suggests that
users are opening dialog boxes but not physically
interaciing with them or changing any data in
their fields. This could mean that users are
opening dialog boxes for the sole purpose of
reading information contained in them, or that
they opened the wrong box, realized it, and then
closced it. The former could mean that some
critical task information riceds to be moved up to
the main display or the next higher level, so it is
more readily available. The latier may mean that
the names of the commands for accessing the
dialog boxes are confusing, so that users arc
having difficulty discriminating among them.

Whilc for both instances we can detect a
gencral trend, we do not know which dialog
boxes are affected or how many. If we encoded
the data along specific occurrences only, the
gencral pattierm would not show up. With the
examplc given in the transition matrix section
for the simulation usability study, the encoded
command "save" allowed us to discover the
problem of having to switch interfaces for the
sole purpose of saving. If the users were also

L b e iPer Eie et e e

switching interfaces to perform some other
command, we would miss this activity unless we
selected that command to be encoded as well,
Using the more generic predicate "command” as
an encoding would have showed all occurrences
of this pattem, but further investigation would be
needed to determine which commands were
involved. The optimal condition to maximize
this routine's cffectiveness would be to allew the
analyst to run the frequency of cycles at a variety
of levels.

4.3 Graphical Summarization Techniques

The task movement and task rate graphing
techniques, which were used only in the CAAD
study, were found to be a good way of
summarizing the users’ progress toward their
goals, in terms of both the time and number of
user inputs. Global usability problems, such as
a high ratio of system commands to actual task
commands, can be seen, These techniques,
howaver, are too generic and high-level for
direclly indicating specific usability problems.
Again, unless two or more systems are being
compared, many uscrs' data is needed to determine
whether thesc problems are due to the system
design or the uscrs’ use of the system.

We generated inter-event interval graphs for
the CAAD and airspace siudies. These graphs
plot the time lags between each user input event.
The presence of long delays may point the
analyst to arcas of human-computer interaction
where the users are experiencing difficulty and
which may warrant further investigation. This
technique was useful in the CAAD study, as we
could sec the effect of task complexity on the
freguency and duration of the long inter-event
times. In this case, the long lag times were dae
to the designers using the time to proble solve
and think up desigr: solutions to meet the
requirements. We were also able to divide the
graph into discrete task activity areas, 10 sec
which activitics wese most affected by the
increasing task complexity.

The technique was less effective for the
airspace study, because this study was performed

11

on a prototyped system anl its software
performance was not maximized. Thus,
redrawing the complex screens caused a longer
than normal time delay and introduced a lot of
noise into our graphs. Some of the long time
lags were, however, due to the users referencing
writtcn manuals and provided materials or
attempting to recover from usability problems.

4.4 Value List and the Collection of Predicate
Instances

The SHAPA value list routine generates a
report on the number of occurrence:s of cach
constant for each predicate. One of two SHAPA
routines where values were used, this is a detailed
frequency counter that is always helpful for
usability testing, The value list for the “task
intention” predicate, for instance, lists all the
instances of the users' task intentions and their
frequencies. This was uscful in the airspace
siudy for counting error types, as six error
classifications were used as predicates; it also
provided counts of the specific instances of each
error type within the six classifications. The
value list is also helpful for providing
information on the most frequently used
commands, as well as the frequency of cvents
which arc considered to be usability problems.
In the airspace study, for instance, when we
eacoded the data we tried to differeatizte the
reason for certain event's occurrence. Some
events arc execuied routinely in the normal
course of interaction, but sometimes the same
cvents arc performed, for example, to improve
perceptibility. The distinction is important,
because in one case it indicates a potential
usability problem or an area that could be
improved, while in the other case it may not.
For instance, when the timebar was moved to
control the part of the schedule that is viewed,
the length of time for which the bar was
manipulated was recorded, and the constant "p"
was added as a value if users were thought to be
performing the action o improve the
perceptibility of missions on the display.
Similarly, we had a predicate named "evaluate” in
the airspace study with four states: OK, abort,
incomplete and wrong. The frequencies of the

1auer three helped to point out when sequences of
activity were not progressing well. By also
including as a value the activity name that was
being evaluated, we were able to correlate the
evaluate state information to the activity being
performed -- ¢.g., Evaluate (2-3-seeschedule-
abort) [3].

Collection of predicate instances gathers
scgments that have been encoded with the same
predicate. In the airspace study, we found this
extremely useful for supporting our error analysis,
We had defined six predicates related 10 errors.
Using the collection of predicate instances for cach
error predicate for each subject, we could casily
determine the number of crvors of each type that
occurred, along with the specific cnror descriptions
and the line number where the predicate was
located in the file. The line number was useful,
as we often needed to go back to the original
encoded file to collect more information on
actlivities associated with the error,

Use of the ervor code across studies is also
intcresting. In the first two studies, the error
code was used in the traditional way. If the
system responded to a user input with an crror
message, the event is coded as a general error. In
the airspace study, we used a more advanced ermor
coding scheme. By integrating the data from the
verbal protocols on the users' intentions and their
actual inputs, we were able 1o not only assess
crrors of the physical or exccution type, but also
those in which the user's sequence of activitics
did not correspond with their intentions (errors in
action specification), a type of error that does not
cause the sysicm to generate an crror message.
We also had classifications for other cognitive
crrors, such as ervors in intention, and errors in
perception, interpretation, and evaluation, as well
as the more traditional execution crror, This is a
good example of where the encoding process is
itsclf a form of analysis.

4.5 MRP Analysis
The MRP analysis technique was applied

scparately to the five participants’ collected
unencoded input data files from the airspace

12

usability study. The data was very detailed, with
cach data line containing information about the
user action (presscd, released, typed, moved), the
object type (button, ficld, scroll bar, time bar),
the specific aame of the object (Bravo77, "Add"
button, string typed), and the location of the
object (in Build folder dialog box, in Create/Edit
dialog, ¢t¢.). The five data files ranged from
1841 to 3317 lincs in length, with 238, 386,
420, 422, and 534 MRPs gencrated. A sample
MRP is shown in figure 4,

mrph 6
0) Recleased Button on Bravo77 in an Sua Pane
1) Pressed Button on BravoT7 in an Sua Pane
2) Recleased Button on Bravo77 in an Sua Pane
3) Pressed Bution on Sua Description Field in Create/Edit Dialog
4) Pressed Button on Sua Description Ficld in Create/Edit Dialog
5) Typed "0900" in Sua Description Field in Create/Tidit Dialog
6) Pressed Button on Sua Description Field in Creatc/Edit Dialog
7) Pressed Button on Sua Description Field in Create/Edit Dialog
8) Typed "0900" in Sua Description Ficld in Create/Edit Diatog
%) Pressed Button on Sua Description Ficld in Create/Edit Dialog
10) Piessed Button on Sua Description Field in Creste/Ldit Dialog
11) Typed "0900" in Sua Description Field in Create/ldit Dialog
12) Pressed Buuon on Sus Description Field in Create/Eidit Dislog
13) Preseed Button on Sua Description Field in Create/ldit Dialog
14) Typed "0900" in Sua Description Field in Create/lidit Dialog
15) Pressed Bution on Create Reguest Button in Create/Edit

Dialog
16) Pretsed Button on OK or Cancel Button in Confirmation Box
17) Pressed Button on Bravo77 in an Sua Pane
18) Released Button on Bravo77 in an Sua Pane

t: 1661 1679 1755

Total number of positions = 3.

Figure 4 Sample Output from the MRP Tool
Showing a Single MRP of Length 19, Occurring
in 3 Ditfercnt Positions.

To assess the MRPs, we tricd using the
heuristics provided by Siochi et al. (1991) to
narrow down the number of MRPs that need (o
be examined. These included examining the
longest MRPs, the most frequently occurring,
and anomalies depariing from the expected
patterns of MRPs (expected paticrns are few long
MRPs and many short MRPs). Unfortunately,

this limited sct of MRPs did not reveal any
usability problems, and we had to examine every
gencrated MRP. In general, the more meaningful
patterns seemed to relate to five types of activity:
scroll bar movement, time bar movement, data
editing sequences in dialog boxes, list selection,
sclecting or moving the mission icons, and
approving mission sequences.

For some participants' data sets it was harder
to find potential usability problems in the
gencrated MRPs, because the participants did not
work methodically. Few meaningful repetitious
patterns could be identified among the many
rcpeating sequences identified. Some repetitious
patterns conceming usability issues couid be
seen, however, in the MRPs relating to the
ability to select only individual items from a list,
having to schedule each mission part and cach
mission individually, and the dialog box
problem. The dialog box problem was
previousty discussed as the case in which
SHAPA gencrated a high-level cycle showing
dialog boxes being opened and then immediately
closed, but yiclding no information on which
dialog box was used. With MRP analysis, some
MRPs were gencrated showing the actual pattems
of actions for this occunence for the create/edit
dialog box. To find all the specific occurrences,
however, involves looking across all the MRPs,
because problems of the same type, or even
identical patterns, are not necessarily grouped
together. If the scquence of interest was
somctimes part of a larger repeating sequence,
that larger sequence would be localed in a
different MRP. Given the large number of
MRPs generated, it can be difficult to find all
instances.

This technique provides only one potential
indicator of usability problems - that of
repetitive sequences of activities. Problems with
the technique include the random approach to
pattern identification, which precludes frequency
counts of a particular pattern, and the patterns
identified, which are totally context froe and
unrelated to any task or user interface sequences.
Many usability probicias can only be identified if
uscr intentions are known, and this technique

will not find those. It also generates a large
amount of output with a lot of noisc; e.g., many
MRPs were generated relating to scroll bar
activity or tabbing through data fields.

The technique docs have some good points,
Many of the problem specifics missed by
SHAPA's frequency of cycles because values
were not considered were made somewhat
apparent with this analytic technique (particularly
since we knew what to look for), since it was
operating on much more detailed data, The
technique is relatively casy and quick to apply if
the appropriate data can be collected: no data
encoding is required. The program had no trouble
accommodating large data files. Finally, the
command usage statistics could be uscful for
providing frequency information at a very detailed
level; the formatting of this particuiar output,
however, could use some improvement,

§ Conclusions

We hoped t» shed light on the types of
system usability information cach of the
sequential data analysis techniques revealed, the
trade-off of questions answered and level of
encoding used, and whether it was worth
applying the techniques. Overall, we conclude
that we did not have a great deal of success in
effectively utilizing most of the scquential data
analysis techniques for analyzing our usability
stedy data. Many intcracting variables affect
what can be learned from application of the
techniques, including the types of data that can be
collected, the encoding scheme used if the data is
encoded, the flexibility with which the SDA
routines can be applicd, and the types of usability
problems to be addressed. If we had to rank-order
the techniques discussed here from best to worst
for identifying usability problems based on our
expericnces, we would put hicrarchical data
encoding as the most useful activity, and MRP
analysis second (because it is quick and easy to
apply), followed the value list, collection of
predicate instances, frequency of cycles, transition
matrices, and lag sequential analysis. To indicate
overall system usability, the graphical tcchniques
are somcwhat uscful,

Nevertheless, we are still attracted (o the idca
of patiern analysis and analytic techniques for
analyzing usability data and fec! the problems we
encountered are duc mostly to limitations of the
currcntly available software packages -~
specifically, their lack of flexibility in specifying
the data parts and levels for the routines to act
on. To effectively utilize routines such as
transition matrices, lag sequential analysis, and
frequency of cycle analysis, the usability analyst
needs to be able to apply the routines at various
levels, without having to recode the data. As we
have shown, we nced (0 be able to identify both
generic and specific patterns in the data with a
single tool. This conld be achicved by having
frequency of cycles, lag scquential, and transition
matrices routines operate on both the predicates
and their values, permitting use of wild cards for
particular valucs. This would provide the
flexibility needed (o get at a large varicty of
uscful pattemns, or to follow up leads indicated by
the general pattemns.

For the frequency of ¢ycles routine, allowing
identification of both a start and an end predicate
would allow analysts io better define the types of
patterns we want the system to find. There seem
to be at least two types. One is a task activity
pattern in which we might want to specify task-
related start and stop points, such as between
specific uscr intentions to execute or task
intentions and their corresponding evaluatc state.
This would depict activity within a task-domain
cycle. It would also be helpful 10 be able 1o
identify user-interface object usage patterns across
task activities. Here we would like to specify a
cycle, such as from dialog box opening to
closing, which would find all dialog box usage
patiems along with the usage of objects
contained within them.

The problem with the MRP routines which
work on the uncncoded command files is the loss
of context or uscr intention information. The
data cannot be casily aggregaied along task lines,
and the uscrs goals and int:rtions are not known.
This makes identification «f many types of
usability problems very difficult. Siochi et al.

(1991) had to supplement their MRP analysis of
the GIPSY system by interviewing the users.

When using verbal protocols in conjunction
with data logging techniques, the user's thought
processes can be extracted to supplement the
logged mousc/keystroke data during encoding;
this puts structure on what would have been
otherwisc difficult to interpret dita. The process
of encoding the data was found to be the most
uscful analytic activity, particularly in the
airspace study, where we used codes that allowed
us to hicrarchically break down the user input
sequence into goals, tasks, intentions to execute,
actual sequences of inputs within cach task and
exccule intention, and cvaluation of cach activity.
We also leamed much from the detailed error
codes used. This coding scheme did not lend
itself to use of SHAPA's SDA techniques, but
ncither did the coding schemes we tried for the
other studies. Morcover, with the encoded data in
this easy-to-read form, patterns were casily
detectable by the usability analyst. In fact, it
was casicr first to manually detect pattemns, then
figure out which SDA analysis routine to run and
with what parameters, and finally run the SDA
routines to generate aard frequency counts. To be
able to say a repetitive paticrn occwrred 62 times -
in 90 minutes creates much more impact than _
just noting that such a pattem exists. ¥

During the airspace study we also ideatificd
and manually extracted other measurcs of interest
that we felt reflected system usability but were
not supported by any software packages, such as
the number of computer actions per intention to
exccule. Some paticms of user activity could be
recognized by human analysts might not be
identified by a softwarc pattern recognizer becanse
they do not repeat exactly or regularly. For
iustance, uscrs often looked up information on a
mission icon in a dialog box before scheduling
it, but did not always do so scquentially or with
the same exact set of actions; also, the mission
icon was different in every case. The computer
programs do not identify these as repetitive
activitics.

Software to support application of SDA
techniquies for usability testing is still in its
infancy. As programs become mor: flexible and
powerful, and usability analysts identify
measures and routings of interest and use to
them, these tools should become more effective.

Acknowledgments

The simulation and prototyping usability
stdy was conducted by Sanet S, Blackwell,
Support for the airspace swdy was provided by
Charles D, Bowen, Scott E. Blomquist, and
Elizabeth Wadick.

References

Cuomo, D. L. and Bowen, C. D. 1993,
Measures of Uscr-System Interface
Effectiveness: An Encoding Scheme and
Indicators for Assessing the Usability of
Graphical, Dircct Manipulation Style
Interfaces, MITRE Technical Report
9280000047, Vol. 3, Bedford, MA.,

Cuomo, D. L. and Sharit, J. 1989, A Swdy of
Human Performance in Computer-Aided
Architecral Design, International Journal of
Human-Computer Interaction, 1,69-107.

Good, M. 1985, The Jsc of Logging Data in the
Design of a New Text Editor, in Proceedings
of CHI ‘85, Coxfevence o Human Factors in
Computing Systems, Apr, 14-18, San
Francisco (ACM, New York), 93-97.

Hammer, J. M. and Rouse, W, B. 1979,
Analysis and Modeling of Frecdom Texi
Editing Bchavior, in Proceedings of the
International Conference on Cybernetics and
Society, Denver, CO, 659-664,

Holleran, P. A. 1991, A Methodological Notc
on the Pitfalls in Usability Testing,
Behaviour & Information Technology, 10,
345-357,

James, J. M., Sanderson, P. M, and Seidler,
K. S. 1990, SHAPA Version 2,0 Instruction
Manual and Reference, EPRL-90-16/M,
University of Illinois at Urtbana-Champaign,

Kemeny, J. G, and Saell, J. L. 1960, 1 ite
Markov Chains (New York: Van Nostrand Co.).

Newell, A, and Simon, H. A. 1977, Human
Problem Solving (New Jersey: Prentice-Hall,
Inc.).

Noman, D. A. 1986, Cognitive Engineering, in
D. A, Noiman and S. W. Draper (eds) User
Centered System Design: New Perspectives
on Human-Computer Interaction., (Hillsdale,
NJ: Lawrence Erlbaum Associates).

Penniman, W. D. 1975, A Stochastic Process
Analysis of On-Linc Uscr Behavior, in
Proceedings of the 38th Annual ASIS
Meeting, Boston, 147-148.

Sanderson, P. M. 1991, ESDA: Exploratory
Sequential Data Analysis, EPRL-91-04,
University of Ilinois at Urbana-Champaign.

Sanderson, P, M., James, J. M., and Scidler,
K. S. 1989, SHAPA: An Interactive
Software Environment for Protocol Analysis,
Ergonomics, 32, 1271-1302.

Sanderson, P, M., Watanabe, L. M., James,
J. M. 1991, Visualization and Analysis of
Complex Sequentiat Data Using SHAPA
(MAC), Proceedings of the 3rd Europcan
Conference on Cognitive Science Approaches
to Process Control, Sepiember, 121-138,

Siochi, A. C. and Ehrich, R. 1991, Computer
Analysis of User Interfaces Based on
Repetition in Transcripts of User Sessions,
ACM Transactions on Information Systems,
9, 309-335.

