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Arsine flow requirement for the flow modulation growth of high purity
GaAs using adduct-grade triethylgallium

B. L Pitts, D. T. Emerson, and J. R. Shealy

OMVYPE Facility, School of Electrical Engineering, Cornell University, Ithaca, New York 14853
(Received 1 May 1992; accepted for publication 14 August 1992)

Using arsine and triethylgallium with flow modulation, organometallic vapor phase epitaxy can
produce high purity GaAs layers with V/111 molar ratios near unity. We have estimated that
under appropriate growth conditions the arsine incorporation efficiency into epitaxial GaAs can
exceed 30%. The arsine flow requirement for obtaining good morphology has been identified
over a range of substrate temperatures using adduct-grade tricthylgallium. The process
described reduces the environmental impact and life safety risk of the hydride based

organometallic vapor phase epitaxial method.

Organometallic vapor phase epitaxy (OMVPE) has
demonstrated the ability to produce a variety of device
- quality 1II-V compounds and structures. With a carefully
designed gas flow switching apparatus, interface abrupt-
ness approaching a perfect compositional change across a
single atomic layer has been realized. Optimized results are
often achieved using reduced growth pressures. It has been
suggested that growing at reduced pressures often results
in sharper interfaces, reduced autodoping, and lower
growth rates which increase the accuracy of layer control.!
Furthermore, in many reactor ceil designs (e.g., vertical
barrel) reduced pressure is required to eliminate gas recir-
culation due to convection forces. One of the disadvantages
in growing high purity II1-V compound semiconductors by
low pressure OMVPE is the increased flow requirement of
highly toxic hydrides (e.g., arsine, phosphine). In conven-
tional reduced pressure OMVPE using trimethylgallium
(TMG) and arsine (AsH;), high molar V/III ratios are
necessary to obtain high purity GaAs.? Efforts have been
made to reduce AsH; consumption, including precracking’
of the arsine and substituting triethylgallium (TEG) for
TMG.*7 None of these methods have resulted in device
quality material with V/I1 ratios near unity. Less toxic
group V liquid sources are presently available which, at
V/III ratios of 10 or greater, yield 77 K mobilities greater
than 100 000 cm?/V 5.* Low pressure OMVPE growth is
still done at relatively high V/III ratios. This leads to po-
tential safety hazards due to the expulsion of the excess
arsine that does not participate in the growth process, and
to the increased handling of the source containers. Efforts
to minimize high pressure cylinder storage include an on-
demand arsine gas generator, but a low 77 K mobility was
observed (76 000 cm?/V s).? In this study using flow mod-
ulation epitaxy (FME),'® we demonstrate a process which
does not require excess AsH; and which produces high
quality GaAs epitaxial layers (77 K mobilities of 90 000
cm?/V s). The process described allows for small quanti-
ties of arsine storage in the facility and could be used in
conjunction with hydride generator technologies to mini-
mize the safety issues involved in OMVPE growth of many
I11-V compounds.

The use of TEG and AsH, has been proven to give
lower background carbon concentrations in GaAs than the
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widely used TMG.*7 The first high purity GaAs result by
OMVPE, by Seki ez al,* used TEG and AsH, at a V/11
ratio of 2 and reported a 77 K mobility of 120 000 cm?/
V's. At reduced pressures, the highest purity GaAs was
grown at a V/11I ratio of 17.5, resulting in 77 K mobility
of 190 000 cm?/V s on approximately 10 um films.* High
purity GaAs has been produced at a V/1H ratio of 8 (Ref.
5) whereas in this study, significantly lower V/111 ratios
result in similar quality films. The reduction of the V/III
ratio is attributed to the use of low modulation. Low V/111
ratios (V/111=5-20) are also used in metalorganic molec-
ular beam epitaxy,'’ but best results are p-type and have
carbon concentrations exceeding mid 10'* cm ™.

An investigation of high purity GaAs grown by low
pressure OMVPE with flow modulation and with V/111
ratios approaching unity is reported. A V/11I ratio of 1.8
resulted in a film with a 77 K mobility exceeding 90 000
cm?’/V s and a room-temperature mobility exceeding 8000
cm’/V s. Comparable results are observed with a V/1il
ratio of unity provided substrate temperatures greater than
610 °C are used. Finally, the AsH,; flow requirement for
this process has been identified and determined to be a
strong function of substrate temperature if high quality
surfaces are to be obtained. All films which were observed
to have mirrorlike surfaces are of high purity as inferred
from low-temperature Hall and photoluminescence data.
Growths carried out with subunity V/111 ratios were char-
acterized by poor surfaces and reduced growth rates, in-
dicative of arsenic diffusion limited growth.

GaAs layers were grown using FME at low pressure
(76 Torr) in a vertical barrel multichamber OMVPE sys-
tem."? In this system substrates are rotated through groups
I11 and V rich spatially separated zones without valve
switching. During the group I11 exposure cycles the local
V/111 ratio is estimated to be 25% of the average value.
The substrate then enters a group V exposure cycle. The
V/I1I ratio quoted throughout represents the average val-
ues determined by the total injected reactant fluxes. The
susceptor was rotated at 0.1 rev/s and the growth rate was
8 monolayers/cycle (1 um/h).

Undoped epitaxial layers were grown using adduct-
purified TEG® and AsH, (100%). Layer thicknesses
ranged from 3-6 um. The substrates, (100} Si-doped

0003-6951/92/422054-G3803.00  © 1992 Amencan Instiute of Physics 2054
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FIG. 1. The effects of V/III ratio and substrate temperature on surface
morphology of GaAs using adduct purified TEG. Also the right-hand side
vertical axis provides estimates of the arsine growth efficiency which 18
dependent on the V/HI ratio. The arsine growth efficiency 15 defined as
the rauo of the arsine in the gas stream to arsenic incorporated n the
GaAs deposited on the active portion of the susceptor. The solid hne was
drawn empinically 10 suggest the transition between the good and bad
morphology regions. Inset is a SEM micrograph (magnified 200X ) iltus-
tratng what 1s meant by poor morphology.

n* GaAs and (100) semi-insulating GaAs, were first rinsed
in  organic solvents and then etched in
5H,580,:1H,0,:1H,0 prior to growth. The TEG was held
at 23 °C while a H, flow of 50 sccm was passed through the
bubbler, maintained at 100 Torr. The growth temperature
ranged from 560 to 635 °C, while the V/III ratio varied
from 0.7 to 22. Growth rate measurements were performed
using angle lapping and staining. Thickness uniformity was
=+ |.29 across a 1.5 in. diam wafer. Carrier concentrations
and mobilities were measured using the van der Pauw
method in a magnetic field of 3.5 kG at both 300 and 77 K.
Low-temperature (1-20 K) photoluminescence (PL) was
used to investigate the excitonic features as well as to iden-
tify the acceptor impurities.

Arsine efficiency was calculated for the reactor and is
defined as the ratio of the AsH, in the gas stream to the
amount of As incorporated in the GaAs on the entire ac-
tive portion of the susceptor. The maximum possible effi-
ciency {V/II1=1) is 31%, where high quality films are
observed using low-temperature PL. Conducting films are
obtained at higher V/III ratios (uy;x=93000 cm?/Vs
and f1;00x=8000 cm?/V's) where the arsine AsH, effi-
ciency is calculated to be 17.2% (V/Il1=1.8,. Previous
studies in this reactor using TMG found that the p-n tran-
sition occurred around V/II1=30 at the same growth pres-
sure, growth rate and flow modulation where a V/II[=70

2055 Appl. Phys. Lett,, Vol. 81, No. 17, 26 October 1992
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FIG. 2 Hall measurement resuits showing dependence of (a) net (N,
- N,} and total (A + A,) impunity concentration and (b) 77 K mobihiny
on V/111 ravo in undoped GaAs grown at 635°C The lines are drawn
empirically to suggest a trend in the data

resulted in a 77 K mobility of 96 000 cm”/V s.'° For V/111
ratios less than 30, the films suffered from increasing levels
of carbon contamination. Thus, a 20-fold improvement ir
the efficiency of AsH; resulted using adduct-punfied TEG
in place of TMG. There is also no p-n transition with a
decrease in the V/III ratio using adduct-purified TEG.

The V/I1 ratio and growth temperature cniteria for
good surface morphology were investigated over the range
from 560 to 635°C. In Fig. 1, 2 good morphology/bad
morphology transition curve is shown to suggest the min-
imum V/11I ratio required at a given growth temperature.
In addition, the V/III ratio relationship to AsH, efficiency
is also provided in the figure. When the substrate temper-
ature is below 610°C, more arsine must be suppled as
shown, indicating that less AsH; is being pyrolyzed. As the
substrate is increased beyond 610°C, the transition from
good morphology to poor morphology apprcaches a con-
stant V/II1 value of unity. This suggests that the AsH,
arniving at the growth surface is completely pyrolyzed, and
maximum AsH; efficiency can be achieved when the
growth temperature exceeds 610 °C.

The impurity concentration and low temperature (77
K ) mobility for samples grown at 635 °C with V/I1I ratios
from 1.8 to 22 are given in Fig. 2. Total impurity concen-
tration (N,+ N,) was estimated using the smpirical rela-
tion given by Stillman and Wolfe."® Net impunity concen-
tration varied from 3.7(10') t0 6.9(10") cm ™ while A,
+N, varied from 7.7(10") to 2.0(10") cm™>. The
minimum value in each case was obtained for a V/111 ratio

Pitts, Emerson, and Shealy 2055
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FIG. 3. Low-temperature (1 K) PL spectra of undoped GaAs layers
grown at 635 °C. The luminescence intensity is magnified by the factors
shown, and the average V/IlI ratios are given in parenthesis at the far
right of the figure. Excitation conditions and experimental resolution are
as indicated.

of 5, where residual carbon levels are in the low 10" cm ™3

range. The 77 K mobility varied from 55000 to 110 000
cm?/V s, with the maximum value obtained for a V/III
ratio of 5. As indicated in Fig. 2, the impurity concentra-
tion is, in general, an increasing function of V/III ratio.
The highest room-temperature mobility was greater than
8000 cm?/Vs. High purity results are readily observed
with PL at a V/III ratio of unity for growth temperatures
greater than 630 °C, but these films did not exhibit electri-
cal conduction due to increased acceptor compensation.
Subunity growth had Ga rich surfaces which prevented
contact formation.

Low-temperature PL spectra of samples grown at
635 °C are shown in Fig. 3. The dominant feature in the
excitonic region of the spectra is that of the neutral donor
exciton (DF.X). The neutral acceptor exciton peak {4°.X)
is negligible in samples grown with V/III ratios greater
than 1.8, strongly indicating n-type material.2 This is con-
sistent with Hall measurement results. Two acceptor be-
havior in the PL spectra was observed using variable tem-
perature measurements ( 1-20 K) for V/III ratics less than
1.8. Although not pronounced in the 1 K spectra, a signa-
ture of band-to-acceptor transitions of carbon (~1.493
eV) is evident in spectra observed at 12 K for V/III ratios
less than 1.8. The peaks which appear in the spectra for
V/III ratios »f 1.8 and unity at 1.492 eV behave as band-
to-acceptor transitions with the acceptors tentatively iden-
tified as magnesium. The corresponding donor-acceptor

2056 Appl. Phys. Lett., Vol. 61, No. 17, 26 October 1892

pair luminescence observed at 1.489 ¢V supports this as-
signment of acceptor species which is believed to originate
from the arsine source.” The absence of carbon acceptor
related luminescence for V/1II ratios greater than 1.8 sug-
gests that sufficient AsH, is present to remove the carbon
from the growth surface. As the V/III ratio approaches
unity, the magnitude of the neutral acceptor exciton peak
is comparable to that of the neutral donor exciton peak.
Finally, when the V/ill ratio is reduced to subunity (0.7),
the normal excitonic features are completely absent from
the spectra. New spectral features appear much weaker in
intensity, possibly due to defect related exciton emission at
photon energies near 1.503 eV,"> commonly observed in
molecular beam epitaxy materials.

In summary, by applying flow modulation techniques.
highly efficient use of AsH, has been demeonstrated with an
optimized low pressure OMVPE process for the first time.
It has been observed that below 610 °C, more arsine must
be supplied to sustain good morphology. Above 610°C,
maximum AsH; efficiency (V/IlI=1) can be obiamned
while maintaining specular surfaces. In addition, there was
no p-n transition region in the range studied. Using adduci-
purified TEG and AsH; in OMVPE at reduced pressure,
we have demonstrated a near-unity V/11I ratio resulting 1n
a 77 K mobility exceeding 90000 cm’/V s.

The authors wish to thank B. P. Butterfield. M. J.
Matragrano, and K. L. Whittingham for technical assis-
tance. N. Scott is gratefully acknowledged for his support
of the development of the OMVPE facility at Comnell. This
work was supported by the Joint Services Electronics Pro-
gram under Grant No. F49620-90-C-0039, the Strategic
Defence Initiative Objective under Contract No. NOOC14-
89-J-1311, and the Defense Advanced Research Projects
Agency under Contract No. MDA97290C0058 Optoelec-
tronics Technology Center.
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The Use of Uliraviolet Radiation at the Congruent
Sublimation Temperature of Indium Phosphide to Produce
Enhanced InP “Schottky” Barriers

James Singletery, Jr. and Jomes R. Shealy
School of Electrical Engineering, Cornell University, Ithaca, New York 14853

ABSTRACT

This paper describes an ultraviolet radiation-assisted process, optimized around the congruent sublimation tempera-
ture of InP, which fabricates a very thin insulating layer on InP. In developing this process, we demonstrate. among other
effects, that the increase in the barrier height is not caused by the oxidation of the surface enhanced by the presence of
wzone, but enhanced by a photoinduced electron transfer (PET) process In the past, some researchers have considered
similar devices to be enhanced metal-semiconductor Schottky diodes Although we achieved a barrier height of 0 7V, we
gresent measurements of series resistance and ideality factors which question the Schottky character of these devices

urthermore, the dramatic increase in series resistance, as the barrier increases, suggests that the gate speed for microwave
devices fabricated with this technology may be less than expected because of a larger than expected resistance capacitares
time constant. The instability of these devices, when expused to air, suggest that among the oxides which make up the

enhanced layer, P,0, is the primary material responsible for enhancement.

A comparison of the basic transport properties of GaAs
and InP yields an advantage to InP in peak and saturation
velocities,' breakdown field, and thermal conductivity.?
These benefits have led to encouraging device results in
higher power,’ faster speed,' lower noise,® and increased
radiation hardness.® However, the low Schottky barrier,
formed for metal-semiconductor (MES) interfaces, gener-
ates large leakage currents that eventually degrade the
3peed, power, and gain of MES devices. To eliminate this
Problem, researchers typically use a metal-insulator-semi-
conductor (MIS) structure using Si0. as the insulator. But

others have demonstrated the instabilities of the $10./InP
interface under dc operating conditions.” This paper de-
scribes an ultraviolet (UV) radiation-assisted process, opti-
mized around the congruent sublimation temperature of
InP, which produces Schottky barriers up to 0 7 V Based
on series resistance and ideality factor measurements, this
paper also concludes that these devices exhibit behavior
more like MIS structures with a very thin insylating layer
rather than Schottky diodes. In addition, the increase in
series resistance, as the barnier height increases, suggests
that the gate sneed at micrawave devicac fabricatnd woath
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this technology will be lower than expected due to a larger
than expected resistance-capacitance {RC} time constant

Bockground

Of the many researchers that have used UV-assisted
growth to enhance InP's Schottky barmer.! Ihadis at the
University of Maryland® has achieved the most success. He
has successfully developed a room-temperature process
which increased the barmer height to 0 83 V However, his
process left several questions unanswered

In preparing his samples for exposure, lliadis used HCl
as an etch Since HCI corrosively etches InP, the question
remained whether the use of HC| represented a critical step
in the enhancement process or whether a more benign etch
such as HCI:H,PO, could be used

The design of Iladis’s apparatus allowed him to vary
only the UV radiation exposure time. Therefore, questions
remained concerning the influence of other parameters
such as growth temperature and radiation intensity, and
whether the ozone producing wavelengths are cnitical to
the process.

Finally. the question remained as to whether this process
influences the series resistance of the device We felt that
the series resistance vanations would provide a clue to the
true Schottky nature of these devices. If the vaniations in-
dicate that the devices are MES Schottky diodes, then this
would lend support to the notion that unpinning of the
Fermi level is occurring at the semiconductor interface If
so, this feature would provide device designers some
flexibility in choosing metals that might produce even
higher Schottky barrier heights. However. if the series re-
sistance increases at a much greater rate than expected,
this would suggest not only that the devices are not MES
Schottky diodes, but also that the devices would exhibit
lower microwave cutoff frequencies because of a larger RC
time constant.

To answer these questions, we constructed a special ap-
paratus to provide some flexibility in growth parameters
and made additional current and voltage measurements to
assess the true nature of this barrer enhancement.

Preparation of Schottky Diodes

Apparatus.—A custom built work station provided
flexibility in growth temperature, gas composition and
flow, light intensity. and wavelength (Fig 1) Temperature
control equipment consisted of a collection of Research Inc
equipment. process controller, setpoint programmer, and
phase angle controller. Additional signal conditioning
equipment converted the signal from the Research Inc
equipment to the low-voltage high-current signal needed
to drive the heating element located inside the process
chamber

A Corso-Gray Model D-104-B-B/SS gas handling system
provided control of the gas composition and flow. The key
system components included Brooks rotometers which

Oriet Sot
M.-'t‘u— B s oy =
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Fig. 1. Schematic of UV work station.

provided a maximum flow of 4 61 pm for O, and N, and &
maximum flow of 1 71 pm for H,

An Oniel Solar Simulator supplied the UV radration The
simulator could accept lamps of three different character-
istics Although a variety of lamps can be instalied in the
Solar Sumulator,'® for all experiments in this paper we
used the 1000 W Hg-Xe lamp In addit:on. by replacing the
normal mirror in the Solar Simutator with a dichoric mir-
ror, we were able to isolate the ozone producing wave-
lengths from 200 to 260 nm

We des:gned the process chamber to handle samples up
to 11n by lin in size A graphite boat inside the process
chamber determined this upper limit in size The graphite
boat possessed a 1/61n. tall, 0.1 in wirde hp around the edge
to prevent the sample from shiding from the graphite boat
during exposure. Instead of heating by RF induction, we
used a resistive Nichrome metal platform to heat the
graphite boat by conduction The Nichrome healing platl-
form was 1.6n. by 2 0in and 0 665 in thick and possessed
supports which held the platform and graphite bost 3-8 10
above the entrance and exit ports for the gases This un-
usual positioning of the heating platiorm and gas pors
might be primarily responsible for the unusual flow rate
effects that are discussed later 1n this paper

Sample preparation — Sample preparation began with a
degrease procedure which 1nvolved the use of the soap so-
lution F1-70 and a DI water nnse. then an acelone rnse
and ultrasonic bath, followed by a methano!l nnse and ul-
trasonic bath After another DI water rinse, the next step in
sample preparation involved a pre-etch. to remove surface
oxides, using H,80,H,0, H,;,0 (51 1) After a thurd D! wa-
ter rinse, an InP etch using HCl or HCl and H,PO, mixture
was then performed, the Results section discusses the ad-
vantage of one solution over another. After a inal D] water
rinse, the samples were blown dry with nitrogen

Fabrication of diodes —We fabricated Schottky diodes
on 1 cm by 1 ecm samples cleaved from undoped InP sub-
strates with a carrier concentration in the mid 10" em
range After performing the wet chemical procedure de-
scribed above, the samples were placed into the process
chamber for irradiation under different growth conditions
The samples were held 1n place with a perforated metal
mask. each perforation allowed for the deposition of dots
which were 127 um in diameter. This size proved practical
for two reasons The dots were small enough to make cur-
rent measured low enough to prevent the saturation of the
measurement equipment Nevertheless. the dots were still
large enough to make the alignment of the measurement
probes easy

Mounting of samples — After deposition, the samples
were mounted on a 31n by 31n by 1/8 \n copper plate. the
top surface of the plate was coated with indium to allow for
ohmic contacts to the back side of the InP samples The
actual mounting first involved heating the copper plate just
enough to melt the indium but not hot enough to produce
thermal damage on the InP samples This requirement was
met with using a hot plate set so as not to exceed 250°C
After the indium became molten and the samples mounted.
the plate was removed from the hot plate and placed on &
copper heatsink for cooling

Defermination of Barrier Height from
Current/Voltoge Measurements

We calculated the barrier height from the measured
value of the saturation current and assumed values of tem-
perature, diode area. and Richardson constant The satura-
tion current becamne an 1deal parameter for detecting bar-
rier enhancement. As we will show later. the barrier
enhancement we expected required orders of magmtude
decrease in the saturation current Such an expected dra-
matic change in the saturation current gave us confidence
in using the HP4145A semiconductor parameter analyzer
to obtain the saturation current

-
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The HP4145A semiconductor paremeter analyzer —-
Several features made the HP4145A very useful for doing
current/voltage measurements. The first important feature
was the four programmable units; only two were required
to characterize the diodes in these experiment. Each unit
could be programmed to provide or measure voltage from 0
to 100 V and current from 1 pA to 100 mA. An extremely
useful feature was the HP4145's ability to create parame-
ters {called “user defined functions”) that are constructed
from mathematical operators and voltage and current van-
ables. One HP4145 operator that we found particularly
helpful was the A operator, which allowed the construction
of a parameter that became useful in determining the series
resistance, we discuss this parameter, which was based on
the measurement of the differential current and differen-
tial voltage, in the next subsection. We were also able to
obtain linear and logarithm plots of the user-defined func-
tions by using the graphics routine on the HP4145A. The
graphics package also contained a very useful straight line
curve-fitting routine that aliowed us to obtain the series
resistance, ideality factor, and saturation current with few
computations. Lastly, the most convenient feature of the
HP4145 was the ability to store measurement
configurations which eliminated the need to reprogram the
HP4145 for each measurement. For this experiment, three
programs were developed: one program to perform a typi-
cal forward biased I vs. V measurement from 0 to 0.25 V,
another program to extract the series resistance from these
measurements, and a third program to correct the I ys. V
datain order to obtain the saturation current. Since the last
two programs use the HP4145 in an unusual manner, the
salient features of these programs are discussed in the next
two subsections.

Using the HP4145 to determine series resistance.—The
theoretical basis for this procedure began with an exten-
sion to the thermionic emission model for Schottky diodes
to include the influence of series resistance, Eq. 1

q(V-IRy
I=1]e "%T ~1] {11

Equation 2 below demonstrates the relationship between
the saturation current to the barrier height

g%
I,=A*"T'AeXT 12]

We thought a measurement scheme for the series resist-
ance that was independent of the barrier height would be
beneficial for our analysis. Hence we developed a method to
eliminate the saturation current from consideration. To be-
gin, we restricted our analysis to the forward-biased region
of the diode since, except for small applied voltages (i.e,,
below 60 mV), the exponential term would dominate the ~1
term in Eq. 1. Therefore, in this region, Eq. 1 can be written
as

QV-tR,
1=1e "% [3})

Since the barrier height iscontained in the expression for
the saturation current (Eq. 2) and is independent of
voltage, we were able to eliminate the barrier height from
consideration and retain the series resistance by taking the
natural logarithm of Eq 3 and then differentiating the re-
sult with respect to I and V. After some algebraic manipu-
lation, Eq. 4 below resulted

=5 (1 #) g

Equation 4 is not only independent of the barrier height but
also matches the straight line equation y = m(x - b} where
yequals 1/1, x equals dV/dI, m relates to the ideality factor,
and most important, b, the X intercept, gives the series
resistance. Equation 4 was programmed into the HP4145
using the user-defined function feature to define the r and
y vaniables. In particular, the definition of the x variable
made use of the A operator to obtain dV and di. Figure 2
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demonstrates how well the model matched data from an
actual diode. The excellent fit to a straight line made the
determination of the series resistance easy For the exam-
ple.in Fig. 2. the X intercept from the curve fit..~e routine
gave a series resistance of 17 Q. The inverse slope, 1/GRAD.
related to an 1deality factor of 1.09, which we obtained by
dividing 1/GRAD by the room temperature value of K7/g
(25 BE-03)

U ing the HP4145 to determune saturation current — Be-
fore extracting the saturation current from the measure-
ments, we programmed the HP4145A o remove the effects
of series resistance The user-defined function feature al-
lowed us to subtract /- R, from the measured voltage (Eq )

Vo= V-1 R, 5]
Whth this adjustment, a slightly modified version of Eq 3
resulted (Eq. 6)
™n
1= 1"t {6}

Although this change is small, a plot of the log(/) vs V.
demonstrates a significant benefit (Fig 3) Whale a plot not
corrected for serie resistance would maintain some curva-
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Fig. 3. HP4145 plot used to obtain saturotion current. Region be-
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ture throughout the forward-biased region, the corrected
plot shown 1n Fig 3 exhibited straight line behavior above
60 mV Below 60 mV, the exponentigl term no longer dom-
inates the diode characteristics, instead, the more precise
Eq 1 describes the performance in thus region The loga-
rithm of Eq 6 not only predicts the hinear behavior but also
provides a means of determining wne saturation current
(Eq 7)

togll) = log(l,} + 0 4343 v, {71

9.
nkKT 7

Equation 7 matches a shghtly different linear equation
than the one used to obtain the series resistance Rather
than matching the form y = m(x - b1 Eg 7 matches tre
form y = mx + b, where y equals logil}, r equals V,, m
relates to the ideality factor, and most important b the ¥
intercept relates 1o the soturation current, the saluration
current s actually the antilog of the Y ntercept For the
example in Fig 3, which has a series resistance of 1742 4
saturation current of 0 896 uA 15 obtained

Computation of barrier hewght —Once the saluration
current 13 known, a rearranged version of Ea 2 was ob-
tained to obtain the barrier height (Eq 8)

KT A**T A .
[ q in ( I } {8}

The actual computation {or the barmer height was per-
formed using the spread sheet Excel for the Macintosh Fur
the value of the saturation current oblained earbier a tipi-
cal In? barmer height of 0 48 V was obtained

Results and Discussion

Before starting this work, a barrier enhancementof 0 8 V
was established as a target With this in mind. we used
Eq 8 to estimate the change in the saturalion current te
obtain this level of barrier enhancement The tesult of thas
analysis predicted a drop of 10' This expected large drop
reinforces the benefit of using the saturation current as the
indicator of barrier enhancement

To demonstrate to ourselves that the UV radiatinon might
have a dramauc effect on an InP surface. we performed a
series of experiments at a relatively high temperature InP
substrates were exposed to a 700°C environment for 2 min
in three different atmospheres H., N. and 1 For com-
parison, some samples were additioratly exposed o radia-
tion from a 1 kW Hg-Xe ozone free lamp Since the ambient
temperature is much larger than the congruent sublimation
temperature of InP. we expected severe erosion of the InP
surface regardless of the ambjent However due to the
short exposure time. only samples expnsed tan the H ambi-
ent showed any noticeable erosion Samples expnsed to the
N, ambient regardless of UV exposure illustrated no syr-
face damage. while the samples exposed to the Q. ambient
exhibited a significant oxide growth for the sample ex-
posed to UV radiation Possible explanations for these ob-
servations are discussed in the next {ew paragraphs

Figure 4 shows the results of a sample exposed to an H.
ambient without UV radiation The severe erosion was ex-
pected but. as supported by data presented later this ero-
sion was not caused by the subhimation of phosphorus as
we mitially thought, but more likely caused by a reactinn
between the phosphorus just above the substrate and H
As shown with Eq. 9 and 10. this reaction most Likelv {eads
to formation of phosphine As the PH in Eq 10 15 swept
from the process chamber, Eq 9 will continue in the for.
ward direction. thus siphoning more phosphorus from the
InP substrate and leaving indium droplets shownin Fig &
on the surface

InPfs) — In(s) + ; P.(g) {9

3 PR+ 3 H(R) — PH (@) (0]
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Fig. 6. N, without UV rodicion. Exposed for 2 min ot 700°C.
Nomorski token ot 50 fmes mognificotion. Preser-
vation of srfoce wos o surprise.

ments were made to estimate the thickness at 500 A Since
the ozane-free UV lamp was used for this process. the reac-
tion of ozone with the InP surface cannot be responsible for
this reaction. Instead, in addition to the catalyst role no-
ticed in the reaction with H,, a photoinduced electron
transfer (PET) process is more likely responsible for pro-
ducing O: molecules which then participate in the oxida-
tion of the surface to produce indium oxide.

We believe that there are two possible PET reactions that
result in excess electrons that convert the InP surface into
an oxidizing agent which, due to O, relatively high electron
affinity (0.45 eV), reacts easily with oxygen to eventually
produce an indium oxide film.

The first possible PET reaction. described by Channon
and Eberson," relies on the generation of excess electrons
in the conduction band of n-type by photostimulation ¢f
electrons from the valence band and into the conduction
band, resulting 1n bandbending at the surface to reflect the
increase concentration of electrons and holes. Equation 11
illustrates how the activated surface converts (SC) O. to
o,

SC +hvaSC*+0.-SC +0; nmn

The second possible reaction, described by Fox'* and illus-
trated in Eq 12, generates excess electrons by photostimu-
lation of surface atoms (S.A))

SA +hva3SA*+«0,-+SA +0 112)

Fig. 8. O, withou! UV rudiathon. Exposed for 2 min o0 700°C
Nomorski photomicrogroph soken 01 50 time mogaibcahon Preser
votion of wrfoce wos o wepnise.

m:hodemtbdomd\ebkmu’monh
which covered mast of the surfoce.

Withindium as the sur{ace atom for the second type of PET
reaction. Eq 13 and 14 illustrate the passible reacrtion and
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the activation energies based on electrode potential ener-
gies”

Inoin ee E,=014eV (131

e +0, -0,

In = In* + 3¢ E,=034eV {14}

3e¢+30,-30;

Because the energy for UV photons is above 3.0 eV and the
energy gap of InP is 1.35 eV, both mechanisms and both
ionization reactions most likely occur to produce radical
0;.

Once the radical species is produced, one possible reac-~
tion to produce indium oxide is shown in Eq 15

InwO;«;%ln,O,*%O, {15]

Hence, thermodynamic arguments can be made to sup-
port the claim that ozone is not primanly responsible for
the layer formation but instead oxidation of a surface en-
hanced by the photoinduced transfer of electrons.

After the high-temperature experiment, we attempted to
reproduce the room-temperature Schottky enhancement
achieved by lliadis However, we met with little success.
Less than 1% of the samples processed demonstrated any
evidence of barnier enhancement. Furthermore, for those
samples exhibiting enhancement, the effect was very local-
ized, at most three diodes from an array of 144 exhibited
any enhancement. At this point, the idea of optimizing the
process at the congruent sublimation temperature became
more appealing. In pursuing this line of investigation, the
impartance of other parameters, which were needed to
achieve the greatest possible enhancement, became clear.

In presenting our results, several effects are presented on
the same table. This was not done to suggest any connection
between the parameters, although future studies might re-
veal such relationship, but instead, to present the results in
a more compact form and demonstrate how the experi-
ments proceed chronologically.

The first set of experiments involved analysis of tempera-
ture and wavelength (Table I). Since the dichoric mirror
was still in place from the room-temperature experiments,
the first three experiments only used the ozone producing
wavelengths Three different temperatures were examined,
with no enhancement occurring. Next, the dichoric mirror
was replaced with the Solar Simulator’s normal mirror,
and the temperature ranges repeated. This time enhance-
ment occurred at 368°C. The results of these experiments
gave the first indication that the congruent sublimation
temperature was a critical parameter for this process. The
results also indicated that the ozone producing wavelength
had little influence on the enhancement process.

The sensitivity of this process ta the congruent sublima-
tion temperature appears to make sense. Since the en-
hanced layer most likely contains insulating phosphorus
oxides, either InPO, or P,0, or both," and because the sub-
strate 1s the only source of phosphorus, the ability to trap,
into the enhancement layer, the phosphorus being liber-
ated from the substrate becomes important. Unlike the
high volatility at elevated temperatures, the phosphorus
liberated at the congruent sublimation temperature should
be less mobile, thus allowing the phosphorus to interact
with the O; radical produced by a photoinduced electron
transfer (PET) effect. The observed PET effect at this tem-

Table |. Wavelength and temperaturs effects.

204-211°C 368°C 628°C
Ozone 047V 047V 047V
Full 047V 0.55V 047V
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perature is consistent with the high-temperatare resuits
discussed earlier 1n this paper Equations 16 and 17 de-
scribe the iniual reactions which mught involve the radival
O; The surface atom (S A} 15 most hikely indium As a
result, Eq 1B, 19, and 20 describe possible termunal reac-
tions which produce the surface oxides Note that the jon-
ized surface sites may play an impaortant rale in ajtracting
the phosphorus oxides back to the surface, sinve electro-
static attraction between surface sites and the gas
molecules may be strong enough 1o prevent phosphorus
oxides from being swept from the surface

SCehv=5C"«0,453C"+0, 116
SA ¢Av4SA*«0,+85A 0, {17}

. Ll 1 )

In sQ,—A;‘,ln,O,aiO) 118

In*(s} + In"(5) « Pyig) « 4 Oy(g) — 2InPO(s) 119

S3SC (s}« Pylgl» 5 O(g) — 2P,0,(s) « 58 C [203

After the success of the first set of expenments, we next
addressed the questions of whether the etch solution HC
was critical to the process and whether theres was an upper
Limit to the exposure time As mentioned in the previous
chapter, HCl corrosively etches InP From s device process-
ing point of view, the use of a more berugn and controllable
etch becomes important The mixture of HC! and H,PO,
appeared the best choice, since this mixture not only pro-
duces an excellent morphology but also exhibits an ad-
justable etch rate based on the portion of H,PO,. By adding
larger portions of H,PQ, to the mixture, the etch rate could
be decreased from 12 to 0.5 um/mn '’ For our expeniments,
a 1:4 (HCIH,PO,) mixture was used, which produced a
modest etch rate of 1 pm/min. An investigation of the ef-
fects of exposure time was conducted since thadis demon-
strated in his work that the barner height saturated at an
exposure time of 40 min. Since our expenments used a
higher intensity (100 mW/cm? vs. 15 mW/cm’), we expected
to observe a similar effect within 6 mun of exposure time

Table Il summarizes the results of the second set of ex-
periments, which demonstrate that the HCI'-H,PQ, etch 15 a
suitable substitute for HCl and the barner height saturates
at 5 min. The result of the barrier-height saturation time
seemns to be consistent with Ihadis’s results, thus suggesting
that an energy density limit might exist for this enhance-
ment process. We believe this is most likely hnked to the
penetration depth of the UV radiation into the substrate
during the PET process. Since the InP extinction coelficient
in the UV range is at least an order of magnitude greater
than the extinction coefficient in any wavelength region
emitted from the Solar Simulator," UV-driven reactions
would be limited to the few monolayers close to the surface
Therelore, the number of activated sites in Ihadis’s and our
experiment would be approximately the same; hence, the
shorter saturation time we observed would be consistent
with the higher irradiance available with our apparatus

Having identified a suitable etch solution and exposure
time, we returned to refining the temperature effect
Table Il illustrates the results of these experiments
Significant barrier enhancement occurs from 350 to
380°C. These results reaffirm the dynamics of the process
discussed earlier. In addition, the highest barrier height.
0.69 V, gave indications of a flow-rate effect since that par-

Toble §. Eich solution and tim. effects.

Temp Time Bamer height
°C) Etch (rmn) (V)
368 HCl 2 055
366 HCl1 H,PO, ) 059
366 HCLH,PO, 30 0 60

Sample preparation: HCI etch. Growth parameters flow rate =
1540 scem, intensity = 98 mW/cm?, exposure time = 2 min.

Growth parameters' flow rate = 1540 sccm. intensity = 98 mW/
cm?, wavelength = full spectrum

10
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Tabls itt. Refinement of temperoiure effect.

Temp Barrier height
© 4)]
394 047
380 038
366 059
353 051
34§ 069

Sample preparation etch. HCLH,PO, Growth parameters nten-
sity = 98 mW/cm’, exposure ime = § mun, wavelength = full spec-
trum, flow rate = 1540 scem (1ast sample in Table processed at liow
rate of 614 scem).

Table 1V. Refinement of Row rote effect.

Flow Barmer height
{scem) Percent full scale )
1540 333 451
920 201 050
614 133 067
3017 67 048
0 0.0 049

Sample preparation etch: HCLH,PO, Growth parametersinten-
sity = 98 mW/cm?, exposure time = 5 min, wavelength = full spec-
trum, temperature = 348°C.

ticular experiment was performed at the lower flow rate
than the other samples, 614 scem.

The results at 348°C prompted another set of expen-
ments (Table [V) to isolate the proper flow rate. The earlier
conditions were repeated and produced a barner height of
0.67 V. Other experiments were performed at flows higher
and lower than 614 sccm. However, none of these expen-
ments resulted in a barrier height greater than that
achieved at 614 sccn. We believe one of two reasons could
be used to explain this unusua) result. One reason could be
that the kinetics of the process may require the contribu-
tion of unreacted O, at a particular speed to enhance an
intermediate chemical reaction. Another reason, as dis-
cussed earlier, could be an unusual flow pattern influence
by the layout of the process chamber. Further study is
needed to identify a plausible reason.

The sample with the highest barrier in the previous set of
experiments was also studied to determine whether the
barrier height remained stable in air. Table V illustrates
the results of these measurements. Unfortunately, we
measured a decay of the barrier height to 0.57 V within
48 h, after which the barrier decayed to 0.55 V in 45 days.
We believe this decay was caused by the reaction of P,0,
with water vapor in the atmosphere since this oxide is one
of the most efficient drying agent; used in desiccants
(0.5 grams of water removed per gram of P,0,)."” To solve
this problem, a process to encapsulate and/or anneal these
devices will be necessary to guarantee their long-term sta-
bility. Thus what initially appeared as a simple process to
enhance InP’s Schottky barrier is becoming more complex.

We thought a close examination of the changes in the
series resistance and ideality factor would reveal whether
these devices are MES Schottky diodes. For MES Schottky
diodes, we believe that at best, the series resistance should
remain constant as the barrier height increases, and at
worst, the resistance should relate to the length of the de-
pletion region generated by the Schottky barrier. The theo-

Table V. Stability of highest barrier.

Time Barrier height (V)
Initial 0.67
48 h 0.57
72h 0.57
45 days 0.55
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retical model we used for the latter case views the depletion
region as a Linear resistor. From thus standpoint, we denved

Eq. 21
[Ze {21)

- E m—p———
Rew™ 2 Ny ®

The approximation in Eq. 21 reflects the fact that the
expression ignores the few mulhelectron volts difference
between the bottom of the conduction band and the Ferm:
level within the neutral region of the semiconductor mate-
rial. These differences are typically an order of magnitude
less than the barrier height and as such have little influence
on the analysis of the experimental results

Since the resistivity of the depletion region 1s dufficult to
obtain, we developed an expression for resistance which
eliminated the resistivity by considening the percent in-
crease in the enhanced resistance from the resistance of a
norma) Schottky diode {see Eq. 22)

: VOB purces = VOB
% increase = ST emhanced ¥ normal 100 (22]
v .BW]

For the size of the Schottky diodes used in this expern-
ment, the resistance of a normal Schottky diode, which has
abarrier heightof 0.45 V, is 21.1 £2; as a result, the expected
resistance of an enhanced layer is expressed by Eq 23

R - VOB ppanced ~ V0.45 V
g V045V

Figure 11 demonstrates how, even for the lower barrier
heights, the measured series resistance varies drastically
from the expected variation. For the higher barrier heights,
the discrepancy is much worse. We believe these results
indicate that a thin insulating barrier is being formed be-
tween the diode metal gate and the semiconducting surface
as the barrier is increased. This would strongly suggest the
formation of a MIS structure rather than 8 MES Schottky
diode. The evidence becomes more compelling in this direc-
tion if the variation in the ideality factor is also considered.
1f the enhancement represented a MES Schottky diode, the
ideality factor would remain close to 1.00. But, an examin-
ation cf Fig. 12 shows that this is not the case. Instead the
ideality factor increases as the barrier height increases.
which is an indication that the diode characteristics are
moving further and further away from ideal behavior
Since the variations in the series resistance and ideality
factor indicate that these devices are not MES-enhanced
Schottky barriers, the expected unpinning of the Ferm
level is not a by-product of our enhancement process. Fur-
thermore, for gate regions fabricated from this technology.
we would expect lower cutoff frequencies due to larger
than expected RC time constants.

Conclusions

A number of important observations were made with this
set of experiments. To begin, we established that the HCI

x21.102+21.1 Q2 (23}
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etch is not critical to the enhancement process. As a result,
we were able to replace this etch with the more benign
mixture of HCI:H,PO,. The optimal growth parameters in-
clude growth temperatures in the 340 to 380°C range, a flow
rate of O, =~ 600 sccm, a saturation exposure time of 5 min
We also determined that the ozone producing wavelengths
are not critical to the process. Finally, the device character-
istics indicate that the barrier height is susceptible to the
water vapor in the air, and the variation of the series resis-
tance and ideality factor as the barrier height increases
suggest that the devices are not MES Schottky diodes.

Although not MES Schottky diodes, the advantage of a
lower saturation current would be beneficial for a number
of device applications. For instance, this thin insulating
layer could be used as an intermediate layer between the
InP surface and a SiQ, layer in order to enharnce the sta-
bility of S10, MIS devices. Therefore, future work will con-
tinue in order to answer the questions raised by the exper-
iments in this paper and to alleviate the susceptibility of
the devices to water vapor.
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GAS PHASE REACTIONS OF TRIMETHYLAMINE ALANE IN
LOW PRESSURE ORGANOMETALLIC VAPOR PHASE EPITAXY OF AlGaAs

B.L. Pitts, D.T. Emerson and ].R. Shealy
OMVPE Facility, School of Electrical Engineering
Cornell University
Ithaca, N.Y. 14853

Abstract

We have investigated the effects of gas phase reactions between trimethy-
lamine alane (TMAA), triethylgallium (TEG) and arsine on Al,Ga;_.As films
grown by low pressure Organometallic Vapor Phase Epitaxy. The reactor used
in this study provides for independent observation of the effects of TEG-TMAA
and TMAA-arsine gas phase reactions. Gas phase reactions involving TMAA and
TEG result in the formation of nonvolatile compounds upstream, which condense
on the reactor wall, resulting in a reduction of growth rate and a degradation of
the deposition uniformity. The TMAA-arsine reaction produces a compositional
dependence on the gas phase stoichiometry (V/III ratio). Both of these effects
are more severe for higher TMAA fluxes. High quality AlGaAs with excellent
thickness and compositional uniformity was produced by spatially separating

the TMAA and TEG in the gas phase which minimizes the parasitic reactions.
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The growth of aluminum containing Ifl-V compound semiconduétors grown
by QOrganometallic Vapor Phase Epitaxy (OMVPE) has traditionally been plagued
with high oxygen and carbon incorporation. A major reason for these problems
is due to the widely used aluminum source, trimethylaluminum (TMA). TMA
has a strong aluminum-carbon bond and the ability to form volatile aluminum
alkoxide compounds resulting in oxygen contaminated AlGaAs layers.! Recently,
trimethylamine alane (TMAA) has received much attention as a viable alterative
aluminum source in both OMVPE and Chemical Beam Epitaxy (CBE).2~% Pre-
vious reports indicate that using TMAA along with triethylgallium (TEG) and
arsine (AsHj;), under the appropriate growth conditions (very high V/III ratios
and gas velocities), can result in the highest purity OMVPE grown AlGaAs.?*®
This is believed to be due to a lack of direct aluminum-carbon bond in TMAA and
also its ability to form involatile Al-O compounds when reacted with oxygen
and H;O, resulting in reduced oxygen contamination. Improved photolumines-
cence (reduced donor-to-acceptor related transition) and mobilities (77 K mobility

exceeding 14,000 cm?/V sec for Aly;4Gag.ssAs) have been achieved.?

Earlier reports using TMAA in OMVPE suggest that a requisite for produc-
ing high quality AlGaAs epitaxial layers is to avoid prereactions between TEG
and TMAA upstream from the susceptor.>” TMAA has a low thermal decom-
position temperature (~100 °C), allowing predeposition on the side walls of the
reaction cell. A solution to these problems has been to increase the gas veloc-
ity which reduces the residence time of the reactants in the growth chamber.
In addition, high V/III ratios are necessary to achieve high purity results. The
growth chemistry using these precursors in OMVPE must be understood in order
to optimize film quality. Although studies investigating the effects of gas-phase
reaction between TMAA and TEG in CBE have been reported,®® no previous
study exists for OMVPE.

An investigation of gas phase reactions involving TMAA in low pressure

OMVPE of AlGaAs is reported. We have observed two predominant effects: one
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due to a TMAA-AsHj reaction yields a strong influence of film composition with
the V/II ratio, and the other resulting from a TMAA-TEG reaction which de-
grades the deposition uniformity. The effects of each of these gas phase reactions
in the upstream portion of the reaction cell were identified by spatially separat-
ing TMAA and TEG in the gas phase using a multichamber reaction cell.!° The
TMAA-TEG reaction has severe effects on the quality of the AlGaAs films es-
pecially at low V/III ratios. Using the separated TMAA and TEG reactant flux

approach, high quality AlGaAs structures were produced by at much lower V/II
ratios than have been previously reported.

AlGaAs layers were grown using Flow Modulation Epitaxy (FME)!! at low
pressure in a vertical barrel, multichamber OMVPE system,? illustrated schemat-
ically in Figure 1a. In this system substrates are rotated through group I rich
spatially separated zones in a uniform group V background flux without valve
switching. An inner quartz ampoule (diameter-d) separates the reactant fluxes of
each deposition zone. Figure 1b shows the flow modulation exposure cycle for
each growth mode. In the conventional growth mode, the TEG and TMAA are
premixed prior to injection into the reaction cell while the susceptor is rotated
at 0.1 rev/sec. In the spatiallv separated growth mode, the TEG and TMAA are
injected into separate growth zones, minimizing the TEG-TMAA gas phase reac-
tions. For the group III flux used in this study, susceptor rotation speeds greater
than 1 rev/sec are needed to produce sub-monolayer exposure cycles which re-
sult in mixed alloys. Rotation speeds ranging from 0.1 to 0.7 rev/sec were used
when the reactant fluxes were separated in the vapor. Raman spectroscopy con-
firmed the existence of short period superlattices (confined LO GaAs and AlAs
vibrations) on all samples produced with this method. The degrex of deposition
zone separation (indicated by the set of arrows in Figure 1b) is proportional to
the amount of hydrogen carrier gas injected between each zone. Because a small
amount of zone intermixing occurs in the spatially separated growth mode (see

Figure 1b), the short period superlattices have graded interfaces. In both growth
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schemes, the total gas flow was 30 slm, while the gas velocity was maintained

at 30 ecm/s.

Undoped AlGaAs layers were grown using TMAA, adduct-purified TEG
and 100% AsH;. Layer thicknesses ranged from 0.5-2 um. The substrates, (100)
Si-doped n* GaAs and (100) semi-insulating GaAs, were first rinsed in organic
solvents and then etched in SH;S0O,:1H,0,:1H,0 prior to growth. The TMAA
was held at 23 °C while a H; flow of 57 scan was passed through the bubbler.
The TEG was also held at 23 °C, while the flow varied from 18 to 50 scam. Both
TEG and TMAA were maintained at 100 torr. The growth temperatureAvaried
from 635 to 750 °C, and the reactor cell pressure was 76 torr. AlGaAs films were
characterized by Hall measurements, Raman spectroscopy and photolumines-
cence (PL). Low temperature (1 K) PL was carried out with samples submerged
in superfluid He with photoe' .itation provided by the 514.5 nm line of an Ar*
laser. Raman spectroscopy was used to determine the aluminum composition?
and the structure features of the superlattices.?® Thickness measurements were
made by a combination of angle bevelling and staining and from analysis of

reflectance spectra.

The V/II ratio and growth temperature criteria for good surface morphol-
ogy were investigated over the range from 635 to 750 °C. Good surface morphol-
ogy was realized for a V/II ratio as low as unity over the entire temperature
range. All layers were n-type and net carrier concentrations were in the low
10'% em~3 range. With growth temperature (670 °C) and group III flux constant,
the Al mole fraction as determined by Raman scattering’? was found to vary
with V/III ratio in the conventional premixed growth mode. As shown in Fig-
ure 2, more Al is incorporated in the film as the V/III ratio is decreased. For
low TMAA fluxes, corresponding to alloy compositions of ~15%, AsH; appears
to prevent the TEG-TMAA reaction which is shown to reduce the TEG tranport
to the growth surface. As can be seen in the PL spectra in the Figure 4 inset,

the sample quality degrades with decreasing V/III ratio. At a V/III ratio of 80,

&
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a full width at half maximum exciton linewidth of 2.2 meV was observed for
Alg 15Gag ssAs. This compares favorably with the narrowest linewidth ever re-
ported at that composition by Reynolds et al.'* The exciton line broadened but
was still clearly identifiable when the V/III ratio was lowered to 7.5. Finally,
at a V/II ratio of 1, the exciton feature was absent. The need for large arsine
flows may imply that the TMAA-AsHj; reaction inhibits the TMAA-TEG reaction
which is demonstrated to severely degrade the quality of the AlGaAs films.

Gas phase reactions between TEG and TMAA have major effects on the
growth rate. As Figure 3 illustrates, when the TMAA and TEG are premixed, the
AlGaAs growth rate is approximately half that of GaAs with same TEG reactant
flux. A relatively high V/III ratio was used (V/III=80) to eliminate the effects
of AsHj flows described earlier. The Al composition for AlGaAs grown using
premixed sources was 79% whereas that for the spatially separated sources was
nominally 40%. Assuming that the Al and Ga incorporation in the AlGaAs layer
in the two growth modes are equal, an estimated 70% of the TMAA reacts in the
gas phase to produce nonvolatile compounds. The effect of growth rate reduction
was also reported for CBE for premixed TMAA and TEG.® In addition, color
fringes were observed downstream along the wafer, indicating severe thickness
nonuniformity (£16% over a 20 mm diameter). In contrast, excellent thickness
uniformity was realized (+1% over a 20 mm diameter) when the TEG and TMAA
are separated in the vapor. Although the growth rate was roughly doubled by
separating the group III reactant fluxes, it was still lower than that for GaAs.

This is likely due to the partial intermixing of the growth zones.

A comparison of PL spectra was made between layers grown by premixed
and spatially separated growth modes for constant reactant flux. These experi-
ments were performed at a growth temperature of 670 °C and a V/III ratio of
80. As shown in Figure 4, the material grown with spatially separated group II
fluxes exhibited three orders of magnitude higher PL intensity than the premixed

grown material. All material grown by spatially separating the TMAA and TEG
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had strong room temperature PL, which was difficult to observe when premixed
sources were used. A possible explanation for this effect is that in addition to the
TMAA and TEG forming nonvolatile compounds, volatile compounds are also
present which participate in the growth process and incorporate non-radiative
centers in the AlGaAs.

In conclusion, we have demonstrated the effects of parasitic gas phase re-
actions between TMAA, TEG and AsH; in low ?ressure OMVPE of AlGaAs.
The TMAA-TEG reaction the decreases the growth rate, degrades thickness uni-
formity and luminescence efficiency particularly at moderately high Al compo-
sitions. This reaction results in the formation of nonvolatile compounds, dra-
matically reducing the TEG transport to the substrate surface. These effects were
greatly reduced by spatially separating the TMAA and TEG to minimize parasitic
gas phase reactions. The effects of V/III ratio on film quality and Al composi-
tion have also been determined. High V/III ratios are necessary to inhibit the
TMAA-TEG reaction likely due to a pre-reaction with TMAA and AsHi. The
AsHj; flow requirement for acceptable quality AlGaAs films is sharply reduced
using the multichamber flow modulation technique.

The authors wish to thank B. Butterfield, A. Schremer and K. Whittingham
for technical assistance. This work was supported by the Joint Services Electron-
ics Program under grant No. F49620-90-C-0039, the Strategic Defense Initiative
Objective under contract No. N00014-89-J-1311, and the Defense Advanced Re-

search Projects Agency under contract No. MDA97290C0058 Optoelectronics
Technology Center.
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FIGURE CAPTIONS

1. Figure 1: (a) Schematic illustration of implementation of Flow Modulation

Epitaxy in the multichamber cell. Two TEG sources, one on each growth
zone, allow for conventional premixed injection or spatially separated group
I sources. The arsine is uniformly injected around the cell. The inner quartz
ampoule (diameter - d) serves to separate the reactant fluxes of each deposition
zone. (b) The exposure cycle for premixed and spatially separated TMAA
and TEG. The arsine flow is uniformly distributed around the cell. Dotted
lines represent the reactant flux zero reference. The degree of deposition zone
separation is indicated schematically by set of arrows in the lower diagram of

the figure.

Figure 2: Dependence of the aluminum composition (determined from Raman
scattering) on V/III ratio for contant TEG and TMAA fluxes at 670 °C. The
inset is the corresponding low temperature PL spectra for various V/III ra-

tios. The luminescence intensity is magnified by the factors shown. Excitation

conditions are as indicated.

. Figure 3: The growth rate of undoped AlGaAs downstream along the wafer

when TMAA and TEG are premixed prior to injection into the growth chamber
and spatially separated in the gas phase. The nominal aluminum composition
of the superlattice is 0.40. The growth rate is normalized to GaAs. The exper-

imental conditions are as indicated.

. Figure 4: Low temperature (1 K) photoluminescence of undoped AlGaAs

grown with TEG, TMAA and AsHj using FME. The TMAA and TEG were
either premixed prior to their injection into the reaction cell or spatially sepa-
rated in the multichamber cell, as indicated. The luminescence is magnified by
the factors shown. Excitation conditions, growth conditions and superlattice

periods are as indicated.
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THE EFFECTS OF GAS PHASE REACTIONS OF TRIMETHYLAMINE ALANE ON

AlGaAs FILMS GROWN BY ORGANOMETALLIC VAPOR PHASE EPITAXY

B.L. Pitts, D.T. Emerson, M.]. Matragrano®* and }.R. Shealy
OMVPE Facility, School of Electrical Engineering
Cornell University
Ithaca, N.Y. 14853

Abstract

The effect of gas reaction between trimethylamine alane, triethylgallium and
arsine on AlGaAs films grown by Organometallic Vapor Phase Epitaxy is re-
ported. Using a multichamber reaction cell, we have been able to independently
observe the effects of TMAA-TEG and TMAA-arsine gas phase reactions. The ef-
fects of TMAA-TEG gas phase reactions were identified by comparing films that
were grown by premixing the TMAA and TEG prior to injection, to those that
where the TMAA and TEG were spatially separated. The TMAA-TEG reactions
results in the formation of nonvolatile compounds which condense upstream
from the reaction cell, resulting in a severe reduction in growth rate, as well a
depletion of the gallium species. The TMAA-arsine reaction produces compo-
sitional dependence on V/III ratio. The arsine flow requirement for attaining
good surface morphology has been identified. Under the appropriate growth
conditions we demostrate that acceptable purity AlGaAs can be grown using
low V/1II ratios.

* Department of Material Science, Bard Hall, Cornell University, Ithaca, N.Y.
14853
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L Introduction

The ability to produce high purity AlGaAs material has led to the realization
of many high performance optical and high-speed electronic devices. The growth
of AlGaAs grown by Organometallic Vapor Phase Epitaxy (OMVPE) has tradi-
tionally been plagued with high oxygen and carbon incorporation. Although
many attempts have been made to reduce these effects, relatively high concen-
trations of carbon, and to a lesser extent oxygen, still persist using conventional
sources’:2. A major reason for these problems is due to the widely used alu-
minum source, trimethylaluminum (TMA). TMA has a strong aluminum-carbon
bond and the ability to form volatile aluminum alkoxide compounds resulting
in oxygen contaminated AlGaAs layers. Trigthylaluminum (TEA) is also used
as an aluminum source, and it has demonstrated lower carbon incorporation in
AlGaAs than TMA. Low temperature (<5 K) mobilities near 500,000 cm?/V sec
have been reported for AlGaAs/GaAs modulation doped heterostructure (sheet
electron density - 8(10'') em~?) using TEA and friethylgallium (TEG)*. Compa-
rable results do not yet exist for structures grown with TMA or frimethylamine
alane (TMAA). However, some residual oxygen still remains using TEA. Also,
TEA has a low vapor pressure (0.5 torr at 55 °C) which is inconvenient for

OMVPE.

Trimethylamine alane (TMAA) has received much attention as a viable alu-
minum source in both OMVPE and Chemical Beam Epitaxy (CBE)*~'¢. TMAA
does not have a direct aluminum-carbon which is expected to reduce the carbon
comtamination. Also, when TMAA reacts with O, and H,0 involatile Al-O com-
pounds form thereby reducing the oxygen contamination. Reports indicate that
using TMAA along with TEG or {rimethylgallium (TMG) and arsine (AsHj,), un-
der the appropriate growth conditions (very high V/III ratios and gas velocities),
can result in the highest purity OMVPE grown AlGaAs®’. Improved photolu-
minescence (reduced donor-to-acceptor related transition) and mobilities (77 K

mobility exceeding 14,000 cm?/V-sec for Aly ;4Gag s¢As) have been achieved®.
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Recently, high quality AllnAs/GalnAs structures have also been attained using
TMAA. Low threshold lasers and high transconductance selectively doped field
effect transistors have been demonstrated using TMAA in both AlGaAs/GaAs
and AllnAs/GalnAs material systems!?:12:15,

Previous investigators have reported parasitic reactions between TMAA and
metal-alkyl compounds in OMVPE®?%15, Inferior compositional and thickness
uniformity was realized, probably due to gas phase reactions between TMAA
and other reactants®. Grady et al. performed Fourier transform infrared (FTIR)
spectroscopy on TMAA /TMG vapor mixture and reported the presence of strong
gas phase reactions between TMAA and TMG resulting in a depletion of gallium
species!”. TMAA also has a low thermal decomposition temperature (~100 °C),
allowing predeposition on the side walls of the reaction cell. A remedy to these
problems has been to increase the gas velocity which reduces the contact time
between the reactants in the growth chamber. Hobson et al. used gas velocities
greater than 1 m/sec to overcome these effects!!. In addition, high V/III ratios
are necessary to achieve high purity results. Studies have been made inves-
tigating the growth chemistry of CBE using TMAA with other organometallic
compounds?®14.  Notably, Kobayashi et al. reported the effects of gas-phase
reactions between TMAA and TEG in CBE. They concluded that TMAA-TEG re-
actions produced non-volatile compounds which decreases the growth rate and

reduces gallium incorporation?3.

This paper investigates the effects of gas phase reactions between TMAA,
TEG and AsH; on AlGaAs films grown by low pressure OMVPE. The reactor
used in this study provides for independent observation of the effects of TEG-
TMAA and TMAA-AsH; gas phase reactions. Gas phase reactions involving
TMAA and TEG result in the formation of nonvolatile compounds upstream,
which condense on the reactor wall, resulting in a reduction of growth rate and
a degradation of the deposition uniformity. The TMAA-TEG reaction has severe
effects on the quality of the AlCaAs films especially at low V/III ratios. The
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TMAA-AsH; reaction produces a compositional dependence on the gas phase
stoichiometry (V/III ratio). High quality AlGaAs with excellent thickness and
compositional uniformity was produced by spatially separating the TMAA and
TEG in the gas phase which minimizes the parasitic reactions. Applying flow
modulation techniques?®-!? dramatically reduces the arsine flow requirements for

producing acceptable quality AlGaAs.
I1. Experimental

AlGaAs layers were grown on (100) Si-doped n* GaAs and (100) semi-
insulating GaAs substrates in a vertical barrel, multichamber OMVPE system?®°.
The reaction cell is made of 6-inch high purity quartz. The graphite susceptor,
which can hold up to 18-1.5 inch wafers, is inductively heated by RF radiation.
Each organometallic line has independent pressure control to enhance transport
to the reaction cell. The system is also equipped with an in-situ quadrapole mass
analyzer to detech gas leaks before experiments. Figure 1a illustrates the gas flow
in the reaction chamber. The reaction chamber has two growth zones that are
spatially separated by large hydrogen fluxes. The substrates are rotated through
the growth zones without valve switching. An inner quartz ampoule (diameter-d)
separates the reactant fluxes. Arsine is uniformly injected into the entire growth
chamber. During the group IIl exposure cycle the local V/III ratio is estimated
to be 25% of the average value. The V/III ratio quoted throughout represents
the average V/IIl ratio determined by the total injected reactant fluxes. The flow
modulation exposure cycle for each growth mode is shown in Figure 1b. The
group III reactants are modulated while the AsH; exposure remains constant.
In the conventional growth mode, the TEG and TMAA are premixed prior to
injection into the reaction cell while the susceptor is rotated at 0.1 rev/sec. In the
spatially separated growth mode, the TEG and TMAA are injected into separate
growth zones, minimizing the TEG-TMAA gas phase reactions. For the group
I flux used in this study, susceptor rotation speeds greater than 1 rev/sec are

needed to produce sub-monolayer exposure cycles which result in mixed alloys.

~n
o<}
N N BN Bl AN B N A BN B B SE AE EE B B B B e




Gas Phase Reactions of TMAA- Pitts et al.

Rotation speeds ranging from 0.1 to 0.7 rev/sec were used when the reactant
fluxes were separated in the vapor. Raman spectroscopy confirmed the existence
of short period superlattices (confined LO GaAs and AlAs vibrations) on all
samples produced with this method. The degree of deposition zone separation
(indicated by the set of arrows in Figure 1b) is proportional to the amount of
hydrogen carrier gas injected between each zone. Due to a small amount of zone
intermixing occurs in the spatially separated growth mode (see Figure 1b), the
short period superlattices have graded interfaces. The total gas flow was 30 slm,

while the gas velocity was maintained at 30 cm/s.

The sources used were TMAA, adduct-purified TEG?® and 100% Phoenix
Research Grade AsHj. Arsine was passed through Al-Ga-In melt to reduce the
oxygen and H,;O contamination!. Palladium diffused H, was used as a carrier
gas. The growth pressure was 76 torr. The TMAA was held at 23 °C (vapor
pressure~2 torr) while a H; flow of 57 sccm was passed through the bubbler.
The TEG was also held at 23 °C (vapor pressure-5 torr), while the flow varied
from 18 to 50 sccm. Both TEG and TMAA were maintained at 100 r. The
substrates were first degreased in organic solvents, then etched for 10 minutes in
5H,504:1H,0,:1H,O prior to growth. The growth temperature varied from 635
to 750 °C and the V/III ratio was varied from 1 to 80. Layer thicknesses ranged
from 0.5-2 um.

Films were characterized by Hall measurements, Raman spectroscopy, pho-
toluminescence (PL) and double crystal X-ray diffractometry. Raman spec-
troscopy was used to determine the aluminum composition?? and the structure
features of the superlattices?®. Optical quality was assessed using low (1 K) and
room temperature photoluminscence (PL). Low temperature PL was carried out
with samples submerged in superfluid He with photoexcitation provided by the
514.5 nm line of an Ar* laser. Thickness measurements were made by a combi-
nation of angle bevelling and staining and from analysis of reflectance spectra.

A double crystal X-ray diffractometer with a computer controlled X-Y stage was
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used to determine the layer composition? and map the compositional unifor-
mity across the wafer. The X-ray beam of Cu Ka; monochromatized by (111)

reflections from a perfect Si crystal.
II1. Results and Discussion

All layers were n-type and background carrier concentration in the 10!*cm 2
range. This is believed to be due to Si impurities in TMAAS, .The V/I ratio
and growth temperature criteria for good surface morphology were investigated
over the temperature range 635 to 750 °C for Al,Ga,_.As (z < 0.2). When the
substrate temperature is below 675 °C, more AsH; must be supplied to maintain
specular surfaces. As the growth temp-rature is increased beyond 675 °C, the
good morphology/bad morphology transition approaches a constant value of
unity. An analagous study has been reported using TEG and AsH;?°.

With growth temperature (670 °C) and group III flux constant, the Al mole
fraction as determined by X-ray diffraction and Raman scattering was found to
vary with V/III ratio in the conventional premixed growth mode. As shown in
Figure 2, more Al is incorporated in the film as the V/III ratio is decreased. For
low TMAA fluxes, corresponding to alloy compositions less than 20%, AsH; ap-
pears to prevent the TEG-TMAA reaction which is shown to reduce the TEG
tranport to the growth surface. As the PL spectra in Figure 3 reveals, the
sample quality degrades with decreasing V/II ratio. At a V/III ratio of 80,
a full width at half maximum exciton linewidth of 2.2 meV was observed for
Al 15Gag.ssAs. This compares favorably to the narrowest linewidth ever pro-
duced using OMVPE?® As the V/III ratio decreased to 50, the exciton linewidth
was 6.5 meV. The linewidth continue to broaden but was clearly identifiable
when the V/III ratio was lowered to 7.5. Finally, at a V/III ratio of 1, the exci-
ton feature was absent, indicating that even though morphology was good for
these growth conditions, material purity was relativley poor. The need for large
arsine flows may suggest that the TMAA-AsH; reaction inhibits the TMAA-TEG
reaction which is demonstrated to severely degrade the quality of the AlGaAs
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films.

Gas phase reactions between TEG and TMAA have major effects on the
growth rate. As Figure 4 illustrates, when the TMAA and TEG are premixed,
the AlGaAs growth rate is approximately half that of GaAs with same TEG re-
actant flux. A relatively high V/III ratio was used (V/III=40) to eliminate the
effects of AsH; flows described earlier. The effect of growth rate reduction was
also reported for CBE for premixed TMAA and TEG!3. The Al composition for
AlGaAs grown using premixed sources was 79% whereas that for the spatially
separated sources was nominally 40%. Assuming that the Al and Ga incorpo-
ration in the AlGaAs layer in the two growth modes are equal, an estimated
70% of the TMAA reacts in the gas phase to produce nonvolatile compounds.
The reduction of gallium incorporation seems to be consistent with FTIR results
on TMAA/TMG gas mixture'®. In addition, color fringes were observed down-
stream along the wafer, indicating severe thickness nonuniformity (+16% over a
20 mm diameter). In contrast, excellent thickness uniformity was realized (+1%
over a 20 mm diameter) when the TEG and TMAA are separated. Although the
growth rate was roughly doubled by separating the group III reactant fluxes, it
was still lower than that for GaAs, likely due to the partial intermixing of the

growth zones.

Figures 6 and 7 are compositional uniformity maps for the premixed and
spatially separated growth modes, respectively. The compositional uniformity
is similar for both growth modes (+2%). In both cases, the aluminum concen-
tration decreases downstream along the wafer. The compositional uniformity is
approximately the same for both growth modes (~+2% over 40 mm?). This is
consistent with other reports using TMAA and TEG®.

The X-ray rocking curves for the premixed and spatially separated growth
modes are compared in Figure 8. The premixed grown material exhibited a broad
peak from the epitaxial layer, indicative of poor structural quality. In addition,

long tail on the substrate is present probably due to the to compositional grading
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in the layer. In constrast, layers produced by the spatially separating the TMAA
and TEG had a peak that were comparable to that of the substrate. Both curves
exhibited extra peaks which is possibly due to compositional grading. This is
believed to be due to irratic transport of the TMAA which commonly occurs in
solid organometallic sources such as trimethylindium??.

PL spectra was crmpared between layers grown by premixed and spatially
separated growth mod. . for constant reactant flux. These experiments were per-
formed at a growth temperature of 670 °C and a V/II ratio of 80. As shown in
Figure 9, the material grown with spatially separated group III fluxes exhibited
much stronger PL intensity than the premixed grown material. Material produce
from spatially separating the TMAA and TEG exhibited strong room tempera-
ture PL, which was difficult to observe when premixed sources were used. An
explanation for this effect is that in addition to the TMAA and TEG forming
nonvolatile compounds, volatile compounds are also present which participate

in the growth process and reduces the radiative efficiency in the AlGaAs.
VI. Summary

We have described the effects of gas phase reactions between TMAA, TEG
and AsH; on AlGaAs films grown by OMVPE. The TMAA-AsH; produces a
compositional dependence on the gas phase stoichiometry (V/III ratio). The
TMAA-TEG reaction result in the formation of nonvolatile compounds which
reduces the growth rate and degrades the depostion uniformity. Poor lumi-
nescence was observed suggesting the presence of volatile compounds which
produce non-radiative centers. These effects were dramatically reduced by spa-
tially separating the reactants. The arsine flow requirements has been identified
for yielding good surface morphology AlGaAs using TMAA, TEG and AsH,.
Finally, we have demonstrated that under the appropriate growth condition, ac-

ceptable quality AlGaAs can be produced using low V/III ratios.
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FIGURE CAPTIONS

. Figure 1: (a) Schematic illustration of implementation of Flow Modulation
Epitaxy in the multichamber cell. Two TEG sources, one on each growth
zone, allow for conventional premixed injection or spatially separated group
I sources. The arsine is uniformly injected around the cell. The inner quartz
ampoule (diameter - d) serves to separate the reactant fluxes of each deposition
zone. (b) The exposure cycle for premixed and spatially separated TMAA
and TEG. The arsine flow is uniformly distributed around the cell. Dotted
lines represent the reactant flux zero reference. The degree of deposition zone
separation is indicated schematically by set of arrows in the lower diagram of
the figure.

. Figure 2: Dependence of the aluminum composition (determined from Raman
scattering) on V/III ratio for contant TEG and TMAA fluxes at 670 °C.

. Figure 3: Low temperature PL spectra for various V/III ratios at 670 °C and
cor.ant TEG and TMAA fluxes. Compositional variation is due to TMAA-
arsine gas phase reaction. The luminescence intensity is magnified by the
factors shown. Excitation conditions are as indicated.

. Figure 4: The growth rate of undoped AlGaAs downstream along the wafer
when TMAA and TEG are premixed prior to injection into the growth chamber
and spatially separated in the gas phase. The nominal aluminum composition
of the superlattice is 0.40. The growth rate is normalized to GaAs. The exper-
imental conditions are as indicated.

. Figure 5: Compositional uniformity across a 20X20 mm wafer for AlGaAs
grown by premixing the TMAA and TEG at 670°C and a V/III of 40. The map
was constructed from X-rav diffraction close to the (004) reflection.

. Figure 6: Compositional uniformity across a 12X16 mm wafer for AlGaAs
grown by spatially separated TMAA and TEG at 670°C and a V/III of 40. The

map was constructed from X-ray diffraction close to the (004) reflection.
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7. Figure 7: X-ray rocking curve of AlGaAs grown by either premixed prior to
their injection into the reaction cell or spatially separated in the multichamber
cell, as indicated. The nominal Al compositions of the layer grown by premixed
and spatially separated growth modes were 70% and 26%, respectively. Both
layer were grown at 670°C and a V/III of 40. The X-ray diffraction was taken
close to the (004) reflection. |

8. Figure 8: Low temperature (1 K) photoluminescence of undoped AlGaAs
grown with TEG, TMAA and AsHj; using FME. The TMAA and TEG were
either premixed prior to their injection into the reaction cell or spatially sepa-
rated in the multichamber cell, as indicated. The luminescence is magnified by
the factors shown. Excitation conditions, growth conditions and superlattice

periods are as indicated.
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We report the generation of high-repetition-rate femtosecond pulses in the blue by intracavity doubling of a
mode-locked Ti:sapphire laser using 8-BaB,0,. To reduce the pulse-broadening effect of group-velocity mis-
match, an extremely thin 8-BaB,O, crystal is used. By pumping the Ti:sapphire laser with 4.4 W of power
from an Ar" laser, as much as 230 mW of 430-nm light is produced at a 72-MHz repetition rate and a 89-fs
pulse width. This represents an effective conversion efficiency of ~75% from the typical infrared output to the
second harmonic. Pulse widths as short as 54 fs are achieved for the blue output.

Extension of the wavelength range accessible to
femtosecond pulses has been a topic of much inter-
est. The two techniques used most frequently to
generate <100-fs pulses at otherwise unattainable
wavelengths are continuum generation and fre-
quency conversion with the use of crystals. Fem-
tosecond pulse generation techniques based on
amplification followed by continuum generation per-
mit tunability from the UV into the IR.'! However,
amplification reduces the pulse repetition rate to
the order of a kilohertz, and there is often a loss of
time resolution in the final puise. In contrast, fre-
quency conversion in crystals can maintain the high
repetition rate of the femtosecond megahertz-rate
laser and requires only a single cw pump laser. The
higher repetition rate results in much smaller pulse
fluctuation and excellent experimental signal-to-
noise ratios.

In recent years, much progress has been made in
extending the spectral range of high-repetition-rate
femtosecond pulses throughout the visible and IR
by using frequency conversion in crystals. The
80-MHz femtosecond optical parametric oscillator
permits broad tunability throughout the near IR
and mid-IR.** High-repetition-rate femtosecond
pulse generation in the UV and blue-green has been
somewhat more limited. Colliding-pulse mode-
locked (CPM) lasers have directly generated

' <100-fs pulses in the range of 493 to 554 nm at

milliwatt outputs,*® and intracavity doubling of
the Rhodamine 6G/diethyloxadiacarbocyanine iodide
(Rh6G/DODCI) CPM dye laser has resulted in a
100-MHz source of femtosecond pulses with milli-
watt outputs in the 310-315-nm range. The
Rh6G/DODCI CPM laser was first intracavity
doubled by using KDP.* Soon thereafter, 8-BaB,0,
(BBO) was used to intracavity double the CPM laser
with a per-pass conversion efficiency as high as
5.5%, which generated 20 mW of UV output per arm
with <100-fs pulse widths, and pulse widths as short
as 43 fs.” This gives an effective conversion effi-

0146-9592/92/050343-03$5.00 0

ciency of nearly 100% from the typical CPM output
in the red to the UV.

While the standard Rh6G/DODCI CPM dye laser
operates at a wavelength slightly shorter than the
tuning range of the Ti:sapphire laser, the broad tun-
ability, the high average output power, and the obvi-
ous advantages of a solid-state laser have made the
dispersion-compensated mode-locked Ti:sapphire
laser® an extremely attractive replacement for
the CPM dye laser. At present, the mode-locked
Ti:sapphire laser can potentially operate with
<200-fs pulse widths and >100-mW average power
over the range of 700 to 1053 nm.* Frequency dou-
bling over this spectral range provides femtosecond
pulses from 350 to 525 nm. Doubling of the
Ti:sapphire laser outside the cavity has been re-
ported.'® The best conversion efficiency of 25%
was achieved at 750 nm, although no second-
harmonic pulse widths were reported and the length
of the doubling crystal was not given. The group-
velocity mismatch for type I second-harmonic gen-
eration (SHG) in BBO at 750 nm is 225 fs/mm, and
in order to maintain the narrowest temporal pulse
width a thin doubling crystal is required. Use of a
thin crystal therefore necessitates a high peak
power to achieve high conversion efficiency, and
thus intracavity doubling is required to achieve
simultaneously the shortest pulses and the highest
power in the second harmonic. As discussed fur-
ther below, extremely high intracavity conversion ef-
ficiency is possible, which would result in UV, blue,
or green outputs of hundreds of milliwatts average
power. Using an extremely thin (55 um) crystal of
BBO, we demonstrate a 72-MHz repetition-rate
source of blue pulses of 89-fs duration (FWHM) and
115 mW of power per arm (two arms of BBO: see
Fig. 1). Reducing the pulse width for the blue to
54 s, we measure 45 mW of power per arm.

Figure 1 shows a schematic of the dispersion-
compensated intracavity-doubled Ti:sapphire laser.
The SF-10 prisms are spaced 50 cm tip to tip. The
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Fig. 1. Schematic of the intracavity doubled Ti:sapphire
laser. XTAL, Ti:sapphire crystal; G’s, gain mirrors; L,
focusing lens; P’s. SF-10 prisms; M’s, flat mirrors; D,
dichroic mirror; BBO. doubling crystal; S, tuning slit; OC,
output coupler.

argon pump laser is focused by a 10-cm focal-length
lens through one of the r = 10 ¢cm gain mirrors onto
the 18-mm-long titanium-doped (0.1%) sapphire
crvstal. The additional intracavity focus at the
BBO crystal consists of r = 5 cm dichroic mirrors
(fused-silica substrates, R = 100% at 860 nm,
T = 70% at 430 nm). The outcoupler has T = 1%
for the IR and was replaced by a high reflector when
the highest power in the blue was generated. Be-
fore insertion into the laser cavity, the crystal is
aligned for maximum SHG conversion efficiency in
the extracavity beam of the mode-locked Ti:sapphire
laser operating at the intended doubling wavelength
of ~860 nm. The proper alignment of the BBO can
be preserved on insertion into the laser cavity.

Pulse-width measurements for both the funda-
mental (IR) and the second-harmonic light are made
by autocorrelation with collinear type I SHG in
BBO. The BBO crystal used to measure the IR
autocorrelation has a thickness of 0.8 mm and is cut
for a phase-matching angle of § = 27.5°. The BBO
crystal used to measure the blue pulse widths has a
thickness of 0.67 mm and is cut at 6§ = 69°. The
second harmonic of the blue (215 nm, the fourth
harmonic of the Ti:sapphire) is passed through a
0.2-m monochromator and detected by a solar-blind
photomultiplier tube. The spectra for the funda-
mental and second-harmonic outputs from the laser
are measured by using a 0.25-m monochromator to
disperse the light onto an optical multichannel
analyzer.

We point out that the type I SHG cutoff wave-
length in the blue for BBO is 409 nm. Below this
wavelength, accurate pulse-width measurement re-
quires a more difficult technique such as cross
correlating the fundamental beam with the second-
harmonic beam by using phase-matched sum-
frequency generation. Owing to the significant
group-velocity mismatch between the fundamental
and second-harmonic pulses for fundamental wave-
lengths below 820 nm (the group-velocity mismatch
is >170 fs/mm for BBO at A;r = 820 nm and
increases for shorter wavelengths), a thin cross-
correlation crystal is required.” Thus, for the
convenience of using collinear type I SHG autocor-
relation to measure the pulse width of the doubled
light, we operated the Ti:sapphire laser at
A > 820 nm.

The intracavity-doubled mode-locked laser is
started by a slight mechanical perturbation, usually
by a small-amplitude, gentle back-and-forth transla-
tion of one prism. Once well aligned, the mode-
locked laser operates stably indefinitely (observed
for as much as ~6 h), although significant mechani-
cal perturbation can stop mode-locked operation.
The mode locking generally is not self-starting.
Variation of the intracavity dispersion compensation
permits control of the pulse width. On starting, the
laser is pushed to shorter pulses simply by adding
prism glass and adjusting the focusing slightly to
maintain high stability. While the laser stability is
excellent even at the longer pulse widths, the oscillo-
scope trace of the IR mode-locked pulse train indi-
cates somewhat quieter operation as the pulse width
is decreased. The spatial mode of the fundamental
beam is TEM,, with faint, simple higher-order
modes superimposed. The blue beam mode is a
clean TEMg, that shows no sign of higher-order
modes, thus verifying that the power of the funda-
mental lies almost entirely in the TEMy, mode.

When the laser is run with a high reflector in
place of the outcoupler, 107-fs IR pulses produce
230 mW of second harmonic. Without the intracav-
ity doubling erystal, the maximum output of the
mode-locked Ti:sapphire laser operating at 860 nm
is ~300 mW for 4.4-W pump power; thus generation
of 230 mW of blue power gives an effective conver-
sion efficiency of ~75% from the IR output typical
at this pump power. The dichroic mirrors transmit
~72 mW of power per arm of the blue second-
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Fig. 2. (a) Autocorrelation data for the fundamental and
second-harmonic pulses in the longer-pulse limit. The
FWHM for the fundamental is 107 fs, and for the second
harmonic it is 89 fs, (b) Spectra for the fundamental and
second-harmonic beams. The FWHM for the fundamen-
tal is 12.7 nm, which gives AvAt = 0.55, and for the second
harmonic it is 4.9 nm, which gives AvAt = 0.7
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Fig. 3. (a) Autocorrelation data for the fundamental and
second-harmonic pulses for the shortest second-harmonic
pulses. The FWHM for the fundamental is 93 fs, and for
the second harmonic it is 54 {s. (b) Spectra for the fun-
damental and second-harmonic beams. The FWHM for
the fundamental is 18.6 nm, and for the second harmonic
itis 7.7 nm. This gives AvAt = 0.70 for the fundamental
and ArAt = 0.67 for the blue second-harmonic pulses.

harmonic light. On compression of the blue pulses
by a dispersion-compensating prism pair, a pulse
width of 89 fs is measured (see Fig. 2). The prism
pair allows compensation for the dispersion of the
dichroic mirror substrate and of other intracavity
optics as well as for any upchirp that the pulses may
have on generation in the intracavity BBO crystal.
The IR pulses are not extracavity dispersion com-
pensated. The spectral FWHM’s of the IR and blue
are 12.7 and 4.9 nm, respectively, which give ArAt =
0.55 for the IR and Avdt = 0.71 for the blue pulses.
Pulse widths and time-bandwidth products are de-
termined assuming a sech’(¢) intensity envelope.
We achieved the shortest blue pulses when run-
ning the laser with a 1% outcoupler in place of the
high reflector and operating closer to net zero intra-
cavity group-velocity dispersion (see Fig. 3). The
power of the IR coupled out is 27 mW, whereas the
blue power transmitted by the dichroic mirrors
is ~31 mW per arm. The extracavity dispersion-
compensated blue pulses have a FWHM of 54 fs and
a spectral FWHM of 7.7 nm, which gives Avit =
0.67. The IR pulses (which again are not extracavity
dispersion compensated) have a pulse width of 93 fs
and a spectral FWHM of 186 nm, which yields
Avdt = 0.70. It is believed that the IR pulses mav
be compressed by an extracavity two-prism se-
quence, and we hope to verify this in the near future.
Again, a sech™(t) intensity envelope is assumed.
The observed intracavity SHG conversion effi-
ciency of 3.2% per pass for the shortest blue pulses
agrees well with the theory (3.5%) for conversion by
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a nondepleted pump wave."" Without the intracav-
ity pBO crystal, we have observed stable mode-
locked aperation for <100-fs pulses at intracavity
powers as high as 8 W For the same focusing and
BBO crystal length presented here, 8 W of intra-
cavity power at a 110-{5 pulse width would vield a
more than fourfold increase in the output of the sec-
ond harmonic, or ~500 mW of biue ligit. For this
case, the peak intracavity intensity at the focus
would approach the reported single-shot damage
threshold for BBO of 50 GW/cm®."* However, this
threshold pertains to puises of 8-ns duration, and we
expect the threshold to increase by orders of magni-
tude for the 100-fs pulse-width regime. The aver-
age intensity is orders of magnitude below the
long-term damage threshold for BBO."

In conclusion, we have demonstrated highly effi-
cient intracavity doubling of a mode-locked
Ti:sapphire laser that yields a source of femtosecond
pulses in the blue with the same high repetition rate
of 72 MHz, short pulse width, excellent beam qual-
ity, and power in the blue representing appreciable
recovery of the typical IR output at this 4.4\V pump
level. This research represents an extension of in-
tracavity doubling to solid-state mode-locked lasers
and results in a source of femtosecond pulses poten-
tially tunable from the near UV into the green, thus
broadly expanding the potential spectral range for
femtosecond pulses.

The authors thank W. S. Pelouch, P E. Powers, and
D. C. Edelstein for helpful conversations. This
research was supported by the Joint Services
Electronics Program and the Natiorai Science
Foundation.
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Ti:sapphire-pumped, high-repetition-rate femtosecond optical
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A broadly tunable femtosecond optical parametric ascillator (OPO) based on KT.OPO, that s externally
pumped by a sell-mode-locked Ti sapphire laser 1s described  Continuous tuning 1s demonstrated fromm § 2210
1.37 umin the signal branch and from 1 82 10 2 15 um in the dier branch by using one set of OPO optics  The
potent:al tunung range of the OPQO 1s from 10 to 275 um and requires three sels of mirrors and two crystacs
Without prisms in the QPO cavity. 340 mW (475 mW: of chirped-pulse power 13 genersted in the signal udler
branch for 2.5 W of pump power. The total conversion efficiency as measured by the pump depietion 13 357
With prisms in the cavity, pulses of 135 fs are generated. which can be shortened to 75 [s by increasing the out.

put coupling.

Optical parametric oscillators (OPQ’s) have recently
been exploited in the femtosecond time domain as a
source of broadly and continuously tunable radia-
tion. The lack of suitable pump sources has ham-
pered the development of femtosecond OPO's that
operate with short pulse widths, a high repetition
rate, and high output powers. The high peak power
at the intracavity focus of a colliding-pulse mode-
locked dve laser was exploited to develop the first
femtosecond OPO.!"’ This resulted in =105-fs,
80-MHz pulses at approximately 3 m\W of output
power. Other researchers resorted to a @-switched
and mode-locked laser (300 pulses at 15 Hz) to pump
n OPO producing =160-fs pulses (65 fs at one wave-
length) at 4.5 mW of average power.* More recently
a femtosecond OPO was reported that was exter-
nally pumped bv a hybridly mode-locked dye laser
producing 220-fs pulses at 30 mW of average power.’
In this Letter we describe a Ti:sapphire-pumped
OPO capable of producing 75-fs pulses at a high
repetition rate 130 MHz) and hundreds of milliwatts
of average output power. We believe that these are
%\; Oshonest tunable pulses ever generated from an

_The Ti:sapphire pump laser is configured in a
Near cavity with a 18-mm titanium-doped (0.1%)
$apphire crystal and SF-14 prisms (spaced at 40 cm)
;l; dlspe_rsion compensation. The crystal is
e“‘_“‘ed in 2 copper block and cooled by using a
a‘:\‘gelecmc cooler with temperature feedback to
s self.:: : clonstant 20°C temperature. The laser
e“ature"oa:docked as described elsewhere in the lit-
M., mod Produces 2.5 W of 125-fs pulses in a
laser. a sdf whe,“ pumped by a 15-W argon-ion
Fig. 1. The f;,”fatxc of the OPO cavity is shown in
a 1.15-mm XTl»sapphxre laser beam is focused onto
¥ axisusinga, ‘c?éslal with polarization along the
pump suffers 5 ¢m curved high reflector. The

for each side ofp&:,oz;;;at;elly a 5% transmission loss

at 6 =475 and ¢ The KTP cryvstal is cut

™ 0° for type I phase matching

0146-9592/92/151070-0385.00/0

{0 — e + o0i and coated with a 250-nm layer of MgF.
on both sides for high transmission centered at
1.3 um. The OPO cavity uses two r = 10 cm curved
murrors that are aligned for oscillation in the x-2
plane of the crystal to provide compensation for
walk-off between the Poynting vectors of the pump
and the resonated signal branch® The cavity may
be aligned with or without the SF-14 prism sequence
simply by lowering or raising the prism assembly.
The output coupler is 1%, and the other flat mirror
is mounted on a piezoelectric transducer for fine
length adjustment. A linear cavity design was cho-
sen so that the pump can be retroreflected for
double-pass pumping of the KTP crystal® This
would result in parametric gain for the signal in both
directions through the crystal when the retrore-
flected pump pulses overlap the signal pulses in the
crystal. However. this requires that an optical iso-
lator be inserted between the pump laser and the
OPO to reject feedback into the Ti:sapphire cavity.

The OPO 1s aligned by monitoring the spontanecus
parametric scattering using a liquid-nitrogen-cooled
germanium photodiode {the peak detectivity 1s
~10"cm Hz'?W ™' at 1.5 um]). This signal 1s maxi-
mized by adjusting the OPO mirrors and focusing
such that the spontaneous parametric scattering
makes many round trips in the cavity. Oscillation
occurs when the cavity length of the OPO is matched
to that of the pump laser cavity, the length mis-
match becomes more sensitive near threshold.

With 2.5 W of pump power (125 fs) the OPO pro-
duces as much as 340 mW of power in the signal
branch through the 1% output coupler. We have mea-
sured 60 mW of signal energy reflectec from the
KTP crystal in one direction (120-mW loss per round
trip), which implies a transmission loss of 0.2%.
Thus 460 mW of power is generated in the signal
branch with an effective output coupler of 1.4%. In
the idler branch we have coupled out 475 mW of
power, but this may be limited by the physicai con-
straints of collecting and collimating the diverging

© 1992 Optical Society of America
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Fig 1. Schematic of the OPO cavity in the vertical plane.
The Tissapphire pump (P) is focused onto the 1.15-mm
KTP crystal. An enlarged view of the crystal is depicted
above and shows the orientation for type [I phase match-
ing at the phase-matching angle 8pw. The signal branch
(St is resonated by using a 1% output coupler and a
piezoelectric transducer {PZT) for fine length adjustment.
The idler (1) exits from the crystal at ~6 deg from the
signal. The prism sequence may be raised to allow oscil-
lation without the prisms.

idler radiation that is generated at ~6 deg (external
to the crystal) from the signal. The pump is de-
pleted by 55% when the OPO is oscillating and is a
measure of the actual conversion efficiency; this
value agrees well with the measured power output of
the OPO if the crystal reflections and the pump
transmission losses are taken into account. Double-
pass pumping has not yet been implemented in the
QPO since excellent conversion efficiency has al-
ready been achieved. If only one pass of the pump
were used, then a ring cavity would provide less loss
than the linear cavity.

Interestingly, the OPO also produces output at
two other non-phase-matched’ wavelengths that cor-
respond to collinear second-harmonic generation of
the signal branch (¢ + ¢ — ¢) and noncollinear sum-
frequency generation between the pump and the sig-
nal (o + ¢ — 0). For a pump wavelength of 780 nm
and a signal wavelength of 1300 nm the second-
harmonic wavelength is 650 nm and the sum-
frequency wavelength is 485 nn.. A total of almost
100 mW of second-harmonic power is generated
(50 mW in each direction), but only 10 mW gets
transmitted through the infrared optics and output
coupler. The collinear second harmonic could be
utilized for experimental purposes and is also
useful for aligning the signal through extracavity
optics. after which it can be easily filtered out.
100 W of sum-frequency light was measured after
the output coupler. In all, the OPO system produces
synchronized femtosecond radiation at five different
wavelengths.

Without prisms in the OPO cavity the autocorrela-
tion and spectra show signs of significant chirp.
The pulse width as measured from the intensity
autocorrelation is approximately 500 fs owing to
the long decay time of the wings. With prisms in
the OPO cavity two regimes are encountered. For
net negative group-velocity dispersion (GVD) the
pulses are unchirped with a minimum pulse width
of 135 fs (fit to a sech’ shape) and have a smooth
spectrum (ApAr = 0.45) [see Figs. 2(a) and 2(b)).
For net positive GVD the pulses are slightly chirped
with a broader pulse width and a split spectrum [see
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Figs. 2(c) and 2{d)]. Near zero GVD the OPO mav
abruptly flip into either the chirped or unchirped
mode. This behavior is in contrast to the observed
smooth transition between operation with net nega-
tive and positive GVD of the OPO reported in Ref 2.
Therefore a nonlirear chirp must be generated in
the KTP, which accounts for the runaway condition
in the positive-GVD regime. This would also ex-
plain why the time-bandwidth product is 45%
greater than the transform limit for the minimum
pulse width. This effect 1s most likely due to self-
phase modulation of the signal i the crystal as a
result of the high intracavity intensity and large
nonlinear index of KTP. Self-phase modulation in
KTP was identified as a source of broadening of the
pump laser in Ref. 1 and is consistent with the
shape of the signal spectrum in Fig. 2(¢c).* It s ex-
pected that the pulse widths are approximateiy con-
stant over the tuning range owing to the relatively
constant inverse group-velocity mismatch between
the pump and the signal. The larger mismatch for
the idler suggests pulse widths approximately 30%
greater than the signal.

It was also observed in the unchirped regime that
a slight detuning of the length shortened the pulse
widths to approximately 75 fs iand reduced the out-
put power by 25%). The pulse width was also de-
creased to 75 fs by increasing the output coupling at
constant zero detuning. This was achieved by in-
serting a thin glass flat in the OPO cavity and ro-
tating it away from Brewster's angle, effectively
reducing the intracavity power by increasing the
output coupling to 1.5% (plus 0.4% from the crystals.
Therefore this pulse shortening results from a de-
crease in intracavity power as the OPO is operated
closer to threshold, as predicted by theary.” The re-
duction in intracavity power reduces the magnitude
of self-phase modulation (both linear and nonlinear
chirp) so that less dispersion compensation is re-
quired from the prism sequence.

fa) / thy
I

132 1 (5] i 1
Wavelength (um)

Fig. 2. (a) Spectrum and (b) autocorrelation of the signal
pulse for net negative GVD. The time-bandwidth prod-
uct is 0.45. (¢) Spectrum and d) autocorrejation of the
chirped signal puise for net positive GVD. The abrupt
transition between these two regimes suggests a seil"
phase-modulation process in the crystal.
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Fig. 3. OPO signal (bottom) and idler (top) spectra ob-
tained by angle tuning the OPO over a range of one set of
mirrors. Broad tuning may also be achieved by changing
the pump wavelength without rotating the KTP crysta] or
altering the OPO alignment.

The insertion of the Brewster-cut prism sequence
reduces the output power of the signal to 300 mW in
the chirped regime, but we believe that with a more
careful alignment fu.l recovery of the 340 mW is
possible. This loss is primarily due 1o a small rota-
tion of the signal polarization in the KTP crystal,
which is oriented slightly away from ¢ = 0°. The
output power for the unchirped pulses is reduced to
approximately 180 mW. This loss of power is not
due to simple alignment since the prism is only
translated.

Tuning of the OPO is straightforward and may be
accomplished by three different means. Adjust-
ment of the length mismatch of the OPO cavity re-
sults in a wavelength shift as reported previously'
and mayv be used to stabilize the OPO length at a
fixed wavelength. The wavelength range over
which the OPO will oscillate while the lengh is ad-
justed is a measure of how sensitive the OPQ is to
length variations. The OPQ can withstand a 5-um
length variation, which results in a wavelength shift
of almost 50 nm. Second, a change in the pump
wavelength will tune the OPO without changing the
crystal orientation or OPO alignment —only the
length of the OPO cavity must be adjusted to match
the new pump cavity length. We can tune our
Ti:sapphire laser from 765 to 815 nm while main-
laining mode locking and cavity alignment. This
results in tuning of the signal branch from 1.22 to
134 um and from 2.05 to 2.08 um in the idler
branch. Note that the wavelength of the idler re-
Mains relatively fixed, whereas the signal tunes over
120 nm as the pump wavelength is varied over
50 nm. T"pically this type of tuning will also result
in ach.gein pump power. Third, the OPO may be
tuned in Y»hg traditional manner by adjusting the
phase-matching angle of the KTP crystal. We can
tune over a 100-nm range by freely rotating the

“AUBUDdL L, LUVL

KTP crystal and adjusting the cavity length. Be-
yond this range the OPO alignment needs to be
modified. The operation of the OPO is quite robust
so that broad tuning is accomplished by iterating be-
tween rotating the crystal and adjusting the OPO
alignment while maintaining oscillation. Represen-
tative spectra are displayed in Fig. 3 for both the
signal and the idler. The demonstrated tuning is
limited by the optics available in our laboratory, but
with appropriate optics the full tuning range will be
accessible,

No alignment of the OPO is necessary on a day-to-
day basis; length adjustment is all that is required to
regain oscillation. Furthermore the OPO is not ex-
tremely sensitive to pump steering. Alignment of
the pump through two pinholes suffices to recover
oscillation if the Ti:sapphire alignment is consider-
ably altered. The output of the OPO is an excellent
TEM, mode that is made possible by the tight
Z focus shown in Fig. 1. Thus the OPO is a practi-
cal laser source for experimental ultrafast research.
A feedback circuit to maintain length matching
would be useful to maximize stability, although all
the data presented in this Letter were obtained
without any length stabilization.

In summary, we have reported the development of
a high-power, high-repetition-rate femtosecond
OPQ externally pumped by a self-mode-locked
Ti:sapphire laser. More than 1.0 W of the pump
laser power is converted to tunable OPO radiation
for a conversion efficiency of 55%. Unchirped
pulses of 135 fs can be generated across the demon-
strated tuning range of the device. Pulse shorten-
ing to 75 fs is achieved by increasing the output
coupling at the expense of output power.

This research was supported by the Joint Service
Electronics Program and the National Science
Foundation. We are grateful to L. K. Cheng and
J. D. Bierlein of E. 1. DuPont de Nemours & Com-
pany for providing the KTP material.

Note added in proof: We recently generated
nearly transform-limited 57-fs signal pulses at an
output power of 115 mW.
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Using an acousto-optically mode-locked chromium-doped forsterite laser, operated at 77 K and coupled to a
nonlinear resonator containing a single-mode fiber, we have produced femtosecond pulses of 150-fs duration at
1.23 um with useful output powers of approximately 60 mW. This represents what is to our knowledge the first
demonstration of femtosecond pulse generation from this laser system using the coupled-cavity mode-locking

scheme.

The chromium-doped forsterite laser (Cr:Mg,SiO,)
is based on the Cr** ion in a tetrahedrally coordi-
nated lattice site serving as the laser-active center.
First demonstrated by Petricevié et al.,! the laser
emission, centered at 1.23 xm, was shown to be tun-
able over as broad a range as from 1.13 to 1.37 um.?
This feature, in conjunction with ample output
powers, makes the Cr:forsterite laser a useful source
for the optical characterization of fiber-optic systems
at 1.3 um and spectroscopic studies of narrow band-
gap semiconductors. To date, room-temperature
@-switched,'? cw,” flash-lamp-pumped,** cw acousto-
optically mode-locked,® synchronously pumped,® and
cw cryogenic® operations have been demonstrated
with various optical pumping mechanisms. In par-
ticular, our previous experiments revealed an ap-
proximately threefold increase in cw output power
when the gain medium was cooled to 77 K (Ref. 6)
(for pump powers well above threshold), resulting in
cw output powers as high as 2.8 W at 1.23 um when
the system was pumped by a cw Nd:YAG laser.” The
Cr:forsterite laser used in the mode-locking experi-
ments described in this Letter was also operated
cryogenically to achieve increased power outputs.
Furthermore the broad emission bandwidth of this
laser can also te utilized for generating ultrashort
light pulses on a femtosecond scale. Such pulses
are ideal for applications in short-pulse propaga-
tion experiments and femtosecond time-resolved
spectroscopy.

In this Letter we report what is to cur knowledge
the first demonstration of additive-pulse mode-
locked operation of an actively mode-locked
Cr:forsterite laser. Using this technique, we have
produced pulses of 150-fs duration (FWHM) at
1.23 um with useful output powers of approximately
60 mW.

Additive-pulse mode locking (APM), a well-
established scheme for generating ultrashort light
pulses, has been successfully applied to many solid-
state laser systems (see Ref. 8 and references therein
for a thorough discussion). Briefly, in its most com-
monly practiced form, this technique, also known as
coupled-cavity®? or interferential'' mode locking,

0146-9592/92/171216-0385.00 0

involves coupling the master laser resonator to an
external nonlinear cavity containing an optical fiber.
The auxiliary fiber cavity, in which propagating
light pulses acquire a Kerr-effect-induced phase
shift, can be regarded as a nonlinear termination
equivalent to a mirror with an intensity-dependent
reflectivity. Once the nonlinear phase shift is ad-
justed to give constructive interference at the center
and destructive interference in the wings of the
master cavity and coupled-cavity pulses when they
combine at the output coupler of this composite opti-
cal resonator, a dramatic reduction in the output
pulse width results provided that the two cavities
are interferometrically matched in length. To
date, APM has been demonstrated in KCI:Tl°,'*"
LiF:F,*,'* NaCl:OH",'* Ti:sapphire,'*'® Nd:YAG,"
Nd:YLF" and Nd:glass'® lasers. As described in
what follows, we have applied this scheme to gener-
ate femtosecond pulses from the Cr:forsterite laser.

Figure 1 shows the experimental setup of the
coupled-cavity Cr:forsterite laser used for the APM
experiments. The master cavity, consisting of a
flat high reflector (HR1), a flat 11% transmit-
ting output coupler (OC.), an acousto-optic prism
mode locker (M.L.), and a pair of 5-cm focal-length
antireflection-coated plano-convex lenses (L1 and
L2) around the gain medium, was end pumped by a
cw Nd:YAG laser (Quantronix Model 416). The gain
medium was a 20 mm X 5 mm X 5 mm piece of
forsterite crystal cut along the q, b, and ¢ axes (using
the P, crystallographic notation), with the longest
dimension along the ¢ axis. The estimated laser-
active center concentration was 4 X 10" em™. To
prevent deleterious étalon effects, the normal-cut
crystal was polished with a slight wedge between the
5-mm-sided square faces, which were also broad-
band antireflection coated at 1.28 um. The crystal
was maintained in an evacuated Dewar (pressure
~107° Torr) at 77 K with the plano-convex lenses L1
and L2 serving as the Dewar windows. Using 5 W
of input pump power and a 70-cm focal-length
mode-matching lens between the pump and the
Cr:forsterite laser, we obtained 625 m\W of cw
TEMoo output power with the output field polarized
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Fig. 1. Experimental setup of the APM Cr:forsterite
laser. The Cr:forsterite crystal was maintained at 77 K
inside an evacuated Dewar with lenses L, and L, serving
as the Dewar windows.

200 ps/div

Fig. 2. Oscilloscope trace of the actively mode-locked
pulses from the master laser resonator using the 11%
transmitting output coupler.

along the a axis. The Cr:forsterite crystal had 78%
absorption at the pump wavelength of 1.06 um at
77 K. An asymmetric cavity configuration used to
prevent possible double pulsing effects of the mode-
locked laser together with a choice of comparably
shorter focal-length lenses around the gain medium
resulted in less than optimum mode matching be-
tween the pump and the laser cavities and hence
lower output power than what was reported in Ref. 6.

Before employing the nonlinear coupled-cavity
scheme to produce femtosecond pulses, we actively
mode locked the master laser resonator, using a
quartz acousto-optic modulator in the form of a
Brewster-cut prism (Crystal Technology), placed
within 3 cm of the output coupler. With approxi-
mately 2 W of absorbed rf power at 40.999 MHz, the
laser was acousto-optically mode locked and gener-
ated output pulses at a 82-MHz repetition rate.
The individual acousto-optically mode-locked pulses
were monitored by a high-speed InGaAs detector
with a response time of approximately 80 ps con-
nected to a sampling oscilloscope with a response
time of less than 30 ps. With a 1% transmitting out-
put coupler, detector-limited pulse widths of 80 ps
(FWHM) were measured, indicating that the actual
pulses were shorter and comparable with what was
reported by Seas et al.5 However, with the 11%
transmitting output coupler, used in the APM ex-

periments, the minimum pulse width obtained was
320 ps (FWHM), as shown in Fig. 2.

The nonlinear coupled cavity was established by
using an 85% reflecting beam splitter (B.S.). The
single-mode fiber (Corning 1521) of length 50.8 cm
placed in this external cavity had zero group-velocity
dispersion at 1.3 um and a mode-field diameter of
9 um. The fibc. ends were cleaved with tilt angles
of less than 0.5 deg to the surface normal. Using
coupling spheres (S1 and S2) with antireflection
coating on the input side and index-matching gel be-
tween the output side and the fiber surface, together
with an antireflection-coated mode-matching lens
(L3), we obtained coupling efficiencies of approxi-
mately 70%. A flat high reflector mirror (HR2)
placed a distance from the output end of the fiber
provided the nonlinear feedback with retroreflec-
tion efficiencies approaching 90%. The output of
the APM Cr:forsterite laser was monitored by using
three separate diagnostics: a Michelson interfer-
ometer with a LilO; nonlinear crystal to measure
the collinear and background-free intensity autocor-
relations of the pulses, a Ge photodiode with a 2-ns
rise time to investigate the pulse train over the 50-ns
to 200-us time scale, and a scanning spectrometer
{Monolight Model 6000) to measure the bandwidth
of the output pulses.

When the two cavity lengths were interferometri-
cally matched, enhanced mode-locked operation of
the Cr:forsterite laser was observed. Figures 3
and 4 show the background-free intensity autocorre-
lation and the spectrum of the APM pulses, respec-
tively. With the assumption of a sech? intensity
profile, the width (FWHM) of the pulses was mea-
sured to be 150 fs. A simultaneous measurement of
18-nm bandwidth gave a time-bandwidth product of
approximately 0.55, roughly 1.7 times larger than
the theoretical limit of 0.32 for the assumed pulse
shape. The output of the laser was at 1.23 um.

It was found that with the above mirror reflectivi-
ties and coupling retroreflection efficiencies, a
threshold power level of 40 mW coupled through the
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Fig. 3. Background-free intensity autocorrelation of the
APM Cr:forsterite pulses. The measured FWHM is
150 fs.
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powers of approximately 60 mW. It was also ob-
served that near the threshold of the APM action,
the mode-locked pulse train came as a series of
repetitively @-switched pulses of 700-ns duration
occurring at 143-kHz repetition rate. For power
levels sufficiently above the threshold, however, a
stable, quiet pulse train of femtosecond pulses was
produced.

This research was supported by the National
Science Foundation under grant ECS-9111838,
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Fig. 4. Spectrum of the APM Cr:forsterite pulses. The
resulting time-bandwidth product is 0.55.

fiber was required for observation of the onset of
APM operation. Close to and somewhat above this
threshold, the external cavity length had to be per-
turbed about its correct value for APM action to be
observed. When the fiber power was increased to
well above 40 mW, the pulses became more stable
and could be sustained without the use of active
cavity-length stabilization. By simultaneously
monitoring the output using the Ge photodiode, we
found that near the 40-mW threshold the APM out-
put pulse train appeared as a series of repetitively
Q-switched pulses, each of 700-ns duration occurring
at 143-kHz repetition rate. For power levels three
times above the threshold, repetitive @ switching
gave way to a quiet, stable pulse train with occa-
sional weak relaxation oscillations. Similar turn-on
behavior has been observed by Spielmann et al.?
regarding the self-starting APM Nd:glass laser.
Coupled fiber power levels of as much as 280 mW
were tried, higher power levels being avoided to pre-
vent possible damage to fiber ends. This resulted
in 63 mW of useful output power at 1.23 um. Using
the relevant laser and fiber parameters, we found
the calculated peak nonlinear phase shift? between
the center and the wings of the external cavity
pulses to change from 2.77 at the 40-mW threshold
to 197 when the fiber power was 280 mW. Within
the 10% error associated with the measurements,
the pulse width of the APM Cr:forsterite laser re-
mainad essentially insensitive to the variation in
this nonlinear phase shift.

It was observed that incomplete mode locking, in
the form of pulses with excess amplitude noise or
spiky structure, would give rise to unsatisfactory
APM action, resulting in broader pulscs. It was
therefore essential to get clean, spike-free mode-
locked operation of the master laser resonator as de-
picted in Fig. 2 to obtain femtosecond pulses.

In conclusion, we have demonstrated, for what is
to our knowledge the first time, additive-pulse mode-
locked operation of the Cr:forsterite laser that pro-
duces 150-fs pulses at 1.23 um with useful output

the New York State Science and Technology Founda-
tion, and the Materials Science Center at Cornell
University.
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Femtosecond electron relaxation in InGaAs lattice-matched to InP
David Cohen and Clifford R. Pollock

Cornell University, School of Electrical Engineering
Ithaca, NY 14853

ABSTRACT

Carrier energy relaxation times have been measured in Ing 53Gag 49As grown by MBE on InP. Layer thicknesses from 0.5 to
3 microns have been studied. An NaCl color center laser using additive pulse modelocking supplied 150 femtosecond pulses
with photon energies between 780 and 806 meV. These were used for time resolved optical saturation measurements near the
750 meV material bandgap. Carrier densities between 0.4 x 1018 and 5.7 x 1018 were achieved. Lifetimes of about 150
femtoseconds are reported. These are observed to decrease with increasing carrier density and with decreasing photon energy.

1. INTRODUCTION

The bandgap of the InGaAs/InP sytem at 1.55 microns has made it a useful material for optoelectronic device fabrication. In
addition, its high mobility suggests the possibility of fabricating extremely fast devices. This has been done, for example, in a
heterojunction bipolar transistorl. Fast pin photodiodes are also being developed in InGaAs. It is therefore useful to
characterize the carrier lifetimes. Previously, photoluminescence upconversion has been applied to measure longer time scale
relaxation rates2-3:4, as well as femtosecond pump-continuum probe methods3-6. Both used photon energies well above the
bandgap. In this work, near-bandgap measurements were made well below the intérvalley scattering threshold, using the
equal pulse correlation technique to extract the lifetime from the transient optical saturation of different samples. Exploiting
the tuneability of the NaCl color center laser, these experiments were performed at several photon energies.

InGaAs is a direct gap material, and the bandgap InGaAs/InP is well known to be 750 meV at 300K. The next lowest
transition occurs at more than 3 times the photon energy 7. for which the split-off band separation is about 343 meV.
‘Therefore only the direct I" transition to the conduction band from the light- and heavy-hole valence bands is significant in
these experiments; split-off holes cannot participate in the low-energy transitions excited by our laser. For this system, the
longitudinal optical phonon energy is 34 meV.

Experimental results from 3 samples are reported here. 3, 1, and 0.5um films of Ing §3Gag.47As grown by MBE on an Fe-
doped InP substrate were studied. Note that the InP substrate's bandgap of 1.4 eV makes it quite transparent to the
wavelengths of the NaCl laser. The substrate was, however, lightly polished to minimize scattering from the substrate. The
transparency of the InP was verified with a Cary 5 spectrophotometer. For wavelengths longer than 1 micron, it revealed a
smooth, resonance-free transmission spectrum for an InP sample taken from the same wafer as that used to grow our
samples. All experiments were carried out at 300K.

2. EQUAL PULSE CORRELATION SPECTROSCOPY
Equal pulse correlation spectroscopy uses two identical excitation puises derived from the same source but delayed relative to
each other . The time-averaged absorption in the sample is then a symmetrical function of delay. More precisely, the

experiment measures the convolution of the material response with the second order autocorrelation of the laser pulses. This
assumes that the sample is optically thin, that is,

LJa)y<<1 (1)
where L is the sample thickness, and « is the absorption depth,




For a linear response function R(t), and a second-order pulse autocorrelation function f(t), the equal pulse correlation signal
takes the form

o0

S(t) = f ds R(s) [f(T-s) + (T +5)] +] ds R(s) [c(s, T) +c(s, -1))] )
0 0

where c(t, ) models the coherent response to the rapidly varying electric fields. For transform-limited pulses, the coherent
response term is negligible for delays longer than one and a half pulse widths. Most of the useful information about the
sample is contained within the first term. Note that the response is symmetrical in delay . The nature of the equal pulse
correlation signal is illustrated in figures 1 and 2 for 100 femtosecond pulses convolved with 50 and 200 femtosecond decay
functions.
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Fig. 1. The convolution of eqn. 2, with the Fig. 2. Same as Fig. 1, but with 50fs
autocorrelation function superimposed. Pulsewidth lifetime.

is 100 fs, and decay time is 200 fs.

Typical pump probe spectroscopy also gives a convolution of autocorrelation and response function, but information near
zero delay is distorted by the order reversal of saturating and probing pulses. Equal pulse correlation allows simpler fitting
when the decay times observed are close to the excitation pulse width.

3. Experiment

The experiment is laid out as a Michelson interferometer, with one arm mounted on a galvanometer-driven taut band
translator? which gives a smooth sinusoidal variation of the optical delay. Both pulses had parallel polarizations. Only the
linear region of the delay, near zero crossing, is used to collect data. The spatially overlapped pulse trains from each
Michelson arm are then attenuated by a rotatable antireflection coated linear polarizer followed by a fixed polarizing

beamsplitter used to define a constant polarization state for our experiments. The light is then split into a reference and signal

beam. The latter is focussed onto a germanium photodiode for use in noise suppression. The first beam is focussed to an 8
micron spot on the sample. The light transmitted through is collected by a lens and focussed onto a second, identical
germanium photodiode. Both detectors are preceded by neutral density filters to balance the photocurrents and also to
minimize detector nonlinearity.

The large amount of amplitude modulation (5-10%) present on the output of the additive pulse modelocked laser requires that

some form of noise cancelation be used. A well-known passive approach has worked best to date: subtracting from the
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nonlinear response signal a signal proportional to the instantaneous laser intensity. This is easily accomplished using the
photodiodes sampling optical intensity before and after the sample, as described above. The two photodiodes are directly
connected so as to subtract their photocurrents. Using a variable neutral density filter to balance the average photocurrents
results in excellent subtraction of laser amplitude fluctuations. Listle decrease in cancellation efficiency occurs near zero
delay, since the nonlinearity is small, only about 2%.

The difference photocurrent is used as the input to a transimpedance amplifier (Ithaco model 1211) which provides a voltage
proportional to the difference current. It also serves to filter out fast interferometric oscillations in the data. This voltage is
averaged synchronously with the delay variation, using a 12 bit a/d converter. Five hundred to fifteen hundred averages were
used to obtain the traces presented here.

The source used in these experiments was a sodium chloride color center laser using additive pulse modelocking. The
characteristics of this laser have been reported elsewhere 10, This laser was used to produce 100 - 200 femtosecond pulses
from 1.54 microns to 1.59 microns in this experiment. Up to 100 miliwatts of output power is available, at a repetition rate of
164 MHz. In the wavelengths reported in this paper, the laser pulses are approximately transform limited,

4. Fitting

Extracting the carrier lifetime proved challenging, since the carriers clearly relaxed on a time scale comparable to the
pulsewidth, Simply fitting the data tails (data well separated from zero delay) to a sum of exponentials is problematic in this
case. It was decided instead to fit to the convolved model dexcribed earlier. The dominant decay is clearly on the order of 150
femtoseconds or less, so only one exponential was used in the fit. This is not meant to imply that longer decays are not
present - work is still progressing on refining the analysis. The sodium chloride additively pulse modelocked laser has
previously been demonstrated to produce transform limited pulses near 1.55 micron wavelengths. The second harmonic
autocorrelation trace of these pulses fit a hyperbolic secant function rather well. Therefore the measured second harmonic
autocorrelation trace width was used as a fixed fit parameter. All fitting was done starting 300 femtoseconds after the zero
delay point. This ensured that the coherent artifact did not distort the results. Good fits to the data were obtained for a ratio of
fit function peak to data peak of 1: 2. This ratio, which corresponds to the amount of coherent artifact present, was therefore
fixed in our analysis at this value. Data was taken out to a delay of 1.7 picoseconds on either side of zero delay.

5. Resuits

All of our experiments show fast decay times. A representative equal pulse correlation trace is shown in figures 3 and 4.
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Fig. 3. A representative equal pulse autocorrelation trace Fig. 4. An expanded view of the
taken with InGaAs, taken at a wavelength of 1.596 um . part of the trace used for fits. The

modulation is residual laser noise.




Lifetimes in the 0.5 micron and 3 micron samples range between 100 and 200 femtoseconds. There is a very clear decrease in

lifetime with increasing carrier density. This is attributable to carrier-carrier scattering, There is also a decrease in lifetime
with decreasing photon energy. At the same time, the slope of the lifetime-carrier density curves decreases with decreasing
photon energy. The Lifetime is almost constant at 120 femtoseconds for 780 meV excitation, the lowest photon energy
reported here. The results are summarized in figures S an 6 below.
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Fig. 5. Convolution fit results for the 0.5 micron thick sample. The incident pulsewidth was 153 fs, and the excitation

wavelength was 1.549 um,
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Fig. 6. Convolution fits for a 1 um sample, with 137 fs pulsewidths incident. The upper curve corresponds to an excitation
wavelength of 1.539 um, while the lower curve corresponds to a wavelength of 1.592 um.




The 3 micron sample begins to violate the assumption of an optically thin sample (the Beer's law absorption depth in InGaAs
is 2.5 um). Somewhat faster lifetimes are returned by the convolution fit, which may be attributable to the sample acting like
a saturable absorber 1. These lifetime fit results are in figure 7.
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Fig. 7. Convolution fits for a 3 um thick sample. The closed circles are the results for a wavelength of 1.544 um, and the
open diamonds are the results for a wavelength of 1.574 um.

6. Summary

We have optically measured carrier lifetimes in In 53Ga 47As grown by MBE on InP. Measurements were made at several
photon energies just above the bandgap. Carrier densities ranging from 3 x 1017 10 4 x 1018 were created in the sample.
Lifetimes of about 150 femtoseconds were found, with carrier-carrier scattering appearing to increase with increasing carrier
densities. Lifetimes were found 1o decrease somewhat with decreasing distance of the photoexcitation energy from the band
edge, and the dependence on carrier density also decreased.
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Generation of 48 fsec pulses and measurement of crystal dispersion
by using a regeneratively-initiated self-mode-locked chromium-

doped forsterite laser
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Abstract

Regeneratively-initiated, self-sustained, mode-locked operation of a
chromium-doped forsterite laser operated at 3.5 ©C is described. By
employing intracavity, negative group velocity dispersion compensation,
nearly transform-limited femtosecond pulses of 48 fsec (FWHM) duration
were generated with average TEMgq output powers of 380 mW at 1.23 um.
Regenerative-initiation provides improvement in the output stability and
ease of operation compared to fixed frequency AO modulators. By tuning the
mode-locked laser in the range 1.21-1.26 um, estimated values for forsterite
dispersion constants have also been obtained for the first time. The
demonstrated power and stability open the door to applications such as

efficient second harmonic generation.
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Generation of 48 fsec pulses and measurement of crystal dispersion
by using a regeneratively-initiated self-mode-locked chromium-

doped forsterite laser

Alphan Sennaroglu and Clifford R. Pollock
School of Electrical Engineering, Cornell University, Ithaca, NY 14853

Howard Nathel

Lawrence Livermore National Laboratory, Livermore, California 94550

Among the recently developed novel techniques of ultrashort pulse
generation, self-mode-locking has become widely used and applied to several
tunable solid-state lasers to produce femtosecond pulses. First demonstrated
in the Ti:sapphire laser by Spence et al.[1], this scheme has been shown to
work in other solid-state laser hosts including Nd:YLF (2], Cr3+:LiSrAlF, (3],
chromium-doped forsterite (Cr:forsterite) [4], Nd:YAG [5], and Cr3+:LiCaAlF;
[6]. Soliton-type pulse shaping mechanisms, where intensity dependent Kerr
nonlinearities in the gain medium producing positively chirped pulses are
balanced by prism pair negative group velocity dispersion, give rise to stable
femtosecond pulse trains in these lasers. A variety of initiation techniques
such as continuous-wave (cw) self-mode-locking [1}, regenerative initiation
[7-9], synchronous pumping [10], and acousto-optical modulation {11] have
been used to set the initial intensity conditions necessary for the soliton-like

pulse shaping to take place.
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The broad gain bandwidth of the Cr:forsterite laser makes it a suitable
candidate for the generation of ultrashort pulses. To date, acousto-optically
mode-locked [12], synchronously pumped [12], acousto-optically initiated self-
mode-locked [4], and additive-pulse mode-locked [13] modes of operation
have been demonstrated. Seas et al. [4] reported the shortest pulses to date of
60 fsec (FWHM) duration using acousto-optically initiated self mode locking
with intracavity group velocity dispersion (GVD) compensation. They
reported that 90 fsec pulses were more routinely generated, suggesting to us
that some pulsewidth instabilities were present. They reported only 85 mW
of average output power.

In this paper, we describe the performance of a regeneratively initiated,
self-sustainable, mode-locked Cr:forsterite laser operated at 3.5 OC that is
pumped by a ¢cw Nd:YAG laser. Regenerative mode-locking eliminates the
need for synchronicity between the acousto-optic modulator rf drive signal
and the cavity repetition frequency. In our experience with acousto-optic
mode locking of a forsterite laser, maintaining this synchronicity was
extremely critical for useful output. When cavity length drift occured, not
only did the pulsewidth increase, but large fluctuations in .he average power
were observed. Regenerative initiation eliminated these problems.
Regenerative modulation uses a portion of the cavity beat signal to drive the
acousto-optic modulator electronics, thus obviating the need for stringent
cavity length control. It also allows the in situ measurement of cavity
dispersion. Once pulse shaping is initiated, a very stable train of femtosecond
pulses develops due to the balance between intensity-dependent Kerr-induced
nonlinearities and the intracavity dispersion of the cavity. As Seas et al. {4]

demonstrated, Cr:forsterite is capable of operating in this self-sustained mode
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once the pulses are initiated.

Unique to our work is the improvement in operating stability provided by
regenerative initiation, the generation of significantly shorter nearly
transform-limited pulses (48 fsec FWHM duration), and a significant increase
in average TEMy output power (380 mW at 1.23 um). These represent to our
knowledge the shortest and highest peak power pulses directly generated
from this laser system. Furthermore, using the cavity dispersion
measurement technique developed by Knox [14], the second and third order
dispersion constants in the lasing range of the forsterite crystal have been
measured for the first time. The combination of high power, reliable
operation, and cavity dispersion measurements open the door to shorter
pulse generation and applications such as efficient second harmonic
generation of femtosecond pulses in the 615 nm region.

The experimental set-up of the regeneratively initiated self-mode-locked
Cr:forsterite laser is shown in figure 1 and is similar to the laser described in
reference 4 except for the cavity length, crystal length, output coupler, prism
seperation, and method of acousto-optic initiation. The folded, astigmatically
compensated laser resonator consisted of a flat wedged high reflector (M3) and
a 3.5 % transmitting output coupler (O.C) of 157 cm radius of curvature with
the gain medium positioned slightly off-center between a pair of high
reflecting curved mirrors (M1 and M2) each of 5 cm focal length and separated
by 10.8 cm. The laser mirrors were obtained from the optics division of
Spectra Physics Lasers, Inc. and were broadband coated for operation between
1.15 and 1.35 um. A regeneratively driven acousto-optic modulator (A.O.M)
was placed near the output coupler. A pair of prisms (P1 and P2) placed on
the high reflector side were used for dispersion compensation. The total

cavity lengtt. was 185 cm corresponding to a longitudinal mode spacing of
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81.265 MHz. A cw Nd:YAG laser (Quantronix model 416) operated at 1.064
pm was mode-matched and focussed into the forsterite crystal using an anti-
reflection (AR) coated, bi-convex lens (L1) of 10 cm focal length through M1
having 93.3% transmission at 1.064 pm. A half-wave plate (W.P.) at 1.064 um
was used to adjust the pump polarization to obtain optimum power output
from the laser.

The gain medium, a 4mm x 4mm x 12mm Brewster cut forsterite crystal
with 0.3% chromium concentration, was oriented with the crystal a-axis (Pma
crystallographic notation) in the plane of incidence of a p-polarized electric
field. The crystal was obtained from IFC, Inc.. The crystal was wrapped in
indium foil and tightly clamped between copper plates to facilitate rapid heat
exchange. A thermoelectric cooler with a feedback loop, maintained the
crystal temperature at 3.5 ©C with peak temperature fluctuations less than 0.2
OC. The careful temperature control of the crystal was cruciai in obtaining a
stable train of femtosecond pulses. Temperature fluctuations of a few degrees
gave rise to as much as 50% power fluctuations over 100 usec time scales
when the laser was being pumped well above threshold. A plexiglass
enclosure surrounding the crystal holder assembly was purged with dry
nitrogen gas to minimize water condensation on the crystal surfaces. The
gain medium had 70.9% absorption at 1.064 pm at the operating temperature
of 3.5 0C.

With a 3.5% transmitting output coupler, 6.5W of pump absorbed, and a
crystal temperature of 3.5 OC, the output power of the laser running in cw
mode (no prisms, no A.O.M) was 420 mW. The output wavelength of the
laser was centered at 1.23 um. The absorbed pump power slope efficiency at

low pump power levels was measured to be 10.4%, the threshold pump
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power being 1.6 W. For absorbed pump powers beyond 5W, the slope
efficiency started to level off due to increased thermal loading of the forsterite
crystal. Alignment of the focussing mirrors was critical to quiet operation.
Beyond pump power levels of 5W, the cw output power sometimes displayed
chaotic power fluctuations. We believe this was due to thermal lensing
induced by the pump beam. The fluctuations could be fully overcome by
carefully translating the mirror M1.

The laser was first mode-locked without employing intracavity dispersion
compensation. The regenerative mode-locking scheme is similar to that
described in reference 8. The cavity loss was modulated using a regenerative
acousto-optic mode-locker which had 0.4 % modulation depth and a 0.5 W RF
amplifier. The acousto-optic modulator(A.O.M) (NEOS Technologies, Inc.
model N12040-2-LIT-BR-IN)), used a 1 cm long Brewster angled quartz crystal
operated off resonance. Approximately 4% of the laser output power was sent
to an InGaAs photodiode to produce a signal for the regenerative mode-
locker electronics. Inclusion of the A. O. modulator caused approximately 6%
reduction in the total cw output power of the laser. A portion of the signal
from the InGaAs detector was also sent to a Hewlett Packard model 5328A 500
MHz universal frequency counter to precisely register the pulse repetition
rate. The mode-locked output of the laser was analyzed using a scanning
spectrometer (Monolight model 8000) with approximately 2.5 nm wavelength
resolution and an autocorrelator with a 2 mm thick LilO; doubling crystal.
The spectrum and autocorrelation signals were acquired using a Tektronix
model 2230 500 MHz digital storage oscilloscope and recorded by an interfaced
computer.

We observed three distinct modes of operation. Using no intracavity
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dispersion compensation, and for c¢w output powers below 280 mW
corresponding to 4.3 W of absorbed pump power, 41 psec FWHM pulses
(assuming a Gaussian pulse shape) were obtained from the Cr:forsterite laser.
The pulse width measured is in agreement with what was previously
reported by Alfano's group [12], and is very close to that predicted from active
mode-locking theory for chirp-free pulses [15], which was calculated to be 44
psec.

Increasing the absorbed pump power beyond 4.3 W, which increased the
output power of the laser, resulted in pulses of 6.5 psec (FWHM) duration.
Again a Gaussian pulse shape was assumed. As much as 380 mW cw TEMy
output power at 1.23 pm was obtained while the laser maintained this output
pulse width. Due to the limited resolution of the scanning spectrometer, the
bandwidth of the mode-locked pulses could not be fully resolved. We believe
the shorter pulses at higher absorbed pump power are evidence of intracavity
intensity induced nonlinear effects (i.e. self-phase-modulation) in the gain
medium. Self-phase-modulation gives rise to increased bandwidth of the
pulses which can support the shorter pulse widths. Because no intracavity
dispersion compensation was employed, we believed that these 6.5 psec
pulses had excess frequency chirp and hence were not transform-limited, as
observed in {4].

To compensate for the positive second order dispersion in the cavity, a
pair of SF-14 Brewster angled prisms (P1 and P2) were placed on the high
reflector (M1) side of the cavity. The prism separation was 48 cm, slightly
longer than that reported by Seas et al. [4], which is due to the longer
Cr:forsterite crystal used in this work. Prior to observing femtosecond pulse

generation, the laser resonator was first aligned at a low pump power level to

69




Sennaroglu, Pollock, and Nathel: Regen. cw mode-locked Cr:forsterite laser

obtain optimum cw output power. Subsequently, the pump power was
increased beyond the threshold level for self-phase-modulation (4.3 W) with
the regenerative mode-locker operating to initiate the femtosecond pulse
train. Once initiated, the laser produced a very stable uninterrupted train of
femtosecond pulses. No apertures or other means of starting such as tapping
on the table were necessary. The TEM, output power of the laser was
380mW with the spectrum centered at 1.23 um. Figure 2 and 3 show the
noncollinear intensity autocorrelation and the spectral width of the
femtosecond pulses respectively. Assuming a sech? [16] intensity profile the
pulsewidth (FWHM) was measured to be 48 fsec. The overall dispersive
broadening due to the output coupler and the autocorrelator optics was
estimated to be less than 2 fsec for this 48 fsec pulse at 1.23 pm. A
simultaneous measurement of 33.7 nm bandwidth gave a measured time-
bandwidth product of 0.321 indicating that the pulses were nearly transform-
limited and free of excess frequency chirp. We believe that higher intracavity
power levels (28%higher, 2.77MW) were the predominant factor in obtaining
pulses shorter than what was previously reported [4]. With the regenerative
mode-locker off, self-sustained operation up to 2 minutes was observed.
Cessation of the mode-locked operation was believed to be due to
micromechanical perturbations of the system. The cavity repetition rate was
stable to better than 40 Hz and could be varied by changing the cavity length
in the range [81.2300-81.3200 MHz] without interrupting the mode locking
process. The peak output power per pulse was determined to be 97 kW.

The mode-locked laser was tuned in the range 1.211-1.264 pm by
translating a slit between the prism P2 and high reflector M3. Using the
frequency counter, the pulse repetition rate was measured as a function of

wavelength. By employing the cavity dispersion calculation technique
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developed by Knox [14], and by accounting for the known dispersion of the
AO cell and the prism pair, the second and third order dispersion constants of
forsterite at 1.23 um were determined to be d2n/dA2=0.047 pm-2 and
d3n/dA3=-0.339 um-3 respectively. The error in these measurements was
estimated to be 10 %. Using these numbers, the calculated third order phase
distortion d3®/dw3 for one cavity round trip was found to be positive (~11,000
fsec3) and not compensated. We have estimated [17] that the pulses have 10
fsec of cubic phase distortion and that with cubic dispersion minimization
techniques [18] reduction of pulse widths by at least 20% is achievable.

In conclusion, we have demonstrated a regeneratively initiated self-mode-
locked Cr:forsterite laser operated at 3.5 °C and pumped by a cw Nd:YAG laser
at 1.064 pm. We have identified three regimes of operation for this laser.
Without compensating for the cavity dispersion, 41 psec and 6.5 psec
(FWHM) pulses with average TEM g output powers of 280 and 380 mW
respectively were produced at 1.23 pym. These modes Vof operation correspond
to active mode-locking regimes, chirp-free and chirped, respectively. By
employing intracavity GVD compensation, a very stable train of 48 fsec
(FWHM) with average output power of 380 mW was generated. This regime
is similar to the now common, self-mode-locked regime where soliton-like
pulse shaping is important. Up to 2 minutes of self-sustained operation was
observed. By tuning the mode-locked laser, second and third order crystal
dispersion constants have also been measured for the first time. These
represent, to our knowledge, the shortest, highest peak power light pulses
directly generated from this laser system. These peak powers and operational
stability open the door to applications such as second harmonic generation,

and optical tomography of biological tissues.
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Figure Captions:

Figure 1.The schematic of the regeneratively initiated cw mode-locked

Cr:forsterite laser.

Figure 2:The noncollinear intensity autocorrelation of the regeneratively
initiated cw mode-locked Cr:forsterite femtosecond pulses after

dispersion compensation. The pulsewidth (FWHM) is 48 fsec.
Figure 3:The spectrum of the regeneratively initiated cw mode-locked

Cr:forsterite femtosecond pulses after dispersion compensation. The

spectral width (FWHM\.) is 33.7 nm.
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Generation of tunable femtosecond pulses in the red by frequency

doubling a mode-locked Cr:forsterite laser
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Abstract
We report on the external second harmonic generation of a regeneratively-
initiated self-mode-locked Cr:forsterite laser in LilO, nonlinear crystal. Using
48 fsec pulses with average power of 246 mW at 1.23 um, 75 fsec pulses with
average power of 24 mW at 615 nm were obtained, giving conversion
efficiencies approaching 10 %. The time-bandwidth product of the red pulses
was measured to be 0.77. The second harmonic pulses were tunable from 605
nm to 635 nm, extending the operational wavelength range of the

Cr:forsterite laser into the visible portion of the spectrum.
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External second harmonic generation (SHG) offers a simple scheme of
extending the operational wavelength range of a tunable laser. Recently,
there has been an unprecedented growth in the development of novel mode
locking techniques using tunable solid-state lasers. Broadly tunable, high
peak power subpicosecond pulses have been demonstrated over a large
portion of the near IR region. Because such high peak powers are essential to
achieving high conversion efficiencies in nonlinear processes such as SHG,
these mode-locked tunable solid-state lasers open the way to efficient
generation of tunable second harmonic pulses.

In this Letter, we describe the external doubling of a regeneratively-
initiated, self-mode-locked Cr:forsterite laser using 8 LilO3 nonlinear crystal.
Using 48 fsec(FWHM) input pulses at 1.23 um with 2verage output power of
246 mW, 75 fsec(FWHM) pulses at 615 nm with conversion efficiency of 10 %
were obtained. By tuning the output of the pump laser from 1.21 to 1.27 um,
the second harmonic output wavelength could be tuned in the range 605 to

635 nm.
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The regeneratively-initiated, self-mode-locked Cr:forsterite laser used in
the SHG experiment has been described elsewhere[1]. Briefly, it consists of a
folded, astigmatically compensated z-cavity with a 3.5 % transmitting output
coupler. The gain medium is a 12 mm long Brewster-cut Cr:forsterite crystal
having 0.3 % chromium concentration. The laser is collinearly pumped by a
continuous-wave Nd:YAG laser operated at 1.06 um. When maintained at an
operating temperature of 3.5 ©C through active cooling, the Cr:forsterite
crystal absorbs 70.9 % of the incident 1.06 pm pump power. The absorbed
pump power slope efficiency of the Cr:forsterite laser is 10.4%, the threshold
pump power being 1.6 W. Compensating for the intracavity positive group
velocity dispersion (GVD) by using a pair of Brewster-cut SF-14 prisms
seperated by 48 cm, self mode locking is initiated with a regeneratively driven
acousto-optic mode-locker operated off-resonance. The mode-locked
Cr:forsterite laser, operating at a 81.27 MHz pulse repetition rate, is capable of
delivering average powers as high as 380 mW. The output pulsewidth
(FWHM) is 48 fsec at 1.23 pm. By translating a slit between the the second
prism of the GVD compensation pair and the cavity high reflector, the output
wavelength of this laser can be tuned in the wavelength region from 1.21 to
1.27 pm.

The SHG set-up used for externally doubling the mode-locked Cr:forsterite
laser is shown in figure 1. As the nonlinear medium, a 2 mm thick LilOj
crystal( Cleveland Crystals, Inc. ), type-1 phase-matched at 1.23 um was used.
In order to prevent degradation of the surface quality of this hydroscopic
crystal, a cover slip(of thickness 0.2 mm) with anti-reflection (AR) coating on
one side was glued to each crystal surface using uv curing epoxy. The

nonlinear crystal was mounted on a rotation-tilt stage to accurately optimize
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the second harmonic efficiency while tuning the pump laser. The incident
Cr:forsterite laser beam was focussed to a 25 um diameter spot inside the LilO;
crystal using a telescope arrangement of two 5 c¢m focal length AR coated
plano-convex lenses (L1 and L2) seperated by 1.5 cm. The emerging beam was
recollimated with a broad band AR coated (450-700 nm) 5 cm focal length
lens(L3). After separating the second harmonic signal from the fundamental
with a dichroic filter (F1) having 99.9% reflectivity at 1.23 um and 95%
transmission in the red, the SHG power was measured with a Molectron
model 5100 power meter. Temporal characteristics of the red pulses were
studied by measuring the collinear intensity autocorrelation with a 0.6 mm
thick BaB,O4 (BBO) crystal aligned for type I phase matching. The spectral
width of the SHG pulses was measured with a 0.25 m monochromator and a
silicon detector.

After careful alignment of the LilO; crystal, 24 mW of average power at 615
nm was obtained with 246 mW of incident power at 1.23 um, resulting in
9.7% conversion efficiency. Figure 2 shows the collinear intensity
autocorrelation of the SHG pulses at 615 nm. Assuming a sech? intensity
profile, the pulsewidth(FWHM) was measured to be 75 fsec. A simultaneous
measurement of 13 nm spectral bandwidth gave a time-bandwidth product of
0.77. The red pulses could be tuned from 605 to 635 nm with the pulsewidth
essentially remaining the same.

The expected efficiency of second harmonic generation from LilO3 was
estimated by taking into account the walk-off effects between the fundamental
and the second harmonic beams, the finite divergence of the fundamental
beam and the finite spectral phase matching bandwidth of the crystal.
Following the treatment of Boyd and Kleinman [2], the amount of second

harmonic power Py, (in watts) generated from a monochromatic beam in a

4
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nonlinear medium with the assumption of no absorption and pump
depletion can be estimated using the equation

__mﬁmfu%mg)ﬁama)
2w~ n3 )&3

(D

In (1), where all the quantities are expressed in MKS units, 1g is the vacuum
impedance, d is the effective nonlinear coefficient of the medium, L is the
crystal length, n is the crystal index of refraction and P(A) is the fundamental
spectral power distribution. The dimensionless factor hp(B,£), which is a
function of the normalized walk-off parameter B and the normalized
focussing parameter £, accounts for the efficiency limitations due to walk-off
effects arising from double refraction and the finite beam divergence (see
reference 2 for definitions of B and £). One realizes that the fundamenrtal
beam in this experiment is no longer monochromatic for 48 fsec pulses and
the effect of the finite spectral phase-matching bandwidth of the LilOj3 crystal
has to be taken into account through the efficiency factor F(A) appearing in (1)

defined according to

F(A) = sincz[ Ak(zk)L]

(2)

In (2), Ak(R) is the wave vector mismatch between the fundamental and the
second harmonic waves. By expressing P2(A) as

P’ =P3p, () 3)

where p,()) is the normalized spectral distribution function of the squared
incident power, the effect of the finite spectral phase-matching bandwidth of
the SHG crystal on the conversion efficiency can be estimated by integrating
(1) over all wavelengths. This simply replaces the function P2(A)F(X)/A3
appearing in (1) by the spectrally averaged value of P2(1)/A3 using F(X) as the
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weighting factor.

Calculation of various quantities appearing in (1) was done using the
Sellmeier equations for LilO; given in reference 3. Using the fact that LilOj is
a negative uniaxial crystal, the type I phase matching angle 8, and the walk-
off angle p are calculated to be 25.940 and 3.67° respectively. Furthermore,
since LilO; belongs to the point group 6, the effective nonlinear coefficient d
given by d3;sin(8,+p) is calculated to be 2 pm/V using d3;=4.1 pm/V [4]. For
a 2 mm thick crystal with index of refraction n=1.85218 and focussed beam
diameter of 25 um the parameters B and & discussed earlier evaluate to 4.4
and 1.35 giving h;,,(B,£)~0.17 [2].

By using the Sellmeier equations and a fixed phase-matching angle of
25.940, F()) defined in tZ) is plotted in figure 3 for a 2 mm long LilO; crystal.
Also plotted in figure 3 is the function p(A) (not normalized) for a sech? pulse
of duration 48 fsec (FWHM). By averaging p,(A) using F(A) as the weighting
factor, we estimated that the finite spectral phase-matching bandwidth of the
(rystal would cause approximately 75 % reduction in the SHG conversion
efficiency. With this consideration in mind and by substituting all the
relevant parameters calculated above into (1), we came up with an expected
conversion efficiency of approximately 11 % for 63 kW peak power pulses.
This is in excellent agreement with the experimentally obtained value of 10%.

The finite phase matching bandwidth of the crystal is also expected to
affect the temporal and spectral characteristics of the second harmonic pulses.
One would ideally expect the second harmonic pulsewidth to be 0.707 times
that of the fundamental pulses. However, as seen in figure 3, the limited
phase matching bandwidth of the 2 mm thick LilOj crystal will reduce the

bandwidth available for doubling by at least 50 % resulting in second
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harmonic pulses of about 70 fsec. In addition, GVD of LilO3 (d2n/dA2=0.6866
pm-2 at 615 nm) together with the GVD of approximately 2.2 cm of fused
silica glass between the SHG crystal and the autocorrelator is expected to
further broaden these pulses to approximately 85 fsec. This is in good
agreement with the 75 fsec (FWHM) pulses measured in our experiment.
The measured time-bandwidth product of 0.77 also verifies that broadening
and possible spectral distortion was experienced by the SHG pulses. Our
estimations of the expected pulsewidth from the SHG process are only
approximate. More accurate numerical analysis would be required to fully
study the combined effects of finite phase-matching bandwidth of the
nonlinear crystal and dispersive effects on the pulsewidth and time-
bandwidth product.

In conclusion, we have demonstrated efficient external doubling of 48 fsec
pulses from a mode-locked Cr:forsterite laser using LilO; nonlinear crystal.
With 246 mW of incident power at 1.23 pum, 75 fsec (FWHM) pulses with
conversion efficiency of 10 % were obtained at 615 nm. The experimentally
measured SHG conversion efficiency agreed well with the expected value
which was calculated by taking into account the beam walk-off effects, finite
beam divergence of the fundamental beam and the limited spectral phase-
matching bandwidth of the LilOj crystal. The red pulses which were tunable
in the wavelength region from 605 nm to 635 nm now extend the operational
wavelength range of the Cr:forsterite laser into the visible portion of the
spectrum. With the available high peak powers from this laser system it
should be possible to use more sophisticated nonlinear parametric

amplification schemes to obtain broader wavelength tunability.
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Figure Captions:

Figure 1: The experimental set-up of the externally doubled Cr:forsterite laser.

Figure 2: The collinear autocorrelation of the SHG pulses at 615 nm. The
pulsewidth(FWHM) is 75 fsec.

Figure 3: The plot of F(A) and p(A) as a function of wavelength (um) for a 2
mm thick LilO; crystal phase-matched at 1.23 um.
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TASK 4

FEMTOSECOND DUAL CARRIER TRANSPORT AND
OPTICAL INTERACTIONS IN COMPOUND
SEMICONDUCTOR HETEROSTRUCTURES

J. P. Krusius
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Heterojunction Vertical FET s Revisited: Potential for
225-GHz Large-Current Operation

Steven R. Weinzierl and J. Peter Krusius, Seniar Member {FEE

Abstraci—High-speed operation of submicrometer ALGa. _,
As /GaAs unipolar heterojunction transistors is examined using
two-dimensional time-dependent self-consistent  ensembie
Moate Carto simulation. Careful device design can significant!y
increase ballistic injection over the heterojunction in steady
state by eliminating retarding gate-induced space-charge re-
versal there. Design for optimal large-signal transient opera-
tion must also avoid gate-voliage-dependent ballistic injection.
General design principles for optimizing hi, h-speed operation
are proposed. The resulting VFET"s show cutoff frequencies of

25 GHz at large drain currents at 300 K, with frequeacy-in-
dependent two-port v parameters.

1. INTRODUCTION

ANDGAP engineered unipolar heterojunction tran-

sistors have long held great promise for ultra-high-
speed operation [1]. Although today’s lateral heterostruc-
ture devices are well developed. unipolar heterostructure
devices with transport across the heterolayers (verucal
FET., VFET) have not lived up to their expected perfor-
mance. Early preliminary Monte Carlo simulations pre-
dicted idealized intrinsic transconductances of 1250
mS/mm and unity gain cutoff frequencies of 250 GHz at
77 K [2]. while fabricated devices have never surpassed
transconductances of 100 mS/mm {3}, {4]. Three reasons
have motivated this study of heterostructure VFET de-
vices: 1) 1o explain the wide performance gap between
predicted and measured characteristics of VFET-type de-
vices. 2) to establish guidelines for the optimum VFET
device designs. and 3) to study carrier launching across a
heterojunction (HJ} in the presence of lateral space
charges for the first time using a realistic nonequilibrium
carrier transport formulation. While specifically focusing
on the HJ-VFET the principles found in this study are
applicable 10 a number of other devices. including the
vertical MESFET, the permeable base transistor (PBT).
and VFET's with a planar doped barrier launcher.

II. SiMuLATiON METHOD

A two-dimensional self-consistent time-dependent en-
semble Monte Carlo particle formulation is used here to

Munuscnpt received March 29. 1991: revised August 26. 1991 This
work has been supported by the Joint Services Electronics Program under
Contract F49620-90-C-0039. monitored by AFOSR (Dr. G. Wity The re-
view of this paper was arranged by Associate Editor S, E Laux
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explore the nonequilibnum transpon processes descnbed
above. This method 1s a straightforw ard extension [5] of
our equivalent one-dimensional formulation {6} The full
knowledge of the microscopic processes provided by the
Monte Carlo method allows computation of all hgures of
ment for the intrinsic device: no extnasic device para-
sitics are considered here. Both transconductance (g,) and
gate capacitance (Cg) are deterrmned from their define
tions using simulated steady-state terminal current or in-
tegrated charge data. The unity-gain cutoff frequency ( f1
is then computed via f, = g /(22Cg). The complex fre-
quency-dependent smzll-signal v parameters are deter-
mined directly from the Monte Carlo result via the Fou-
rier decomposition method [7). [8]. ie.. ¥y, («} =
Flal(n}/FlaV,(n]. where F denotes the Founer trans-
form. A/ (1) the current change at port { 1n response to the
voltage change &V, (1) at port /.

11I. Dervimion oF DEVICE STRUCTURES

Al VFET devices examined have the same structure
derived from fabricated devices. in which current flows
in parallel fingers from the top electrode (source) down
through the channel into the bottom electrode (drain). The
channel current is modulated by lateral gate electrodes
placed symmetrically on both s.des. Only one of these
fingers needs to be simulated and its cross section 15 shown
in Fig. 1. Source and drain contacts are assumed ohmic.
while gates are Schottky contacts. The heterostructure
launcher is embedded into the source and has a graded
AlGa, _ ,As ramp and an abrupt heterojunction toward the
channel. Table | shows the parameter sets for three dif-
ferent devices: a fabnicated device {4]. a baseline device
(starting point for optimization) similar to the fabncated
one. and the fullv optimiz.d device designed for 300 K
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TaBLb ¢
Eaosiw Srotrncessom Fapiod vt Bassoins astOrna s HEVELT v
Fiy i
Laver Name Matenat Parameter Sy st Fabricated Bawiine L v
Source 0 GuAs ieneth, nam S <41 A
duping em S T N Pt
Grading n'-ALGa, . As length. pm 4 1 S
doping. cm 450 oot P
Lauvncher n-ALGa; . (As length am L, 9 LU S
doping. cm A, 3.t 3oao0 (T
Al mole fracnon Hu oA A £ %
Spacer 1-AlLGa, . As fength 10 am nod ancleded
Channel GaAs lenpth. am Len Sou X} NEY
doping. cm " New 2 =30t 2 a0 T
Dram GaAs iength nm L, 1200 300 RSt ‘
doping. cm 4 = 10 [ e U’
Addinionat parameters pate fength, nm i, 2 it i
gate-source
\pacing, am Lo - 100G LR1EY . 1%
device waidth, nm RATE 441 o

operation using the general guidelines given in Section
VII. The baseline device has a 350-nm lateral width, and
two symmetric 200-nm-long gate clectrodes placed 100
am downstream from the HJ. Source and drain doping in
the baseline device is smaller than in the fabricated de-
vices in order to avoid degeneracy and carrier-carmer
scattering in these regions. The thin undoped spacer re-
gion at the heterojunction in the fabricated device was
dropped as it is likely to be washed out during materials
growth. Channel and drain lengths are shorter than in the
fabricated device. as the fabricated channel length of 500
nm far exceeds the quasi-ballistic mean free path even at
77 K and the long drain length increases the series resis-
tance. Fourteen design variations, covering all significant
characteristics. have been defined in Table II. The opti-
mization occurs in two steps. First, the operation of the
fabricated device is analyzed. Next a new more suitable
baseline device is defined for optimization. Finally single
parameter variations are performed successively until the
optimum is reached. A fully statistical response study is
not necessary because of the microscopic insight provided
by the Monte Carlo method.

IV. CORRELATION WITH MEASURED DATA

The accuracy of the method was verified by simulating
a two-dimensional cross section of the fabricated device
and then comparing simulated steady-state current-volt-
age (/-V) characteristics with that measured in the fabri-
cated device (4], whose layer sequence is given in Table
L. It has 10 parallel fingers which are each 132 um long
and 350 nm wide, with 200-nm-iong gates. The gate-to-
source spacing is 100 nm. The simulated steady-state drain

current differed from measured data at 200 K by less than
15% (maximum global errory, & result obtmned without
any adjustable parametens.

V. STeEaDY-STATE Oreration

The key to understanding stcady-state operation of this
class of devices is the dipole layer at the heterojunction.
It was recently shown that two-dimensional macroscopic
current continuity 1n conjunction with the lateral space
charge induced by the gate electrodes controls the elec-
tron injection conditions over the heterojunction {9} Spe-
cifically. a dipole moment forms at the heterojunction. lis
magnitude and direction is dependent on the externally
applied gate voltage. Usually, the dipole moment is di-
rected 50 as to retard ballistic injection, which then be-
comes gate-voltage dependent. The baseline VFET de-
sign (device 1) demonstrates this effect very distinctly ts
electron density, average electron drift velocity, and self-
consistent conduction band edge in the center of the chan-
nel along the direction of camer flow are given i Figs.
2-4. This effect limits the performance of the baseline
device to g, = 312 mS/mm and f, = 64 GHz at a drain
current density of I = 5 x 10* A /cm®. This constitutes
a neghgible improvement over the GaAs device with no
embedded heterojunction (device 2).

Channel-limited transpost in an FET is forced by the
applied gate-to-source voltage Vs via the depletion re-
gions at a location in the channel where carmier densities
are low and where carmier velocities reach approximately
the saturation velocity. Thersfore three different methods
for controlling channel-limited transport were investi-
gated by adjusting device parameters from their bascline
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TABLE U
Derninion of DEvICE PARAMETER CHANGES FOR OPTIMIZATION
Moditied Value
Device Paramcterts) Fig | From Current
No. Changed Symbul Baschine
1 Baseline baseling baseline
2 fauncher height Hy, = 0%
3 channel length Liw 220 am
gate-s0uICe spacing L.y + 10 nm’
4 gale-source spacing Ly - 100 nm
channel doping New 7T x 100 em’
6 New Baseline
channel length Low 200 am
gate tenpth L, 150 nm
gE-s0urce spacing [ +25 am
channei doping Noa T x 10"em
launcher height Ha, 133 meV. s = 2%
tauncher length L 100 rm
launcher doping N 3% 10 em
drain length L, 275 nm
fauncher height H,, 266 meV, ¢ = 44%
8 channct doping Nea 2x 10" em ¢
tauncher heght Hay 67T meV, v = H1%
10 launcher length L, 0 nm
1 iauncher doping N, I x10%em ™’
12 drain length Ly 150 nm
13 gute length L, 75 nm
13 gate lenpth L., 75 nm
gate-souree spacing L, +50 nm
15 Optimized
channet tength Loy 200 nm
gate fength L. 130 nm
EAIC-NOUICC \PUCIng Ly +35nm
chanac) Joping New 7 x 10" cm !
launcher height H,y, TImeV. = 12%
launcher leagth L, 50 nm
launcher doping N, I x 10"em !
druin length Ly 150 nm
tChanged only 10 maintain gate length L,; of 200 nm
10t —— Baseline
— - Device 24
= o Device 85
£
H
3
Em}:‘.
€
<
i
E
-l
10T 53] o 64 0% 08 07 us

t
Heterojunction Dran
Position fum;

Fig. 2. Steady -statc clectron concentration along the center of the channel
in the dirccuion of current How for devices £. 3. and 5 at 300 K. See Tabie
Il for device parameters. Vo = +0.2 Vand by, = +1.0V

values: aj reduction of channel length to 220 nm (device
3). b) gate electrode placement symmetnically around the
HJ (Lgs = ~ 100 nm. device 4). and c) enhanced channel
doping (Nc, = 7 x 10" cm ™2, device 5). In each of these
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cases the reversal of the sign of the dipole layer momem
at the HJ will be prevented. which 1s reflected in an en-
hanced g,, (Fig. 5). Because the gate capacitance Cg i3
also affected. the cutoff frequency f, may or may not im-
prove (Fig. 5). The device with the gate overlapping the
source (device 4) exhibuts a substanuially reduced £, due to0
increased C. and performs worse than the device with no
launcher (device 2). Devices 3 and 5 both showed im-
proved performance, with g..'s of 333 and 418 mS,/mm.
respectively, and f’s improved 30% and 17% over the
baseline device. Although both exhibit the desired flat-
band condition at the HJ even in saturation, device 3 with
the short channel still suffers from channel-limited trans-
port due to insufficient channel doping, and device § with
the enhanced channel doping still has a channel longer
than the quasi-ballistic mean free path. Thus the best
method for preventing space-charge reversal at the het-
erojunction is to both decrease the channel length and in-
crease the channel doping (new baseline device. device 6.
gn = 438 mS/mm, f, = 81 GHz). This device is taken
as the new baseline device.

The structure of the HJ launcher itself is obviously the
other important factor controlling steady-state operation.
One expects that a large conduction band offset at the HJ
launcher results in enhanced immeduate electron transfer
into the heavier mass L valleys. This mechanism will
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Fig. 5. Transconductance 2. gate capacuance Ccg. and cutofl frequency
f, for devices 1-15 at 300 K. See Table 1 for device parameters. ¥, was
stepped from +0.2 10 +0.5 V while Voo was heldat +1 0 V.

make quasi-ballistic channel transport impossible because
transfer from the I" to L valley occurs between orthogonal
quantum states, randomizing all components of the mo-
mentum wave vector. In addition, quantum-mechanical
reflection at the H) is increased. Simulation results for
device 7 with a doubied band offset (Hy, = 266 meV)
confirm this expectation with an f, of less than half that
for the device with no launcher {device 2).

Although ballistic injection occurs in device 8 with an
enhanced channel doping (Ngy = 2 X 10'” cm™?), ballis-
tic transport in the channel is prevented by the dominant
ionized impurity scattering mechanism, which has no
strong preference for small-angle scattering for electron
energies in the channel; a widened and drifted camier dis-
tribution function downstream from the HJ is produced.
Current continuity together with the large channel doping
actually forces launcher-limited transport in this device,
as demonstrated by a pulled-down band edge. This results
in no improvement over the new baseline, device 6. If the
constant mole fraction section in the HJ launcher of the
new bascline device 6 is left out with everything else being
constant, the resulting device 10 suffers from the largest
gate capacitance. In this case the conditions for ther-
mionic emission are no longer satisfied, and I to L valley
transfer in the channel is increased. This results in no im-
provement over the new baseline, device 6. Decreasing
the drain length by nearly half to 150 nm (device 12}, also
gives no improvement over the new baseline, device 6.

Substantial improvement is realized by decreasing the
launcher height (Hy; = 66 meV, device 9), increasing
launcher doping (N, = 1 x 10'® cm™3, device 11), and
decreasing the gate length (Lg = 75 nm, device 13). De-
vice 9 with the shallower launcher gave a notable im-
provement over the baseline device 6, primarily because
less T to L valley transfer downstream from the hetero-
junction enhances the transconductance, while still pro-
viding sufficient ballistic injection at the HJ. Increasing
launcher doping prevents launcher-limited transport as
evident from device 6. Decreasing the gate length pri-
marily reduces the gate capacitance, while still providing
a channel pinch-off capability. Moving this short gate far-
ther downstream (L = 100 nm, Lgg = +50 nm, device

14), shows nearls no difference, indicating that Loy =
+25 nm s sufhicient o prevent gate-source nteracuion

VI, TRANSIENT OPERATION

The large signal switching charsctenstics are quaniified
here via the response of the device 0 a voltage pulse ap-
plied to the gate terminals white keeping the drun voltape
fixed during the transient. A gate step voltage of 3ty =
+0.3 V (less depletion) with zero nse ume for g penod
of 20.48 ps was used with the drain biased into saturation
(Vps = +1.0 V). This corresponds to an increase in the
drain current of 74 % for the baseline device. At this bias
point g, has half its maximum value. From the steady-
state operation principles discussed above, one expects
that devices with a voltage-dependent. and hence current-
dependent, dipole layer at the HJ (with polanty reversal)
will have poor switching charactenstics with a long pe-
nod of damped charge and terminal current osaiflations
This is confirmed by our simulatons. The oscillations are
driven by the following two mechanisms. Fint, the large-
signal transient setthing time s largely determined by the
current density, which is substantially reduced dunng the
transient due to the current-dependent balhistic injection.
Second, the nonlinear injection process at the HJ. and the
linear injection processes at the ohmic source and dran
contacts, are coupled. This couphing occurs on a time scale
on the order of the dielectnic relaxation time 75, which
is about IS fs in the heavily doped source/drain regions.
Contrary to this, the overall current density through the
device is at best modulated on a time scale related to the
plasma frequency w, (about 100 fs), and at worst on the
time scale of the source-heterojunction transit ime 7y 4.
which is about | ps for this device size. Combined with
the current-dependent injection, the presence of these two
different natural time scales leads to an out-of-phase het-
erojunction-to-ohmic contact feedback, which dnves the
current oscillations during the transient (Fig. 6). Damping
is provided by the scattering mechanisms. This is con-
firmed by the fact that the period of oscillations in the
drain current transient in Fig. 6, about 320 fs. exacily
matches the time dependence of the ballistic fraction at
the HJ (Fig. 7). The presence of the two coupled pro-
cesses is manifested in the strong frequency dependence
of the transconductance g, (real part of v,, in Fig. 8).
Also seen in that figure is the excessive gate capacitance
of some of the devices arising from the gate-source in-
teraction. For exampic, device 4 has a positive suscep-
tance y;,. All devices showed a similar gate self-admit-
tance y,;,: the susceptance was capacitive and the con-
ductance small because the Schottky gates aliowed only
displacement current to flow.

VIil. Device DesigN CRITERIA

Design criteria have been derived from the steady-state
and transient operation principles discussed above. The
key to balanced high-speed and high-current operation is
held by the dipole layer at the HJ: it should not be a re-
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tarding one for the desired operating conditions and it's
bias dependence should be as small as possible. This can
be accomplished by following the guidelines below:

1) The channel length Ly, should be comparable to the
quas: Sallistic mean free path in the channel (~200 nm
at 300 K lattice temperature for GaAs). Then the forma-
tion of a voltage-dependent retarding dipole layer at the
heterojunction is prevented.

2) The gate length L should be reduced until the edge
and area gate capacitance contributions become compa-
rable. The gate edge should not be close to the heavily
doped source, or drain, areas to minimize capacitive feed-
back. 130-nm gate lengths with +35-nm gate-to-source
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spacings for channel lengths of U0 nm can be achieved
{10}.

3) The channel doping density Ny, is set by the tradeoff
between competing demands: its reduction s required to
minimize ionized impunty scattenng and us enhancement
is required to prevent channel-limited transporn.

4) The tauncher height Hy, should be set by trading off
the kinetic energy increase at the Hl to eiectron transfer
into upper conduction band valleys. It has already previ-
ously been shown by Tang and Hess {11] that 3 70-meV
launcher height. which corresponds tox = Q. 11, will re-
sult in average overshoot velocities as large as § x 10° l
cm/s for 300 K.

S) The length of the launcher L, must be long enough
to allow for a symmetric quass-equilibnum momemuml
distnbution immediately upstream from the H, to satisfy
conditions for thermionic emission.

6) The launcher doping N, must be large enough to
support overshoot velocities in the channel in order to pre- l
vent launcher-limited transport. Doping it the same as the
rest of the source is acceptable for GaAs.

7) The length of the heavily doped drair. region shou!dl
be minimized to keep the transit time skort. About 150
nm s needed in order to thermalize hot camers from the
L valley into the T valley before reaching the ohmic drain
contact. l

8) The length of the graded launcher region should not
be reduced to below 50 nm to avoid quantum-mechanical
reflection. The same requirement justifies the use of thc'
semi-classical Monte Carlo transport formulation {5].

VII. OpriMizep DEVICE CHARACTERISTICS

The optimized device 15 simultaneously displays ex-
cellent steady-state and transient characteristics for 300
operation. It reaches the ~omputed intnnsic £, of 143 GH
at a drain current of 150 kA /cm~. which is a 120% im-
provement compared to the baseline design. The opti-
mized device exhibits a peak f, of 225 GHz at a four time
larger current density of 4 x 10* A/cm’ compared to
maximum f, of 100 GHz at 1 x 10* A /cm" for the base-
line device (Fig. 9). The large g, is nearly independen
of frequency and the transsusceptance remains near zcrrl
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(Fig. 8). The gate step transient is very short and critically
damped. so that no oscillatory drain current behavior i
seen (Fig. 6). The gate self-conductance (Re y ) is the
smallest of all devices in Table 1I, due o s shorn gate
length. and the larger dielectric relaxation and plasmau fre-
quencies resulting from the higher channel carrier con-
centration. The charactenstics of the optimized device 15
have also been examined for 77 K operation. Simulations
show that increased channel resistance due to dopant
freeze-out is compensated by the enhanced overshoot ve-
locities, and bandgap narrowing. Effective mass changes
are minor effects and mutually compensating. The
HJ-VFET optimized at 300 K but operated at 77 K shows
excellent temperature-independent operation, but suffers
from launcher-limited transport (f, = 167 GHz at I, =
95 kA /em?). For best performance at 77 K the device
would require reoptimization following the guidelines in
Section VII.

1X. Concirusions

The insight provided by the analysis facilitated the es-
tablishment of device design principles for highest speed
operation. Ballistic electron injection and the multidimen-
sional dipole layer are the key issues in heterojunction
VFET's compared to conventional FET's. Optimized
AlGaAs/GaAS VFET's were shown to reach cutoff fre-
quencies up to 100 GHz for *‘normal’’ current densities
below 1 x 10° A/cm’, while peak cutoff frequencies up
10 225 GHz are possible for current densities as farge as
4 x 10° A/cm?. Fabricated devices never reached such
performance levels because their channel doping was de-
liberately set low in order to reduce scattering and effect
quasi-ballistic transport [12]. As shown here, transport
became channel-limited and a retarding dipole layer was
formed at the heterojunction. Maximum measured trans-
conductances of 60 mS/mm did not stimulate any high-
frequency characterization [4]. Our work shows that
proper control of ballistic injection under multidimen-
sional hot-electron conditions requires careful device op-
timization, which would be difficult to achieve without
the microscopic insight provided by accurate device sim-
ulation. Finally, this study shows that HI-VFET"s should
be reconsidered for applications for which both high
speeds and the largest current densities are required.
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the cammiers in the drift-diffusion device analysis program. This
study suggests that, for shorter gate length MESFET's, it is pos-
sible to obtain a reasonably accurate simulation with a modificd
drift diffusion simalator such as PISCES. This results in a much
faster computation than with a Monte Carlo simulator, and makes
it possible to use the device parameter extraction capabilities of
PISCES.
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Space-Charge Effects in Ballistic Injection Across
Heterojuncti..as

S. R. Weinzierl and J. P. Krusius

Abstract—Conditions under which ballistic injection across hetero-
junctions is suppressed in unipolar FET devices has been examined
using two-dimensional Monte Carle simulation. Gate-induced lateral
space charges influence via macroscopic current continuity the dipole
layer at the heterojunction. A retarding dipole layer is shown to result
in ballistic electron fractions and transit times comparable to those
found in homojunction devices. Guidelines for avoiding the formation
of a retarding dipole layer are given.

Semiconductor field-effect devices utilizing hot-electron anodes,
in particular ballistic injection across a hetercjunction, have long
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ILLY dwel
held promuse as high-speed swichey {11 Ovenshoot selodities arg
thought 1o arise downsiream from the heterojuncion as mjected
electrons convert potential into kinetsc energy By muamtsimng
overshoot velocities for hundreds of nanomneten into the channe!,
these near-ballistic electruns should provide a substantially reduced
transtt time. However, this descniption of electron injection i
overly naive considenng recent results from one-dimensivnad selt-
comistent Monte Carlo simulations 2] Temperuture, applicd volt
age, and launcher height csn change the magnitude and direction
of the dipole field at the heterojunction and thus profoundly intiy-
ence the jection process in laterally uniform one-dimensions!
structures. The fargest injected ballistic fraction is achieved. when
near-flatband conditions exist at the hetcrojunction. We consider
here for the first time how two-dimensional phenomena, always
present in real devices, affect the imjection process. Two-dimen:
sional self-consistent ensemble Monte Carlo simulation is used to
show that lateral space charges induced by gate electrodes down-
stream from the heterojunction can also cause dipole moment ro-
versal at the heterojunction and thus suppress ballistic injection

The seif-consistent fully two-dimensional ensemble Monze Carlo
method used here has been described elsewhere {3] While the het-
erojunction space-charge effect 1s a genenic one, a specihe device
has 10 be selected in order to study it quantitativels . A vercal FET
(VFET) with a cross section of 800 nm » 350 nm (Fig. 1), vden-
tical to a device recently examuned in a full optimization study, has
been chosen here {4}. The AlGa, . As heterojunction lsuncher
consists of a 75-nm region, in which the Al mole fraction x -
creases linearly from 0 to 22% ., followed by & 100-nm region with
a constant mole fraction of 22%. Current 1n the 300-nm-long chan-
nel is controlled by two ideal 200-nm-long Schouky-bamer gate
electrodes placed symmetrically on both sides 100 nm downstream
from the heterojuaction.

The simulated electron concentration for negative apphied pate
voltages {more depletion) shows that a retarding dipole layer 1y
formed at the heterojunction via sign reversal at higher drain volt-
ages (Fig. 2). Note that this result has been obtained by fulfilling
nonequilibrium transpon equations and Poisson’s equation without
simplifying approximations. The observed phenomenon can be ex-
plained by extending the one-dimensional theory for flatband con-
ditions {2] into two dimensions. For luterally uniform one-dimen-
sional injection, the flat band at the heterojunction will prevail for
all applied voltages for which the following macroscopic current
continuity relation is satisfied:

RaiGaasli; S fenlicn. (1)

Here ng 6.4, and nc, denote the actual carrier densities in the
launcher and the channel, and Uin, 2nd vy, the average drift veloc-
ities for injected electrons at the heterojunction and downstream
from it, respectively. Note that the two carrier concentrations are
not solely determined by the local doping densities, but also influ-
enced by carrier spillover and transport effects. Local doping den-
sities provide, however, a good starting point for estimating 1,64,
and nc,. Equation (1) is a direct consequence from the local en-
forcement of current continuity across the heterojunction. As pre-
viously shown, the average electron velocities in (1) will necessar-
ily include the effects of ballistic electrons and quantum-mechanical
reflection processes at the heterojunction, because they are deter-
mined by an integral over the entire local electron distribution
function.

In two dimensions, current continuity is no longer fulfilled lo-
cally, but over each cross section of the device. The throughput in
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Fig. 1. Cross section of heterojunction VFET. The Al,Ga, . ,As grading

profile (mole fraction x as function of position) and applied voltages are
also shown.
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Fig. 2. Electron concentration, from Monte Carlo method, as a function
of positicn along the center of the channel for the gate voltages: Vgg =
~0.8V, -0.1V, and +0.6 V. ¥ps = +1.0 V. A Schottky-barrier height
of 0.8 V was assumed. Note that carrier concentrations in heavily doped
regions are iower than the doping densities because of fully included donor
statistics.

the channel downstream from the heterojunction will also be lim-
ited by the depletion regions modulated by the lateral gate elec-
trodes. One-dimensional depletion theory can be used to obtain an
expression for the widths of the lateral depletion regions AW, which
combined with the channel width W determine the current through-
put. Therefore, the current continuity equation for two-dimensions
reads '

NAiGaAs Yen (
Ack Uiy

vUen 2 2 (
s =\l =-= |J— V-~
Uinj ( Wy gNen §

=2 F, @
nj
Here W is the full lateral width of the device, AW the depletion
width, e the dielectric constant, ¥,; the built-in potential of the
metal-semiconductor junction, Vg5 the applied gate-source volt-
age, kg Boltzmann's contant, and T the lattice temperature. The
chanrel width factor Fg, in (2) is always less than unity.

The two average velocities in (2) always satisfy v, = 0y, since
the upper limit corresponds to quasi-ballistic injection and trans-
port for all-electrons. In addition, nc,, should be smaller than n1,6,4,
because of heavy doping in the source region. Consequently, the
inequality in (2) does not usually hold, and therefore a retarding
dipole layer will be formed. Fig. 2 illustrates these conditions. The
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Fig. 3. Ballistic fraction (percent) in center of channel 10 nm downstream
from heterojunction, average channel transit Lime 7, and injection ¢ffr
ciency a as 2 function of gate voliage Veywith Vg = 1.0V 308 7 =
300 K. All results are from Monte Carlo method wathout appronimationsy

effect of the dipole layer reversal on ballistic injection 1s clearly
demonsirated by the Monte Carlo results in Fig. 3. which show the
fraction of ballistic electrons 10 nm downstream from the hetero-
junction as a function of Vs The ballistic fraction has been cal-
culated by integrating numcrically over the ballistic peak in distri-
bution function from &, = 4.0 x 10" cm™ ' to infinity The baliistic
fraction is reduced from 25% to zero as the gate bias is dropped
from Vgs = +0.6 V1o Vg = —0.6 V (more depletion). This rapid
drop-off of the ballistic fraction as a function of the gate volizge
exactly replicates the behavior of the channe! width factor Fy, for
the present case with W = 350 nm. Thus we have shown that lateral
space charges control electron injection across the heierojunction
via the dipole layer reversal mechanism.

The average transit time 7, of electrons across the channel,
computed directly as an estimator from the self-consistent Monte
Carlo results (Fig. 3), is significantly reduced as the ballistic frac-
tion increases. This transit time varies by a factor of 10 for a
1.5 V change in V5. This strong reduction can be explained by the
presence of a larger number of quasi-ballistic electrons and an in-
creased heterojunction injection efficiency o defined as

- Nﬁxk

a =1 (3)

!
News

Here Ny, and Ng,, denote the number of electrons injected up-
stream and downstream from the heterojunction, respectively. o
computed directly from the Monte Carlo results without approx:-
mations is also given in Fig. 3. One obscrves a tradeoff between
the maximum ballistic injection efficiency and the acceptable gate
voltage swing between the open and pinched off states of the chan-
nel.

From the above it is clear how to avoid the reversal of the dipole
layer at the heterojunction with all its adverse consequences for
steady-state and transient device operation. Two primary means are
suggested here to help satisfy (2): a) Place the gates higher up-
stream in the channel, but not too close in order not to increase the
gate-source capacitance excessively. It may also be helpful to
shorten the gate length. A gate placement closer to the source would
shift the point of minimum lateral width (bottleneck) into an arca,
where either n or v is higher. b) Increase the channel doping to
boost the electron concentration in the channel, but not too high in
order not to increase the ionized impurity scattering. Other means
include a nonuniform channel cross scction or nonuniform channel
doping. but these are rather difficult to achieve in practice. Equa-
tion (2) also clearly explains why fabricated VFET devices have
never reached expected performance levels as measured by trans-
conductance and cutoff frequency [5], [6}. The full multiparameter
optimization of heterojunction VFET devices for high-speed and
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high-current operation discussed in detail elsewhere suppons the
above conclusions {4}.
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Investigation of the Role f Free Carrier Screening During the Relaxation of Carriers Excited by
Femtosecond Optical Pulses

J. E. Bair and J. P. Krusius

Cornell University, Schools of Applied Physics and Electrical Engineering,
Ithaca, NY 14850

ABSTRACT

The role of free carrier screening, in the ultrafast relaxation of optically excited carriers, is reassessed
using the ensemble Monte Carlo technique. The conventional static screening approximation is
compared to a new dynamic screening model. Evolution of the nonequilibrium dynamic dielectric
function and its consequences for the carrier scattering are examined. It is shown that dynamic screening
results in significant enhancement of both the carrier-carrier and polar optic phonon scattering rates.
Relaxation times for the dynamic screenin_, model are found to be dramatically shorter than those for the
static screening model. Methods of experimentally differentiating between the two models are proposed.

1. INTRODUCTION

In the last few years the femtosecond relaxation of optically excited electron-hole plasmas has received
considerable interest. A number of investigations, both cxpcrimcntall‘3 and simulation,4-7 have drawn
attention to carrier-carrier scattering as an important mechanism through which the relaxation occurs.
Until 1ecently, carrier-carrier scattering has been exclusively modeled using a static screening approach.
Evidence has been accumulating that this approach may be inadequate. Calculations show that static
screening seriously underestimates the carrier-carrier scatterirg rates.8.9 Further, recent experiments
have reported carrier-carrier scattering rates significantly larger than are possible within the static
screening approximation3. Recently, a molecular dynamics approach combining free carrier screening
and carrier-carrier scattering has succeeded in improving correlation with experiment.2:3:7 In this work
the effect of free carrier screening is examined using an ensemble Monte Carlo simulation. A new model
of free carrier screening has been developed that fully includes both the frequency and wavelength
dependence of the free carrier dielectric function. In contrast to the molecular dynamics approach, this
new model operates within the traditional ensemble Monte Carlo method and can be generalized to other
situations. In order to investigate the role of free carrier screening in the relaxation of these optically
excited electron-hole plasmas, simulations of femtosecond optical pulse-probe experiments were
performed incorporating both this new model and a standard long wavelength static approximation on
InQ.53Gag.47As thin films. The number of physical processes to be considered has been minimized, and
the role of free carrier screening emphasized, by limiting the energy of the exciting photons to within
100 meV of the band gap. This allows the conduction band upper valleys and split off hole band to be
neglected. It also maximizes the amount of free carrier screening for a given carrier density.

2. FREE CARRIER SCREENING

The models of free carrier screening used in this investigation are based on the Lindhard dielectric
function. This formula has the advantages that it fully accounts for both the energy and wavelength
dependence of the linear dielectric functions, and can be calculated for an arbitrary distribution of free
carriers so that no assumptions about the form of the nonequilibrium distrbution function need to be
made. The dielectric function for a system of free carriers is given by the Lindhard formula as:
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Where &g is the dielectric constant of the semiconductor in the ground state. If the statc long wavelength
limit is taken, this is simplifies to:

~ 4e’ q: vxf(E)
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This is the starting point for most current models of free carrier screening. Clearly this approximate
expression can not express the full complexity of the more accurate expression Eqn. (1). For purposes of
this investigation we define the free carrier dielectric function as:

£(q,w)

£.(q )= 3)
0
The relationship between the free carrier dielectric function and the carrier scattering rates is:
A(El'Ez)zlo(kl’k ) (4)
El'c

where Ag(k1,k2) is the scattering rate neglecting screening by free carriers and A(k1,k2) is the scattering
rate including free carrier screening. Thus, it is really the inverse of the free carrier dielectric function
that is of interest in this work.

The screening models used in this work are derived using Eqn. (1) and Egn. (2), with the simplifications
that anisotropy in the carrier distribution functions and band structure are ignored, and an approximate
parabolic band structure is used in calculating the dielectric function. The resulting dielectric function is
isotropic in momentum (k) space. In the Monte Carlo simulation the dielectric function is recalculated
self-consistently from the carrier distribution functions after each 5 fs time step. The contributions of all
three carrier types (electrons, heavy holes, and light holes) are included. The static long wavelength
model used here is similar to that proposed by Osman and Ferry©,

3. FORMULATION AND IMPLEMENTATION

The relaxation dynamics of the optically excited carriers is studied using the ensemble Monte Carlo
approach, including electrons and holes, to simulate the evolving distribution function, and its
interaction with the optical field. The distribution function includes all three momentum (k) space
dimensions and one spatial dimension normal to the surface of the thin film and parallel to the photon
beam. The distribution function is assumed homogeneous in the two lateral directions in the plane of the
film. Inhomogeneities arising from the optical excitations are fully included with carrier moiion
governed by a self-consistent electric field (solution to Poisson's equation).

The model of the band structure includes the conduction band, and the hcavy and light hole bands
valence bands around the fundamental optical gap in the center of the zone. The bands are described by
a four band k.p method, with perturbative corrections from higher bands, as given by KanelO. The
perturbative terms are necessary to get the correct sign for the heavy hole mass and include band
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warping. The resulting heavy hole band is parabolic but warped, while the other two bands are both
nonparabolic and warped. The split off band and upper conducnion band valleys are neglected because of
the small photon energies used in this investigaton.

All important carrier scattering mechanisms are included: cammer-camier, phonon, ionized impunty and
alloy scattering. Nonpolar optical and deformation potential ghonon scattenng were denved using the
method of deformation potential operators of Pikus and Bir I as applied 1o the four band k.pl<. To
further simplify these results the expression for nonpolar optic 3phonon scattering was evaluated at the

band edge and the effective deformation potential of Lawaetz! 3 was used for the valence bands. Alloy

scattering is included through the elementary approach of Harrison and Hauser!4. Polar optic phonon,
piezoelectric, and ionized impurity are handled using the well known formulas including proper overlap
integrals derived from the k.p structure. Both inter- and intra-band scattering are included in the valence
bands for all single particle scattering processes. Carrier-carmer scattening is treated following the
method of Brunetti et all3, with the improvements suggesied by Mosko et all6, and with the
simplification that particles do not change bands. The polar optic phonon, ionized impunty,
piezoelectric, and carrier-carrier scattering rates are each self-consistently screened using the screening
models described above. Degenerate statistics are used for all scautering processes through the rejection
method.

The optical excitation of electron-hole pairs is handled self-consistently. The number of cammiers
generated at a given time is calculated using the instantaneous value of the carrier distnbution functions
with the pulse altered to reflect the absorbed energy. Excitation rates are calculated from Fermi's golden
rule with the momentum matrix elements calculated from k.p theory. Both the anisowopy of the opucal
matrix elements and their erergy dependence are included and reflected in the excited carrier
distnibutions.

4. RESULTS

Simulated pulse-probe experiments were performed for a 0.25 um Ing 53Gag 47As thin film using both
the dynamic and static screening models discussed above. Both the excitation and probe pulses have a
secant squared intensity profile with 100 fs FWHM and a photon energy of 81U meV. This comresponds
10 a combined carrier energy of 60 meV above the optical gap of 0.75 eV. The intensity of the excitaton
pulse was 5.0 x 1013 eV/cm? and the probe pulse was assumed to have negligible intensity.

4.1 Free Carrier Dielectric Function

Figs. 1-4 show the reciprocal of the dynamic free carrier dielectric function squared as extracted from
the simulation at 0, 100, 200, and 1000 fs after the initial excitation. In all four cases the expected
spectrum of plasma modes is evident to the left of each plot at high energies. The plasma frequency can
be seen to increase in energy from 0 to 100 fs due to the increase in carrier density as is expected. The
most interesting feature is the ridge extending diagonally across Figs. 1-3. Ti.c ridge is found to
correspond to the plasma spectrum of the heavy holes taken alone. The size of the ridge decreases with
increasing delay until at 1000 fs the dielectric function takes the form expecied of an equilibrium cammier
distribution. This feature is a consequence of the highly nonequilibrium heavy hole distribution at early
times. It results from the heavy holes being excited initially into an extremely narrow region of
momentum (k) space. This results in an unusually sharp resonance with the heavy holes for potenuals in
this region of frequency and wavelength. As the heavy hole distribution relaxes toward equilibrium, the
ridge sarinks in size and eventually disappears due to the dispersal of heavy holes in k space and the
resulting broadening of the heavy hole resonance. The smaller bump to the left of the main ridge
appearing at delays of 100 and 200 fs has a similar origin. This results from a phonon replica of the
initial heavy hole distribution due to absorption of optical phonons.
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Fig. 1. Simulated nonequilibrium free carrier screening (lEfc!'z) 0 fs after
the initial excitation.

Crystat Momentum { 10 ,em)

Fig. 2. Simulated nonequilibrium free carrier screening (lefcl~2) 100 fs
after the initial excitation.
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Fig. 3. Simulated nonequilibrium free carrier screening (lefc!"2) 200 fs
after the initial excitation.

Crystal Momentum ( 10 em )

Fig. 4. Simulated nonequilibrium free carrier screening (I£5cl-2) 1000 fs
after the initial excitation.
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The large heavy hole resonance crosses the region of energy-momentum space corresponding to camer-
carrier scattering. Thus indicating camer-carrier scattening should be significantly enhanced at early
times. However, in general screening decreases with increasing energy. Thus, even if the resonance 15
ignored, inelastic scattering processes are over screened by a static screening rnodel, suppressing the
scattering rates. This applies to both carrier-carrier and polar optic phonon scattening. For the examples
discussed here, the optical phonon energy of 34 meV is oo large for polar optic phonon scattenng to
interact significantly with the heavy hole resonance and the plasma frequency is too large for either polar
optic phonon or carrier-carrier scattering do interact with the ordinary plasma modes. Thus, inelastic
scanering rates are generally greater with dynamic screening than with static screening, and at early
times scattering processes that involve the transfer of small amounts of energy such as camer-carrier
should be greatly enhanced due to the resonance with the heavy holes.

4.2 Carrier Scattering Rates

In order to verify these conclusions the scattering rates for the electrons and heavy holes are shown in
Figs. 5 and 6 for both static and dynamic screening. In the case of electron-electron, electron-heavy hole
and electron light hole the anticipated enhancement of the carrier-carrier scattering rates at carly times is
evident. The decay of these scattering rates with increasing delay is also closely correlated with the
decline in the heavy hole resonance. In contrast, the heavy hole-heavy hole scauering rate is actually
suppressed at early times. This is because most heavy hole-heavy hole events fall slightly forward of ths
ridge (towards larger k) in energy-momentum space where the screening is slightly greater. At later
times, all the carrier-carrier scattering rates except electron-heavy hole scattering are significantly larger
that their static counterparts in agreement with the conclusion that static screening generally over screens
inelastic scattering events. The magnitude of the difference is smallest for the heavy hole-heavy hole
case reflecting the large momentum transfers involved due the flatness of the heavy hole band. Thus this
process is only weakly screened in both cases. Electron-heavy hole scattering is an exception to the
general enhancement of carrier-carrier scattering since the large differences in carrier mass make this
process approximately elastic.

For the polar optic phonon-heavy hole scattering rate the difference between the static and dynamic
screening models is small. As in the case of heavy hole-heavy hole scattering, this is due to the flatness
of the heavy hole band and the resulting large momentum transfers. In the case of electron-polar optic
phonon scattering the scattering rate with dynamic screening is much greater for times after 0 fs. The
statically screened scattering rate is initially as large as the dynamic one but is suppressed by carrier
screening as carriers are excited around O fs. Electron-optical phonon scattering is only lightly screened
by the dynamic dielectric function because of the optical phonons large energies.

6, — — — 6 - _ N
r ; !

_ i b |
3 5L , Polr Opte PRonon Absomemn 3 [ i’ \ —rme— Pota Opie 2 PRSFan ADSeminn ;
3 ; ~ = Potw Optx Phonan Emeson E Iy - — ~ Pow Optes Praron Emmenn i
c 4 -i» ) —— Ewetron-Eisctron g 4 3 \ ) — - EwctronEmeiron H
2 — - Exctron.Mesvy Hole z ’\\ . ~—  Emc.coniusvy o
2 - €metronignt Hole ‘;; 3 ) \ Emcteon g Mok
[ il ey ] Lo
o : . ] N
[+ 4 : [+ 4 [ \
2 - A G i SR
- : . i S .
© A R S e ] ' P I
[*] i -—g.,-—".__._,\,a;“_,;"::‘_‘ 8 b jusghibouii iSO
(74 0 Ao T ; 0 i i ik i

200 0 200400 600 800 1000 200 0 206 400 600 800 1000

Delay {13} Delay {fs)

Fig. 5. Ensemble averaged electron scattering rates. Left static screening,
right dynamic screening.
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Fig. 6. Ensemble averaged heavy hole scattering rates. Left static
screening, right dynamic screening.

4.3 Distribution Function

The difference in scattering rates between the two screening models has significant consequences for the
evolution of the respective carrier distribution functions. This is most obvious for the electron
distribution functions which are shown in Figs 7 and 8. The effects of the increased carrier-carrier
scattering are evident in the rapid washing out of the initial excitation peaks with dynamic screening.
Also the rate at which carriers transfer to the bottom of the band is much more rapid. Clearly the
clectrons relax toward equilibrium much more rapidly with dynamic screening, and carrier-carrier
scattering appears to play a larger role even though the dominant scattering mechanism is polar optic
phonon in both cases.
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Fig. 7. Evolution of the electron distribution function simulated using
static screening.
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Fig. 8. Evolution of the electron distribution function simulated using
dynamic screening.

4.4 Pulse Probe Results

To examine the effect of the screening model on 0.92

experimentally measurable parameters the probe
transmission was calculated in each case for a
simulated pulse-probe experiment. These results
are shown in Fig. 9. The results are precisely what
would be expected. The dynamically screened
curve approaches equilibrium much faster than the
statically screened one. The peak transmission is
also lower for the dynamic case because its larger
scattering rates do not allow as many carriers to
accumulate in the optically coupled regions.
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In order to obtain a numerical measure of the Delay (fs)
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exponential fits was performed on the tail of eac : ; :oci
curve for times between 200 and 700 fs after the f;f gotst:tﬁ%l: tc::a;:irgb:&an ;n;';j;cig
excitation. The relaxation times obtained were 145 screening models y

fs for the dynamic screening and 205 fs for static g )

screening, confirming that the dynamically

screened carriers relax substantially faster than
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those that are statically screened. Such a large difference in relaxation times should be obvious in
experiments and enable the dynamic screening model to be verified. In Fig. 10 the relationship between
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relaxation time and excitation pulse intensity is shown, while in Fig. 11 the relaxation time is plotied
versus the photon energy. In both cases only the indicated parameter is varied, all others remain
unchanged. It is clear that dynamic screening produces faster relaxation times for all photon energies and
pulse intensities. As a function of pulse intensity both curves have the same qualitative behavior with
relaxation times gradually increasing with increasing pulse intensity. In contrast the two curves differ
qualitatively as a function of photon energy. The static screening curve shows a definite step for photon
energies about 35 meV above the band edge. This is absent for dynamic screening, The location of the
step in energy corresponds to the first phonon threshold for electrons excited from the heavy hole band.
For photon energies greater than this these electrons have sufficient energy to emit optical phonons. The
existence of this step is a clear indication relaxation is phonon dominated with static screening while its
absence with dynamic screening points to the increased importance of carrier-carrier scattering. The
large difference in relaxation times and the presence or absence of this step together provide a means to
discriminate experimentally between the two screening models.
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Fig. 10 Comparison of the extracted Fig. 11. Comparison of the extracted
relaxation rates as a function of relaxation rate as a function of the
excitation pulse intensity. energy of the exciting photons.

5. CONCLUSIONS

It seems clear from the present results that free carrier screening plays a crucial role in the relaxation of
carriers excited near the band gap in femtosecond optical probing. Static screening has been found to
seriously underestimate both the carrier-carrier scattering rates and the polar optic phonon scattering
rates, and lead to significantly longer relaxation times when compared to dynamic screening. It was
found that the highly nonequilibrium state of the distribution function results in an unexpectedly sharp
resonance with the heavy holes in the dynamic dielectric function that greatly enhances certain carrier-
carrier scattering events for times less than 400 fs after the initial excitation. From this we conclude that
static screening is inadequate for developing an accurate understanding of these types of experiments.
Work is currently underway, in collaberation with the experimental effort of C. Pollock's research group
at Cornell, to quantitatively verify these results. It seems clear that future work in modeling these
processes must include dynamic screening for significant progress to be made.

SPIE Vol 1677 (1992) 1165

e
L
o
N TN N N N B EE BN B B BN By EE G BN G B e e |



6. ACKNOWLEDGMENTS

This work has been sugported by the Joint Services Electronics Program at Cornell University (Contract
Number F494620-87-C-0044)

REFERENCES

1. P. Becker, H. Fragnito, C. Brito Cruz, R. Fork, J. Cunningham, J. Henry, and C. Shank,
"Femtosecond Echoes from Band-to-Band Transitions in GaAs,” Phys. Rev. Lett, Vol. 61, pp. 1647-
1649, 1988.

2. Thomas Elsaesser, Jagdeep Shah, Lucio Rota, and Paolo Lugli,"Initial Thermalization of
Photoexcited Carriers in GaAs Studied by Femtosecond Luminescence Spectroscopy”, Phys. Rev. Lett.,
Vol. 66 No. 13, pp. 1757-1760, 1991.

3. J. A. Kash, "Carrier-carrier scattering in GaAs: Quantitative measurements from hot (¢,A°)
luminescence”, Phys. Rev. B, Vol. 40 No. 5, pp. 3455-3458, 1989.

4. C. J. Stanton, D. W. Bailey, and K. Hess, "Femtosecond-Pump, Continuum-Probe Nonlinear
Absorption in GaAs", Phys. Rev. Letters, Vol. 65 No. 2, pp. 231-234, 1990.

5. R. P. Joshi, R. O. Grondin, and D. K. Ferry, "Monte Carlo simulation of electron-hole
thermalization in photoexcited bulk semiconductors,” Phys. Rev. B, Vol. 42 No. 9, pp. 5685-5692 , 1990

6. M. A, Osman and D. K. Ferry, "Monte Carlo Investigation of the Electron-Hole Interaction
Effects on the Ultrafast Relaxation of Hot Photoexcited Carriers in GaAs", Phys. Rev. B, Vol. 36 No. 11,
pp. 6018-6032, 15 October 1987.

7. M. J. Kann, A. M. Kriman, and D. K. Ferry,"Role of electron-electron scattering on ultrafast
probe phenomena of photoexcited carriers in GaAs", ,Ultrafast Laser Probe Phenomena in Bulk and
Microstructure Semiconductors III, Robert R. Alfano, Editor, Proc. SPIE 1282, pp. 98-108, 1990.

* 8. Jeff F. Young, Norm L. Henry, and Paul J. Kelly,"Full Dynamic Screening Calculation of Hot
Electron Scattering Rates in Multicomponent Semiconductor Plasmas",Solid State Elec., Vol. 32 No. 12,
Pp. 1567-72, 1989 .

.9 R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Hennebergerger, and S. W. Koch, "Carrier-
carrier scattering and optical dephasing in highly excited semiconductors”, Phys. Rev. B, Vol. 45 No. 3,
pp. 1107-1115, 1992,

10. E. O. Kane,"The k.p Method" ,Semiconductors and Semimetals, Eds. R. K. Willardson and A.
C. Beer, Vol. 1, pp. 75-100, Academic Press, New York, 1966.

11. G. L. Bir and G. E. Pikus, "Theory Of The Deformation Potential For Semiconductors With
A Complex Band Structure”, Fiz. Tverd. Tela, Vol. 2 No. 9,p p. 2287-2300, 1960.

12. W, Zawadzki, "Mechamisms of Electron Scattering in Semiconductors”, Handbook on
Semiconductors, Eds. T. S. Moss and W. Paul, Vol. 1, pp. 713-803, North Holland, Amsterdam, 1982.

13. P. Lawaetz,"Low-Field Mobility and Galvomagnetic Properties of Holes in Germanium with
Phonon Scattering”, Phys. Rev., Vol. 174 No. 3, pp. 867-880, 1968.

14. J. W. Harrison and J. R. Hauser, "Alloy Scattering in Ternary ITI-V Compounds", Phys. Rev.
B, Vol. 13 No. 12, pp. 5347-5350, 1976.

15. R. Brunetti, C. Jacoboni, V. Dienys, and A. Matulionis, "Effect of Interparticle Collision On
Energy Relaxation of Carriers in Semiconductors”, Physica B Vol. 134, pp. 369-373, 1985.

16. M. Mosko, and A. Moskova,"Ensemble Monte Carlo simulations of electron-electon
scatteriing: Lmprovements of conventional methods”, Phys. Rev. B,Vol. 44, No. 16, pp. 10794-10803,
1991

166 / SPIE Vol. 1677 (1992)

m




Band Renormalization and Dynamic Screening
in Near Band Gap Femtosecond Optical Probing of InGaAs

J. E. Bair, D. Cohen, J. P. Krusius, C. R. Pollock
Cornell University, School of Electrical Engineering and School of Applied Engineering
Physics, Ithaca New York

The effect of band renormalization and dynamic screening in near band edge
femtosecond optical probing of Ing 53GaQ 47As has been investigated.
Measured relaxation times for electrons and holes are on the order of 110 fs.
Simulated results, obtained from an ensemble Monte Carlo formulation, are in
excellent agreement with measured equal pulse correlation data only if both
processes are included. Band renormalization is found to be roughly twice as
important as dynamic screening for these conditions.

The use of femtosecond lasers for probing carrier scattering processes in compound
semiconductors has become common during the 1980's. In this type of experiment carriers are first
excited by an initial optical excitation pulse and then probed by a second pulse after a short time delay.
The transmission of the second pulse, or the combined transmission of the two pulses, as a function of
the delay is determined by the relaxation of the excited carriers. Numerous experiments of this type
have been performed to date [1-5], and theoretical analysis's attempted [6-9], in order to explore the
contributions of the fundamental carrier scattering processes to the measured results. Nearly all of this
effort has been for carriers excited far from the band edge, and thus nrimarily concerned with intervalley
transfer rates. In this work we investigate the femtosecond carric relaxation in a largely unexplored
energy range, excitation within 100 meV of the fundemental band edge.

In the near band gap regime, several processes traditionally ignored are expected to have
increased importance. Significant among these is band renormalization. Despite the higher excitation
energy, several groups have observed behavior interpreted as band renormalization, both on
femtosecond [1-3] and picosecond [4] time scales. Also, it has recently become clear that an accurate
treatment of carrier-carrier scattering including the dynamic free carrier dielectric function is essential in
analyzing these experiments [5-7]. Several methods of dealing with this problem have been developed
[2,6-8]. However, these methods either make assumptions about the quasi-equilibrium nature of the
dielectric function or are difficult to generalize to inhomogenous situations.

In this work we report the first quantitative demonstration of the role of band renormalization
and dynamic screening in the initial femtosecond relaxation of carriers optically excited near the band
gap. To this end a new ensemble Monte Carlo simulation has been developed which accounts for both
dynamic screening of all long range carrier scattering processes and band renormalization. The free
carrier dielectric function is obtained directly from the Lindhard (RPA) formula and thus no assumption
of the quasi-equilibrium character of the dielectric function or carrier distributions is required. Both
dynamic screening and band renormalization are handled with simple extensions of standard Monte
Carlo techniques and thus are easily generalized to inhomogenous systems,

The measurements were performed using a tunable NaCl color center laser [10] which generates
femtosecond pulses with photon energies near the band gap of the chosen semiconductor
InQ,53Ga(.47As. The measurements described here were performed with 180 fs full-width-half-
maximum (FWHM) sech2-shaped pulses of 0.787 eV photons. Thus the electron-hole pairs are excited
37 meV above the fundamental optical gap of 0.75 eV. The transient transmission at 300 K was
measured using the equal-pulse correlation technique [11]. The laser was operated at a repetition rate of
164 MHz while the energy of each pulse was 2.5 x 1013 ev/iem2. A typical experimental result from a

1.0 um thick InQ_53Ga(.47As film on a wansparent InP substrate is shown in fig. 1.
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The measured results have been analyzed using an ensemble Monte Carlo particle simulation
technique, parts of which have been described elsewhere [12]. It includes electrons and holes from the
conduction, heavy hole and light hole bands with provisions for band warping and nonparabolicity. All
important scattering processes are accounted for including carrier-carrier scattering. Materials
parameters for InQ §3Ga(.47As have been obtained from Ref. [13]. All carrier processes, including
carrier scattering, optical excitation and one dimensional carrier motion, are described self-consistently
using the instantaneous values of the carrier distribution function, optical field, electric field and free
carrier dielectric function. Contrary to what has been done before, the inclusion of one dimensional
carrier transport allows any sample thickness dependence to be fully accounted for.

Unique features of the present simulation method are the inclusion of a dynamic free carrier
dielectric function and band renormalization. Rather than introduce dynamic screening through a
molecular dynamics approach [7], as several other groups have done, we chose to develop a method
within the standard Monte Carlo framework that does not compromise flexibility. This method is based
on a direct evaluation of the Lindhard (RPA) dielectric function given by

£(q,@) = & + 4q lim$ L0 Julk * @) )

a0~ F (k+q)— E,(k)- hw +iha

where f n(k) denotes the carrier distribution function, En(K) the carrier energy, and € the static
dielectric constant. The sum is taken over all crystal momentum states k and all bands n. This equation
is evaluated and tabulated at the beginning of each Monte Carlo time step and the results are used in the
computation of carrier scattering for that time step. To reduce the computational work several
simplifying assumptions are made. The anisotropy of the carrier distribution functions, dielectric
function, and band structure is neglected, and the band structure is taken to be both parabolic and
spherical for the purpose of calculating the free carrier dielectric funcnon We have also run simulations
using a static screening model for comparison [6].

Band renormalization is included within the *‘quasi-static’ approximation developed by Haug
and Schmitt-Rink [14]. Within this approximation the energy shift experienced by a state with a crystal
momentum k in a single uncoupled band is given by

(0= T )+ 3" (k
I M= TV (k=KOfi(K) @
kl

Z,-Ch(k)=-—1—2[V(k)/eo -V (k)
X%

where fo(k) and Z?h(k) are the screened exchange and coulomb hole contributions to the

electron self-energy, Vg(k) and V(k) the statically screened and unscreened coulomb potentials
respectively, V the volume of the crystal. In the present simulations this expression is generalized to
include the effects of coupling between the conduction and the two valence bands, and the overlap
integrals between the Bloch states. This has been implemented assuming a rigid band shift using the

value calculated for the I point in each band.
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This selfconsistent Monte Carlo technique was used to simulate the optical probe experiments.
Fig. 1. shows a comparison of both a simulated equal-pulse experiment and a simulated pulse-probe
experiment with the actual measured equal pulse correlation data. Since the experiment does not
presently give the absolute transmission, all results are presented in a normalized fashion. The fit
between the simulated and measured equal-pulse curves is excellent for delays longer than 150 fs. A
large coherent artifact, evident for shorter delays, is as expected, since the experiment was performed
with both pulses having the same polarization with a 280 fs FWHM pulse autocorrelation. The simulated
pulse-probe curve also fits well in the range between 150 - 400 fs but flattens out somewhat too rapidly
for longer delays. This is almost certainly due to subtle differences between the two types of
experiments. From the excellent correlation between measured and simulated results we conclude that
the present model provides a firm basis for understanding femtosecond optical probing in the near band
gap regime.

In order to determine the role of free carrier screening and band renormalization in near band
gap femtosecond optical probing additional simulations of pulse-probe experiments were performed in
which each of the processes was turned off. From the results shown in Fig. 2 it is obvious that band
renormalization is responsible for a significantly reduced probe transmission. It is further clear that the
static screening shows a slower recovery than dynamic screening. To characterize the overall relaxation
results and to extract the relative importance of the two processes, exponential fits were performed for
the range 200- 800 fs for each curve in Figs. 1 and 2. The resulting "effective” relaxation times are
given in Table. L. It is clear from these results that both processes have strong effects that are
indispensable in analyzing such experiments. It is somewhat surprising that band renormalization is by
far the most important of these two effects for these conditions.

The significance of band renormalization becomes more clear, if the simulated magnitude and
time dependence of the band shifts are examined (Fig. 3). The maximum reduction of the band gap is
approximately 14 meV, which is a large fraction of the initial excess carrier energy of 37 meV. This
results in dramatic differences in the form of the excited carrier distribution functions due to the large
renormalization of the bands during excitation. There is a small recovery in the band gap for delays less
thar 500 fs, which results primarily from the warming of the very cold heavy holes. This introduces
additional transient effects during the relaxation due to changes in the effective photon energy of the
probe.

The effect of dynamic screening on the carrier-carrier scattering rates, computed with dynamic
screening and static screening, is shown in fig. 4. Band renormalization has been included in both
cases. Significant increases in all carrier-carrier scattering rates are observed for dynamic screening. The
electron-electron scattering rate is most effected by screening. This is especially true at early times due
to the highly non-equilibrium nature of the free carrier dielectric function. This has been discussed
briefly in another publication [12] and will be examined in detail in a future publication. The heavy hole-
heavy hole and heavy hole-electron scattering rates are less effected because of the larger momentum
and smaller energy transfers involved. The electron-polar optic phonon scattering rates are also
increased by about 30% for dynamic screening. These results explain why dynamic screening had such
a large effect on the observed carrier relaxation processes.

In conclusion, band renormalization and dynamic screening significantly affect near band gap
femtosecond optical probing. Both effects significantly reduce measured "effective” relaxation times
with band renormalization being by the farther the more important of the two. Dynamic screening
markedly increases the important carrier scattering rates, while band renormalization results in changes
in the distribution of carriers within the bands and changes the effective probe energy with respect to the
band edge. By including these processes in our novel Monte Carlo technique we have succeeded in
successfully reproducing measured data. This work demonstrates for the first time quantitatively both
the tiynportancc and the role of renormalization and dynamic screening in near band gap femtosecond
probing.
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Fig. 1. Measured and simulated normalized optical transmission as a function of the delay between
exctitation and probe pulses.

Fig. 2. Simulated optical transmission as a function of the delay between excitation for pulse-probe
configuration. Curves with/without static and dynamic screening and band renormalization have been
labeled accordingly.

Fig. 3. Simulated rigid band shifts due to band renormalization as a function of probe delay.

Fig. 4. Simulated carrier-carrier scattering rates as a function of probe delay. hh-hh, e-e, and e-hh denote
heavy hole - heavy hole, electron - electron, electron - heavy hole scattering respectively. Static and
dynamic refer to static and dynamic screening.

Table 1. Effective relaxation times calculated by fitting a single exponential to the measured and
simulated tranmission over the range probe delay of 200-800 fs .
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Abstract

Householder transformations applied from the left are generally used to zero a
contiguous sequence of entries in a column of a matrix .4. Our purpose in this paper is to
introduce new row Householder and row hyperbolic Householder transformations which
are also applied from the left, but now zero a contiguous sequence of entries in a row
of A. We then show how these row Householder transformations can be used to design
efficient sliding data window recursive least squares covariance algorithms, which are
based upon rank-k modifications to the inverse Cholesky factor, R~!, of the covariance
matrix. The algorithms are rich in matrix-matrix BLAS-3 computations, making them
efficient on vector and parallel architectures. Preliminary numerical experiments are
reported, comparing these row Householder-based rank-k inodification schemes with k
applications of the classical updating and downdating covariance schemes which use
Givens and hyperbolic rotations.
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1 Introduction

In this paper we introduce new row Householder and row hyperbolic Householder trans-
formations, which zero one row of a matrix at a time when applied from the left. These
transformations are a generalization of an idea first proposed by Bartels and Kaufman [3]
and, as in classical Householder transformations, are rank-1 modifications to the identity ma-
trix. We will discuss their use in developing efficient algorithms for recursive least squares
problems of the sliding window type.

In [3], Bartels and Kaufman consider schemes for modifying R, where X = QR and X is
the given data matrix, subject to rank-2 updates of X. To solve these problems efficiently,
they introduce a modified Householder transformation which, when applied from the left,
can zero entries simultaneously in two column vectors. Here we suggest a generalization tu
this transformation which, when applied from the left, can eliminate all elements in a row
of a matrix. We then illustrate how these transformations can be very useful in developing
efficient algorithms for modifying R~! (rather than R) subject to rank-k changes in X.
(Algorithms for modifying R subject to rank-k changes in X were considered in [17] and
analyzed in [6]). We show, in terms of operations counts, that our algorithms are more
efficient for modifying /27! than k applications of the classical algorithms based on Giveus
and hyperbolic rotations (see, for example, Pan and Plemmons [14].) Moreover, as Bartels
and Kaufman show for rank-2 modifications, our algorithms are rich in matrix-matrix BLAS-
3 computations, making them even more economical on high performance architectures than
k applications of the rank-1 modification schemes.

The outline of this paper is as follows. In Section 1 we introduce the new row Householder
transformations. In Section 2 we show how these transformations can be used to efficiently
update least squares solutions when observations are added and/or deleted from the lincar
system. In Section 4 we consider downdating computations. In Section 5 we discuss compact
WY representation of products of row Householder transformations, and in Section 6 we
provide some numerical experiments and some concluding remarks.

2 Row Householder Transformations

In this section we introduce a row Householder transformation, which is a rank 1 modification
to the identity matrix, that when applied from the left will eliminate k elements in a row of
a matrix at once. These row Householder transformations are still reflections. As pointed
out to the authors by R. Funderlic upon reading a preliminary version of the manuscript,
row Householder reflections can be interpreted geometrically in the following way. Given
two three dimensional vectors in three space, what one is doing is finding a reflection that
takes the plane determined by the two vectors into the y — z plane. Moreover, it appears
that Householder reflections of the type described in this paper can be used to eliminate
contiguous sequences of elements in different rows by applying a single reflection from the
left. That possibility is not considered in this paper, but is a topic of future investigation

ul

123




We will split our discussion into two subsections. The first will consider row Householder
transformations which are orthogonal, and the second subsection will consider transforma-
tions which are pseudo orthogonal with respect to a sighature matrix &.

2.1 Orthogonal Row Householder Transformations

The row Householder transformation we introduce in this section is a generalization of an
idea first proposed by Bartels and Kaufman [3]. Let B be a (k¥ + 1) x & matrix of the form

T
o=[5]
where D is nonsingular.

Suppose we wish to eliminate the first row of B (i.e., bT) by premultiplying by an or-
thogonal matrix. (Note that this discussion applies, in general, to the case where we want
to eliminate the j** row of B. In this case we simply permute the j** row to the top of B.)
In order to accomplish this we construct a Householder transformation

1
P=1-sm', (1
where p € R¥! and A = pTp/2, such that
[ 07T
PB = %}. 2)

In order to illustrate how this can be done let

p=[7]
K

where 7 is the first component of p and ¢ is the vector consisting of the last k& components
of p.
If P has the form (1) and satisfies (2), then we obtain the relation

[’Z]—-§p<wa+qTD)=[g]. (3)
From the first row of the relation (3) we obtain
D"q = pb, (4)
where
p=(Ar-r) (5)

The relation (5) together with A =pTp/2 gives

m=—pE\p?+q7q (6)
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In order to avoid loss of accuracy in computer finite precision arithmetic we
pick the sign so to maximize the magnitude of #. Then 7 can be expressed as

follows
m=—p(1+VI+272) (7)

where z = D"Th.  We note that we have one degree of freedom here. Since y is a free
variable, we suggest choosing g = 1/||bl|2. If ||b]|; = 0, we simply set P = I.
In general, we have the following algorithm.

Algorithm ROWHT
Input: B7 = [b DT}, where D € R*** is nonsingular.
Output: p € R**! where P = I — 1pp”, A = pTp/2, has the
property that the first row of PB is all zeros.

if ||l =0
|__ p=0,P=1
else
p=1/]bl;

solve DTg = ub

T=—p— [t +q7q

T =[r {7

A Householder transformation (computed by algorithm ROWHT) which zeros elements
in a row vector will be called a row Householder transformation to differentiate it from the
classical column Householder transformation which zeros elements in a column vector.

The algorithm ROWHT will have good numerical properties as long as (4) is solved
by a numerically stable method. This is made precise by the following lemma.
Lemma 1 Let € be the machine relative precision and § satisfies

(DT +6DT)g = b (8)
with ||6DT|| = O(€||D||). Further, let # = —p— /2 +§73, pT = [# G }, A = §7§/2 and
- 1
P=1-<p5".
APP

Then there ezists a perturbation 6 B of the matriz B such that

P(B +6B) = [ g] (9)

and [|8B]| = O(c||B]]).




Proof: The proof is straightforward and hence omitted.

REMARK: It is important to note that P does not have to be close to P defined
by (1) and (2). Similarly, D does not have to be close to D in (2). The situation
here is analogous to that of the QR decomposition of a pertubed matrix X+46X
where the factors of the perturbed matrix can differ from the factors of the origin
matrix X by as much as O(cond(X)||6X]||), see Stewart [19]. However what is essentia
from the numerical analysis point of view is that P is orthogonal and zeros the
first row of a nearby matrix B+ 6B.

Note that finding p requires solving a k x k system of linear equations which in general
amounts to O(k®) operations. However, if the QR decomposition of D is available, the cost
of finding p is decreased to O(k?) operations.

In the sequel we will encounter the problem of annihilating » rows, » > 1, of a (k+r) x k
matrix by finding an orthogonal P such that

T 0
pli|=]:
b7 0
D D

Such a P can be constructed as a product of r row Householder transformations P;, P =
P.P._y--- P, with P, annihilating row z of the matrix. As the major cost of determining
such transformations is in solving systems of linear equations, it is worthwhile to attempt
to decrease this cosi. This can be done by maintaining and updating the QR decomposition
of the bottom k x k submatrix. For the sake of illustration we show the first step of this
process. Let

bf
B = b'T
D
and let
Do =D= QORQ
be the QR decomposition of D which is assumed to be given. Let P, = I — p;pl /A, be a
modified Householder transformation such that
T ] - 0 ]
b b
Pyt =1
bT b
- D - e Dl -
Then the form of P, implies that
. 1 1
D, = Do*‘/\—Plb'ir=QoRo—/\—Plb’1T (10)
1 1
5
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Thus the QR factorization of D; can be obtained at the cost of 13k? multiplications (and
13k? additions) by updating the QR factorization of Dy after a rank-1 change of D, [11]

This has to be repeated » — 1 times resulting in the total of O(rk?) operations for the overall
process of computing all transformations P;, 1 =1,---,7.

2.2 Row Hyperbolic Householder Transformations
Let ® =diag(*1) be an (k+1) x (k + 1) diagonal matrix, and suppose p is a vector of length
k+1 with p”"®p > 0. Then a Hyperbolic Householder transformation is a matrix of the form

1
P=&-<pp" (1)

where A = %pTd)p. The matrix P is a pseudo orthogonal matrix with respect to ¢, i.e.,
PTOP = 9.

Hyperbolic Householder transformations are typically used to introduce zeros into a col-
umn of a matrix, and were studied in detail by Rader and Steinhardt {17]. Here we introduce
a row Hyperbolic Householder transformation which eliminates entries in a row of a matrix.
The discussion in this subsection is similar to that given in §2.1 for the (orthogonal) row
Householder transformations.

Let B be a (k 4+ 1) x &k matrix of the form

(5

where D is nonsingular. Suppose we wish to eliminate the first row of B using a transfor-
mation of the form (11). As in §2.1 this can be illustrated as follows. Let

[

where 7 is the first component of p and q is a vector consisting of the last &£ components of
p. Now suppose
b7 o7

Then, assuming P has the form (11), where

we have




Thus, we obtain
DTq=pb (12)
where g = (Ag /7 — 7).
Now, if we fix p, then we can solve (12) for ¢. Once ¢ is known, then, using g =
(Ad1/m — ), we have
7r2+1r,u-¢1)\=0.

Thus, since

1 .
A= Ep%p ==(¢1 +q¢"®q),

1
2
and since ¢? = 1, we obtain the relation

m+2np — ¢1g7 Pg = 0.

Thus, if X
¥+ $1q" 8q > 0, (13)

7= —p—sgn(p)Vu? + ¢1¢70q.

We point out that the requirement u? + ¢1q7<f>q > 0 is satisfied for our problem of inverse
matrix modifications. This will be discussed in further detail in Section 4.

As for the (orthogonal) row Householder transformations, we suggest choosing u =
1/|6]l2, and P = & if ||b]], = 0. The following algorithm summarizes the above discus-
sion.

we have

Algorithm ROWHHT
Input: BT =[b DT], where D € R¥** is nonsingular.
Output: p € R¥*!, where P = & — 1ppT, A = pT®p/2, has the
property that the first row of PB is all zeros.

if J|oll2 =0
[_ p=0,P=2¢
else
p=1/]16]l2

solve DTq = ub
m=—p—\/p?+ ¢1qTdg
pl=[r ¢']

Similarly as for the orthogonal case, a hyperbolic Householder transformation (computed
by algorithm ROWHHT) which zeros elements in a row vector will be called a row hyperbolic
Householder transformation. If the QR decomposition of D is available the cost of finding
p is of the order of O(k?) operations. For the problem of annihilating r rows, r > 1, of a

7
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(k+r) x k matrix B that cost is of the order of O{rk?) operations (see the discussion at the
end of Section 2.1).

3 Modifying the Inverse Cholesky Factor

Let X be a real m x n matrix with full column rank, and let s be a real vector of length m.
Consider the least squares problem

min ||s — Xw||,. (14)

It is well known (see, for instance {12]) that this problem can be solved by finding the QR
factorization of X. Specifically, let X = QR, where @ is an m x n matrix with orthonormal
columns, and R is an n x n upper triangular matrix. Then the solution to (14) is given by

w=R'QTs.

In many applications, such as signal processing, it is often required to recalculate w
when successive observations (i.e., equations) are added to and/or deleted from (14). In
this section we consider updating the solution w to w when k new observations are added
to the system, and downdating w to ¥ when k observations are removed from the system.
This method is called recursive least squares (RLS), and can be reformulated as a k-step
process of k successive modifications of w after addition/deletion of a single observation.
Such rank-1 modifications are most often realized by plane rotations and have been studied
by many authors. In this paper we treat multiple addition/deletion of observation as a block
process in a manner analogous to that presented in [17]. However, unlike in [17] where the
the upper triangular factor in the QR decomposition of X was modified, this paper proposes
algorithms for direct modification of the inverse of the triangular factor. This procedure is
called the covariance method in RLS computations. We will show how the row Householder
transformations described in Section 2 can be used to design efficient sliding data window
RLS covariance algorithms.

3.1 Inverse Updating

Let X = QR be the QR factorization of X. Suppose k new observations
[ YT ] ,

where YT € R**" and u € R*, are added to the data defining the least squares
problem (14). We first show how R™! can be updated to R~!, where

);f:[)ﬁ]zaff




is the QR factorization of X We then show how the solution w of (14) can be

updated to the solution w of

. [ S X - 4
mm-u]——[y‘r}wz (15)
It is well known that there exists an orthogonal matrix H such that
[ R R

The matrix H can be constructed as a product of (n+ k) x (n+ k) Householder trans-
formations H;, ¢ = 1,---,n, such that H; annihilates subdiagonal elements in column 1,
t=1,---,n, of the matrix

R
Hioy - HyH,y [ YT] .

It is known that if H is orthogonal and satisfies (16), then H also updates the inverse of R,

namely
RT RT
where F is an n x k matrix. To see this, note that

1= R 0][£]=[R~1 o]HTH[fT]=[U 1:}[0@]

Thus U = R~

We would like to be able to work with B~7, and not with R explicitly, since the triangular
solves needed in solving systems associated with R can then be replaced by matrix-vector
or matrix-matrix multiplications. The foliowing lemma shows how we can construct an
orthogonal matrix H satisfying (16) and avoid using R explicitly.

(17)

Lemma 2 Let V = —~R-TY, and let H be an orthogonal matriz such that

N I 74 0 .
o[£]-12]
where I is the k x k identity matriz and D is a k x k matriz. Then
~| R U
il |- 5] a
If U is upper triangular then U = R and
[ RT BT
o)-[%)

where E = R-'VD-!,

=
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Proof: The proof for k = 1 can be found in [14]. For k¥ > 1 one proceeds as follows. Let

-V R 0 U .

From Athe orthogonality of 1}', the definition of V and the fact that D is nonsingular, it follows
that Y = 0 and hence
RTR+YYT=UTU .

Thus if U is upper triangular with positive diagonal elements then U = R. From (17), for
the inverse we have an analogous relation, namely

|V RT 0 RT -
=] = 22
H[lko} [D ET]' (22)
Now (22) implies
VIV4+I VIRTY [DTD DTET
R'W R'RT || ED R'RT4+EET

from which one obtains that

E=R1'WDT.

This completes the proof. a
The relation (22) shows that it is possible to work with the inverses only. The condition
that has to be satisfied is that application of the transformation H in (22) has to result in
a lower triangular matrix U7,
We now show how to construct an orthogonal matrix H satisfying (18) and (19). To do
this, we will use the row Householder transformation. More precisely, suppose that we have
constructed row Householder transformations Pi, Py, ..., P; such that

vy %
PJP2P1|:I}= ‘(J ’
D;

where 0; denotes the j x k matrix of all zeros, and V; € R*=)** and D; € £***. Then
using Algorithm ROWHT, we find p7 = [, g;] so that

- [ o7 o7
B b, | = Dy |
J 741
where {)JT is the first row of VJ and f’,.H =1- —Aljﬁjf);r. Then Pj4, is simply given by

1
Py =1~ A—PJPT,
J

10




where p, = [0,---,0, m,, U,---,0, ¢,] (the j-th component of p, is =, the last & components
of p, furm the vector q,, and all other components are zeros). It s now casy to see that

P =P, - - PP satisfies (13) and hence

R s
})n"'[)zf)! { 0 } = { Ilfl } '

as R°T is by construction lower triangular and hence the desired downdated factor.

Now that we have a scheme for updating #™7, we need to use this information to eff
ciently update the least squares solution w to w. The following theoremn shows how this can
be done.

Theorem 1 Let I satisfies {22), that i

AN
If w is the solution to (77), then the solution to (15) s quven by
w=w - ED T (=Y
Moreover E = R'W D,

Proof: Let

-

oft] o

where s; € R* and s; € R*. Then (15) can be rewritten as

- il sy R i
T s X - . Iy o
min ! |y wi o =mingt sy - 0wy (234
‘ L D

Furthermore, let

al2]-[3]
u u ’

Note that w = R~ 's; and hence from the definition of V we have the relation

u—-YTw _ L"'Ts,+u _ vT o S 9%
w | Ry | T RYOO u | Y

Using the definition (24) and the assumption of the theorem the right hand side

of (25) simplifies as follows

vt il [s ) [ 0o DT)[&)_ [ DT _
R' 0 ul| | Y OE i _-ll;’“'ﬁ,+Eﬁ h

11

-
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as from (23) we have that w = R”‘s,. Now the theorem follows from the fact

that the left hand side of (25) and the right hand side of (26) are equal.
a
Thus, summarizing the results of this section, we obtain the following algorithm.

Algorithm IUP-k
Given: R~T and w, where X = QR and w solves (?77).
Input: New set of & observations [Y7 wu].

Then this algorithm computes B-T and b, where
=] =n

and w solves (13).

1. Compute V = —R-TY.

Cost kn?/2 multiplications.

2. Find H = P, P,P;, where P, are row Householder Transfo:
mations, such that )
sl V] 10
il ]=[5]

Cost 13 - k*n multiplicatione.

3. Update R7 to R
[ B-T AT
o -
Cost kn? multiplications.

4. Update w to w:

w=w-— ED“T(u - YTw)

Cost 2k% 4+ 2kn multiplications (as from (10) the QR decomposi-
tion of D is already available from step 2).

The total cost for Algorithm 1UP-k is 3 - kn? + 13- k%n + 2 - kn + 2k* multiplications.
We note that the straight forward implementation of the rank-1 method of Pan and Plem-
mons {14] would require 2kn? + Q(kn) multiplications. Thus, roughly speaking speaking

12




Algorithm IUP-k requires less muitiplications than the method described in [14]
when n > 13k. The major advantage of Algorithm IUP-k is that it is rich in BLAS

level 2 and BLAS level 3 operations which may lead to a more efficient implementatio

on parallel computers.
3.2 Inverse Downdating

<) (3

where ZT € R*** and d € R*, are to be deleted from the data describing (14).
We now describe a method for downdating w to the solution w of

Let

min || ~ X, (27)
We first show how R~! can be updated to R-', where

X =QR

is the QR factorization of X.
Note that as long as X is full rank then

RTR-2Z">0. (28)
The Cholesky factor R of X satisfes
RTR=R"R-2zZ".

In [17] it is shown that there exists a pseudo orthogonal transformation H with
respect to the signature @,
® = I, 0
0 I}’

o R
o 2)-14]
The matrix H can be constructed as a product of (n+k) x (n+ k) Hyperbolic House-

holder transformations H;, z = 1,---,n, such that H; annihilates subdiagonal elements in
column 7,7 = 1,---,n, of the matrix

such that

13

w——
W
-




Similarly as for orthogonal transformations, if the hyperbolic  satisfies (29) then /f also
downdates the inverse of R. To see this, note that

I=[R! o]cb[;}]:[lz-l o]fi%fl[ZRT]:[U F][O’f.]

- [ RT R-T
(515
We would like to work with the inverses directly and hence need a way for constructing

H satisfying (29) without any exptlicit reference to R. The following lemma provides means
just for that.

Thus U = R™!, and

Lemma 3 Assume RTR—ZZT > 0. LetV = R"TZ, and let H be a hyperbolic (with respect
to ®) transformation such that

Y 0
o2]-13]
where I, is the k x k identity matriz and D is a k x k matriz. Then
+| R U
= 32
H i ZT] { 0 ] (‘3 )
If U is upper triangular, then U = R and
i R-T ,
o[-

where F = —R-'V D1,

Proof: The proof for k =1 can be found in [14]. For k > 1 one proceeds as follows. Let

-V R 0 U
H[Ik ZT]—[D ZT]' (34)
From the definition of V and the that fact that H is hyperbolic (with respect to ®) we obtain
that L o
VTV - I 0 | -b™ -DTZT (35)
0 RTR-2ZT |~ | -2D U'U-2Z7 B

Comparing upper left entries on both sides we get
-D"D=VIV-1,=ZTR'RTZ-1,.
Now, as RTR— ZZT > 0 then It — ZTR-'R-TZ > 0 and hence D is nonsingular.

14
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From (35) and the nonsingularity of D it follows that Z = 0 and hence
RTR-2Z" =070 .

Thus if U is upper triangular (with positive diagonal elements) then U = R. From (30), for
the inverse we have an analogous relation, namely

-V RT 0 RT
H{Ik 0]:[1') FT]' (36)
Now (36) implies
ViV-I VIRT]_[-DTD ~DTFT
R'W RIRT| | -FD R'RT-FFT

from which one obtains that o
F=—-R1'VWD,

This completes the proof.
O

The relation (36) shows that, as for updating the inverse, it is also possible to downdate
the inverse directly. The condition that has to be satisfied is that application of A in (36)
has to result in a lower triangular matrix U-7.

The construction of H satisfying (36) is analogous to that described at the end of Section
3.2. Now however H is constructed as a product of row hyperbolic Householder transforma-
tions. The only thing that needs to be verified is that the condition (13) is always satisfied
for each factor that makes up H.

Suppose that we have constructed row hyperbolic (with respect to &) Householder trans-
formations Py, P,, ..., P; such that

. 0.

V 7
P]P2P1[I]= ‘_/J »

D;

where 0; denotes the j x k matrix of all zeros, V; € R"=%% and D; € R¥**. Let o7 be the

first row of V; and let
: 1 0
o= [ 0 ~1I } ’

We wish to use Algorithm ROWHHT to find p7 = [#; §;] so

satisfies

—h
w
[~}
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Note first that D; is nonsingular. The condition (13) for P; becomes
ii-4]q>0

where from (12) §; is given by

g = ;D795 .
Substituting (38) in to (37) we obtain
£2(1-9TDy'D;To;) > 0

Note however that from
DTD; - 57 >0

(which is satisfied because DJT D, - VJTVJ > 0) it follows that
1-3TD7 D To; >0,

which shows that (13) is satisfied.

(39)

(40)

Now, the construction of H proceeds in a straightforward manner, exactly as in the

(orthogonal) updating case.

The scheme for down:dzting BT can be extended to downdating the least squares solution

w to w. The following theorem shows how this can be done.
Theorem 2 Let H satisfy (31), that is
ol =15 ]
Ir 0 D FT
If w is the solution to (??), then the solution to (27) is given by
w=w+FDT(d-ZTw)
Moreover F = =R™'W D1,

Proof: The proof is analogous to that of Theorem 1 and hence is omitted.

Thus, summarizing the results of this section, we obtain the following algorithm.
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Algorithm IDOWN-k
Given: R™T and w, where X = QR and w solves (?7).
Input: Set of k observations [Z7T d].

Then this algorithm computes -7 and w, where
X
e[ 3]-en
X = QR and w solves (27).
1. Compu;te V=-RTZ
Cost kn?/2 multiplications.

2. Find # = P,--- P,P,, where P; are row hyperbolic Householder
transformations, such that

o[2)-[3]

Cost 13 - k2n multiplications.

3. Downdate R°T to R~7:
. R—-T R—T
ARNNES
Cost kn? multiplications.

4. Downdate w to w:

w=w-— FDT(d- ZTw)

Cost %kz + 2kn multiplications (as from (10) the QR decomposi-
tion of D is already available from step 2).

It is easy to see that the complexity analysis for the above algorithm is the same as
Algorithm TUP-k. That is, the total cost is 3 - kn? + 13- k®n + 2 - kn + 2&? multiplications.
Moreover, the straight forward implementation of the rank-1 downdating method of Pan and

Plemmons [14] requires 2kn? + O(kn) multiplications.
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4 Block WY Representation for Products

We are interested in row Householder methods that are rich in matrix-matrix operations in
order to increase the efficiency of our algorithms on vector and parallel machines. To that
end, it is important to accumulate and apply products of Householder transformations in
block form [12].

It is known (see e.g., Schreiber and Van Loan [18]), that products
Q=HoH,_y-H,

of column oriented Householder transformation matrices

H,»=1-—w,~w,~T, i=1,---,m, (41)

defined by m-vectors w; with wing = 2, can be accumulated in a compact WY form
Q=I-YTYT (42)

where Y is an m X n rectangular matrix, and each of its columns is a Householder vector
w;, and T is a unit lower triangular n x n matrix. Obviously, then, if A is an m x n matrix
then H,H,_,--+ Hi A can be accumulated using matrix-matrix operations as

H.H,_,--HiA=QA=A-YT(YTA).

An algorithm for constructing and applying @ in the form (42) is in the new LAPACK
software system [1]. We remark that Puglisi [16] has extended the work in [18] by giving a
scheme to compute and apply the product form (42) which involves more BLAS-3 matrix-
matrix operations, but which also requires additional work and storage.

Clearly, since orthogonal row Householder transformation matrices P as given in (1)
can also be written in the form (41), the same results on accumulation and application of
products of Householder transformations in block form apply for our case. Thus the use of
row Householder orthogonal transformations for modifying the inverse Q R factorization is
rich in level-3 BLAS operations, and the compact WY representation block algorithms in
LAPACK can be used for our application.

The case of row hyperbolic Householder transformations, used for downdating, requires
some further discussion. Recall that for an m-vector p; and a signature matrix ¢, an m x m
row (or column) hyperbolic Householder transformation matrix can be written in the form

2
Pi=®— ———pp], (43)
PiT‘I’Pi

provided that 0 < pI®p;,. The matrix P, is pseudo orthogonal with respect to ¢, i.e.,
PTO®P, = &. Observe also that P = PT. We now proceed to show how to accumulate and
apply products of hyperbolic Householder transformations in a compact WY-type represen-
tation block form similar to (42).

18

139




First, we write (43) in the form

1)

w_(/_l_).
' oTop; ) P

Qs = PuPacy -+ P

of row or column oriented hyperbolic Householder transformation matrices (44), defined by
m-vectors w;, and associated with the same signature matrix ¢, can be accumulated in a
compact WY form

where w; is an m-vector given by

Note that wf dw; = 2.
It will be shown that products

Qo = 0" — 0" 'YTY7, (45)
A method for computing the block representation (45) is given by the following theorem.

Theorem 3 Suppose Qo = &' — ®*'YTY7T is an m x m matriz, pseudo orthogonal with
respect to ®, with Y m x i and with T' a unit lower triangular i x i matriz. If P = & — wwT,
with w an n-vector such that 0 < wT dw, and 2T = —wT @'Y T, then the product PQq is

given by

PQo = 0" - Y, T, YT, (46)
where
; T 0
Y, = [Y, 0], T+=[ZT 1]. (47)

Proof: It can be seen that

PQs = (@ —ww”) (¢' - &'YTYT) =
o+ — o' YTYT + wuT oY TYT — v @' =
Ot — o YTYT — w2’ YT — wu" @' =
; : : T 0 YT
i+l gt 1 ) —
o @[Y,qm][zT 1“qu>«]—
ot — @'Y, T, Y.
O

Notice that Q¢ = Py Pr_q--- P, reduces to ® — YTYY if n is odd, and to / — OYTYT if
n is even.

The scheme described in Theorem 3 for accumulating products of hyperbolic Householder
transformation matrices has the same advantages as the storage-efficient compact WY rep-
resentation scheme for the orthogonal case given in [18]. In summary, the row orthogonal
and row hyperbolic Householder methods considered in this paper are rich in matrix-matrix
operations, and this fact can be used to increase the efficiency of our algorithms on vector
and parallel machines.
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5 Numerical Experiments

In this section we provide numerical experiments which consist of sliding window recursive
least squares problems (RLS), and are designed to compare the accuracy of our block method
with k applications of the rank-1 covariance inverse factorization RLS method of Pan and
Plemmons [14]. In each of the examples given below, we indicate the length of the window
used, and the number of observations which will be added and deleted.

The set of examples we use here have been used to test the effectiveness of condition
estimators [9, 10, 15], and have also been used by Bjoérck, Park and Eldén [5] to illustrate
how the corrected semi-normal equations can be used to stablize rank-1 downdating. These
examples are described as follows.

Example 1: In this example we construct a 100 x 10 data matrix whose entries are generated
randomly from a uniform distribution in (-50,50). We then scale the first column of this
matrix by multiplying the entries in the first column by 1073, This causes the windowed
data to have a condition number on the order of 10°. Here we choose the window length to
be 20, and the number of observations added and deleted is k& = 5.

Example 2: In this example we construct a 50 x 5 data matrix from a uniform distribution
in (0,1). In this case, though, we add an outlier of the form 7 x 10%, where r is again a random
number in (0,1), to the (18,3) entry. The effect of this outlier causes the data to become
ill-conditioned when the 18 row is added to the system. Here we choose the window length
to be 8, and the number of observations added and deleted is & = 3.

Example 3: In this example we construct a 50 x 5 matrix. The first 25 rows are the first 25
rows of the Hilbert matrix. The second 25 rows are simply the first 25 rows given in reverse
order. We then add a random number, §, to all the entries in order to control the degree of
ill-conditioning of the data. The smaller the value of 4, the more ill-conditioned is the data.
As is done in [5], we use § = 107° and § = 107°. Here, we again take the window length to
be 8, and k = 3.

The numerical tests for the above examples were performed using Matlab, and the right
hand side vector was chosen to be the row sums of the data matrix. Thus the exact solution
is known, and is the vector of all ones. The quantities reported are the relative errors and
residuals for our block method, and the rank-1 rotation based method of Pan and Plemmons
[14]. The results are summarized in Figures 1-8, where the solid line is the plot of the rank-1
method and the dashed line is a plot of our block method. Also shown in the figures is a
plot of 1/cond(X) for each window, indicated by + signs.

We see from the figures that numerically our block method performs in a similar manner
to k applications of the rank-1 method of Pan and Plemmons. But since our methods are
rich in BLAS-3 computations, our block method is better suited for vector and parallel
architectures.

We note that, as for the rank-1 method of Pan and Plemmons, our block method can give
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inaccurate results if the data becomes too ill-conditioned. This is to be expected, thougls.
since the downdating is sensitive to ill-conditioning, see [20]. To obtain & more relisble
block method when the data is ill-conditioned, one can apply schemes which also modify
the @ factor, such as a generalization of the method proposed in [8] for updating
the Gram-Schmidt QR factorization to the block case. Another approach is to use
the original data, X. This could be done by extending the work of Bjorck, Park and Eldén
[5], which uses the corrected semi-normal equations for rank-1 modifications, to the rank-
k case. These two approaches are the subject of the ongoing research and will
be reported elsewhere.

Perhaps a more straight forward approach is to use a condition estimation techmaque.
such as ACE [15], and, if the problem becomes ill-conditioned, re-initialize by computing a
new inverse orthogonal factorization, producing a new K~'. That is, ACE could be used 1o
monitor the conditioning of the data, which can be done in O(n) + O{k*) operations per
time step. The O(k?) comes from solving an eigenvalue problem required iu ACE. I the data
becomes ill-conditioned, one would then compute an explicit @K factorization of the current
data, to re-initialize the RLS process, and continue with the updating and downdating. This
apprnach would be most useful for problems such as Example 2, where the data s well
conditioned except for a small number of windows, made ill-conditioned by outhiers. Of
course, if the problem is well conditioned, then our scheme is very efficient and needs no
stabilizing modifications.
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Rank-k Modification Methods for Recursive
Least Squares Problems *
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Abstract

In least squares problems, it is often desired to solve the same problem repeat-
edly but with several rows of the data either added, deleted, or both. Methods for
adding or deleting one row of data at a time are known. In this paper we introduce
fundamental rank-k updating and downdating methods and show how extensions of
rank-1 modifications for LINPACK, Corrected Semi-Normal Equations (CSNE), and
Gram-Schmidt factorizations can all be derived from these fundamental results. We
then analyze the cost of each new algorithm, and make comparisons to k applications
of the corresponding rank-1 algorithms. We provide experimental results comparing
the numerical accuracy of the various algorithms, paying particular attention to the
downdating methods, due to their potential numerical difficulties for ill-conditioned
problems.

Abbreviated Title.
Key Words.

AMS(MOS) Subject Classifications.

1 Introduction

A problem which frequently arises in signal processing is the linear least squares problem:

miy |4z - b, 1)

*Research supported in part by the Joint Services Electronics Program, contract no. F49620-90-C-0039.
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where A € R™*", A is rank n, b € ®™, and m > n. This problem may be solved through a
QR factorization of the augmented m x (n + 1) matrix (A ),

(4 b):QR=Q((gZ> (2)

where Q € R™*("+1) with orthonormal columns, U € R™*", with U upper triangular, u €
R"*1 and p is a scalar. We then insert the factorization into the problem:

Q" 4z - Q7Y

(0)=-(5)

= mingesn [Uz — ull? + p?

mingegn [|[Az — b)) = minzezn
2

= minzegen

2

The solution vector z is then found by solving
Uz=u (3)

by the method of back substitution. The two-norm of the residual of the problem is p. Note
that once the factorization is found, only U, u, and p are needed to solve the problem.

Frequently, one has already found the QR factorization in (2), and wishes to solve (1) with
one or more rows added to or deleted from the data (A b). This is known as the recursive least
squares problem. Computing the QR factorization of a matrix is computationally expensive.
Since one already has @ and R (or just R) from a problem that is close to the one we wish
to solve, we would like to save on computation by just finding the new factorization (say
@rew and Rpey) from the old factorization and the data to be added or deleted. The new
solution is then computed by using U,e,, and une, as above in (3).

For example, say one has k new rows, (Y ¢) € R**{"+1) 'and it is desired to append them
to the end of the data (A b). Then the problem becomes given (2), solve

(7))

This is called a rank-k update of a linear least squares problem. To accomplish this, first
make the following construction:

min
ZeRn

2

Since Q has orthonormal columns, all that needs to be done at this point is to apply an
orthogonal transformation, say H, to the factorization, designed to reduce R to upper tri-
angular form (i.e., zero out (Y ¢)) while preserving the orthogonal property of the columns

of Q.
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This leads to the following:

U u U &
(AZ):(%R)HHT(;),Z,):(S; 822)(35)=Q1§ (4)

The new solution can be obtained from U3 = . The two-norm of the residual of the new
problem is 5. The problem of determining Q and R in (4) is known as updating the QR
factorization.

The other possibility is to remove data from the problem. Assume that we desire to
remove the first k rows, (Z d), of the data (A b). This would be a rank-k downdate of the
linear least squares problem. Then given (2), the problem to be solved is

mp iz -3 2
where pay 0 U
co-(E)mee(@)(81)

Here Ziskxn,diskx1,Quiskx(n+1), Quis(m—k)x(n+1), Ais (m~ k) xn,
bis {(m — k) x 1, and of course @ has orthonormal columns. The problem of finding the
new factorization (A b) = QR is known as downdating the QR factorization. Recall that the
updated triangular factor R was needed to solve the updated linear least-squares problem:
similarly, R is needed to solve the downdated linear least-squares problem. Depending on
the algorithm used, the matrix @ may or may not need to be stored and downdated.

Downdating the QR factorization is the reverse of the updating process (4). That is, the
downdating process begins with the augmented factorization (7).

(2 d\_A5_(Qn @ R .
(Ab)_(fi i’)—QR-(Qﬂ Q;)(O) ®

Here, as in (4), @ is an orthonormal column matrix containing Q augmented with k new or-
thonormal columns. Then an orthogonal transformation H (similar to that used in updating)
is applied to obtain @ and R.

-~ U U -
(Z ‘?):(Q“ Q”)HTH 0 Z :(Q I’*‘) 0 ; :((Z__d)) (8)
A b Q21 Q22 0 0 Q 0 Z d QR
Notice that the final terms in (8) have permuted rows (compared to the corresponding terms
in (4)) since rows are being deleted from the top as opposed to being added at the bottom.
Still, the two-step procedure defined by (7) and (8) is the logical reverse of the updating
process.

In downdating, the k new orthogonal columns are not a by-product of applying H as in
(4), but must be found before applying H. There is some difficulty in determining Q;, and
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@22, as they are not unique (observe that an orthogonal transformation may be inserted in
the middle of the factorization (7) that alters Qy, and Q,; but not the other terms). To
assist in determining Q,g and Q,,, we examine other requirements on Q.

From equation (8), @ and H must satisfy

@n le {0 I
(Q?l Qn)_(Q O)H‘

Multiplication by (Q11 Q12)T = HT(0I)T on both sides of this equation yields

Qll QIZ 11 _ Ik
(Qzl sz)(sz) (0) )

Therefore the first & rows of Q must be orthogonal. This orthogonality condition may be
combined with expression (7) as shown in (10).

% d I =(Qn Qm)(R Q’{l) (10)
Ab) 0 Qn Qn 0 Qh
_ The last & columns of Q are still not uniquely determined in (10). However, choosing
(12 to be an upper-triangular matrix, denoted simply as @32, and making the corresponding

choice Q3 for Q52, makes (10) an expression of the downdating problem in terms of the QR
factorization of an enhanced matrix.

zZ d I _(Qu le)(R Qﬂ) (11)

Ab) o) \Qu @ 0 @
This relation is fundamental to all rank-k downdating methods described in this paper. Since
it compactly represents all of the conditions necessary to determine @, (11) can be used to
determine @, and Q2. The relation (11) is an extension to rank-k of an analogous relation
derived in [DGKST76].

Once the factorization (11) is obtained, we then proceed as in (8), constructing some
orthogonal transformation H which when applied will produce the downdated factorization.
Here H operates on the columns of @ to transform (Q; Q12) to (0 P), where P is an

orthogonal matrix. H can be constructed such that H7, when applied to R, will change
the element values in R but still preserve its upper triangular property. This produces the

following result:
U 0
T
Zd) L =<Q" Q”)HHT RQn)_ QP) 0 5 0 | (12
A b 0 Qn Q2 0 @, Q@ 0 : T
VA P
Because Q has orthonormal columns, this transformation will also implicitly zero out Q2.

The equation Ui = 4 is solved to find the solution # to the downdated problem. The
two-norm of the residual corresponding to the downdated problem is .

QLT 8¢

4

PN 3




This paper is devoted to the discussion of rank-k downdating methods derived from (11).
We emphasize downdating and not updating because downdating is numerically harder. The
k new columns found in the downdating problem have several special properties: orthog-
onality in columns, orthogonality in rows, and triangularity. This allows for considerable
variation and discussion in possible implementations. In all of these implementations, how-
ever, the most important quantities are the k orthogonal rows, (@11 Q12). These are needed
for finding the triangular factor R of (A b). If the matrix @ is to be determined as well,
then @5, is also necessary. In Section 2 we discuss methods than maintain ¢ and R. Section
3 presents methods that only maintain R. In both cases, the methods for obtaining and
applying H are the same, and Section 4 examines possible implementations for this part of
the downdating process. Section 5 contains an analysis of the computation involved in all of
the methods presented.

Since rank-one updating and downdating methods are known, one might achieve a rank-
k modification to the data by k applications of these rank-one methods. However, rank-k
methods make use of matrix-vector and matrix-matrix operations, as opposed to vector-
vector and matrix-vector methods in rank-one algorithms. This may make rank-k methods
faster on processors with caches and parallel computers than the corresponding repetitive
applications of rank-one methods. Section 6 of this paper presents experimentation on the
numerical properties of our algorithms.

2 Rank-k Downdating of the Gram-Schmidt
Factorization

In this section we discuss downdating the recursive least squares problem where the Gram-
Schmidt factorization is maiutained, i.e., modiiying both @ and R as described in Section 1.
Specifically we discuss several methods by which to obtain the £ new columns in the or-
thogonal factor. In Section 4 we discuss methods by which elements in the constructed
factorization are zeroed out to produce the desired downdated @ and R.

2.1 Classical Gram-Schmidt on augmented problem

The first method is to use classical Gram-Schmidt with reorthogonalization (CGS) to build
on the orthonormal columns already given. Equation (11) represents a QR factorization.
which could have been accomplished by classical Gram-Schmidt. Since we have Qyy, @2,
and R already, we have completed n + 1 iterations (recall that the ith iteration of classical
Gram-Schmidt produces the ith column of Q and the :th column of R). We may then proceed
with the remaining k iterations of the orthogonalization process to get the new orthogonal
columns.

153



2.2 Modified Gram-Schmidt on augmented problem

Modified Gram-Schmidt (MGS) can also be used to get the new orthonormal columns. Recall
that the sth iteration of MGS produces the ith column of @ and the ith row of R in and
updates the columns of @) to be formed in later iterations. Again we use the fact that (11)
represents a QR factorization that is partially completed. After n 4 1 iterations of MGS, we

have the following:
Z d) L =(Q11 Tl)(R Qle)
A b 0 Qa T2 0 I

The only part of the above that we do not have is T = (T T7)?7. We can find T by
performing only the update portion of MGS (i.e., T = T — ¢;¢7T) for each of the n + 1

orthogonal columns from (Q7, Q%) one at a time in ascending order on the new k columns

(TF TT)?. Then we can proceed with the remaining k iterations of MGS.

2.3 Small QR factorization

Note that from (11)
( Iy ) — ( QueT + QnQTz )
0 QnQf + Q2207

which can be rearranged into the following:

Q12 T _ I - QIIQTI (13)
Qn ) 1 -QuQf,
Since QT, is upper triangular, this is a QR factorization and @12 and Q32 can be obtained
by any QR factorization algorithm, in particular by either using MGS or CGS.

2.4 Separation of equations

We can rewrite (13) as follows:

( Q1:Q, ) _ ( I - QuOi, ) (14)
Q2Q1; -QnQy,

Instead of computing a QR factorization on the whole factor, we can solve for @;; and
()22 iIn separate steps. The top equation represents a Cholesky factorization that can be

used to solve for Q5. Then @Q;, can be used in the bottom equation to get @2, by forward
substitution.
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2.5 QR of the residual matrix T

The left-hand side of (13) is related to a least squares problem associated with the matrix
defined in (11), namely,

. Ii X .
mm((A b)l(o))(__lk)p. (15)
Now (11) implies
) Z d) I X . R Qf, X
mm(%fii’) 0)(—I>F—mm(OQ'{2 _])F (16)
and hence the solution X satisfies
RX = Q7T (17}
while the residual error has the following representation:
— - Iy _ le T -
T=(Ab)X (0)_(%)@12. (18)

Note that in (18) the right-hand side is the QR factorization of T. This is not surprising
as T is the residual in the least squares problem (16), and hence the columns of T span a
subspace orthogonal to the column space of the defining matrix (A b).

However it may not be easy to get a numerically accurate orthonormal base for T which
is orthogonal to the column space of (A b). This will be the case if, for example, the columns
of T have substantially different magnitudes of norms. The following method for factorizing
T uses a step of refinement (or reorthogonalization) in order to provide improved numerical
results.

We first insert T into an augmented factorization problem to ensure that its orthogonal
columns will span a subspace orthogonal to the subspace of {A b):

Qu —Qn R Ry
Ab) T)= 19
( ( ) ) ( Qun —Q2 0 R (19)
From this, we have an equation for T from which we can get the desired factorization:
Qu ) Qrz
T= Ry, — 20
( Qn ) @22 Rz (20)

First we need to multiply both sides of (20) by (@7, @T,) to get Ry

R12=( {1 Q’zrl )T

Now we “correct” T
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We can then factor T:

Q22

Note that if we multiply both sides of (21) by —(Q7, QT,) and use (18), we have Ry, = Q7,,
and we are done.

- ( Q12 ) Ry =T. (21)

3 Downdating R Without Storing @

Methods for rank-k downdating of R without maintaining @ have been proposed in [RS86]
and [BS89]. The method proposed in [RS86] is based on the fact that as long as RTR- 272
is positive definite then there exists a pseudo-orthogonal transformation H with respect to
the signature matrix & = diag(l,, —I;) such that

(5)-(2)

where U is the Cholesky factor of RT R—Z7Z. 1t is shown in [RS86] that the transformation
H can be constructed as a product of hyperbolic Householder transformations.

An alternative approach for rank-k downdating of R has been proposed in [BS89]. Their
downdating of R is treated as an implicit updating of U. More precisely, they show that
there exists an orthogonal H such that

w(8)-(5)

where U is the desired Cholesky factor of RT R — ZTZ. It is shown in [BS89] that H can be
constructed as a product of orthogonal Householder transformations and U can be recovered
in a row by row fashion from R, Z, and H. Note that (22) and (23) do not require any
explicit information about the orthogonal factor Q.

Recall that (8) represented downdating as implicit updating as well. Equation (23) is
actually embeddea in (8) (i.e., remove the @ related factors and associated applications of
H, leaving (8)). Further, if one desired to determine @ from H, R, Z determined above,
Q21, Q22 and thus the downdated data A, b would not necessarily be unique.

In this section we present generalizations to the block case of two other methods for
downdating the R factor without storing the matrix Q.

The first method is based on the rank-1 downdating method proposed by [Saunders]
that was later implemented in LINPACK. The second method is based on the method of
corrected semi-normal equations (CSNE) proposed by [Bj687]. These two methods can be
derived from (11) and require partial information about Q.

The primary difference between the methods presented in Section 2 and the LINPACK
and CSNE methods is that the latter methods do not store any part of the matrix Q. Instead,

-




@11 1s recovered from the following relation

T T
(‘g;) Tl=(§) (24)

which comes from the first £ rows of the QR decomposition of (A b) in (11). Of the other
blocks of @, namely Qi, , @21, and Q2,, only (J;2 needs to be found in order to update R.
Each method finds @, in a different way. Once Q;; and @), are found, both the LINPACK
method and CSNE method use the orthogonal transformation H defined by (12) to produce
the downdated R-factor. For the purposes of this discussion, we will concentrate only on the
ways in which the two algorithms find @y and @2, and so “a rank-k LINPACK algorithm”
refers to an algorithm for rank-k downdating which finds @,; and @y, in an analogous way to
the rank-one LINPACK algorithm, and a “rank-k CSNE algorithm” refers to an algorithm
for rank-k downdating which finds @; and @2 in an analogous way to the rank-one CSNE
algorithm.

3.1 The LINPACK Downdating Algorithm

The rank-one LINPACK algorithm is actually a part of method of separation of equations
(14). Once Q11 has been found by (24), @;2 is found from the top k£ rows in (14), namely
from
Q12Q1T2 =1l — Q11Q1T1- (25)
Notice that in the rank-one case, (J;; is found by a single square root operation. The lower
m — k rows of (14) are not used as @@ does not need to be maintained.
Note that (25) itself can be viewd as a downdating problem. Thus @2 can be formed
either directly as the Cholesky factor of /x — @1;Q7,, or indirectly by constructing an or-

thogonal G as in (23) such that
T I
n o\ —
o(&)-(s)

3.2 The CSNE Downdating Algorithm

The CNSE downdating algorithm presented in [BPE92] is shown in that paper to be more
stable than the LINPACK method for rank-one downdating. Thus it is desirable to extend
this method to the rank-k case. The basis of this method is in the semi-normal equations
for a least squares problem

see [BS89).

min || By — ¢|l.

If U is the triangular factor from the QR factorization of B, then the SNE for a single
least-squares problem are given by (26),

UTUz = ATb. (26)

9
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The corrected semi-normal equations (CSNE) method for solving a least-squares problem
proposed in [Bjo87] uses refinement of the solution obtained by the SNE, as shown in (27).

UTUy=BTc, t=c— By (27)

UTUSy = BTt, y.=y+ 6y, t.=t— Béy
The corrected solution y. and the corrected residual vector t. will have consistently better ac-
curacy than the accuracy of the solution obtained by the SNE method, and often comparable

to that given by a standard QR factorization method (see [Bjo87}).
The CSNE downdating method in [BPE92] is derived by using (27) in a least-squares

problem to approximate the first column of the identity matrix. In the rank-k case, the
CSNE will be used to solve k simultaneous least-squares problems approximating the first

columns of the identity matrix as in (15).
1%
(e (5))(
~Ii

vV Iy
(40 (5)-(5)
Here V € ®"** and & is a length k row vector. Following the relation (27), it is now

straightforward to derive a block version of the CSNE downdating method.
Using the SNE, & systems of equations are obtained:

G EDE-EE)(5) w

Equation (29) can easily be broken down into two triangnlar systems of equations, the
first of which (30) turns out to be exactly equation (24). Therefore, Q1 is solved for in
exactly the same manner as in the LINPACK method.

u )\’ T
53 an(E)
(£3)(8)-a

The residual error in the k systems of equations is an m x &k matrix T,

= (4)-c (1)

each column of which represents the error in one system. By substituting this error back

= min

min
V.o Ve

i (28)
F
F

. . . . T
into the same systems and solving again, correction factors for @y, and (VT <I>T) may be

found. ,
U T
(0 ";) Q=(Ab)T

10

—
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U u 8V
(5 7) (5 )=
The correction factor 6Q is added to the matrix Q,;, producing a corrected factor Q5,. The

T T
quantity (6VT 5<I)T) is not actually used to update (VT ‘DT) as the latter quantity is not
important for our purposes. However, §V and 6 are used to correct T,

T.=T-(4 b)(‘;g)

The remainiug block @7, is found from (18) as the R factor in the QR factorization of T..

3.3 Hybrid approach

The rank-k CSNE algorithm has a much greater cost than the rank-k LINPACK algorithm in
terms of floating-point operations. Much of this cost may be attributed to the “refinement”
process, which may not be necessary if the matrix is well-conditioned. For this reason,
[BPE92] suggests a hybrid algorithm. In the rank-one hybrid downdating algorithm used by
[BPE92], the quantity v = 1 — ||@11]|* (where @Q;; here is just a vector) is checked against
a user-specified tolerance. If 7 is greater than a user-specified tolerance, the downdating
problem 1s considered well-conditioned and the LINPACK downdating algorithm is used.

Otherwise, the CSNE algorithm is used. The suggested range of the tolerance is [0.25, 0.5]
[BPE92].

4 Determining the orthogonal reduction factor H

This section discusses the problem expressed in (12), that is developing and applying the
orthogonal reduction factor H to the augmented factorization obtained in (i1) to produce
the downdated factors. Given that H has to be orthogonal, the requirements for H can be
more compactly represented as follows:

Ua 0

T

HT(§8;1)= 0 5 0 |. (32)
12 Z d PT

Thus we must preserve the triangularity of R while zeroing out Q7,. Note that methods
for Gram-Schmidt factorizations and for Cholesky factorizations can make use of the same
reduction methods. The difference is whether @ is maintained at all. If so, H must also be
applied to @2 and Q2 as in (12).

4.1 Givens rotations - column dominant ordering

We can construct the orthogonal reduction factor H in (32) using Givens rotations. The
order of the rotations preserves the triangular factor, while the values for each rotation are
chosen in such a way as to produce the desired reduction in QT,.

11

159




The Givens rotations will act on pairs of rows of the target matrix. Let G represent o
Givens rotation actiuu on the 1th row of (1{ Qf,) and the jth row of (U Qf.,) We can explon
the fact that is upper triangular and zero out QF, a column at a time in the fuliowing

z g 1 <
way.

For the first column of Qf}, apply the product of Givens rotations, G767, .G7 | w
the target matrix from the left, with each rotation zeroing vut an element of the first colun
of QT, from bottom to top. Then we have the following result:

n+ 1 1 k-1

. ‘I”
1{ QI "4l !( U Li-)ll
G, R IS S B
'Xl "eA-Hl 0 QI' o -1
12 i
k-1 b0 ¢y,
Note that \\hen the first column of is zeroed out, the (1,1} element of Q@F, becoties |
n 12
since (1) Q,z has orthogonal (olnmm The remaining row uf QF, s zeroed out due to
the orthogonality property expressed in (11). K remains triangular,
This process is repeated for the remaining columus of Q7. where for the ith colunmin of
QT the (1,7) element of QT is used as the pivot. H is the cumulative product of the Givens
rotations. Incidentally, PT = I,.

4.2 Givens rotations - diagonal dominant ordering.

The ordering of Givens rotations to perform the necessary data reduction is by no means
unique. To show this, we first note that we can solve (12} differently, that is we could just
as easily reduce down to the first k columns of @:

T 4 Z d pPT
Z d Ik - ( (J“ Q]) ) 11 ]17 ( R (J” ) . ( [) (:l ) (~. i “
A D 0 Qu Qu 0 © 172 0 @ 0 {'.7 (/)

Our new requirement is now

7z d pT
T
HT fQu) _ U a 0 (33)
0 QF
i2 /3 0

One way to do this with Givens rotations is to zero out (@), Q1;)7 a diagonal at a time.
starting with the main diagonal of ¢y, and working upwards. I Givens rotations are needed
to zero each diagonal. Each rotation works on consecutive rows {say 7 and 1 + 1}, and eacl
rotation in one diagonal operation works on consecutively higher numbered rows (i.e.. the
first rotation works on (7,1 + 1}, the second on (7 + 1,1 4+ 2), ete.).

Thus the first step, zeroing the main diagonal of Q7. involves Givens rotations working
on rows n + 1 through n 4+ 1+ k of the target matrix. After application. we would have the

—
[ o)
-




following result:

n -1 1 k-1
o n R QT
, R T +1 ) .
Gt GlcsmiGlna (1§ S ) = 5o ((0 5 (0 Qh))
12  \lo 45/ Lo o

Q7, is upper triangular. Incidentally, note that  is found after only & Givens rotations.
This process is repeated for the proceeding diagonals until Q7, is upper triangular. The new
triangular factor and downdated rows are produced, and due to orthogonality, PT = /.

4.3 Row Householder transformations

We return to the requirements for H specified in (32). We can also use a special form of the
Householder transformation to zero out Q7,. Using a standard, column Householder transfor-
mation will not preserve the triangularity of . However, a row Householder transformation
[BNP92), can preserve the triangularity of R.

Each row Householder transformation will zero out one row of QT,, working from the last
row of Q7 to the first. The application of a row Householder transformation is as follows.
The transformation is of the same form as a standard Householder transformation. and is
applied to the row that is to be partially zeroed (say the first row of the target matrix
where g7 from Q7| is to be zeroed) and to the rows that contain the residual bottom square
factor of the columns in which the zeroing takes place (here it is QT,). The elements of the
Householder vector are determined by solving the system of equations D7 p = pq where y is
a normalization constant, and p is the Householder vector. After the first row Houscholder
transformation is applied,

n 1 k

n - oIN

H}"( ki ) N
0 Q. k \0 2z QF

The triangularity of R is preserved. The process is repeated until all rows of Qf; have been
zeroed out.

5 Work Analysis

In this section we attempt to make a theoretical comparison of the amount of work involved
for the algorithms discussed in the previous sections. Table 1 compares each of the methods
used to obtain the needed portions of the necessary k new orthogonal columns. Here the
comparison 1s in terms of operations: multiplies, additions and subtractions, and divides
and square roots. The calculations are based on a rank-k downdate being performed on an
m x n data matrix (note that first order terms for multiplies and adds/subtracts have been
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ignored). From Table 1, it can be seen that the most expensive methods appear to be CSNE,
and potentially CGS and the LINPACK-CSNE hybrid method in worst case scenarios. The
least expensive is easily LINPACK, with the remaining algorithms somewhere in between.

Algorithm Total Operations
Multiply i Add, Subtract [ Div, Sqrt
CGSAUG min | 2mnk + mk® + 2mk 2mnk + mk? + 2mk + nk 4+ 0.54% m + 2k
mazr | 4mnk + 2mk? + 4mk dmnk + 2mk? + 4mk + 2nk + &? m + 4k
MGSAUG 2mnk + mk? + 2mk 2mnk + mk? 4+ 2mk mk 4 k
SMALLQR mnk + mk? + mk mnk + mk? + mk + k2 mk + k
SMALLCHOL mnk+0.5mk?—1/3k%+1.5mk+0.5k | mnk+0.5mA? ~1/3k3+0.5mk+24% | mk — 0.5k% +
3/2k
RESQR Smnk4+mk? +0.50%k +3mk+0.5nk | 3mnk+4+mk? 40572k + Smk +05nk | mk + nk + 24
LINPACK 0.5n%k + nk? + 1/6k> + 0.5nk + k7 | 0.5n%k+nk? +1/Gk* +0.5nk +2.5%% | nk + 0.5k% ¢
2.5k
CSNE 3mnk + mk? + 2n?k + 3mk + 2nk 3mnk + mk? + 202k + Smk + 2nk mk + 4nk + 5k
HYBRID min | 0.5n%k + nk? + 1/6k3 4+ 0.5nk + k% | 0.5n2k 4+ nk? +1/6&% $0.5nk +2.54% | nk + 0.5k 4
2.5k
mar | 3mnk + mk? 4 202k 4 3mk + 2Znk 3mnk + mk? + 202k + Smk + 2nk mk + 4dnk + 5k

Table 1: Comparison of the work involved for each method via operation counts

If one were to implement these algorithms on a microprocessor that had a BLAS library
available for it {say, for example, the Intel i860), then one would try to make use of the BLAS
library wherever possible, since such a library is often well-optimized for the target processor.
If the processor in question has pipelining or vectorization available, operation counts may
not give an accurate prediction of relative execution time. Thus we also provide Table 2,
which gives a breakdown of components of each algorithm in terms of BLAS functions and
the size of the problem each call solves.

Algorithm BLAS-3 BLAS-2
GEMM TRSM GEMYV GER
O(mnk) | O(nk?) 1 O(mn?) T O(n?k}) || C(mn) [ O(mk) | O{mk)
CGSAUG min 2k
mar 4k
MGSAUG n+1 n+1
SMALLQR i
SMALLCHOL 1 1
RESQR 1 1
LINPACK 1 1
CSNE 3 4
HYBRID min 1 1
mazr 3 4

Table 2: Comparison of the work involved for each method in terms of functions

In Table 4 we compare the reduction methods in terms of operation counts. Note that
while the ordering of each of the Givens rotation sequences is different, the amount of work
for each is essentially the same.

Table 5 compares the total work involved for various methods. Here we examine Classical
Gram Schmidt (maximum work cas=) with a Givens rotation methods of reduction, and
CSNE, also with a Givens rotation reduction.
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Algorithm BLAS-1
NRM2,AXPY.DOT,SCAL
() TOY | O{k)
CGSAUG min 3k k
mar 4k 2k
MGSAUG 4+ k
SMALLQR k2 +k
SMALLCHOL 0.5k% 4 0.5k
RESQR kK2 +k
LINPACK 0.5k% 4+ 0.5k
CSNE K2+ k
HYBRID min 0.5k% + 0.5k
mer k24 k

Table 3: Comparison of the work involved for each method in terms of functions

Algorithm Total Operations

Multiply ] Add, Subtract [ Div, Sqrt
GIVENS1 {GS) | 4mnk + 21%k + Amk + 8nk | 2mnk + nfk 4 2mk + 4nk | 3nk + 3k
GIVENS2  (GS) | 4muk + 202k + dmk + 8nk | 2mnk 4 n?& 4 2mk + dnk | 3nk + 3k
GIVENST (R) 2n?k + 4nk® + 8nk + 4k% nik + 2nk? + ank 4 24* 3nk + 3k
GIVENS2 (R) | 212k 4 4uk? 4 8uk 4 4k? n?k 4+ 2uk? 4 dnk 4+ 24° 3nk + 3k

Table 4. Comparison of the work involved for each reduction method via operation counts

We should also note that the storage requirements for each of the algorithms are essen-
tially the same. LINPACK and CSNE must both store R and {A b). The Gram-Schmic
methods must maintain R and . This is the same amount of storage in both cases since
(A b) and @ are the same size. The residual QR method may be the most expensive in terms
of storage since it has to store both (A b) and Q (as well as R).

6 Numerical Experiments

The methods discussed in this paper were implemented and tested in Pro-Matlab (Version
3.51). This section discusses the tests and matrices used to compare the various methods.
The tests are all of the sliding window type. This type of test uses windows consisting
of w rows of an m x n matrix ( m >> w > n ). A series of least-squares problems, defincd
by the window and the corresponding subsection of an m x 1 right-hand side vector, arc
solved. Originally, the window is set to be the top w rows of the larger matrix, and the QR
factorization is computed. At each step, k rows of the larger matrix are added at the bottom

Algorithm Total Operatious
Multiply 1 Add, Subtract i Div, Sqrt
CGSAUG, GIVENS | 8mnk + 202k + 2mk? 4+ 8mk + 8nk | 6muk+nlh+2mk? +6mhk+6nk+ | 3nk +m + Tk
L2
CSNE, GIVENS | 3mnk+4n2k+3mk? +4nk? —mk+ | 3mnk+3n2k+3mk2+2nk2+mkhk+ | Tnk + 0k
10nk 4 442 Tnk + 242

Table 5: Comparison of the total work involved for some methods
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of the window, requiring an update of the QR factorization, and k rows are deleted from
the top of the window, requiring a downdate of the factorization. The updated/downdated
factorization is then used to obtain the solution to the problem corresponding to the current
window position. Our tests used a window size w = 8.

Two of the three matrices used in the tests come from [BPE92}: the third is adapted
from [Bjo687).

Matrix I. The matrix A is of size 50 x 5 with elements taken from a uniform probability
distribution in [0,1]. Element (18,3) has been perturbed by a uniform random sample
from [0,10%]. The right-hand side vector b is constructed by multiplying A by the
vector {1,1,1,1,1]7 and adding to each element a random sample from [0,107°].

Matrix II. The matrix A is again of size 50 x 5. In the first 25 rows of A, element (i, 5)
is ( + 7)™ ': these rows are the first five columns of a 25 x 25 Hilbert matrix. In the
bottom 25 rows, element (z, 7) is the same as element (51 — z,7), that is, the bottom
25 rows are the reflection of the top 25 rows about the middle of the matrix. Each
element of A is perturbed by a uniform random sample from [0,107°]. The right-hand
side vector b is again the product of A and the vector [1,1,1,1, l]T, with each element
perturbed by a uniform random sample from [0, 1].

Matrix III. The matrix A, again 50 x 5, is the product of three matrices, W, V, and D.
V is the 50 x 5 matrix in which element (7,7) has the value (i — 1)U~ D is the
diagonal matrix which normalizes each column of V. W is a matrix which weights
rows 15, 20, 25, ..., 50 by a factor of 100. The right-hand side vector b is constructed
by multiplying A by a vector x = D~?[10%, 103,100, 10, 1]7.

Figures 1, 2, and 3 show data about the condition of the three matrices. Each figure
shows the condition of the window matrix for each step of the sliding window process.

The remaining figures show the performance of the methods on the three test matrices.
Two types of comparisons are made. First, the rank-k CSNE and LINPACK methods
are compared to the rank-one methods presented in [BPE92]. Second, the various rank-k
methods are compared to each other. The Gram-Schmidt methods of Section 2 and the
CSNE/LINPACK methods of Section 3 are compared as separate groups, and then the best
methods from each group are compared to each other.

First, consider the rank-k CSNE and LINPACK methods. Bjérck, Park and Eldén
[BPE92] give results which show that in the rank-one case, for tests involving ill-conditioned
matrices, the CSNE method outperforms the LINPACK method. Figures 4 and 5 show
that this continues to be the case for the rank-£ methods. In addition, the rank-two and
rank-three methods perform at least as well as the rank-one methods for the tests presented
here. It is particularly interesting to note that the error in the LINPACK method for Matrix
I goes down by orders of magnitude as the rank increases: the rank-two CSNE method is
also much better than the rank-one CSNE method on this matrix, although the rank-tliree
CSNE method does not improve much on the accuracy of the rank-two method.
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Figure 1: Condition of the Window Matrix ~ Matrix |
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Figure 2: Condition of the Window Matrix — Matrix I1
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Figure 3: Condition of the Window Matrix - Matrix 111

Figures 6 and 7 compare the five Gram-Schmidt based methods presented in this paper
(Classical GS, Modified GS, the Small QR and Small Cholesky factorizations, and the Resid-
ual QR method). The methods are comparable on Matrix I. On Matrix I, the two “Small”
factorization methods do not perform nearly as well as the others (the QR method seems to
be better than the Cholesky method, as predicted). The other methods are comparable to
one another and are in the same range as the CSNE method. However, it should be noted
that the CGS method required one re-orthogonalization for all but one of the columns of
Matrix IL

A comparisen of the rank-two CSNE, MGS, and CGS methods {Figure 8) shows that these
methods perform comparably on Matrix II, giving results similar to a QR decomposition.
However, as noted in [Bj687}, the CSNE method has problems when dealing with matrices
which are “weighted”, that is, in which rows have been multiplied by a weight constant which
gives one row a significantly higher norm than others around it. Matrix Il was chosen
because it is an example of an ill-conditioned, weighted matrix. Figure 9 shows that the
CSNE method breaks down when the window includes the first weighted row. The Residual
QR method also breaks down, but the CGS and MGS methods both closely approximate
the results obtained by performing a full QR decomposition. The CGS method required
re-orthogonalization for each column of Matrix III. From these figures, we conclude that the
CGS method with re-orthogonalization is the most stable, although it is expensive in terms
of computation and storage. The MGS methods is less expensive and performs comparably
it all the cases shown here. The CSNE method performs nearly as well in some cases with
lower storage and computation costs.
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Abstract

In this note, we propose an implicit method for applying orthogonal transformations on both
sides of a product of upper triangular 2 x 2 matrices that preserve upper triangularity of the
factors. Such problems arise in Jacobi type methods for computing the PSVD of a product of
several matrices, and in ordering eigenvalues in the periodic Sc.iur decomposition.

Introduction

The problem of computing the singular value decomposition (SVD) of a product of matrices have
been considered in [1],{2], {3], [10]. The computation proceeds in two stages. In the first stage the
matrices are transformed into the upper triangular forms. In the second iterative stage an implicit
Jacobi-type method is applied to the triangular matrices. It is important that after each iteration
the matrices stay triangular [8].

A crucial aspect in such implicit Jacobi iterations is the accurate computation of the PSVD of
a product of 2 x 2 triangular matrices. There two conditions have to be satisfied [2]. First, one
has to ensure that the orthogonal transformations applied to the triangular matrices must leave
the matrices triangular, and second, that the transformations diagonalize the product accurately.
It was shown in [1] and [2] that these two conditions are satisfied by a so-called half-recursive and
direct method, respectively, for computing the SVD of the product of two matrices.

In this note we analyze an extension of the half-recursive method for computing the SVD of the
product of many 2 x 2 triangular matrices. We also show that the extension of the half-recursive
method can be used for swapping eigenvalues in the periodic Schur decomposition described in [4].
For simplicity we assume real matrices and real eigenvalues, but all results are easily extended to
the complex case.
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Criterion for numerical triangularity

Suppose we are given k, k > 1, upper triangular matrices 4;, ¢ = 1,2..., &,

a; b
Ai_(o di)'

We denote the product of 4;,7 =1,2...,k, by A,

A=A1"‘Ak=(g 3) ;

Let the orthogonal matrices Q; and Q41 be such that
' T a b P
A=0uaQla = (§ o) 1)

is upper triangular. In case we are interested in finding the Singular Value Decomposition of A, one
imposes the additional condition that &' = 0. This defires uniquely the above decomposition up
to permutations that interchange the diagonal elements of A’. In case we are interested in finding
the Schur Form of A, one imposes the additional condition that Q; = Qr41. Again, this defines
uniquely the above decomposition up to the ordering of the diagonal elements of A’. In both cases
the transformations @, and @4, are thus defined by the choice of ordering of diagonal elements in
the resulting matrix A’. Our objective now is to find orthogonal matrices Q;, j = 2,3, ..., k, such
that

A= QiaQh, = (% & (2.2)
F S ti 141 0 d: .

are meanwhile maintained in upper triangular form as well. It is easy to see that if abd # 0 then fora
given pair of orthogonal transformations Qy and Q4 there exist unique (up to the sign) orthogonal
transformations Q»,...,Q« such that (2.2) is satisfied. There are many mathematically equivalent
strategies of determining Qs,...,Q«. However, as it was shown in (1], {2] and [3], some strategies
may produce numerically significantly different results than other strategies. We will consider a
particular method numerically acceptable if the triangular matrices after trans{formations have been
applied to them stay numerically triangular in the sense described below.

Let A be the computed A, and let Qi, i =1,2,....,k+ 1 be the computed transformations.
Define

. o a El )
A= ,AQL,, = (é, J,) (2.3)
and .
- - - a. .
A= Q:AQL, = (é,f d;) ) (2.4)
Let ¢ denote the relative machine precision. Assume that we are given Q; and Q4 such that
€] = O(el]Al) (2.52)

We will say that A! is numerically triangular if
& = Ol Aill) (2.5b)

We will propose a method for computing nearly orthogonal Q;, i = 2, ..., k, for which, under a
slightly stronger version of the assumption (2.5a), the (2,1) element €' of A} will satisfy (2.5b).
Coudition (2.5b) justifies truncating the (2,1) element €] of A} to zero. Thus, & is also forced to
zero.
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The Algorithm

Our algorithm is a generalization of the algorithms presented in {1} and [3] for computing the PSVD
of two and three matrices respectively. There the orthogonal transformations all had the form

e=(_5¢), (3.1)

-C 8

where ¢ +s2 = 1. As we will build on the results presented in those papers we retain this particular
choice of orthogonal transformations. While each transformation Q; is defined by the cosine-sine
pair ¢; = cos#; and s; = sin §;, we also associate Q; with the tangent

t; = tanéb; .

Given t;, we can easily recover ¢; and s; using the relations

1
¢ = ——— and s = tc;. {3.2)

1+t
Following the exposition in [1], [3], we consider the result of applying the left and right transforma-

tions (Q; (for the outer left transformation) and Q, (for the outer right transformation) to a 2 x 2
upper triangular matrix A:

) T [(d ¥\ _ [ s a\fe b)( c,>7 o
A‘Q‘AQT“<e' d')‘(—c: Sz)(ﬂ i) e o) (3.3)

We can derive from (3.3) these four relations:

e = cice(—at, + dt) — b), (3.4a)
b = cier(—at; + dt, + bit, ), (3.4b)
a = e (bt + d + alit,) (3.4c)
d' = cic.(a — bt + dtit,) , (3.4d)

where t; = tan 6; and ¢, = tané,.

The postulates that both € and I’ be zeros define two conditions on t; and t,, so that {3.3)
represents an SVD of A [5]. The postulate that ¢’ be zero and t; = ¢, represent conditions for
swapping eigenvalues of A.

The postulate that ¢’ be zero defines a condition relating 6; to 6,, so that if one is known the
other can be computed in order to reduce A’ to an upper triangular forin. For ease of exposition,
we assume for now on that abd # 0. It implies that ¢je, # 0, and so the postulate that ¢/ = 0 in
(3.4a) becomes

—at, +dtj—b=20. (3.5)
The censequence of (3.5) is that (3.4c) and (3.4d) simplify to
¢ = ce (1 + 1)d (3.6a)
and
d' = e (2 + 1)a, (3.6h)

3
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respectively.

Assume that () = () and @, = Qupy are given, that is ; = ¢ and £, = f ., are known, We
will use relations of the type (3.5) with ¢; and ¢, as the reference tangents to compute the remmnine
transformations,

Our algorithin can be described recursively as follows. We split the sequenie AL A 4,
into two subsequences of consecutive marices Ay, Ay and A, L A Ay wWhete oo

m < k + 1. Let us denote

A, = iy b! - - K N ; - (Ur b,, - b . .
"‘“(0 d‘)wn.\, and A, = 0 ez)“' I 4. 0

=1 ! TEYR

P
~ 1

Suppose that
ltd) < [teal

Then we propose to compute ¢, from the condition (3.5) by the forward substitution,

dity = Iy
s — “ >

U;

:

L
Otherwise, that is when

ihdl > {teal,
we propose to compute f, {from (3.5) by the backward substitution,

2

ty, = el (AND

Having defined the first step, the procedure can now be applicd recursively o genvrate
the remaining orthogonal transformations Q,. i = 2..... k. Note that there js a lot of freedom in
splitting the sequence Ay, A;..... Ay into subsequent subsequences, This might be advantapea-

for a divide-and-conquer type of computation in a parallel environment.

As will be shown later, under 1:iid conditions on @y and 44 . this particulas way of geperating
orthogonal transformations Q. ¢ = 2., k. will guarantee that all A7 will be numericaliv uppes
triangnlar in the sense that (2.50) will be satisfied.

Error Analysis

It our error analysis, we adopt a convention that involves a hiberal use of Groek lettors, For exaniple,
by a we mean a relative perturbation of an absolute magnitude not greater than «. where ¢ deyotes
the machine precision. All terms of order ¢ or higher will be ignored in this first-order analvsis,

The function fi(a) will denote the floating point approximation of a. For the purposo of the
analysis, a “bar” denotes a computed quantity whichis perturbed as the result of inexact aritlonetir
Forexample, instead of a, b and d. we have the perturbed values a. b and d which result from foatine
point computation v ﬂf‘;,l A We assume that exact arithmetic may be perfarmed using theo
perturbed values. The “tilde™ symbol is used to denote conceptual values computed exactiv from
perturbed data.

We start our procedure by computing elements of the product matrix A as the product of A
and A, defined by (3.7):
= Haa, )= a1 4+ 0. Y da

4
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d = fi(did,) = did, (1 + §) . (4,10
b= (@b, + bid,) = @b, (1 + 23,) + bidi(1 + 253;) . (1.1¢)

where, according to our convention, the parameters a, 8, J;y, J;, and Fy are all quantities whose
absolute values are bounded by e.

Now we specify the condition that we impose on the computed ¢y and Qyy,.

Assumption I: Throught the rest of this note we will assume that the computed tangents t; and 1,
corresponding to the outer transforinations Qy = ¢ and Q, = Qg4 satisfy the following equality

a(l+ Cyjt, —d(1+ CoMi +b(1 4+ Cx) =0, (1.24)

where C = C(k).
a

Lemma 4.1: The recurrence (3.8a) yields t,,, such that

a1+ 2000 —di{1 + 6l + b= 0. (4.3)
Likewise, the recurrence (3.8b) yields 7,, such that
(Zr(.l + ‘;)2)[771 - {lr(l + 2‘ri?‘2)i.? - I;r = 0. {4.1]
J
Proof. The proof easily follows from (3.8a) and (3.8h).
O
Theoremd.2: If [{;d| < |t,a] and if {,,, is computed via (3.8a) then {,, satisfies the relation
a, (1 + Cop)ls = do(1 + Cron)los + b,(1 + Cryy) = 0 (1.5a)

where € = Ci(k). Likewise, if |f;d| > |t,a] and if {,, is computed via (3.8b) then t,, satisfies the
relation
a1+ Crvo i, —di{} + Cro )i+ bi(1 + Crx,) =0 {4.50)

where O = C (k).

Proof. We give a proof of the relation (4.5a) only as the relation (4.5b) can be proved in an
analogous way.

First from (4.3a)-{4.3b) we get
(14 200 )t — di(1 + ¢1)li+ b, =0, (4.6a)
while from Assumption I and (4.1a)-{4.1¢) we have

drar(1+ a4+ Cp)ly, — did (1 + 6+ Co)ii+

ab (1420, + Cx)+ bid, (1 + 23, +Cyy = 0. (.60

fuda )




By multiplying both sides of (4.6a) by d,(1 + 28, + Cx;) and subtracting from (4.6b) we obtuin

_ dd, A }
a{a, (1 + a + CP)i, - &, (m'- ) (64+Co~¢1 — 208, - Cx)ti+

aQy

(14281 +Cx) —dr(1 428, + Cx + 201)im} = 0,
or, since a; # 0,
a1
at,

a,(1+ a + CY)i, - &1, ( ) (6+Co— 1 +28:+ Cx)+

br(14 201+ Cx) — (1 + 28, + 291 + Cx)i = 0.
As we assumed that |f;d] < |{,a|, the above can be rewritten as
a(1+ Co)ty — do(1 + C1éd)tm + b, (1 + Cix1) = 0 (1.7}

where ) = Cy(k) completing the proof.
a

We now justify why the (2,1) element in the computed matrix A] can be set tu zero. Let the
cosine and sine pairs & and §; satisfy 7, = §,/¢, for i = {,m,r. From (4.2) we can derive that

& = (&) = &(1 + 3u,) (1.8a)

& o= (&) = §{1 + 411, . {4.8b)

Let fi: denote the exact updated matrix derived from A,, i = [,7,and &, &, 1 = [,m,r that is

; 5 ¢ a b Sm =€ A
AI = 8t C{ ay ) m m ) 1.9

: ( —C S 0 d{ € & 19
r{ . '§m Em (_lr B_r Sr ‘Er RN
Ar - ( —Cm Sm ) ( 0 dr ) ( Cr 8r ) ’ ( 1”””

Our next result is a direct consequence of Theorem 4.2 and provides bounds on the elements
€., i =1,r, defined by the relations

and

1 .- = : = TR
€ = —CSpa + §epdy — E8mby (5.10a)

-~ - - - - - -
€. 1= —CnSely + Smcrdr - Crcrbr .

(5.10b)

Corollary 4.4: If |i;d] < |i,a| and if £, is computed via (3.8a) or if |{d] > |{,a] and if 1, i~
computed via (3.8b) then .
|é:] < I\’,‘(HA,‘H , for i=1,7. {4.11}

0

0

= 3
~J
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Proof. We prove the corollary for the case when |t;d| < |t,&| aud when {,, is computed via
(4.8a). The other case can be proved in an analogous manner.

Using (4.3a) we can rewrite (4.10a) as

~4 [ - - 3 o s
€ = —Ci§pay + 816y dy ~ Ciémbi+

Eiém{@i(l + 2¢n)lm — di(1 + 1)1 + b)) (4.12)
from which it follows that
€] < Kuef]Adl -

Similarly, using (4.5a) we can rewrite (4.10b) as

-t - = - R
€, 1= —Cmér, + 8,,60d, — E,6, b+

C.'.fém(‘-‘ir(l + Clv"l)t_r - Jr(l + C'lél){m + 6)’(1 + Cﬂv’l"l)) (‘Jli}

and thus
e < EoellALdl

completing the proof of (4.10a).

Numerical examples

The SVD algorithms for 2 x 2 upper triangular matrices in [1},[2] or [5] give #; and . which satisfy
Assumption I. We will illustrate that by using our new scheme triangularity of te transformed
factors is preserved.

Consider the case of three matrices in the product Assume that the given data matrices are

A = 2.316797292247488¢ + 06 —1.437687878748196¢ — 01
e 0 —2.718295063593277e — 02 ] °

4 (1.222222234444442e +00 3.480474357220011e ~ ox)
2= 1

0 5.674165405829751¢ + 00
As = 2.222222211111111e ~ 01 1.732050807568877¢ + 00
8= 0 1.111111110000000¢ ~ 12

They generate the matrix product A := Al- A2 A3

A= 6.29253588694966%¢ — 01  4.904546363614013¢ + 00
- 0 ~1.713783977472744¢e — 13

We are “erested in computing orthogonal transformations @y, Q2, @3 and Q4 which satis{y{2.2)

and (2. ~ith the (1,2) eloment zero. The SVD algorithm for the 2 x 2 upper triangular matrix
in [1] or .. gives t; = 3.437688760727056¢ — 14 and 4 = —7.794228673031074¢ + 00 which satisfy
Assumptwn I. In fact we have
5, AD. = —2.180909253067911e — 14 —7.494178599599612¢ — 30
@ AQ = 0 4.944748235423613¢ + 00

We split A into the product of A, 5 = A; A, and A3. We note that the ratio

~,
.

I
4

= 1.201223412093697¢ — 27

)

)
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If we compute t3 from t; as indicated by the ratio, and next t, as specified by (3.8a) or {3.5b)
then Corollary 5.4 will guarantee that the transformed factors will stay (numerically) triangular.
Suppose however that we compute t3 from tq and next ¢z from ty. Then Lemnma 4.1 will guarantec
that Q,4,Q% and Q;,A;;QZ' will saty numerically triangular. However, for the computed @4,
we have

0AQT = —2.713066430028558¢ — 02 —1.685188387402401e — 03
TAINZ T ~1.360106941575845¢ — 04 2.321253786046106¢ + 00

which cannot be considered upper triangular. An error of order 107* has to be introduced to

truncate the (2.1) element in Q,4,Q7 so it becomes upper triangular.
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1. Introduction

The problem of reordering eigenvalues of a matrix in real Schur form arises in the compu-
tation of the invariant subspaces corresponding to a group of eigenvalues of the matrix. A
basic step in such reordering is to swapp two neighboring 1 x1 or 2x 2 diagonal blocks by an
orthogonal transformation. Swapping two 1 x 1 blocks or swapping 1 x 1 and 2x2 blocks are
well understood [3]. Swapping two 2 x 2 blocks poses some numerical difficulties. Recently,
Bai and Demmel [1] have proposed an algorithmn for swapping two 2 x 2 blocks which is for
all practical purposes backward stable. In this note we describe an alternative approach
for swapping two 2 x 2 blocks which is based on an eigenvector calculation. It appears that
the method guarantees small rounding errors in the (2,1) block of the transformed 4 x 4
matrix even if the two 2 x 2 blocks have almost the same eigenvalues.

2. Reordering eigenvalues

Assume that A is a 4 X 4 block triangular matrix,

ajy a2 djz  djyg

A= Ay A - azy a2 Az 4z
0 Axn 0 0 a3 as
0 0 a4 au

where Ay; and Ay are 2 x 2 with pairs of complex conjugate eigenvalues Ay, A, and A,,
Ag. We can further assume that A;; and A, are in the standard form,

_ ay Bi/k - az Ba/k,
A““(%kl o ) and ”"”(—mkz o )

}Research supported in part by the Joint Services Electronics Program, contract no. F49620-90-C-0034.
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We want to find an orthogonal transformation Q such that

1 fi?’.’ Al’l
= QAQ7 = - s
A=QAQ ( 0 Ay )
where Aj; and Ay, are similar to Ay, and Aj; respectively.

The standard form implies that Ay = ay + f; - i is the eigenvalue of A2;. Thus A(A;) =
A - Ay - I is singular as its (2,2% diagonal block has rank 1. Now one can find a sequence

of complex Givens rotations such that
a1 — A2 a12 a3 a4 0 a1 &3 G
azy 822 — Az 423 a2 GV GG = 0¥ 0 Gy ag,
Y 0 a3 ~ Az a4 3 Ui Gy by 0 0 0 4y
¢ 0 a43 a44 — A3 0 6 0l g,

where G‘(f) denotes a complex Givens rotation operating in the plane (i,j) introducing
zero at the position marked as (k) on the right hand side of the relation. Let G =

1) ~{2) ~(3) (4 .
G§4)G§. )G§3)G§2). Then y = u+v-i = Ge;, where u = [uy, up, u3, u4)7 and v = [v;, v, vy, v4)7
are real vectors, is the complex eigenvector corresponding to A,. Hence

A A2 ay
( (;1 A”)(u v) = (u v)(_ﬁ2 02).

Moreover, because A, is assumed to be in a standard form, uy = v3 = 0. The similar-

ity transformation @ can be expressed now as a product of real Givens rotations which
triangularizes the matrix [u v]. More precisely, let Q = J;S;)J:gj)Jl(g)Jéé) be such that

¥ o 4 9

2 -

oy @ [ v v | 0P &
23 Y34 VY12 Y23 u3 0 0“) 0“) y

0 v o o

where J;'(j) denotes the corresponding rotation. Then @ is the desired similarity transfor-
mation.

Numerous numerical tests suggest that in the presence of rounding errors the relative error
in the (2,1) block of the transformed matrix A is proportional to the machine precision.
The algorithm can be extended to cover the case of swapping diagonal blocks in the periodic
Schur form {2].
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Abstract.

In this paper we derive a unitary eigendecomposition for a sequence of matrices which we call the pcriodic
Schur decomposition. We prove its existence and discuss its application to the solution of periodic differ-
ence equations arising in control. We show how the classical Q R algorithm can be extended to provide a
stable algorithm for computing this generalized decomposition. We apply the decomposition also to cvclic
matrices and two point boundary value problems.

Key words. Numerical algorithms, linear algebra, periodic systems, K-cyclic matrices, tv--point
boundary value problems

1 Introduction

In the study of time-varying control systems in (generalized) state space form :

i
yre = Hyp -z + Ji - up (1

{ Ei-zkp1 = Fooze+ Gi-w
the periodic coejficients case has always been considered the simplest extension of the time-invariant case.
Here the coefficients satisfy, for some K’ > 0 the periodicity conditions E, = Ewxp, Fi = Fiop, Gi =
Grary Hi = Hipxo Ji = Jiy k. The last few years there has been a renewed interest in the area because
such systems arise naturally in multi-rate sampling of continuous time systems [1]. Several papers were
devoted to the algebraic structure of periodic discrete time systems and it appears that a lot of the algebra
indeed carrics over from the time-invariant case [9]. For period &' = 1 one has the time invariant case
Ex = FE, Fr=F, Gy =G, H. = H, Ji = J, and it is well-known that the generalized eigenvalues of
particular pencils derived from these matrices then determine the behaviour of these difference equations
(13]. In the case K > 1 one can derive a set of K time-invariant subsampled systems [2], [9] that describe
the behaviour of the periodic system. Froblems of pole placement, optimal control and robust control can
then be solved via these I’ subsampled systems.
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During the last few decades linear algebra has played an important role in advances being made in
the area of systems and control [16]. The most profound impact has been in the computational and -
plementational aspects, where numerical linear algebraic algorithms have strongly influenced the ways in
which problems are being solved. The most reliable numerical linear algebra methods proposed for partic-
ular control problems are related to particular eigenvalue and singular value decompositions of “special”
matrices, such as special Schur decompositions for solving Ricrati equations [10], [14]. Here we present
a new decomposition called the periodic Schur form that has important application: in control theoretic
problems of periodic systems. We present a few of these applications and predict that several other uses
will be found.

The decomposition has also a direct application to K-cyclic matrices and pencils, which occur in the
study of Markov chains and the solution of two point boundary value problems. We show how the periodic
Schur form naturally decomposes the underlying » x n matrix problem into n scalar poblems with the same
structure. This can then directly be used for the solution of Markov chains and two point boundary value
problems in an elegant manner. The relation with K-cyclic pencils also allows to completely characterize
the singular matrix case and give conditions for the existence of solutions in tlie singular case.

2 Periodic Schur decomposition

Consider the set of (homogenous) difference equations
B,‘-l‘,‘+1=—‘A,‘-.’E,’, i=l,... (2)

with periodic coefficients A; = Aiyx, B; = Biyr. For period ' = 1 one has the constant coefficient case
A; = A, B; = B and it is well-known that the generalized eigenvalues of the pair A, B yield important
information about the system (2). When K > 1 one derives from (2} a set of ' time invariant systems
which describe completely the behavior of (2). For simplicity we first assume all B, to be invertible. Then
define the matrices S; = B! 4, yielding the system :

_ p-1 _ C_ .
i =B A-zi=5 -3, 1=1,... {3)
which is an explicit system of difference equatious in z,, again with periodic coeflicients §; = S.4 .

One can now consider subsampled systems which describe the evolution of (3) over I" steps, and since the
coeflicient matrices of (3) are I{'-periodic, one may expect these subsampled systems to be timc invariant.
Indeed, defining the matrices

_S'(L) = 'S'k+I\-—1 ""Sk-f-] . .S'k’ k = l,..., I\'- (‘1)

then one obtains from (3), (4) the set of K subsampled systems :

Ti+(i+1)K = 5(.” Ty, t=0,1,2,0.

Toppenyn =SB zpk, i=0,1,2,... 5)
. ]

e = SN zppr, =012,

One easily checks that the above set of difference equat ins, initialized with the vectors z,,1 = 1....,
yields the same solution as (3). In order to describe the behaviour of these systems one thus requires the
eigenvalues and eigenvectors of the periodic matriz products S*¥). It is known from similar decompositions
[11], {4], that explicitly forming the matrices §*) ought to be avoided if possible. An implicit decomposition
of these matrices is now obtained in the following theorem.

—
Q0
N
Il BN N N IE T N BN B BN B B BN B BN BN R B .




Theorem 1 Let the matrices A;, Bi, i = 1,...,K be all n x n and complez. Then there erist unitary
malrices Q;, Z;, it = 1,..., K such that :

1:31 =Z7-B1-Q A =27 A -G

B, =2;-8,-Qs Az =273 Ay

: (G)

Br-y =2k .y Bro1-Qx Ak-1 =2k Ax-1-Qk-y

By =2k Brk- Ak =27k -AKk-Qx
where now all matrices B;, A; are upper triangular. Moreover if the matrices B; aere invertible then cach
Qi puts the matriz SO in upper Schur form, i.e. Q;S(')Q; ts upper triangular.

Proof : Because of its simplicity and constructive derivation, we give here a simple proof assuming all
matrices A; and B; are non-singular, except possibly A;. The more complex case of singular matrices is
proven in section 3.2.

If all matrices B; are invertible then all matrices () exist. Compute the upper Schur form of §{1 ;

Q5@ = 0.
This defines the matrix @; and one can thus consider the matrix By - Q, and its @ R decomposition :
Zy - Bk = Bk Q]

which defines the unitary factor Zx and upper-triangular factor By. In turn, one then considers the matrix
Zi - Ax and its R(Q) decomposition (i.e. dual to the {Q R decomposition) :

Ap Q3 =25 AK)

which defines the unitary factor Q and upper-triangular factor Ag. Repeating this for all subsequent
matrices defines :

e Z; and B, from the @ R factorization of B; - @41 fori = K,...,1 and

e Q; and A, from the RQ factorization of Z; - A, fori = K,...,2.

Notice that each of these decompositions in fact corresponds to one of the equations in (6), starting from
bottom to top. By now all transformation matrices Q; and Z; are defined but we have not proved that the
last matrix A; is upper-triangular, since in the equation

Av=27- A Q)
the matrix (J; was already defined. But consider now the product
Q15MQ: = [Q1BR ZK)Zi AxQx) - [Q3 B3 25125 A2Q2)Q3 BT Z1)[Z3 A1Q1] (M
or ) o o
§W = Bt Ag - By A BT [Z1 A1 Q). (%)
Now since all “hat” matrices in both sides of equation (8) are upper-triangular and invertible, this must
also hold for the matrix A; = Z7A1Q). This completes the constructive proof of the existence of (6).
Notice that the proof shows how to derive all matrices ¢J; and Z; from just one of them. Moreover, by
periodically interchanging the products in (7) one easily sees that also

Q:S(i)Qg = $0 = E:_llz‘ig_l Bl—lfi1 B;\»l/i}\' . 'B;_}_]l/iﬁ.]l}‘“‘/i,‘ (9)

is upper triangular and hence a Schur decomposition. So all Schur forms are actually dependent on one
another via (6). ]
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Corollary 1 Let the matrices A;, B;, i = 1,...,K be all n x n and real. Then there exist orthogonal
matrices Qi, Zi, 1 = 1,..., K such that the above decomposition (6) holds and all but one of the matrices
B;, A, are upper triangular. This last one is in quasi-upper triangular form with 1 x 1 and 2 x 2 diagonal
blocks.

Proof : Assume that all matrices are invertible except, say, A; (see section 3.2 for the general case). The
proof then goes as before. Pick a real transformation Q; that puts §(1) in real Schur form §0) = Q?S“)Ql.
Then perform all Q R factorizations as above to define the remaining transformation matrices Z;, i = A'..., 1
and @y, i = K, ...,2 in decreasing order (these are real transformations, of course). In (8) Bx, i = K, ..., 1,
Ag, i = K,...,2 (and their inverses) are upper triangular, and $() is quasi upper-triangular. From this
it follows that A; must be of the same form as S(). If one would have started the definition of the
transformations Z; and Q; from the other side (i.e. the QR factorization of A; @, instead of By Q) then
By (and its inverse) would have the same form as §(), Finally, by starting the above reasoning with «
different index 1 it is clear that one can pick any matrix A; or B; to have the quasi-triangular shape. It is
easy to move it around as well via a “post-processing” using updating Givens rotations. |

In fact the matrices Q; transform the vectors z; to #; = Q7 - z; and the difference equations (2) to the
equivalent system :

Z;BiQiy1 - QT = 7 A;Q; - QFxy, i=1,... (10)

or i .
Bi #ip1= A%, i=1,... (11)

with periodic coefficients A; = Aiy+x, Bi = Biyx which are now all upper triangular (except one quasi
triangular one in the real case). The same transformations can of course be applied to the non-homogenous
case, and this will be used later on.

An elegant consequence of the above theorem is the following corollary.

Corollary 2 All periodic products SU) have equal eigenvalues and their Schur forms S given by the
implicit decomposition (G) have the same eigenvalues on diagonal.

Proof : It is trivially seen that S{) and S() have equal eigenvalues since
SW = MMy, SV = MM,

with
1\/[2=S]\"-...'S,', M] :S,‘..]'...'Sl.

Equality of spectrum indeed follows immediately from this. The Schur forms of the matrices §{) will thus
have the same diagonal elements, up to their ordering. But the Schur forms constructed by (6) have the
additional property that the diagonal elements of the $() matrices are all actually equal. Indeed, they are
the products of the diagonal elements of the upper triangular matrices B;IA, So, if one matrix § has
a particular ordering of eigenvalues then all other matrices §%) have the same ordering of eigenvalues. &

We give in the next section an algorithm to compute the above decomposition implicitly, i.e. without
ever forming the products §{). Moreover we show how to reorder the eigenvalues of these Schur forms.
We call this the periodic QR algorithm as related to the above periodic Schur decomposition.

—
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3 Periodic @R algorithm

We now consider the computation of the periodic Schur decomposition. Here we will not require the
invertibility of the matrices A;, B;. In order to have a periodic QR algorithin we need the following
ingredients to make the algorithm work :

1. a reduction to some kind of Hessenberg form
2. a direct deflation of the singular case

3. a shift calculation procedure

4. a method for performing QR steps

5. a procedure for reordering eigenvalues.

In the above list one should try to do as much as possible implicitly, i.e. without ever constructing the
products S, Moreover one would like the total complexity of the algorithm to be comparable to the
cost of i Schur decompositions, since this is what we implicitly compute. This means that the complexity
should be O(K n3) for the whole process. Notice that this indeed precludes the construction of the products
S0 since this would already require O(K2n3) operations. We now derive such implicit solutions for eacl
item. Below H(7,j) denotes the group of Householder transformations whereby (i,7) is the range of
rows/columns they operate on. Similarly G(¢,7+ 1) denotes the group of Givens transformations operating
on rows/columns ¢ and ¢ + 1.

3.1 Hessenberg-triangular reduction

We first consider the case where all B; are the identity. We thus only have a product of matrices 4; and
in order to illustrate the procedure we show its evolution on a product of 3 matrices only, i.e. A3A4;4;.
Below is a sequence of “snapshots” of the evolution of the Hessenberg-triangular reduction. Each snapshot
indicates the pattern of zeros (’0’) and nonzeros (’z’) in the three matrices.

 First perform a Householder transformation Q3 € H(1,n) on the rows of A; and the columus of Aj.
Choose (3 to annihilate all but one element in the first column of A, :

Then perform a Householder transformation @) € H(1,n) on the rows of A3 and the columns of A4,.
Choose @ to annihilate all but one element in the first column of Az :

-

-

-

T r z r r I r z z z 1 z r z z z T Z
Z r T T T I 0 z z z z 1z T T z r = I
Z r T I T Z 0 z 2z z z =z I £ T T T Z
Z T r I I I 0 z z z z r z» T T T Z
T z £ z T I 0 z z = z £ I 2 I T T
2z z z £ z z }J |0 z 2 z z z ;|2 z z T T T |

s z z z £ ][z 2z 2z z £ ][z z £ = = z]
0 z z z ¢ =z 0 z z z z =z T r zr z I T
0 z £ z z «z 0 z z z z T z T I T I
0 z £ z z 0 z =z z z I r I z I Z
0 z z z z 2z 0 z z z z I r I z I I

{0 £z z z =z z J {0 2z z z z z J| 2 z z z T |
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Then perform a Householder transformation Q2 € H(2,n) on the rows of A;
Choose @ to annihilate all but two element in the first column of 4, :

Notice that this third transformation did not destroy any of the previously created elements in A3 because
it did not transform its first column. A similar set of three transformations yields the following three

.~

c o o o o 8

-

N 8B H H &8 8

H H H B 84 §

H 8 H 8 &4 8

H 8§ H 8§ H 8

H 8 B 48 & 8

L
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R 8 H N 8§

x

L]

8 8 N N

L 4

N 8 N 8

N 8 B X &8 8

H 8 8 8 8 8

1r

o o o O N N

B N B H

I

z

N 8 B N B N

H 8 &8 N N N

84 N 8B N N N

and the columns of A,.

B 8 8 N KB R

snapshots :
z z T T I % T z T £ r ¥ T £ z T T I
0 z z z z =z 0 z z z z z z T T I I Z
0 z z z z =z 6 0 z z z 1z 0 = z z z =z
0  z z z z 0 0 z z z 0 r z = z =
0 z z =z z = 0 0 z z z =z 0 £ z z r =z
| 0 z z z z z jJ |0 0 z z z 2z {0 z £ 1 z 1z |
[z z z z 2 2 [z z £ 2z z 2V [z z z = z 1z
0 z z £ t z 0 z z z z =z T £ r £ T I
0 0 z z z = 0 0 z z z z 0 2z z z z z
0 0 z z z 1z 0 0 z z 2z «z 0 =z z z z 2
0 0 z =z = = 0 6 z z z 0 z z z z
1 0 6  z z z j L0 0 z 2z z z]|0 z z z z z |
s z z 2 z 2z} [z z z z z z})[z z z z z ]
0 z z z z =z 0 2 z z z z zZ ¥ T r r I
0 0  z ¢ = G 0 z =z z =z 6 r z z r z
0 0 z = z =z 0 0 z z z =z 0 0 z =z = =z
6 &0 z z z z 0 0 z z z =z 0 06 z z z =z
0 0 z z z z]LO 0 z z z zJ|L0 0 z z z 2z |
and this continues until we reach the Hessenberg-triangular form :
'z z z £ 2z z ][z z £ 2z z z3[z =z 2z z z z ]
0 z z z z z 0 z z z z z T r T I I I
0 0 z z z = 0 0 z 2 ¢ z 0 z z z z z
0 0 0 = = =z 0 0 0 z z =z 0 0 z =z z =z
0 0 0 0 z = 0 0 0 0 £ z 0 0 0 z z =
L0 0 0 0 0 z [0 0 CG OOz J]lO 06 0 0 z z ]

When the matrices B; are not the identity matrix, one starts with transforming each of them to
triangular form. Then one proceeds with a similar reduction procedure for the matrices A; as above.
While the zero elements are being created in the matrices A; one preserves the matrices B; in upper
triangular form at each step. Therefore, one can not make use of Householder transformations anymore.
Indeed, applying a Householder transformation in H(k,n) (left or right) to a triangular matrix B; fills it in
and one can not find a Householder transformation in the same class operating on the other side of I;, that
will restore its triangular shape. On the other hand, this is easily done when using a Givens transformation
in G(k,k+ 1) since then only the element B;(k + 1,k) fills in below the diagonal and this can immediately
be annihilated again using another Givens transformation in G(k,k + 1) operating on the other side of
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B;. The above procedure of creating zeros in A;, while maintaining the matrices B; in upper triangular
form, can thus go through. Notice that for the case K = 1 one retrieves ezactly the Hessenberg-triangular
reduction of the QZ algorithm [1:]. Operation counts for this Hessenberg-triangular reduction are given
in section 5.1.

3.2 Direct deflation of the singular case

In this section we show how to perform direct deflationsin the Hessenberg-triangular form when either of the
pivot elements is zero. With pivot element we mean the elements on the diagonal of each triangular matrix
A, i =2 .. ,K, B;, i = 1,..., K and below the diagonal in the Hessenberg matrix A;. Below we treat
three different cases and show how direct deflations can be performed to yield one or several subproblems
of smaller dimensions where now all pivot elemnents are nonzero. This corresponds to subproblems without
eigenvalnes at zero or co.

Case 1. When an element below the diagenal of Ay is zero, the problem trivially decomposes in two
lower dimensional problems, as shown below for matrices By, A,, By, A; where the (4,3) element in A, is
zero :

'z:czzzx"'xrz r 3 [z = zlz =z 23 [z = z|z z z]
0 z z|z z =z 6 z iz z =« 0 z z|z z =z z  z|Ir Zz I
0 0 z|lxz z =z 0 0 zi{z = =z 0 0 |z z z 0 = z|z z =1
0 0 0|z = =« 0 0 0z z =z 0 0 0]z z =z 0 0 0|z r =z
0 0 0|0 z =z 0 0 00 z =z 0 0 0 z z 0 0 0|z z 1
L0 0 0|0 0 = L0 0 0{0 6 z ] LO O O0{0 06 z J {0 0 0|0 z =z |

This reduction is identical to what happens in the single matrix case and clearly can be repeated until oue
obtains smaller dimensional matrices 4; with non-zero subdiagonals (i.e. unreduced Hessenberg forms).
Moreover the reduction does not involve any transformation but only a partitioning. The next two cases
are zero diagonal elements in any of the remaining matrices. One first deflates the zeros in the first matrix
in the sequence By, Az, Bs, ..., Ax, B, i.e. one first treats the “closest” matrix to A;.

Case 2. If the closest matrix to A; with zero diagonal elements is A;, then the partial product
A,B;_], A,-_I...Bfl/ll again decomposes in a block diagonal matrix, as indicated below with the sequence
Ay B[ 1A where A; has a zeio diagonal in position (4,4) :

'zzrx:zr":rxxrzzz'—l'zzzzrzz'
0 = z z|z z 2 0 z z z{z z =z r z z|T T I I
0 0 z r|z z z 0 0  z{jz z =z 0 z z|z z = =z
0 0 0 O0{|z z 1 0 0 0 zyz z =z 06 0 sjr r I
0 0 0 ¢ T I 0 0 0 0iz z =z 0 0 0|r z z z
¢ 6 0 0 z z 0 0 0 0;0 z =z 6 0 0|10 = z =z
Lo o0 0 0106 0 zJLOG 0O 0 0fj0 0 =z J L0 0 0|0 0 z =z J

"z z z{Z z z I

r z rz{r z z 1z

0 z zi{z z 1 1

= | 0 0 0z z r x

0 0 0lzrx z r =z

O 0 0]0 z 1 1

L0 0 0,0 ¢ = 1 |

-3

187




Moreover the bottom block is rauk 3 only and one ought 10 be able tu extract & zers eigernaine,
g ig

\\t’ TR

shiow how a sequence of Givens transformations can be generated to obtain o defloted and decopned

form of the type :

-

We first apply the row tmnsfornmnon Zy

G(1,2), Gre G(2,3)and C

element) .

Then the two

 z r 1 rlr zr z
¢ £ I r|r r «
0 Iy z z}!rxr 1 r
0 0 U 0ir r r
0 0 0 0|z r 1z
U ¢ 0 6l b4

L 0 © 0 00 T

P

= (;J (:'2 (;l tu 4;,

i

r rlelr v r z siritr r ¢ 1 r £z x & g
0 z zixlz 1 = U ¢ iz ¢z 1 xzx‘:%,z: 1
0 0 zicir = ¢ v 0 ririr r 1 [ xizt F I N
¢ 0 070z r =« 0 0 izl ¢ =« b Uiz o1 2
¢ 0 {0tz = 1 6 0 vy r 1 [ERY TN S ¢
0 0 Viwjo b3 u o ¢ P § 4G U Ulr ¢ 1«

Lo 0 ¢4 rJ L0 O 0 rl] LU v ;6 & r

o

where the Givens transfornmations & ¢
€ G(3,4) are chuwu to annibilate the elements U, 0y ..uxd Uy, resper !;\vl-. a
given below. Propagating [hvw through the intermediate triangular matrices ;im:v only Hy)
the column transformation @y = G3.G4.Gs applied to A, where the Givens IY«SN\{UfXHd(}UJN (g & G },‘3;
and (7s € G(2,3) respectively create the nonzero elements ry and

-

in" Tesu .l\ b

{7, € {341 doer not create oy
t £ ¢ iz 2+ Y[ ¢t 1 2 {: PO I N
g r r ritzr 1z = 19 z H ’ I r oz 3
0 0 r rizr 1 2 4 Gy z [ SR SR 4
0 6 U i r 1z 0 It f @ xr 1t 2
g 0 0 gizr r 1 9 1] t ; r ¥ 1 i
9 6 0 0i0 z 12 T R S O
o 0 0 olo o 2JLo o wlu o 1 1]

elements z, and rg are annililated again by Givens tansformations (7= € i} 2) ',u

G's € G12,3) as part of the row transformation Z3 = (.07 acting on A, (this yields 02 and O« respectively

Propagating these through the intermediate trmngular mamcm left of . 12 and then back to Ay, tiis res
Here the Givens transformations 65, &

in the coiumn transformation ¢ =
and Ghg € G{2,3) create the elements ry and 44, resp(‘(tnw,; :

(o.(iyg acting on

This subsequence of matrices is now already closer to the desired result.
ones above and are just indicated below by the sequence of annihilated
above, everything is done via appropriate Givens rotations :

-

[z r ziz}r r Y7 r 7 riscsiz z 1r1 {' z b 4 riz 1 I 1
0 r (|1 1 1 O r ririz z 1 ry ¥ 1l21 f 1 1
0 Oy Tlrijr z 1 0 0 rlzixr r 7z 0 1y riz r 1 1
0 0 o0joejr r 1z O 0 O0}rilz z r &} { 0ty 1 1 1
0 I r z 0 010 F I ¢ ) 0 Gl 1 1 x
0 T z 0 0 I 1] 0 [V Y] r 7

. O 0 ¢ r jJ L O 610 r ] 4] 0 00 ¥ oz

o

(H].L'

The next steps are dual to the

and created elements.

Just as

I xz Tz 7 I pd r Tirxjz r 1 rr =z « I T T T
0 z z|z| r r rir{r x 1 r 7 r}| 7 T r oz
0 0 rjiz}| z r oz 0 rlxzlz z » 0 7 z}| 1 1 r
0 0 0 z r I 6 0 O0jrzlr ¢ 1 6 0 0] z T E S ¢
0 0 010 z z z ¢ O0{n}lr 1 1 O 0 0105 r s 7
¢ 0 9 s T I 0 0 T 0 D10 0, T 01
L0 0 ¢ 0 I r J LO 0 90 0 rJLo 1] {} [{] 0, 1
8
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and finally :

fr oz riz:s I r rtfr ¢ ryeixr r Y[t v ¥z z s 7
0 z iz 4 z b4 U ¢ eilelr r ¢ r r 14z Ee Fi z
0 0 z{r]| S 4 ¢ 0 rizir ¢ 1 O ¥ 1« 1 ¥ F
g 0 010 = z z 6 ¢ Oirjr 1 1 g 0 virs z I z
0 0 vj0} =« r 0 6 uyju r z U 0 wiu} g £ z
0 0 0] U010 z z 0 4 00 T oz 0 0 8lulzr, 1 z

LO 0 010 1] Dy zJLOG 0 gtoto ¢ £J LG ¢ i [¢ £, &4

which is precisely the desired form. Notice that all this requested about n Givens rotations on each side
of each condensed matrix. As a result a zero eigenvalue was deflated and moreover & blodk reduction wae
obtained as the same time {see section 5.1 for more details on the operation count).

Case 3. We now consider the case where the closest matrix with a zero diagonal element vecurs in g
matrix B;. Without loss of generality we may assume that it is the matrix By, since we can always assooute
the subproduct A,Bf_ll A,-;“.B,"Al with the matrix A; {this subproduct indeed exists and Is ynreduced
Hessenberg). Below we thus take the example .. By, A where By has a zero diagonad oo position (4,41

s r ¢ £ ¢ 17+ 2 2 t ¢ 1]
6 r z r 7 1z § r ¢ r & 1z
6 0 r r r 1 D r 2z r ¢ 1
D 0 0 O r r v 0 r z z z
0o 0 v 1 r 6 o v r r r

L0000 0 0 0 rjJ Lo o0 o0 0 & 1|

.
O3 as chosen to

We first perform a row transformation Z7 = (; on both By and A where 7y € ¢4,
anuihilate the element 0; in By. At the same time a nonrzero element ryis created in Ay

. - -

r r r 1 r z I r r 1 1 7%
6 7 r r 1 1 r r ¥ 1 1 1
0 0 r 2z r 1z 9 r r 1 1 1z
0 6 0 0 & =x O ¢ r 1 1 1
g 6 0 0 0 = 0 0 r, r z 1z

Lo 0 0o 0 0 z4L0 9 0 9 r 1 |

Then a column transformation Q, = (7, with (; € G(3,4) is applied to A; to annikilate the element
again {yielding 0;). Propagating this over all triangular matrices back to [ yvields a column transformation
(2 € G(3,4) that does not create any fill in :

IIIIITTPIIII111
0 r r z z 1z z r r 1 1 1
0 0 r r z 1 0 z z 3 r 1
0 0 0 =z 2z 0 0 z 1 1 1z
0 0 0 ¢ 0 =z 0 0 0, 7 1 12
O 0 0 0 |0 0 O 06 z =z ]

After this step the B, matrix has two consecutive zero diagonal elements. The next pair of steps move
these zero diagonals one elements down while keeping A; Hessenberg. First apply a row transformation




Zy = Gy on both By and A; where (Jy € 4(5,6) annihilates 05 in B, and creates ryin Ay -

fe r r z ¢ 1z £ £ 1 ¢ 1]
0 z ¢ ¢  « r r r ¥ & 1
g 0 r = r 2 6 r ¢ *r ¥ x
g ¢ 0 0 r 1« 6 0 ¢ ¢ 1 =z
0 u 0 0 v =zr g 0 U r r =z

L0 0 0 0 06 03 )] L0 0 0 s r r |

Then apply the column transformation Q) = Gy with (74 € C(4,5) on Ay to annibilate the cement 7,
again (yielding O4). Propagating *his over all triangular matrices back to H) yields a column transfornation
Q@ € ¢(4,5) that creates the element z4 :

- -~ r -

r r r T * x r 1z r r 1 1z
8 » = z ¢ 1z r r r 1 r 1z
0 0  r = «x U r 1 1 s 3
0 0 0 z, z 12 6 6 ¢ = r «x
0 0 O 0 6 0 6 r r x
L0 0 0 6 03 L0 06 0 U r 1 |

With the two consecutive zero diagonals now at the bottom of By, we finally apply a column transformation
Q) = G5 with G5 € G(5.6) on A, to annihilate its bottom off diagunal element (vielding 047, Propagating
this back to B yields a column transformation Q, € G{(5,6) that creates the etement ry

- - -

r r r r zjz r r r 1 1|z
0 z r r = r r r 1 iz
0 ¢ r z r |z 0 r ¢ r 1§z
0 0 b z = |»x 0 ¢ z 1 1 {r
[{ ] 0 z¢{z 0 0 ¢ r = 1lzx
L0 0 0 0]0J3 L0 0 0 6 0]z |

The above form can now be deflated as indicated above. Notice that again the nunber of Givens trans.
formations applied to each matrix is at most of the order of n for one deflated eigenvalue at .

Summary. The above three cases indicate that any zero pivot element can be deflated with Oinj
Givens transformations per matrix, until a (set of ) lower dimensional problem(s) is obtained where now 4l
triangular matrices are invertible and A; is unreduced Hessenberg. In the proof of Theorem 1 and Corollary
! the general case can thus be “pretreated”™ by the Hessenberg-triangular reduction followed by the direct
deflation described above. Theorem 1 and Corollary 1 can then be applied to these “nonsingular™ cases,
which implicitly yields a proof of these theorems for the general case where any B, or A4, may be singular.
Moreover, since the above procedure allows us to reduce the general problem to the nonsingular case, we
only need to consider this simpler case in the sequel.

3.3 Shift calculation and QR step construction

Since we have now a Hessenberg-triangular form with all lower order matrices invertible and unreduced, the
corresponding products B;‘AK...B;‘AQB;‘A; exist and are unreduced Hessenberg. In the QR algorithm
applied to an unreduced Hessenberg matrix, the shift is typically computed from the bottom 2x 2 submatrix.
For the above sequence, this is of the form

pLE) B ~1 (R) (K) g B -1 (1 (1)
n

ﬁ-»l,n—l n-1ln an-l.n-—) n=ti.n =] n-—1} -1.n an-l.n—i an—l,n (]q}
N K (1) {3 (1 ’ -
0 B 0 all) 0 o AR S8
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Notice that the triangular 2 x 2 inverses can be repluced by their adjoints up to a scalar factor. The
eigenvalues of this 2 x 2 matrix are thus easily computed and are used for calenluting the slaft of th

Q R-step.
The transformation @y of the QR step applied to the Hessenberg mutnx
B AR B A B A,

is now completely defined by its first columnn. In the case of a single shift A, this first column has only tae
nonzero elements, corresponding to the normalized version of the 2-vector :

Ky k) ] PR (K By 17T Lo
by’ b Gy Gy, by b a0 | A
(N} (Ky | (1) (s ]
0 b3y 0 a3, o b, oy, i

Since the matrices @, and Z, are all defined by one another through the constraint that updates on
B, i=1..,K and 4;, i = 2, .., K must be upper triangular, one could as wedl compute any other matyn
than @;. It turns out that the simplest one to contruct is Z;. It performs a QK step on the unreduoed
Hessenberg matrix

: -1 -1 -1
Ay = ZWBL A BT AL,

and is again defined by its first column, consisting of only two nonzero elements. Now this 2-vector is the
normalized version of :

1} (2] b
4y, A by by
11y = ) 7, T
¢, 0 “{1_:'"”'"1‘:

which involves much less computations.

In the implicit double shift oune determines the first cohnnn of the real matrix (Ay - A Ay - A
where A} and A; are the two eigenvalues of (12). In order to avoid complex arithmetic when A, 1 = 1.7

are complex conjugate one constructs the first column of ,-%f, ~s-Ap +p-1f where s = (A + Ay and
» = M.A;p are real. This vector has only three nonzero elements and is up to a constant :

REVIRRNES . .
1,1 i2 LKy ik 1T (K} (k) 1) [STH B R
LT b by a0 % by b, a5y
21 2,2 (R Ky | )i t1
0 ) 0 baa 0 44 Dby, LR
232
(R3]
LW P i) PR
1 RS
- {1} ~+ (ORI O
21 (N TR
Gy By,
4]

3.4 Periodic QR step

Again for simplicity we only consider the product of four matrices B;'AzB{'I Ay and the case of a single
shift in order to explain the general idea. The first three matrices are upper triangular. The last matrix
A, is upper Hessenberg.

- - r - -+ I -

T I r r T 2 z z 1 1 & 12 z z z z 71 1 r r r £ 1 I
0 = z z z 1z 0z z r z 1z 0 z z z z = r r 1 1 71 1
6 0 z = z z 0 0 z z z =z 0 06 z z z 1 0 r  r 1 1z
0 0 0  r 1 0 0 0 T oz 0 0 0 7 r 1 0 0 z r r 1
0 0 0 0 z =z 0 6 0 r oz g0 0 0 0 7 0 0 r z r

Lo ¢ 0 0 0 z 3L 0 0 0 0 0 3|06 0 0 0 rjJLO 0 0 0 7 1 |
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Apply first Z7 € §(1,2) to annihilate the bottom element in the
this to the rows of B, and A, yields :

(R = =~ )

[~ I S = - N S
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S o N N RN
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2-vectur deterinined above
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~

fra = S e

"

[ e R

Then construct the column transformation @, € ¢(1,2) to anuihilate again zy in H,

transformation to the columns of A,, creating z; :

-

-

Then apply
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z
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o o o o
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the row transformation 2
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Finally close the loop with
again z3 but creating a “bulge” z4 in A; :
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-
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Repeating this process chases the bulge one step down at each sequence of Givens transformations, untill
it finally dissapears at the bottom of the Hessenberg matrix A,. Basically the same procedure applies to
the implicit double shift for real matrices except that then the bulge chasing transformations are 3 x 3
unitary matrices, realized by a product of Householder transformations or Givens transformations.

3.5 Reordering eigenvalues

We assume now that an upper triangular decomposition was obtained upon convergence of the above QK
steps (blow there is only one 2 x 2 block in A,).
corresponding to the diagonal elements z; and z, :

Then we want to permnute the two {real} eigenvalues
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r r T z I I r ¥ z r 1t z r r ¢ r I r o g PR
0 r =« r r z 6 r =z r r r 0 r r r z PO ¢ P I S
0 0 x, z z =z 0 ¢ z, ¢ 1z r 0 0 ry r r 0 0 r; r 4 x
¢ 0 I, T z 0 0 2 1 I 0 0 ry r 1 ¢ U r;, r 1
0 ¢ T oz 9 0 r z 4 o 0 = r g 0 F I ¢
L 0 0 0 z jJLO 9O 0 0 r}J L0 OC 6 0 L0 O ¢ ¢ r |

One then computes the product of the corresponding 2 x 2 matrices and computes from there the requested
updating Givens transformations that will perform the swapping. Care has to be taken to implaners this
in a numnerically siable manner as was e.g. the case for the QZ reordering in {11}, This especially appues
to the swapping of two 2 x 2 blocks which is a much more delicate problem.

4 Applications of the periodic Schur form

4.1 Periodic control systems

The application of this decomposition to control theory is apparent. Periodic discrete time systems natu-
rally arise when performing multirate sampling of continuous time systems [1}1. In optimal control of sach
a periodic system one considers the problem :

Minimize J = 2, 27Q,z, + u! R,u,
subject ta E\z,4y = Fiz, + GLu,

where the matrices Q,, R, E,, F,.G, are periodic with period I'. The Hamiltonian equations are peri-
odic homogenous systems of difference equations (2} in the state z, and co-state A, of the systemn. The
correspondences with (2) are :

Py 5 - -GiR7'GT E; . 0 F "
z; = , O, = Ay = . SRN
z FT 0 ET Q. ’

13
For finding the periodic solutions to the underlying periodic Riccati equation one has to find the stable
invariant subspaces of matrices §{) as above, which happen to be simplectic in the discrete time case {one
has to assume here that E,, F; and R; are invertible and eliminate implicitly E; [7]). Clearly the Schur
form is useful here as well as the reordering of eigenvalues [10], [14].

In pole placement of periodic systems [9], again the periodic Schur forin and reordering is useful when
one wants to extend Varga's pole placement algorithm [17] to periodic systems. Consider the system

B,‘Z,‘.H = Aiz; + Dy,

with state feedback u; = Fiz; + v, (13)
where the matrices A,, By, Dy, F; are periodic with period K. This results in the closed loop system
Bizigr = (A + DiF)zi + Doy (16}
of which the underlying time invariant eigenvalues are those of the matrix :
SW = BRN Ak + DicFr)- - By Y(Ay + D2 Fy)BiW(Ar + Dy ). (17)

13




In the above equation it is not apparent at all how to choose the matrices F; to assigy particular elgetnvalues
of Sg). Yet when the matrices 4,, B, are in the triangular form {8}, one can choose the F, matrices to
have only nonzero elements in the last column. This will preserve the triangular forn of the mutiices
A, + D;F; and it is then trivial to chouse e.g. one such colun vector to assigu one eigenvilue. In urdes
to assign the other eigenvalues one needs to reorder the diagonal elements in the periodic Schur form and
each time assign another eigenvalue with the same technique. This algorithm will of course fail when the
periodic system is not controllable, but this very procedure can in fact be adapted to precisely constinct
the controllable subspace of the periodic system.

4.2 K-cyclic matrix problems

Here we consider the following pencils of matrices :

F Bx 0 0 [ o 0 0 A
0 B 0 ] A 68 ]
AB-A=x} 0o . f -t A s
: Broz 0 S 0 0
| o 0 ... 0 By L b 6 An-y 6]

If the B, matrices here are invertible ene can divide them out by columns transformation. vielding -

r/n 0 - o 071 [ U 0 - 0  Sp
¢ . o - 0 S 00 0
Mag =BTAEMa=SEX] D0 T Do) S
In 0 TR )
L 0 0 .- 0 I ] | 0 ] Sk -1 4

where the matrices S; = B,»"lAg are as defined earlier. The matrix S is now known as a A-cyvelic matrix,
and by extension we will call AB— A a N-cyclic pencil. It is well-known that the eigenvalues of S are the
I -th roots of those of the matrix SN, but the latter is easily checked to be block diagonal :

r S(l) 0 0 e
o S 9 0
sh= 0 o
StE-10 g
L 0 0 - 0 SHRY ]

where again the matrices $() are as defined earlier. This shows the relation between the two problems. We
now show that the decomposition (6) actually yields a block Schur decomposition of the above pencil as well.
Indeed the orthogonal transformations Z = diag{Zx, Z;, ... Zx-1} and Q = diag{Q;, ... Qn-1. Ui}
yield a pencil Z* - (AB — A). Q@ which after appropriate reordering becomes upper block triangular with on
diagonal pencils of the type :

14

1o




( b(;"TK 0 0 ] [ v u U “Er:ln ]
o K 0 0 o0 ¢
N 0 - ¥
b(;})_z,;\-_: 0 : : . 0 0
| 0 0o - ] b(;:')_;,x_x J | 0 0 e, v

where () indicates that the element belongs to the triangular matrices A, or B,. For this reason the pendi
. ' B ] (1 . . . .

AB — A is nonsingular iff ag’jbﬁ’f ) # 0, i.e. iff there are no zero by zero divides in two consecutive clements

(in a periodic sense) or the diagonals of the decomposition (6).

4.3 Two point boundary value problems

In the solution of two point boundary problems (not necessarily periodic), one encounters inversions of
matrices of cyclic type (B4 . A)x = u where A and B are as above (18). Again we can apply the aorthoponai
transformations 2= and Q to obtain the system of equations Z*(B 4+ A)Q(Q"r) = Z°u which essentinliy
decomposes in n scalar TPBV problems. The big advantage of this is that increasing and decreasing
solution in the TPBV problem have been decoupled. The periodic Schur form in fact “aligns™ stable and
unstable solutions at each step. The decomposition could also be computed at a coarse mesh and then
“extrapolated” at finer meshes in order to avoid too much work. This is still under investigation.

5 Numerical aspects

The use of Householder and Givens transformations for all operations in the periodic QR algorithim guar-
entees that the obtained matrices A; and B, in fact correspond to slightly perturbed data as follows {indices
are taken modulo /') : ) )
Ai=Z{Ai+6A)0Q;, Bi=Z](B +6B)0Q .4,

where Q; and Z; are exactly unitary matrices and where |Q, — Qi |, | Z: = Z.||, |6 4.1|/1| AJ] and [[6 B/ 0,1
are all of the order of the machine precision €. This is obvious for the Hessenberg-triangular reduction and
the direct deflation since each element transformed to zero can indeed be put equal to zero without affecting
the ¢ bound (see [18], [8]). Things are different with the QR steps, since there one puts off-diagonal elements
in A; equal to zero only when these elements have converged to sufficiently small elements. Convergence
of the QR process is thus needed to guarentee stability as well. Finally, for the reordering one needs to
prove that the swapping transformations indeed result in strictly upper triangular matrices with reverse!
order of eigenvalues. This is the subject of another report.

6 Concluding remarks

The above decomposition has clearly many applications and we expect that additional ones will be found iu
the future (e.g. in robust control of periodic systems). The above decomposition is also related to [4] which
computes the Jordan chains of sequences as considered here. This generalized QR decomposition in fact
plays the role of the rank determination (via QR or SV D) needed to reconstruct the Jordau/Kronecker
structure of pencils of the type (18). This could be used as a preprocessing to eliminate the chains at
A = 0 or A = oo and extract in this manner a set of smaller but invertible matrices A,, B, as was also
done in section 3.2 via direct deflation. The advantage of this new approach is that it also identifies the
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structural indices at these two eigenvalues. Moreover, the geueralized QR decomposition allows for rou-
square matrices as well, and one can thus consider systems of the type (2) with n x n matrices A, and
B;.

Similar unpublished ideas are being pursued by John Hench, UC Santa Barbara {(persenal communics
tion), who arrives at the same decomposition (6) with a different algorithm. His condensed form essentially
consists of all A; matrices in Hessenberg form and all B; matrices in triangular form. We feel that the
connection with the QR algorithm then fails to go through, although he reports a good convergence of thit
algorithm as well. Possible application to periodic continuous control systems are also being considered by
him.

The present report is a more extended version of the paper [3] presented at the SPIE conference Lield
in San Diego in July 1992.
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Computing the PSVD of two 2 x 2 triangular matrices
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Abstract

In this paper. we propose o wethod for computing the SVD of a product of twy 2 » 2

tniangular tatrices. We shiow tiat wur method s vwericatly desirabide i that all relevan:
residunt elenents will be numerseally small

1. Introduction

The problem of computing the singujar value decomposition (SVD) of « product of two matrices has
many applications: see. e.g.. [4] and [5]. The problemn is also clusely related to finding a generalized
SVD of two matrices (ef. {6]). A crucial step in either the product SV {PSVD ) or the generalized
SVD {GSV Dy problem is the accurate computation of the PSVD of two 2« 2 triangular matrices.

We wish to achieve two objectives: first. to ensure that the transformations applied to the
triangular matrices must leave the matrices triangular and. second. to eusure that the SVD of the
product is computed accurately. As discussed in a recent paper by Bai and Denunel [1]. these
two properties are essential to guarantee the stability of the GSVD method 16]. Several strategies
have been proposed to preserve these two properties. In {1, examples are presented where these
strategies can fail and a new method that overcomes the exposed drawbacks is then proposed.

In this paper we propose an alternative approach. Our new method. which we will call a half-
recursive method. is a slight variation of the fully-recursive method proposed in {2} for computing
the SV'D of a product of several matrices. We show that our algorithm is simpler to implement
and enjoys the same nice numerical properties as the method iz [1].

Our paper is orgaunized as follows. In Section 2 we describe the PSVD of two 2 x 2 upper
triangular matrices. A criterion for numerical stability is given in Section 3. We present our new
algorithun in Section 4. and au errur analysis in Section 5. Finally, some detailed proofs can be
found in Appendices A and B. and a numwerical example in Appendix (.
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2. Problem Definition

Given two upper [riangular matrices:

we call the product A:

and let .
@ Y
A= (0 d,)

Our objective is to find three orthogonal matrices @y, (J;. Qs such that
! 2
o &y

i
o e .
T {(;I tr | oy
S

't: = (2!"“(('142

A= Q07

i

and

{

for v = 1,2, The two equations 2.1 and 2 23 naply that

In other words, we would Like 1, find three transformations (0, Q) and ¢+ to zero o0t four elements
namelyv, the off-diagonal elencnts of 4 and the subidiagonal eleents of 4y and AL The extra

-

requiremnent, although mathenatically feasible, may cause runencal Jifhouine of not treated with

care: see examples in [1j and 2. Our goal is to develop an algonithin so thatl propeities <7 5

o
¢

(2.2) will be satisfied except for verv small numernical errare. In thas paper. we uce the vertor and

matrix 2-nors:

2.1. Relationship with GSVD

The basic step in a GSVD of two 2 « 2 triangular matnices Ay and A, 1< 1o compute the SV of
the product A, - adjl 4;). where adj denotes the adjomnt of a matnix, We have
. dy ~byo
adg(ﬂ;‘g::( ¢ ) «
0 a; J

5
-

It is therefore obvious that our two-bv-two PSVD method can alse be applied to the two by twe
R (383 R
GSVD problem.

3. Criterion for Numerical Stability

Recall that 47, 4} and A" denote the three matrices .1y Ay and Al respectively, after the equinalence

transformations as defined in {2.1) and {2.2) have been performed Let 4 he the computed AL and
let Q). ;. and Q3 be the computed transformations. Define

P AN
V=047 = {0 %) ERY
\ l]/

44/ SPIE Vol. 1770 (1992)
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and o
- ) r Fa b
A= AL o= 0 SIS
! e i

Let € denote the relative muachine predision. The best that we can aiz fur s 1o compute 47 -uch
that

for e = 1.2, Condition (3.4} imuplies that ¢ mav be safely truncated 1o zero
to zero.

We prove in Section 5 that by using our new niethod. the computed matrices AL and A4 will
satisfy condition {3.4) and A" will satisfyv the conditions that

Bz Oie T4 i3 a

aud

.t

¢ om (s B i3 ha

The conditions proposed in 1 for computing the GSVD O taomatniees, 4y and ady A0 follow

from (3.4, 43.5), and the simidar cotstruction of the two aigonthms,
4. New Algorithm
In this section, we propose a new algorithin for the PSVD probliv. Our algonthm is & modifi.

cation of the algorithmn presented in 2! for a product of several toatnices. The tool we use s a
transformation discussed in Charlier et al. 3

Q={_ ) (4.

3 1] . . .
where ¢ + 5% = 1. We may regard the transformation as a permuted reflection:

-5 ()

The reason behind using permuted reflections is that we actually deal with an n x n problem. The
permutation that is incorporated into () corresponds to the so called odd-even order of eliminations
in one sweep of a Jacobi-SVD procedure.

—

While each transformation (4, is defiued by the cosine-sine pair:
¢, =cos#,  and s, =sinf, .

we also associate (), with the tangent
t, = tané, .
Given t,, we can easily recover ¢, and s, using the relations

1

€ = —==—— and s, = ¢, . {4.2)
V1t
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Following the exposition in [2]. we comsider the result of apphiing the left and nght trausfonmations

Qi and @, 1o a2 x 2 upper triangular matnx A

r " a’ b"\‘_f SN [ \ RPN .
A= Q'N)Z B (f' d') T s ) (\U d() (,(-, o

We can derive from {4.3) these four relations:

¢ = ¢ —al. +dt -~ b

V= cjepi~at; + dt, + b1, ).

¢ = cebty 4 d ¢ alit. i,

d' = c;eia ~ bt, = dt;t

(4 3a:
(‘;A';EU
{4 ¢

P4 ad

where t; = tan 8, and t, = tan#,. The postulates that both ¢ and U be zeros define two conditions
on t; and t,. 50 that (4.3) represents an SVD of 4. The postulare that « be zero defines & condition

relating #; 1o #,, so that if one s kuowny the other can be c’(,m;nn('d ihoorder to reduce A o an

upper triangular form. For ease of exposition. assutie for now thet obd = 0

This conditian will be

removed in Section 5.2 It hmphes that eje, = O and so the postulate it ¢ = 051 (4 400 becanies

—at, = dt;y ~ b= 0.

The consequence of (4.4 is that (g and Cbdy simphiy 1o

and

d = o (ti+ V.

respectively. The relations (1.4 and (3.4 inply that

Iy
ad = ad .

{440

For the SVIY problen. both «f aud 0" are zeros and we can use by o reduce (44b) ejther 1o an

equation in 1

= ([—N—I\) (If + U - | ) .

7 ;

where
or Lo an equation in f,:
where

Vo7d? = af
B e [y /)
’ 2!:( b N ’,)

From (8000 we aet 4 guadratic eguation by setting b’ to zevo:
: | | ) !

1+ 21, -1=0
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and from (4.5b) we get
th+ 2.0 1=y ENE

The two equatiots (3501 and (L35 are solved by the fonmalie given o 20

(d ~ aind =~ u:

r= “““"““5*“""’”“ {4t
y — b
Jp = e {3 G
2d
P b
a. = . i o
2u
i
= TS, (‘(Jd:
O+ Sig!n(’;)\;’,(?f + 1
i
f. = o= x-;,i;tw

a, ~ signla,nyar » |
In finite-precision anthmetic. either one ol 1 and 7, cancbe computed withow hugher relative precision
In particular. if

sIRnir = —sgtiih .

then (4.6d) will produce a very accurate £ whereas if
signir) = signihy

then (4.6et will produce a very precise .. I r = 0. thew hoth ¢ and ¢

will be computed with the
same relative accuracy,

Now, let r # 0. We first present a letna relating the sizes of 1, ana £ 1o those of ¢ and d.

di . thenio i >l and Tt 1<t UL Conversely, if

Lemma 4.1. Let abdr £ 0. If {a | >}
1 Vo
! £ hrde

fal<ld]. then oy <o | and [ ¢, ] >
Proof. See {2]. d

We are ready to present an algoritlim for computing the three orthogonal matrices @y. Q; and
(3. such that {2.1) and (2.2) are satisfied. The algorithm proceeds in two stages. In the first stage,

we calcujate the product A explicitly:

Q4= ayq; . {4.7a}
b:a;bg‘f-bldz. (47b)
d:d]d‘g‘ (47(}

We use (4.6a) to calculate r, and then compute either o; or ¢, so that the corresponding tangent
defines tue smaller angular rotation. Hence we obtain either {; or t3. In the second stage, we use
the relation (4.4e) with t) or t3 as the reference tangent to compute the remaining transformations.
Suppose that ¢ is known, then ¢; and t; are generated by the forward substitutions:

dity - by

t) = ———t . (4.8a)
ay
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dty ~ b
— .
On the other hand, if t3 is known, theu t; and {; are generated by the backward substitutions:

Ts {4 5by

azty + & )
= {42

d;

ty + b
8 = 0_3-(.11— . (4.8d)

If t, is computed first as the reference tangent, then (4.8a) will guarantee that A} will be numerically
upper triangular and {4.8b) will guarantee that A’ will be numerically diagonal. As will b bown
later, these two properties will guarantee that A; will be numerically upper triangular and hence
both {3.4) and (3.5) will be satisfied.

We refer to the method defined by (4.8a)-(4.8b)or (4.8¢)-{1.8d ) as half-recursive. to differentiate
it from the fully-recursive method proposed in [2] for computing the PSVD of several matrices. The
fully-recursive method also picks the smaller outer angular rotation as the startng point for the
recursion. from which all remaining rotations are computed. However in (2., the other outer rotation
is computed from the previous rotation in the sequence. For example. in the case of a product of
two matrices, the tangent {3 in {4.8b) would be computed from t; using {4.4de}:

dyty — b
3= 2212 (4.9;
a;

Note how (4.8b) uses the product A whereas (4.9} uses the matrix A, It was shown in {1} that
the fully-recursive method mi. fail to satisfv (3.5} and thus is not recommended for the GSVD
problem. On the other hand. tlie fullv-recursive method easily extends to auy number of factors in
the product. It is not clear what is an appropriate extension of the half-recursive method for the
case of a product of more than two matrices.

Our half-recursive method is equivalent to the method proposed by Bai and Demmel in 1] in
the sense that it also computes a very accurate PSVD of 4;A;. and that it uses essentially the
same criterion in choosing whether to compute the middle transformation Q; from @, or from Q3.
A proof that the two methods use the same condition for computing Q; is given in Appendix B.

5. Backward Error Analysis

In this section. we present a backward error analvsis of our computation. The function fl{a} will
be used to denote the floating point approximation of a. For the purpose of this analysis. a “bar”
denotes a computed quantity which is perturbed as the result of inexact arithmetic. For example,
instead of a. b and d. we have the perturbed values @. b and d which result from floating point
computation of 4;4,. We assume that exact arithmetic mayv be performed using these perturbed
values. The “tilde” symbol is used to denote conceptual values computed exactly from perturbed
data. For example. 7 denotes the result of using formula (4.6a) in exact arithmetic with the
perturbed data @. b and d.

In our error analvsis. we adopt a convention that involves a liberal use of Greek letters. For
example. by a we mean a relative perturbation of an absolute magnitude not greater thau ¢. where
¢ denotes the machine precision. All terms of order €? or higher wiil be ignored in this first-order
analysis.
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We start our procedure by computing elements of the product matrix A:

@ :=fllau,) = qail +al, REY
d:=flididy) = dydsii =45, (o bh
b= Riaby + byd;) = aybotl + 2000+ byd 1+ 29,0 130y

where, according to our convention, the parameters ay, &;. Jy. Jy. and Jy are all quantities whose
absolute values are bounded by ¢. From (5.1) it follows that

A= (A +6A00A +844y) .

with |l 64, )} < ¢ || A, I . This property, which in general does not hold for a product of more
than two 2 x 2 upper triangular matrices, will allow us 10 prove backward error type assertions un
the half-recursive method.

Qur analysis is divided into two parts. In Section 5.1, we consider a regular case where all
elements of the computed matrix product are suerically significant with respect to the maximal
in-magnitude element: i.e.,

minglaj.|bl.id!lj>emaxgial b jdiy. 52
In Section 5.2, we cousider special cases where at least one element of the computed A is numerically
insignificant.
5.1. Regular Case

Without loss of generality, we assume that rb < 0:ie., signir) = -sigu{b). Thus we compute 1,
first as the reference tangent [rom which ¢; and t3 will be next determined via (4.%a} and {4.8b),
respectively. We recall several lemmas from [2].

Lemma 5.1. Let ¢; and f; be the exact and computed solutions. respectively. of equation
{4.6d) with data a.b.d. Moreover, let ¢y, §; and é;.5, be the exact and computed cosines and sines
using (4.2) with the tangent value t;. Then

f1 = t;(1+ 10¢;) . (5.3a)
G = &1+ 3. {5.3b)
&1 =Sl +4uy). (5.3¢}

where |¢; | < e, |puil<e and || <e
Proof. See [2]. |

In other words, Lemma 5.1 states that the procedure {4.6a)-{4.6e) for soiving (4.5¢} is nu-
merically stable in the forward sense. Two lemmas follow, leading to our main resuit of Theorem
5.1.

Lemma 5.2.. The recurrences (4.8a} and (4.8b) yield f; and {3 such that

ayi;—dy, +b, =0, (5.4a)
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(]{3 - (zh +b

=0. {5.4b
with i
ay = ay(l+ 20 dy = dyil+ ¢y {34y
a=a(l+2v).d=dll+e) £5.1d;
Proof. The proof easily follows from (4.8a) and {1.8h). O

Lemma 5.3. The recurrence {4.8b) vields f5 such that f5 = (1 + 14~ .

Proof. Trom (4.8b}

. diy(1+11v)-b dfy - b 1ludi ) - di
13=( 1 +a“) )u+2n)=( e l;l)“+2ﬂ):<Uf1“hgg)H+2nL

aly
Since jd/a] < 1 and jf,/f3] < 1. we get {3 = i3(1 + 133 ). ]
We now show that @ and ¢ are computed with high relative precision.

Theorem 5.1.  Let @’ and d' be the exact singular values of the computed product A &

and ¢’ are computed via relations (4.4¢) and {4.4d). then the computed singular values @’ and o
satisfv the following relations

W@l 4oy d=dil ey (

it
'

Proof. From (4.4} and (1.4g). we get
a = J(l'f + 1)é163  and d = ("1(;3) + e,

where 1) and f3 are the exact tangents corresponding to the data a. b and d and 1, = &, /¢,. Thus.
the lemma follows from Lemmas 5.1 and 5.3, O

Theorem 5.2.  Suppose that the computed tangent values ave f; and f5. Let & 3. &5 and
&3 be the corresponding exact cosine and sine values. Let
€ 1= §éf—aty + diy - 0. (5.6)

bl = 615'31—-(111 + (H;; -+ bili;jl‘é . (37)

That is. ¢ and ' are the exact values of ¢/ and b, respectively. corresponding to the computed
data a. b. d. t; and f5. Then
FéM < e LA (5.%)

V1< Ky (1A, (5.9)

where A’y and K, are soine positive constants.
Proof. Sece Appendix A. O

Theorems 5.1 and 5.2 together state that the SVD of the upper triangular matrix A is computed
very accurately. We now justify why the (2.1) element in the computed matrix 4! can be set to
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zero by showing that | é0 | corresponds to a relative an. ~lementwise perturbation of A2 of the
order of €. Let the cosine and sine pairs ¢, and & satisfv 1, = §;0,, for v = 1,23, From (4.7 we
cau derive that

o= flie ) = &0+ By {7104

s S = &+ by (5 10

Let A! denote the exact updated matrix derived from A, ¢, 5, ¢

LI S
provide w bonud vu the element &L o= 1020 defined by the relation

1. aud s o0 Our next results

WL A3 Looa L i [ % :
€ 1= —& Sty S, 6 dy = EE b, {5.11

Theorem 5.3.  The matrices A} and A} are alimost upper triangular i that their (2.1
elements 7§ and €] satisfy the inequalities:
[é <3e (5.12a
and

N Y
Py

’
.

< I\";f ! A (3.

ot
.
o

Proof. Note that A} is the sawme for both fullv-recursive and half-recursive methods. The
proof that A} is almost upper triangular in the sense that (5.12a) holds can be found in [2]

I
.

To prove the second part of the theorem from {5.4a)-(5.4d) and (5.1a)-(3.1¢), we get the fol-
lowing two relations to first order of the machine precision:

r11(1+2t‘1)f—2*d1(1+01)f—‘+I)1:()‘ {5.13a)

aax(l +a+ '.ZL‘)[;; —didy 1+ 6+ O}{l + apba(l + 23 )+ bdy{1+23;)=0. (5.13b)

By multiplying both sides of (3.13a) by d,(1 + 2.J;) and subtracung from (35.13b) we obtain

- 1y, - ‘
a{ay(l + a+20)3 - ((;(-> (Ero-0+2300 +b(1+23))=dyf1+23,+2u1)8} =0.
1
or. since a; # 0.
. (11(12 - . .
@l + a4+ 20ty — —a—— (6+o0—0o1+ 2 + by (1 +23) - da{l 4+ 2, + 20 )1,
i

=agf3—d3t_2+b2+.l=0.
where .
[¢ - ; -
A= ay{a+ 2u)t; - (;) b+ 0 =1 + 230t + 0,3 - dy(23; + 2008, .
Thus, we can rewrite (5.11) for i = 2 as

6!2 = —€383ap + 52€3dy ~ Cy€3b, + 6352(62{3 - dzfz +by+4). {5.13c)

Now, as we start the half-recursive method from 1y, it means that |f;| < |f3] and |d| < |a]. Hence
from (5.10a), (5.10b) and (5.13c), we derive the inequality:

1€3] < [8362az(a + 20)] + |€a62a2(8 + & — @1 + 203,)| + [€3é2b,32] + |633,d2(23;2 + 2wy )
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completing the proof. J
In summary, we have proved two results using backward error analvsis. First. the transformed

matrix A’ is almost diagonal in that inequalities (3.8) and (5.9) both hold. Second. we can safely

sel each computed matrix .»i:, 1 = 1,2, to a triangular form because {5.12a} and (5.12b) are valid.

As a final note, even though we have assumed that rb < 0, we can easily prove similar results for
the case where 76 > 0.

5.2. Special Cases

In this subsection, we assume that inequality (5.2) is violated. To be specific. define

y:=min(ja| ,|b| . |d]) {5.14}
and _ .
Fi=max{tal . {b] .]d}) {5.15)
Now,
Ty<el: {5.16)

i.e.., one of the elements of A is numerically insi 1ificant. This situation requires modifications
to our algorithm, since the proposed formulas may break down. In particular, we do not solve a
quadratic equation to determiune either t; or t3. Instead. we set one of the two tangents to zero and
attempt to compute all the otlier tangents from the recurrences. We divide the special cases into
three groups. first.

tal +]d|#0 and (b1#0. (5.17)
second. ) )
ja| +1d|=0 and |b]#£0. (5.18)
and third, i
[b]=0. (5.19)

First. assuiue that {5.17) holds. Hence at least one. but not all. of the following three conditions
hold: i i
7=b. v=a or v=d.

We set t; to zero if
ta| >|d|, (5.20)

and set {3 to zero if ]
fal <ld| . (5.21)

Thus. the sizes of the diagonal elements of A will be compared to determine which one of #, or
{5 should be zeroed. Without loss of generality, assume that (5.20) holds: hence. {; becomes the
reference angle. So, {; and {3 are computed from recurrence (4.8a) and (4.8b). Further, since
t; = 0 it follows that i3 = —b/a. Substituting these values into (5.6) and {5.7), we can verify that
Theoremn 5.2 holds. Similarly, Theorem 5.3 follows from (3.11). We note that it is very important
to decide which reference angle to choose. even for the case when b is numerically zero. At first.
the choice of the reference angle may seem arbitrary for a “small” b. since either f; or {3 can be set
to zero. However. an unnecessarily large error may occur unless we pay special care.
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Second. assumne that (5.1%) holds. Then. at least one of the a,’s equals zero and at least gne of

the d;’s also equals zero. for 1. j = 1. 2. A solution is to permute either the rows or the columuns iy
order to ensure that the transforied product is diagonal and that the data are reordered. Hence for
this case. we may set the two extreme tangents {¢;. 13} to {0.x}. resulting in the transformations
being rotations of negative ninety and zero degrees. respectively, To be specific. consider the case
where one or more a,'s equal zero. fa; = 0,set fy = Qand t; =ty = x_ I a; # 0and a; = 0. set
t; = 0, compute {; from the forward recurrence and set f3 = x. Note that we may also choose to
determine the tangents using the values of the d,’s.

Third. assume that (5.19) holds. We need to account for the fact that we are really solving au
nx n problem. Although the 2 x2 subproblem is already numerically diagonal. it is not sufficient to
set ; = {3 = . which will leave the 2 x 2 product unchanged. The n x n data need to be reordered.
calling for t; = {3 = 0: i.e., the affected rows and columns will be permuted. Unfortunately. while
applying the symmetric prrmutation. the triangular structures of both Ay and A, are destroved.
Therefore, {, is determined from the recurrence.

6. Concluding Remark

In this paper we have presented a simple and accurate way to calculate the PSVD or GSVD of
two 2 x 2 upper triangular matrices. In Appendix C we present an example which shows that our
half-recursive method produces identical numerical results as the method in [1]. A significant issue
in the design of PSVD algorithms is how to compute the middle transformation. The method used
in our half-recursive algorithm is computationally more efficient than the method in [1] and yields
identical results. The following table lists the number of floating point operations to compute the
three transformations. 0. @,. and Q3. for the three different algorithms in the regular case. The
column labeled “Simplified Direct™ lists the operation count for tl.» Bai ~.nd Demmel algorizhm if
our simplified method is substituted for their method of computing the middle transformation.

Floating-point Operation Counts

Direct Simplified Direct Half-recursive
Addition 29 23 26
Multiplication 57 45 41
Division 13 11 8
Square Root 1 4 4

The Half-recursive method is less expensive than the Direct method and similar in cost to the
Simplified Direct algorithm. In addition, the upper-triangular structure of the 2 x 2 matrices is
maintained by the Half-recursive meihod. Application of the 2 x 2 Half-recursive algorithm to nx n
problems is a topic for further investigaion.
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Appendices

A  Proof of Theorem 5.2

We first present a lemma.

Lemma A.1. Let &, and {; be the exact values corresponding to the given data a. b and d,

and let 7, be the computed value of 7,. Define a residual r; by

bd )
Ty = g(ff + 20,1, - 1).

Then
[ 1] € RNyeld),
where /\'; is a positive constant.

Proof. See the proof of Lemma 5.2 in {2]. d

We now have the necessary tools for proving the theorem.
Proof (of Theorem 5.2).  First. from Lemma 5.2 and relation {5.4b} we get
Using (5.1a)-(5.1b) and (5.4d) we prove the inequality:
[ < Ne(la] +1d])< Nye | A .

Secoud. rewrite (A.1) as

o= %[dbtf +1(d? - @* - b?) — db) = =[(dt; - b)(¥ty + d) - §,a%).

D]

From (5.6) we obtain

=~/

| - -
~{dty = b) = 13 + —
a

C1Cah '

Substituting (A.53) into {A.4) and rearranging terms, we get

. o &bty + d
'-&?1 + dl‘:, +bf1’3 =T - "(—'—l—_) .

E’]E’al—l
and so o .
- £ (bt
B o= ey, - A
a
From (4.6d) we derive
. )
[tya; | < 3¢
and from (-1.6h) we get i
T —0b b
0 = | — > —
bl ]2( ]*12(1]
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€ = &és((—als + dfy — by + (aly — diy + b)) = (@ - )&y 33 — (d ~ d)& i3 .

(A1)

(A.2)

{Ad)
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!
|
}
I
'
1
'
'
|
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It follows that

i< d < a
4 P e | o=, tALT
LI B 5 A tALT
sinee we have assutued that | d o <pa v Finallve recall from 5.3 that ¢ = !'1{1 w e g, aud uee
{A.G), Lemma A.l and {A.5) to obtain
PO 1< &éptr | #2181 < Ky flay . (AN

thus completing the proof. M

B How to Compute the Middle Transformation

As pointed out by Bai and Denunel in [ a eritical issue concerus how the middle transformation
should be computed. They proposed the following scheme for its computation after both end
transformations have been determined. In order 1o relate the test for computing 0, in {1] to the
test in the half-recursive method. we first transiate our setting to that in {1}. Let

17 s ("‘ "“) QT
N C}

Note that the relation. given by

C -~ . C -3
< and VT = (2
] Ca =3 Cy

i

SR a, b spa a1hy + eyd
(21-'“: 1 ! 1 1 - 141 191 ‘ 1141 (B‘}ii‘
-y N 0 —cpay ~cyhy + spdy
upon permuting rows and chatging the sigus of the top row. is equivalent to
. 1 =8 ay by cray by — ~od , .
(T = ! = ( Pt V=0 (B.1b)
S ¢y 0 d spay sphy + ody
Similarly.,
\ QT _ ay b &3 =03 _ s3tts + ¢c3by -3ty + saby (B.2a)
-~ 5 = = . a1
2k 0 (.13 3 S§3 C;}d; .S-;(l;»

By changing the sign of the second columns and permuting columns, we obtain

VTadj(Ay) = ( I ) ( ‘ff —b2 ) = ( cady —c3b = s3a ) =H. (B.2b)
83

¢3 @ sady  —s3by 4+ caus

In (1], Bai and Demmel used (B.1b) and (B.2b) as a starting point for computing Q,. Their
argument is as follows. After postmultiplications of both (B.1b) and (B.2b) by @;. the (1.2)
elements of G and If should become zeros. Now. one should compute Q; from the one product,
either G or H. for which the computed element in the (1,2) position has a smaller error relative
to the norm of the row in which it resides. The magunitude of that error can be only bounded and
hence the test for the choice is based on the bounds of the errors. It is easv to see that the bound
g for the relative error in the (1.2) element of the computed G is

ferhy| + [sydy]

= . B.3a)
’Cl(l]|+iclb1 _'Sldll (
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while the bound / for the relative error in the (1,2) element of the computed H 1s

_leaby] + [sgay
[esdy| + leaby + sgaz]

i

{B.30)

Now if ¢ < h, then Bai and Demmel compute Q; from U'T A and otherwise from V7 B. The next
lemma shows that the conditions specifying how @, is computed by Bai and Demmel and by the
half-recursive method are essentially equivalent.

Lemma B.1. In exact arithmetic, the condition
g<h (B.4a}
where g is defined by (B.3a} and h is defined by (B.3b) is equivalent to the condition

lal > |d!. (B.4b)

Proof. First note that {B.3a) and (B.3b) can be simplified to

[b4] + ftidy}

= - Bf? )
gt + hydy - by e
and ,
) = bl + jtaay (B.5h)
‘= Iy + jtaay + by i
respectively. Through (4.8a. and (4.8¢) the relations (B.3a) and {(B.3b) simplify further 1o
lont + 1t d
= by ndif (B.6a)
fay |1 + (2]
and ol + | |
2+ tsa;
= B.6b
[N+ 120 (B.6b)
respectively. Hence (B.4a) is equivalent to
hydat+ Hyd! < lagh,t + latyt (B.7)

We now prove that (B.4b) implies (B.4a). The proof that ai < [df implies that g < h is analogous
and is omitted. Qur proof is elementary but tedious as it reyuires us to consider a large number of
cases. Assume that {af > [bl. Then Lemma 4.1 inplies that 13 > t;. From (4.8b) we see that

laty + hi = 1ldty!
and as jats! > fat;! we conclude that
sighfaty) = —sienth) = —signiayh, + bydo . (B.~)

as from (1.7by b = ayby + byd,. Substituting (4.8h) into (B.7) aud using (4.7h) again we get that
(B.7} is equivalent to the following mequality:

“l;({:{ + ;(lf;, + (11(}2 + l)](!_}! _(_\ !(l‘l)_r% + iﬂf"(‘ . (”Q)

Case 1. —{bl > [byd,l = lagby).
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Then
lata] > [dty] = B > dty] + [bydof = layba]

el

establishing (B.7).
Case 2a. —|b] > |byd,y| — |ayby] and Jats] > |b].
Then |a;1by| > |bid;| and using (B.8) we obtain that
lbydy| + [dty] = [byda| + {ats + ayby + bydy) = Jats] + 2|bydyf = [ayby] .
from which (B.7) follows.
Case 2b. —[b] > |b1da] = |aiba| and |ata] < (6.
Then again |a;b;] > |b)d;|. Now from (B.8)
[bid,| + |dtri = |byd,] + laty + ayby + bidy]

= {hdy] = jatsl + |ayb,] = [bida} = layby| = lats!

from which {B.7) again follows.

Remark. Note that there might be a slight difference in using (B.4a) or (B.1b) as the lemma
holds only in exact arithmetic. In finite precision computation. the relations (B.4a) and (B.4b) may
not always be equivalent. However, we have not been able to find any numerical example where
these two conditions are not equivalent. Moreover, as shown in this paper, the consequences of
numerical non-equivalence are numerically insignificant.

C Numerical Example

It has been proved in Appendix B that the half-recursive procedure computes essentiallv the same
numerical results as the direct method of [1]. For both methods. the end transformations are
computed explicitly from the product A = A;A,. and the middle transformation is computed
from the same direction. The greatest difference between the fully-recursive method and the other
two nccurs when there is cancellation in forming the product A = Ay A4;. In the following PSVD
examyle, Ay and A; each has an O(1) norm, but the product A;A; has an O(107%) norm. Hence
errors waich are small relative to the initial matrices may be large relative to the product.

A - 2.316797292247488¢ + 00 —1.437687878748196¢ — 01
S 0 —5.208536329107726¢ ~ 06
1= 2.472499811756353e — 05  2.624474233535929¢ — 01
ar= 0 4.229273187671001€ + 00

- 0 ~2.202832304370565¢ — 05

The three methods all compute the left transformation from the explicit product and calculate
the middle transformation from A;. We use the subscripts dir, hr, and fr to distinguish between
results computed via the direct, half-recursive, and fully-recursive methods, respectively. The
computed values of A\ 4., A} ,,, and A}, are numericelly identical in that the corresponding
entries are numerically equal:

41 Ay = (5.7282808689595436—05 -1.110223024625157¢ — 16)
Arda
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Teae Ty
p
.
AL, = ( N
N\

AL, = ( m

The computed matnces Al . he 10
element of A, v significantly different from e cosrespanditig clemens .

i [ A8TTE2e417 HOMIIIVEI TS - 1T
> dir \“ 15313537047 4 3TAUNIIO UL Dt e D ]
" ( BTATE N NS Ea ) ~d DHISLATOATE T s
A . r s sy - . -, s . ¢
- L =3 DALEESI2ALUOTA e — 1T Gt TTLAGIT TV e - U
PO TS S ST R FORES B SUI A PR | TR ade TO .
Vo ; ,
LR A 3] AN TTOCHN T T e w0

—y . . N . P ; 5 3
To muantain triasgulagin, ] atd 4 are trancated by setting the apqraptiate cletnonts ta sor

FE 4 H .- H I H LA ! . H ¥ . .
Let A7 and A5 denote the tryncated matnees, The prodoes U= 40 47 chouid be duapanal
3 .
".: ‘,'* -‘l <)
g T - B . .
i i -4 I R T 3
1 _ i PRIV AT LN VR TR St DT ST DU S -0y
.= { !
- ! i} [ /
R G O T R RN TR PR U
-'1 fr = \ . ..y . ‘
\ {i i A DL L S SR L AR RN I

y . 1y 3
Clearhve A%y and A%, are wawencal’s diagonal byt A7, crptenon of diagonabity Faron

AY4. to be a diagonal matnx requires a truncation of (;g, T whneh e signrhcant with respet
to A7, The matrices A%y, and A7, require only insignificant truncations 1o oblan & :

Loaligin .
o

“
but we have previoushy made v 107175 trancanons duning their compntating to foree A7, and
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ABSTRACT

The problem of linearly constrained least squares has many applicati ns in signal processing. In this paper,
we present a perturbation analysis of a lineatly constrained least squares algorithm for adaptive beamforming. The
perturbation bounds for the solution as well as for the latest residual element are derived. We also propose an error

estimation scheme for the residual element, which can be incorporated into a systolic array implementation of the
algorithm.

1. INTRODUCTION

The least squares problem with linear equality constraints has important applications in signal processing,
e.g., adaptive beamforming. To solve this problem, McWhirter and Shepherd [5] proposed a systolic algorithm and
architecture. In this paper, we present a perturbation analysis of the problem and propose an error estimation
scheme for the McWhirter-Shepherd (MS) algorithm [5]. This paper is organized as follows. The least squares
problem is defined in Section 2 and error bounds are derived in Section 3. An error estimation algorithm is given
in Section 4, and in Section 5 a numerical example is presented to illustrate how well our new algorithm works.

2. PROBLEM DEFINITION

Given an n x ¢ complex data matrix X (n), the least squares problem with linear equality constraints is to find
8 ¢g-element complex vector w{n} such that

| X (n)w(n)|| = min
subject to the linear constraints

Sw(n) = b,

where S is a k x ¢ {k < ¢q) complex matrix and b is a k-element complex vector. Throughout this papez, we use
the 2-norm:

-t =12

In signal processing, new data arrives continuously. Define the data matrix X(n) recursively by

X(n) = (X(nfl))'

z(n)”
i.e., the nth row z(n)7 represents a snapshot at time n. Our goal is to compute the n-tk residual element

o = 2(n)Tw(n).
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Is the solution vector w(n) unique? Define a (k + n) x ¢ matrix Sx(n) by

Sx(n) = (X(Sn))‘

We assume that k£ + n > q. The solution is unique if and only if the matnix Sx(n} has {full column rank. that is,
the overdetermined matrix equation

Sx(n)u(n) = 0 (23,

has a unique solution w{n) = 0.
Next, we wish to transform (2.1) into a familiar unconstrained problem; see {3} and [4;. Let

p=q-k
and partition the matrix S as
S = (S; 5) ) )

where Sy is k x k and S; is k x p. For simplicity, we assume that S, is nonsingular and upper triangular

. for
example, S, may be the result of an initial QR decomposition of S. Accordingly, we also partition X(n) as

X(n) = (Xi(n) Xa(n)),

so that X; is n x & and X3 is n x p. Then (2.3) becomes

(xite) oty ) o0 =0,

which is equivalent to
Sy S _
( 0 C(n)) w(n) =0,

C(n) = Xqo(n) = X1 (n)S]* S,

The matrix C(n) is called the Schur complement of Sy in Sx. The equation (2.3) has the trivial solution if and
only if C'(n) has full column rank. We proceed to eliminate the constraints. Let

w(m) = (7)),

so that wy{n} is k£ x 1 and w3(n) is p x 1. Since

where

Siwi(n) + Sjwa(n) = b,

we get
wi(n) = S57b - S7 ! Sawy(n). {2.4)
Let
v(n) = ~X1(n)S7 '
We derive

IC(n)wi(n) - o(n)|| = min, (25)

an unconstrained problem analyzed in (3], [4]. Now, what about the residual element r,? Define the Schur
complement matrix C(n) recursively by
= {Cln-1)
C(n) = ( C(n)T ) .
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Partition the row vector z(n)” so that

2(n)T = (21(n)T 2a(n)7).
where z;(n)7 is 1 x k and z;(n)7 is 1 x p. We get
c(n)T = 2a(n)T - 2, (n)T S S,
Let v, denote the n-th element of v(n). The last residual element of (2.5} is then
e(n)Twa(r) = v = 23(n)Twa(n) + 23(n) T ws(n) + va = va = ra,
i.c., the same residual element as desired by the constrained problem (2.1).

How do we calculate r, recursively? Suppose that we have available 8 QR decomposition of tie (n ~ 1} »
matrix C(n —~ 1}:

C{n-1)=Q(n-1)}R(n-1j,

where Q{n — 1} is (n — 1) x p with orthonormal columns and the matrix R(n — 1} is p » p upper triangular. The

problem (2.5) is reduced to ‘
(25 - (45, 2

Qn—1)"v(n- 1). We triangularize the coefficient matrix by a unitary matrix P. Then

pH (R(n-l) u(n-—])) - (R(n) u(n))‘

c(n)T v oT -

where u(n — 1) =

so that R(n) is p x p upper triangular. The matrix P consists of p Givens matrices. From P and Q(n ~ 1) we can

construct an n x p orthonormal matrix Q(n) such that C(n) = Q(n)R(n) and u(n) = Q(n)” t(n}. The desired
element r, is given by

wheze cy,...,c, denote cosines of the p rotations that make up P.

3. PERTURBATION ANALYSIS

Eldén [1] presented a perturbation analysis of the linearly con<‘rained least squares problem. Since his theory
is general, it involves weighted pseudoinverses and their corresponding condition numbers. In this section, we
derive simpler perturbation bounds for the solution w(n) as well as for the residual element r,. To simplify cur

presentation, we will drop the argument (n) for the matrices and vectors, and let x{M ) denote the condition number
of a matrix M with respect to the 2-norm.

Let w solve the perturbed least squares problem

W (X +€¢Ex, X;+e€Ex,)ud|i= min (3.1a)

subject to the perturbed linear equality constraints

(S1+€Es, Sy +eEs,)uw=b+c¢fy. (3.1b)

Suppose that ¢ > 0 is a real variable and let

C+1EC = (Xz + tEx:) - (X] -+ fEx,)(sx -+ 153,)»1(52 -+ tES;)
and
v+1f, = —(Xy +tEx, }{S + tEs, ) Hb+ th).

212 /SPIE Vol. 1770 (1992)




Recall that S) is nonsingular and that C has full column rank. Suppose ¢ is sufficiently small so that for ¢ = 0. ¢
we have S; + tEs, is nonsingular and C + ¢E¢ has full column rank. Let w(t) solve the matrnx equation

51+!E5, S+ tEs, >w(t)-( b+tf ) 03,
0 (C +tEc)?(C +tE,) T\(C HtE) (v~ 1)) v
Then w(0) and w(e) are solutions to problems {2.1) and (3.1), respectively. Define w = w(0) and v = uw(¢}. Then

W = w(0) + ew(0) + O(?).

Differentiate (3.2) with respect to 2 and set t = 0. We get

ES ES 51 S) . - /b N
( 0 E§C+5”Ec)w(°)+(o c”c)“’(o)“ (Egv+c“j.)' (33)
Let
s[5 S s (T 0 _{b _{( h
5..(0 I), C._.(o C), d:(v) and fdz(jv).
Then

-1
(sol C-izc) =§YCHE)™ and fiC)l < |IC].

Solving for w(0) in (3.3), we obtain

-1
. {1 S I Es, Es, 0 0 ] )
"’(0)‘(0 ch> [(c”n)‘( 0o Cc¥Ec )Y \EHv) o EfC)Y
_ G-y AH Fy L SH Es, FEs, _ -y pmHA [ O
= 5 HCHE ' E {f,,-< < Ec)w] 5 YCHG) (E,, ) (3.4)
where r = Cw; ~ v denotes the residual vector. Furthermore, by assuming

Hhll < N6l WA < vl HHECH S HICH (3.5a)
I 2)l=103 2)
0 E¢q - 0 C

()1 < I57H1 ICH €)= G it + EH 1S hol] + 1S~ HEHEY M NCil el

and

< WSIICl, (3.5b)
we derive the inequality

Consequently, we obtain the following perturbation result.

Lemma. Using the notations defined above and assuming that ¢ in (3.1) is sufficiently small so that the inequalities
(3.5) are satisfied, we get

o —wll _ s o (] N s
o < {s6m©) (uéu 13 uwu“)“(s) FanE nwn} + 0. el

To illustrate the effect of x(é) on the solution of (2.1), consider a simple example in which § = (S5; 0) and
X = (In_ I, ), where I, is an n x n identity matrix and n < k < 2n. By observation, w; = 5[‘6 and wy = ~w;.
Since x(S) = x(S51) in this example, we see why the presence of k() is necessary in (3.6).
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We proceed to detive a bound for the error in the residual. Let

0 _ 5 +1E51 52+tE5, w(t)-» b+ tfy

1)/~ 0 C+tE¢ v tf, ]

differentiate the equation, and then set ¢ = 0. Using (3.4) to substitute for w(0), we get
0\ _ [(Es, Es S1 Sa) ooy
(5(0))'( 0 Ec)'”(o c)“’(o) fa
. Es, E % AH A 0

_ - H s 53 - - H Ay

= CC')[( 0‘ Ec)w fd] Cc(Cc7C) (Egr)’
where €! = (CHC)"'C¥. Consequently,

#0) = {I - CC)(Ecws - f,) - C(CHC) ' EE>.
As for the residual element we have r, = 7

Using the assumptions (3.5a) and noticing that wy; = C'v and r = (J — CC!}v, we derive our major result.

Theorem. Under the same conditions as in the Lemma, we get

ﬂ—ugﬁ'—' < eIl - CCM|(2x(C) + 1)] + O(e?) (3.7)
and
!r‘n - 1’,,5

H”“ <e [“I - CC'”(K(C) + HC“ “C'en” + 1)] + 0(62). a {3\8)

Here sre some additional remarks. If we set § = I and b= 0, then (3.6} leads to a perturbation bound for the
standard least squares problem [2]. We also note that [[CSwl|? + ||r{i? = ||d||*>. Thus, we can define

cos 8 = ||CSwll/||d|]

and use {1/cos6) and tan® in (3.6). The bound (3.7) is similar to a result derived in [2]. The inequality (3.8)

indicates that |f, — rn| depends on «(C) as well as on ||v}|. Both (3.7) and (3.8) can be simplified by using the
relation that ||l - CC!|| = min{1, n ~ p}.

4. ERROR ESTIMATION
Although the error bound (3.8) is simple, it requires Cle,, whose computation involves at least a back-solve.

In this section, we present an error estimation scheme for the desired residual element. When the new data vector
z(n)T arrives, it is first processed by S so that z,(n)7 is annihilated. In particular, let

(zio) z$0)) =z(n)T and v =0

Then the preprocessing proceeds as follows:

(81,1 Sii41 e 31,,)_(1 0)( S0 Sper e -’I,q)
0 z,(& zg” -g 1 z‘("” z‘(:ll) z;z-x)

b - 1 0 b
MON -g1 1 -0 )

and
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forl=1,2,...,k, whete g; = z,“"”/su. Wiiting in algorithmic form, we have

forl=12,...,k
begin
g =28 ey
forj=1+1,...,q
zﬁl) - zg:—l) — gy
ul®) = wl-1)  gh;
end.

The above process shows that

(Z(k)

HCIEEE zé")) =z3(n)7 - 21(n)7S;'S; and u*) =~z (n)T S0,

These two variables are then used for updating the QR decomposition of C{n — 1) and computing the residual

element. We present below the algorithm derived in [4].
forl=12,...,p

begin

1 k-1
cf’l') = \/lcf'; W24 |z£+, )2,

cosé = cf,';'l)/c,(';) ;

sinf; = z,(‘:_':"—l)/cf";);

forj=1+1,...,p
begin

(n) _ (n-1) (k+1=1) o o .
oy =€, cosG,+z,‘+J— sin 6y ;

A5 = ey Vsingi 42551 st
end;

u§"’ = v}“-l)cos 6 + vt -Ysing,;;

ulk+l) = —v,("—” sin 8 + u{*+-1) cos 6

eund;

rn = wB+PI[TE_ cos 6.

In the above, cff;) (for k = n — 1,n) denotes the (i, j)-element of C(k) and v‘m the

i-th element of v(k).

SPIE Vol. 1770 (1992} / 215




Now, we discuss an error estimation scheme for the preprocessing. Let * denote the corresponding computed
value and fl the floating point computation. In the above procedure we calculate

i = fl(fz“'l)/él.lL
£ = A - fias,)),
al) = fiE0-Y — fl(gimy)).

Define the relations between the exact and computed quantities as follows:

&5 = 8i,;(1+ 0 9;(€),

£ = 1+ (o),
G = ai(1 + a&u(e)),

) = D1+ P80 (e)),
by = bi(1 + mbi(e))s

I

where (¢ i(€)] = O(e), [¥(e)| = O(e), [€1(e)] = O(e), 18V (¢)] = O(e) and {&i(€)] = O(¢). The five quantities o,
(,m, ay, r)(') and g are all real and nonnegative. We also assume that the errors such as o, ,¢, (¢} and ijxi\f,”(e)

are so small that higher order terms like (o1,4;,(¢))? and (U;’(¢“(£))(<,(‘~l)1ﬁ§l-”(6)) can be ignored. Using the
lemma in {3], we obtain the following algorithm for estimating the errors in preprocessing.

forl=12,...,k
begin
a = max{({"”,ml;};

forj=1+1,...,q

@ _ 10 Mg, max{on )
G = 120 ;

n“) = 1‘4“"1")("”%4‘-‘[{.1)?! max{ay,u}

end.

As explained in [3], the above estimation scheme can be incorporated with the preprocessing procedure and imple-

mented on the same systolic architecture. Additionsl time is minimal because the calculations can be carried out
during the otherwise idle time of the processors.

The error estimate for 7, can be obtained by the algorithm presented in [3) using (¢*), -+ ¢{*)) and 7*) as

k+1
the error estimates for (z£‘f31 zgk) ) and u(%), respectively. Again, we list the error estimation algorithm and

refer the details to [3]. Define the relations between the exact and computed quantities as follows:

&n = 70+ &y (e)), &) = a1+ a1,6.,(0),
21(") -~ zy‘)(l + CJ("),I,g")(())‘ cosfy = cos {1 + o;,,cﬁgfl)(f)),
a®) = o*)(1 4+ 1;(")8(")(6)), sin §; = sin 6:(1 + cr,.mfi',)(c)),

5.(“_1) = v.(”_l)(l + &ipr1aiprr(e}) ﬁf") = v,(")(l + &y pa1®sper(€))

and

Tn = ra(1 + n8(e)).
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The following algorithm estimates the error in the last element of the residual vector:

forl=12,...,p

begin

o1 = max{{1, C,(,T{l—”} ;

forj=1+1,...,p

begin

o1 = Ic}:'-'”con& mu(t’u,,.v|4n}|+i4£::"”:in&. mu{(i:;"'”,a,‘.}l .
Li = |c::'”co:0|+:'.":;'_” sin 8] !

C(H_k) _ lcg‘”n'\nﬂ( m“(ft.,.ﬂcg)l-&-!x{:‘:.-”col@; mu((iz_‘:"",m,:}!
k45 T Ic‘(:") sinO.—zi.:J"” cosd|

end;

(A+l-1)

101"'” cos B max{€i y41.91 1} +]u 3in6, max{n™¥'"Y o}

Vs =
L+l "’u(“—l) cos@+ul*i=1) gin gy !
n(k_H) _ !vl‘"'” sin 6y max({..,+|.duH-Hu““-” cos8; max{n'*+'- 1 o}
Iv,‘"") sin Br—uld+~1) cog8,}
end;
— plk+
n= 1)( ?) max{al,h"'ya’p,p}-

5. AN EXAMPLE

The example in this section shows that the computed residual element may be accurate even when the matrix
C is ill-conditioned. In this case, the proposed scheme gives a better error estimate than (3.8). Both the MS
algorithm and the error estimation algorithm were implemented using MATLAB and run on a VAX 8300 with
machine precision € = 1.1102 x 107 !® in the Communications Research Laboratory at McMaster University.

Example. Suppose the exact constraint matrix and corresponding right side vector are

120 0 0100 —120000v/2/7
S=]1 0 10 0 0 1 0 and b= Vv10/700
0 0 10 0 1 6v/5/7
Thus we set the error estimates as ¢, = y; = 1 and ¢, ;(¢) = §(¢) = ¢. The data matrix at time n — 1 is
-1 V6 -2/10 0 0 0
X(n-1)={ 0 -1 2 00 0
0 0 -1 0 0 O
Suppose we know the exact R(n — 1) and u(n — 1)
0.001 1000v/3 210 -10v2/7
Rn-1)= 0 1000 -2v2| and u(n-1)=| 4/10/7
0 0 1 6v5/7

Similatly, the error estimates of their elements are all initialized as e. Now the new data

z(n)T = (-1 -+ —2/10 0.001 0 0) and w®=0
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are available and their error estimates are initialized as CJ(O) =1,forjy=1,...,6 and p'% =

= 1, respectively. After
preprocessing, we get c(n)” = (0.002 1000v5 210) and v, = ~10v/2/7. The corresponding error estimates

are C}s) =1, for j = 4,5,6, and {3 = 23. The QR updating scheme and its error estimation algorithm are then

applied to R{n ~ 1), u(n — 1), ¢(n), va and their error estimates. The exact residual element r, = 61/2/35. The
computed error is

[Fa = ral = 1.11 x 10718,

The condition number of C(n} is 4.6 x 10° and the error bound as given by (3.8) equals 3.40 x 10=°. The estimation
algorithm gives 8 much more accurate value of 9.62 x 10718,
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ABSTRACT. The Singular Value Decomposition (SV'D) is a matrix tool that plays a critical
role in many applications: for example. in signal processing. it is often necessary to calculate
the SVD in real time. We present here a new technique for computing the S\V'D on a
parallel architecture whose processors are connected via a fat-tree. \We tested oyr idea on
the Connection Machine CM-5, and achieved efficiency up to 40% even for moderately sized
matrices.
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1. Introduction

Let A be a real m X n matrix. Its singular value decomposition (SV'D} is given by
A=UsvT

where U and 1" are respectivelv m x m and n x n orthogonal matrices and £ is an m x n
diagonal matrix. The best approach to parallel SV'D computation is apparently one of the
Jacobi type: see. e.g., [1]. [2]. [4]. [5]. [7]. [11]. [12]. In this paper, we will discuss the efficient
implementation of a Jacobi method on a parallel computer with a fat-tree interconnection
network. We will propose a new Jacobi ordering for a fat-tree and analyvze its behavior
both theoretically and experimentally (on a Connection Machine CAl-3).

This paper is organized as follows. In the next two subsections, we present the fat-
tree architecture and Jacobi algorithm. Section 2 introduces a new fat-tree ordering. and
provides some kerne] programs. We analvze communication costs on a fat-tree network in
Section 3, and discuss implementation results on the CM-3 in Section 4.

1.1. Fat-Tree Architecture

The fat-tree was introduced by Leiserson [10] as a novel approach to interconnect the
processors of a general-purpose parallel supercomputer. This communication structure can
also be seen in the distributed computing environment. such as a network of workstations.

The routing network of the Connection Machine CM-5 [14] is based on the fat-tree. This
parallel machiue cousists of up to 5344 (= 512 + 22) nodes for the model at the Armyv High
Performance Computing Research Center (AHPCRC) at the University of Minnesota. and
32 nodes at the Northeast Parallel Architectures Center (NPAC) at Svracuse University.
Each node of the CM-3 is a SPARC chip which runs at 32 MHz and delivers 22 Mips and
5 Mflops. There is a 64 Kbyte instruction and data cache and a 16 Mbyte memory in
each node. All the nodes are synchronized. In October of 1992. two vector units will be
installed in each processing node: each vector unit is capable of 64 Mflops peak and 40
Mflops sustained [9]. The control and data networks are connected via a skinny fat-tree
structure. By skinny, we mean that the bandwidth does not increase proportionately to
the number of nodes: in particular. the bandwidth is 20Mbyte/sec per node in a group of
four processors. 10 Mbyte/sec per node in a group of sixteen. and 3Mbyte/sec overall. So
data contention may severely degrade performance when all nodes need to access a large
set of data from other nodes through the top level of the tree.

1.2. Jacobi Algorithm

The one-sided Jacobi method [3] generates an orthogonal matrix ¥ such that the columns
of the matrix V. given by IV = AV, are mutually orthogonal. The matrix V" can be

generated by a sequence of plane rotations VIV, V{2 ... where each V%) is an identity
: . k : . k . k

matrix except for four entries: v‘(‘-) f}” = —siné. 1‘},) = sinf and vjj’ = cos#f.

where (i.j) represents the index pair of the columns of 4 that 1'%} orthogonalizes. The

SV'D computation requires O(mn?) operations for an m X n matrix 4. For a limited

= cosf. v
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number of processors, i.e.. up to n/2 processors. an ethcient way is 1o configure them as a
linear arrayv along the horizontal dimen~ion. Columns can be distributed either in blocks
or in a wraparound fashion. Note from the above denivation that eacl columin par can be
orthogonalized independentiy, so that we may transforio up 1o p pairs concurrentihy, whete p
denotes the number of processors. This method was used for compuring the SV on cpeviad
machines. e.g.. parallel computers sucle as the Hae IV 111 and vecror provessors cacly as

the CYBER 205 {3}, The oue-sided Jacobt method s cotposed of these g jor steps

4

1. Compute the norm of each column.
2. Conipute plaue rotations to orthogenalize paired columns.
3. Apply the plane rotations to update the columus and the columt norns

4. Permute the columns in a pre-chosen order to generate the sent column pas. and
repeat the process from ~tep 2.

If the column pairs are distributed 1o different processors. then ~tep 4 requires cojumum
cation. In the case of a two-dimeusional miesh tas in the TLLIAC IV eack columu 1o teedf
distributed among different processors and step 3 requires that the rotation parameters
be transmitted to all the processors containing each given column par. In the case of a
one-dimensional array. each column pair is stored eutirelv in one processor and significant
speedup is possible if vector units are present within each processor.

In this paper. we use the one-dimensional arrav. with each proceswor storing twao blacks
of columins. That is. we use a block Jacobi aleorithun, 1 which the column blocks are
circulated according to a given ordering to bhe defined, and the cvelic by rows ordering (6,
is used within each block.

2. New SVD Algorithm

In the past. when the hypercube interconnection ropalogy was in vogue. several Jacoh
ordering schemes were proposed [1]. [4]. {7} to unlize the hypercube <tructure. Here, for
a one-dimensional array of processors with no wraparound. a chess-tournament ordenng
[2] may be chosen because it does not waste processing power or memory space. However.
communication requires a two-way transmission of columns between adjacent procescors.
An alternative is a ring ordering [4] which uses only one-vay transmission. but it requires
a wraparound connection. To develop an ideal ordeiing {or a fat-tree, we aim to mintmize
the total path length by using the extra bandwidth of a fat-tree.

2.1. Fat-Tree Ordering

It is easiest to describe this ordering by an example. In Figure 1| we show the case for
sixteen columns and eight processors. For pedagogic reasons. we use a base & numbering
of the indices and so A=8. B=9. .... H=15. The XOR (exclusive-or} column is the binary
XOR of the column indices: at each step. the XOR value of each index pair is the same.
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and from one step to the next this quantity follows the Gray code. The cost-to-this-step
column denotes the maximum r:mber of levels up the tree the messages must travel to
reach their destinations from the previous step. In general, if there are p processors and
two columuns per processor, then a sweep requires 2p — 2 steps. We save one step per sweep
because the last step of sweep i can be included as the first step for sweep i + 1.

Step
0.

U ol ol

© ®»

[ 2

-1

SN WD

—
.

Ordering of Index Pairs

(01)(23) (45) (67) (AB) (CD) (EF) (GH)
Forward Sweep

(03) (12) (47) (56) (AD) (BC) (EH) (FG)
(02) (13) (46) (57) (AC) (BD) (EG) (FH)
(06) (17) (24) (35) (AG) (BH) (CE) (DF)
(07) (16) (25) (34) (AH) (BG) (CF) (DE)
(05) (14) (27) (36) (AF) (BE) (CH) (DG)
(04)(15) (26) (37) (AE) (8F) (CG) (DH)
(OE) (1F) (2G) (3H) (44) (5B) (6C) (7D)
(OF) (1E) (2H) (3G) (4B) (54) (6D) (7C)
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Figure 1. Fat-tree Ordering based on the Gray code
{eight processors and sixteen columns).
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2.2. Kernel Programs

To see how to write a simple node program to generate the fat-tree ordering. we use the
following observations from the example in Figure 1. To simplifv the presentation. we
consider only the forward sweep. At each step. each processor must communicate with a
remote processor whose label differs in one bit. The basis for our kernel presented here is
to compute a mask such that the exclusive-or of the mask with the current processor label
vields the remote processor label. When using the Gray code, this mask can be computed
using only the step number - it is independent of the processor label.

We also use the following observations. First. we use the fact that the XOR's follow the
Gray code. Second. we observe that during the second half of the forward sweep (steps
7-14). the lower half of the columns (numbers O..... 7 in Figure 1) remain fixed in the
processor with the same number. Hence the location of the remaining columns is fixed
entirelv by the Grayv code. Third. we observe that the first half of the steps (steps 0-6)
amount to doing a Gray code fat-tree ordering ou each half of the praocessor array separately.
The only remaining step is the transition from the first half to the second half (step 6 to
step 7). Hence we can define the ordering for these steps recursively from the smaller cases.

We can summarize the steps for the forward sweep in the following procedure. in a
pseudo-MATLAB notation assuming for the sake of simplicity of the presentation that the
sends do not block.

% Node program for processor ProcNo for one forward sweep using an array of
% NProcs processors. Assume Column(1l) and Column(2) are the head and tail
% columns, respectively, in the local memory.
Orthogonalize_Individual_Column_Blocks % (within each block);
for StepNo = 1:2%NProcs-2,

Pairwise_Orthogonalize_Column_Blocks;

%W for each processor, figure where the data goes to and send it.

[Mask,ColumnSwitch] = MakeMask(StepNo,ProcNo,NProcs);
RemoteProcNo = XOR(ProcNo,Mask);

Send Column(2) to remote processor RemoteProcNo;
if ColumnSwitch == rotate,

Column(2) = Column(1);

Column(1l) = receive_from(RemoteProcNo);
else

Column(2) = receive_from(RemoteProcNo);
end;

end;
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function [Mask,ColumnSwitch]=MakeMask(StepNo,ProcNo,NoProcs);

% ColumnSwitch indicates which column of the pair is to be sent/received.

" % Mask is the XOR Mask so that RemoteProcNo = XOR{(ProcNo,Mask).

% The Mask is computed independent of the processor label ProcNo.

% Handle first 2 steps as special cases to start recursion
if StepNo <= 2,
Mask=1;
ColumnSwitch = tail;
if rem(ProcNo,2) == 1 & StepNo == 1, ColumnSwitch = rotate; end;

% First half of sweep: pretend this is a separate fat tree sweep on each
% half of the processor array.
else if StepNo < NoProcs-1i,

[Mask,ColumnSuwitch] = MakeMask(StepNo,rem(ProcNo,NoProcs/2),NoProcs/2);

% Middle of sweep: here is first exchange through top of tree.
else if StepNo == NoProcs-1,

Mask = NoProcs/2:
ColumnSwitch = tail;
if ProcNo >= NoProcs/2, ColumnSwitch = rotate; end;

% Last half of sweep: only tail columns move, figure Mask using Gray codes.
else if StepNo > NoProes-i,

Mask = xor(gray(StepNo),gray(StepNo+1));

CelumnSwitch = tail;

end;

2.3. Test of Convergence

For a fat-tree ordering. any consecutive 2p—2 (cr even 2p — 1) steps may not constitute one
sweep. We must complete a sweep. either forward or backward. to ensure that all column
pairs have been orthogonalized. The convergence test is simple. Ve maintain a one-bit.
counter in every processor. The counter is reset at the beginning of every sweep. and is set
whenever a column pair needs to be orthogonalized. At the end of the sv .<p, a global or
operation is performed and convergence is achieved if no bit has been set.




3. Analysis on a Binary Fat-Tree Network

We consider a binary fat-tree with p processors, and assume that the communication time
from one processor to another is determined by the number of links a message has to
traverse and the capacity of these links. Our assumption is supported by experimental
results reported in [13]. Define a channel to be the communication link between any two
adjacent nodes: here a node can be a processor or an internal switching element. The
capacity of a channel equals the number of parallel wires in the channel. and thus the
maximum number of simultaneous bit-serial messages it can support [10]. Denote the
capacity of the channels at the bottom level by 4. Label the levels from bottom up as level
1. 2. ..., so that the capacity of the channels at level { is given by 2'-'4. Let us ignore
start-up and latency costs. Within a single problem, all the messages have the same size
and thus we measure the cost of multiple message transmission using path length.

For the ring ordering. at each step a message always goes through the top level and the
maximum path length equals 2logp (unless otherwise stated, we use base 2 logarithms).
Since there is at most one message at each channel, congestion never occurs and it takes
2p — 1 steps to complete one sweep. The total path length equals (4p — 2)log p.

The fat-tree ordering does not cause congestion on a fat-tree network. Hence it suffices
to count the number of times that each level is used. Denote that count by ¢(p,!). Consider
the forward sweep. We see from Figure 1 that with p = 8 processors. the top level is used
in two transition steps. the middle level in six steps and the bottom in fourteen steps. The
first six steps correspond to the fat-tree ordering for the first four processors. and also for
the second four processors. In the general case of p processors. there are 2p — 2 steps using
log p levels. of which the first p — 2 steps amount to the ordering for p/2 processors. When
the number of processors doubles to 2p. we add a new top level and the first 2p — 2 steps
correspond exactly to the p processor ordering. There are an extra 2p steps. of which two
use the new top level. four use the next level (the old top level). eight use the following
level, etc. Formally. we get the recurrence

c(2p.0) = c(p.1) + 4(p/2") forli=1..... log p.

starting with c(p.log p) = 2 and ¢(p.!) = 0 for ! > log p. Therefore. c(p.1) = 4p/2t = 2. and
the total path length is given by

log p
23 e(p.)=2[(20-2)+(p—-2)+...+14+6+2] = 8p— dlogp - &
=1

For a large p, the path length ratio of the two orderings grows like log p/2, a very attractive
result for our new ordering.
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4. Connection Machine CM-5

Although the CM-5 network is a 4-way tree, the analysis on 2-way trees is applicable. We
take a 4-way tree and expand every interior node into a binary tree consisting of that node
with two new children each connected to two of the four former children. The number of
levels as well as the path length are doubled. However, the CM-5 is skinny and the capacity
only doubles at every level. Hence it becomes a skinny 2-way tree in which the capacity
goes up by v/2 at each level.

To simplify our analysis. we concentrate on the 32-processor model. So p = 32 and there
are three tree levels because [log, p] = 3. The dominating communication cost for the CM-5
is the overhead time that is spent on address calculation. buffer space management. and so
on. Let t,, and t,s represent the cost of such overhead in each step for the ring and the
fat-tree ordering. respectively. Let t.; be the overhead cost for resolving contention in the
channels of the CM-5 network when applving the fat-tree ordering, and let ¢, be the time
for traversing an edge in the network. We note that t, < t.; < o5, Where t,4 € {t-. 8o},

tof = toh. and te € (2,1/10% t,4/102). The overheads for and t,; depend on the data size

and are of equal magnitude.

We proceed to compute the coefficient for t,, which we assume to equal the number
of messages that traverse the channels in one sweep. For the ring ordering. there is no
congestion in the networks. So the coefficient for t. is 2-63 -3 (=378). and the total cost
equals 63 t,, + 378 t.. For the fat-tree ordering. we observe that level 1 is visited 62 times.
level 2 fourteen times, and level 3 two times. \We model the resolution of the contention
by sending messages in batches. Messages through level 2 must be sent in two batches and
messages through level 3 in four batches, in order to avoid contention. Hence we account
for the thinness of the CM-5 network by assigning a weight of two to level 2 and a weight
of four to level 3. The total path length is 2(62 + 2 - 14 + 4 -2) = 196 and the total cost
equals 62 t,5 + 196 t, + t.;. Thus, on the CM-5 the fat-tree ordering may not outperform
the ring ordering hecause of the extra cost associated with message contention.

4.1. Experimental Results

In Table 1 we present implementation results on a 32-node CM-5 for random n x n matrices
with n ranging from 64 to 1024. The program was written in Fortran and each experiment
repeated ten times. We measured the overall and computation (by disabling communica-
tion) costs for one sweep. and estimated the communication cost by subtracting the latter
from the former. Our results show that, despite the message congestion that it causes on
the CM-35. the fat-tree ordering gets more competitive as n grows, justifying our effort to
minimize the total message path length (see also [13]). The mflops (million floating-point
operations per second) figures in Table 2 are computed based on the count that 8n3 flops
are required for one sweep. We conjecture that the compute performance deteriorates when
n gets bevond 512 because the cache is no longer large enough to hold the huge column
blocks. Nonetheless. our implementation results shows how, as the message size increases
{hence t, increases [13]). the fat-tree ordering quickly becomes competitive.

-8 -
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n 64 128 256 | 512 1024
Overall Ring 7.595e7% [ 3.229e71 [ 2.628 | 1.794 ¢’ | 1.380e°
Fat-tree | 8.134e~% | 3.481e1 [ 2.237 | 1.795¢' | 1.361¢°
Compute Ring 3.013e~% | 2.320e1 [ 1.871 | 1.493¢" | 1.309¢°
Fat-tree | 3.436e% | 2.420e~T | 1.878 | 1.493¢" [ 1.310¢°
Communicate | Ring 4.582e7% | 0.909e~" | 0.757 | 3.010 7.110
Fat-tree | 4.698e~° [ 1.061e~" | 0.359 | 3.020 5.140

Table 1. CPU Time (seconds) of Ring and Fat-Tree Orderings

n 64 128 256 512 1024
Overall Ring 27.61 | 51.96 | 51.07 | 59.85 | 62.25
Fat-tree | 25.78 | 48.20 { 60.00 | 59.82 | 63.11
Compute | Ring 69.60 { 72.32 { T1.74 | 71.92 | 65.62
Fat-tree { 61.03 | 69.33 | T1.47 | 71.92 | 65.57

Table 2. Mflops Rates of Ring and Fat-Tree Orderings
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ABSTRACT

Processors with multiple functional units, including the superscalars,
achieve significant performance enhancement through low-level execution
concurrency. In such processors, multiple instructions are often issued and
definitely executed concurrently and out-of-order. Consequently, interrupt
and exception handling becomes a vexing problem.

We identify factors that must be considered in evaluating the effectiveness of
interrupt and exception handling schemes: latency, cost, and performance
degradation. We then briefly enumerate proposals and implementations for
interrupt and exception handling on out-of-order execution processors.

Next, we present an efficient hardware mechanism, the Instruction Window
(IW), and a new approach, which allows for precise, responsive and flexible
interrupt and exception handling.

The implementation of the IW is then discussed. The design of an 8-cell IW
has been carried out; it can work with a very short machine cycle time.

Finally, we present a comparison of all interrupt and exception handling
schemes for out-of-order execution processors.
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Interrupt Handling For Out-of-Order Execution Processors

1._Introduction

Processors with multiple functional units issue and execute multiple
instructions concurrently and possibly out-of-order; they enhance
performance by extracting low-level concurrency from the instruction stream
[1, 2, 3]. The CDC 6600, IBM 360/91, and the CRAY machines are forerunners
of this class of processors; however, these processors issue at most one
instruction per cycle. Due to advances in device technologies, recently
announced RISC processors often issue and certainly execute multiple
instructions concurrently. However, these processors have not been able to

support interrupt and exception! handling efficiently and with an acceptable
latency.

In this paper, we address the interrupt handling problem, which has
hampered the development of processors which execute and may even issue
multiple instructions. We propose an efficient hardware mechanism, which
supports an interrupt handling scheme with a flexible latency, set specifically
for each type of interrupts requested.

The remaining sections are organized as follows: Section 2 presents a
discussion of interrupts and exceptions. Factors for evaluating the
effectiveness of interrupt handling schemes are presented. Existing proposals
and implementations for interrupt handling on out-of-order execution
processors are briefly reported in Section 3.

Section 4 presents the Instruction Window (IW), a simple and yet
versatile hardware mechanism which supports efficient and flexible interrupt
handling. Basic window operations are introduced in Section 5. Section 6
proposes an innovative interrupt handling scheme, which makes us of the
IW. In Section 7, we discuss the implementation of the IW. Section 8 gives
an evaluation of all interrupt handling schemes.

2. Interrupts and Exceptions

An important and indispensable feature of any processor is its ability to
handle properly interrupts and exceptions. An I/O device, a sensor, or a timer
may "interrupt” a processor to perform a specific task. An executing

1 From now on, we will simply use interrupt to stand for interrupt and
exception.




instruction may cause a page fault or an overflow/underflow; an "exception”
thus results. Finally, one may place an instruction in an instruction stream to
call for a "trap”, which initiates a pre-planned action. Presentations on
interrupts, exceptions and traps can be found from many sources, among
them: [4,5,6,7,8]. In this paper, we use the term interrupt to denote an
interrupt, an exception or a trap. Our study does not treat the subject of
interrupt detection; rather, we investigate how a processor responds to an
interrupt request, once it has been received.

When an interrupt request is received, the processor must save its
processor state, then load and execute an appropriate interrupt handler. Upon
completion of the interrupt handling routine, the saved processor state is
restored, and the interrupted process can then be restarted.

A processor state should contain enough and preferably only enough
information so that the interrupted process can be restarted at the precise
point where it was interrupted. To be able to resume an interrupted process,
the processor state should consist of the contents of the general purpose
registers, the program counter, the condition register, all index registers ana
the relevant portion of the main memory.

The classical approach to identifying precisely the point where a process
is interrupted is to save, among other vital items, the address of a specific
instruction, say instruction o, when the processor state is saved. All
instructions that precede instruction a have been executed. And instruction «

and those that follow it have not. Instruction a thus provides a precise
interrupt point.

For processors, which execute instructions concurrently and possibly
out-of-order, the identification of a precise interrupt point when an interrupt
request is made may become very costly.

In order to evaluate interrupt handling schemes, a framework must be
established. Three factors have been identified:

1) Latency:

An interrupt handling approach must be judged by the latency
between the receipt of an interrupt request and the completion of
saving the processor state. Clearly, any acceptable interrupt handling
scheme should yield a latency, that is appropriate for the interrupt
request, which may be generated internally or externally.

2) Component Cost:

The cost of additional hardware and software incurred by the
installation of an interrupt handling scheme must be considered.
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3) Performance Degradation:
The presence and operation of an interrupt handling scheme may
bring about performance degradation; its extent should be critically
examined.

There are three sources of degradations:

i. Abort -- In response to an interupt request, some instructions
that have already been partially or even completely executed are
"aborted";

ii. Execution inhibition -- the need to maintain a "consistent”
processor state prevents some instructions which have been
executed out-of-order from depositing their results; this in turn
inhibits the execution of subsequent instructions which use these
results as operands;

iif. Update -- Certain schemes, such as checkpointing, require
run-time continuous updating operations, which have to be
performed by the processor.

3. Interrupt Handling Schemes

In the past, the trend in the design of processors with multiple
functional units has been towards sequential instruction issue, concurrent
execution and possibly out-of-order instruction completion.

The CDC 6600 [ 9 ] maintains a "SCOREBOARD" to resolve dependency
conflicts among instructions in an instruction stream, and allows these
instructions to complete out-of-order. The "exchange jump"” is the primary
interrupt mechanism for the Central Processing Unit (CPU) to handle
interrupts. If the exchange jump sequence is requested, the CPU is permitted
to issue instructions up to, but not including, the next instruction word. All
issued instructions are allowed to run to completion. The CPU registers are
then interchanged with the data stored in the exchange package. The CPU is
restarted at the location specified by the new contents of the program counter.
Since the processor must, on average, wait for two instructions to be issued
and completed before the interrupt can be serviced, this approach exacts a
penalty in latency.

The IBM 360/91 supports both precise and imprecise interrupt
handling {10]. Upon the receipt of a precise interrupt request, or a trap (either
precise or imprecise), the instruction decoding is temporarily halted and all
issued instructions are allowed to complete, thereby resulting in considerable
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latency. If an imprecise interrupt is generated (via internal processing), the
state of the system is lost and therefore the interrupted process cannot be
restarted precisely.

When an interrupt is received in the CRAY-1 {11, 12}, instruction issue
is temporarily terminated, and all vector and memory bank references are
allowed to complete. The interrupt handler is loaded and executed in a
similar manner to that employed by the CDC 6600 The CRAY-1 must, on
average, wait for two instructions to complete before the processor state can be
saved. However, as the CRAY-1 supports complex vector operations, the
latency (in cycles) may be longer than the CDC 6600.

Hwu and Patt [13] proposed a promising approach to handling
interrupts. A minimum of two checkpoints and hence two additional states
are required. Essentially, the checkpoints, which invariably incur some
penalty in processor performance, are used to divide the sequential
instruction stream into smaller units to reduce the cost of “repair”.

Smith and Pleszkun [14] presented several interesting methods to
realize the classical precise interrupt. The simplest is the in-order instruction
completion method: an instruction is only allowed to modify the processor
state when all its preceding instructions are certain to be allowed to complete.
A “reorder buffer” is added so that instructions are permitted to complete out
of order; it is used to reorder them before they are permitted to modify the
processor state. "History buffer” and "future files” are suggested as
alternatives. Result bypass is proposed to reduce concomitant performance
de_radations, which they quantified with extensive simulations.

Sohi [15] deftly combined the operations of reservations stations and
reorder buffers into the "register update unit” to effect precise interrupts. In
addition, Smith and Pleszkun [14] presented several very stimulating
"architectural solutions”; these include saving the "intermediate state of
vector instructions” and saving "a sequence of instructions that must be
executed before the saved program counter is precise”.

4. The Instruction Window (IW)

In this section, we present a hardware mechanism, which contributes
toward precise, responsive interrupt handling for processors with multiple
functional units.

The general structure of a processor with multiple functional units is
shown in Figure 1. It depicts a General Purpose Register (GPR), or
equivalently Load/Store, architecture.
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The instruction unit prepares the incoming instructions for execution,
and issues the instructions to the appropriate functional units via the
interconnection network. The functional units operate on the given
operands and produce results which are returned to the appropriate registers.

We propose the installation of a hardware structure named the
Instruction Window (IW). The IW, shown in Figure 2, consists of a set of
registers, to be called cells. One and only one instruction occupies a cell. Such
a cell serves as a "staging area” for an instruction. In a conventional
processor, an instruction is removed from the staging register as soon as it has
been issued to a functional unit. In the proposed mechanism, an instruction
remains in its "staging register” after its issuance.

We use a three-operand format for instructions:
i or &1, S2, D (D

where i denotes the instruction tag, OP the operation, S1, S2 the registers used
as sources, and D the destination register.

Each cell contains at least three fields: issue, tag, and instruction. An

optional vector element number (VEN) can be added for those processors
with vector instructions.

The issue field has one bit, which is used to indicate whether that
instruction has been issued to a functional unit. This field will not be shown
in later figures.

The tag field contains a tag which uniquely identifies the instruction
held in that cell.

The instruction field contains a copy of the instruction as it was fetched
from the Instruction Buffer.

The optional vector element number (VEN) field is set to a value,
equal to the number of vector elements left to be processed. We assume the
availability of a Vector Length Register, which provides the initial value for
VEN. If the instruction is a scalar instruction, VEN is set to 1.

Thus, as an example, the following 2-instruction sequence may appear
in the IW as shown in Figure 3:

1 ADD RO, R1, R2
2: ADF VRO, VR1, VR2 (2)

Note that instructdons 1 and 2 occupy two consecutive cells and the cell for
instruction 1 is above that for instruction 2. The issue field is omitted. The
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opcode ADD stands for an integer addition and ADF stands for a floating-
point addition. Registers are denoted with R's and vector registers with VR's.

5. Window Operati

We present in the following the basic operations for the IW: fill, issue,
and remove/update.

Fill

When a fill operation begins, the IW has already "pushed" its
remaining instructions to the top. Let instruction i precede instruction j in an
instruction stream; then i is always located "higher"” in the IW then j. And
the empty cells are found at the bottom.

When an instruction is written into the IW, it is always placed at the
topmost empty cell with a unique tag. Concurrently, if the VEN field is
implemented, it is set to N, the vector length specified by the Vector Length
Register. The instructions freshly written into the IW follow the same order
seen in the instruction stream.

Due to restrictions imposed by available data paths, the number of
instructions that can be moved concurrently from the instruction buffer to
the IW has to be limited.

At this point, a reader may justifiably have concerns about the
implementation of the fill and other operations to be introduced in this
section and their possible impact on the machine cycle time; this will be
addressed in Section 7.

We use the sequence of instructions, given in (3), to illustrate the
operations of the IW.

1 MUL RO, R1, RO

2: ADD R2, R3, R2

3: ADF VRO, VR1, VRO

4 ADD R4, R5, R4 (3)
5: ADD R6, R7, Ré

6: ADD R8, RY9, RS

7: ADD R10, R11, RI10

The opcode MUL stands for an integer multiplication operation. The
sequence in (3) is designed simply to present the salient features of the IW; it
is not meant to stand for any meaningful computation.
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For this example, let the processor issue at most one instruction per
cycle. It is further assumed that instructions be written into the IW from the
instruction buffer at a rate of one per cycle. Three functional units are
available: an integer add unit, a floating-point add unit, and an integer
multiply unit. Both the integer and the floating point add operations have a
latency of three cycles. Pipelining has been employed so that an add operation
may be started every cycle. An integer multiply takes six cycles and the
multiply unit is not pipelined.

In cycle 1, instruction 1 is written into the topmost cell of the IW. In
cycle 2, instruction 2 is written into the IW. As long as there is room in the
IW, in cycle i (i= 3, 4, ...,6), instruction is written into the IW. Assuming an
IW with at least 6 cells, the contents of the IW after cycle 6 is depicted in
Figure 4.

Issue

For processors which issue at most one instruction per cycle, at the
beginning of each cycle, the topmost instruction that has not been issued to a
functional unit is examined. If an appropriate functional unit, and the
requisite data paths are available, and no data dependency exits, the
instruction is issued. For possible future extensions to processors which may
issue up to k instructions per cycle, where k > 1, at least the topmost k
instructions that have not been issued are examined.

For each issued instruction, its opcode, operands and result
specifications are passed to the assigned functional unit, and actions are
initiated to copy operands from the source registers to the functional unit.

Fill and issue operations, as specified, will be performed concurrently.
Implementation issues are discussed in Section 7.

Returning to our example, instruction 1 is issued to the integer
multiplier in cycle 2. During cycle 3, instruction 2 is issued to the scalar adder.
Instruction 3 is issued to the floating-point adder in cycle 4. Note that each of
these instructions does not have any data dependency. For each subsequent
cycle, at most one instruction will be dispatched to a functional unit. The
processing of these instructions is depicted in Figure 5, where L stands for fill,
I for issue, E for execute, and S for deposit.

Let us examine instruction 2, which is issued in cycle 3, as shown in
Figure 5. Starting in cycle 4, the pipelined integer add unit operates on its
operands. Since it has an execution latency of 3 cycles, it will produce its result
at cycle 7 and proceed to deposit it into the destination register, R2.

Remove/Update

245




At the instant when an interrupt request is received by the processor,
an issued instruction may be at an intermediate stage of execution. We have a
choice of aborting the execution of that instruction or completing its
execution. Aborting an instruction means that the execution already
performed is wasted; on the other hand, letting an instruction execution run

to its completion may impose a long latency before responding to an interrupt
request.

We present a new parameter: No Return Point (NRP): the execution

point after which the instruction should not be prevented from changing the
processor state.

For an interrupt which requires "fast" response, for example an
internal "machine check”, we can set the NRP to be at the start of the final
machine cycle, when the computation result is written into the the
destination register. With such an NRP setting, only those executing
instructions which are about to deposit their results? are allowed to complete;
all other instructions are aborted; some of the instruction processing already
performed is traded away for short latency.

At the other extreme, the NRP can be set at the start of an instruction
execution. In so doing all instructions which have started execution are
allowed to complete. As appropriate, the NRP can be set somewhere between
the two extreme cases.

The definition of the NRP provides us with a means of achieving
flexible responses to various types of interrupts. Each interrupt type has its
own NRP setting; a processor reacts differently in response to different types
of interrupts.

For illustrative purposes, we set, in this paper, the NRP at the start of
the final cycle, when the computation result is written into the destination
register. For instruction 2, its NRP is cycle 7.

When an instruction reaches its NRP, it will be allowed to complete
and therefore shou!d be removed from the IW upon its completion. To
accomplish this, the executing functional unit returns the instruction tag to
the IW for identification.

It is quite reasonable to assume that it takes one cycle to transmit a tag
from the functional unit to the IW. The functional unit returns the tag of an
executing instruction to the IW one cycle before it reaches its NRP, so that it
will be identified as soon as it reaches its NRP.

2 Note that a result is always dcposited into the register file, not the IW.
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More than one instruction may reach its NRP at a given cycle. To
accommodate the return of multiple tags, we propose a "1 out of w" code for
the tags. As an example, let there be 8 cells in the IW, w=8. Each tag has 8 bits
with one and only bit, that has a value of 1. In this case, a path with 8 bits will
suffice to return all 8 tags, if necessary.

All cells whose tags match the returned tags are marked. Instructions
residing in marked cells can then be updated or removed. An instruction in a
marked cell is removed if its VEN value is 1. If the VEN value is greater than
1, then it is decreased by 1.

Instructions are removed so that all empty cells are found at the
bottom of the IW.

Remove and update operations follow the tag matching, and take place
concurrently.

Since the start of cycle 7 is the NRP of instruction 2, its tag is returned
to the IW during cycle 6. In cycle 7, an associative search is performed on the
IW using the incoming tag as a key. Since the VEN value for instruction 2 is
1, during the remove/update operations of cycle 7, instruction 2 is eliminated
as shown in Figure 6. Note that the remaining instructions are pushed to fill
the top of the IW, preserving their order in the instruction stream. Note also
that register R2 is updated with the result produced by instruction 2.

To illustrate the IW operations further, let us examine the execution of
instruction 3, depicted in Figure 5. The first element of the add instruction,
issued in cycle 4, will pass its NRP at the start of cycle 8. Thus, its tag is
returned to the IW during cycle 7, and is associatively matched with the tags
in the IW during tag matching in cycle 8. Then, since its VEN value is not
equal to 1, the vector element number corresponding to instruction 3 is
decreased by 1 during the remove/update operations of this cycle, as shown in
Figure 7. The presence of 2 in the VEN field indicates that two vector
elements remain to be processed.

The timing of these three basic operations: fill, issue, remove/update,
is depicted in Figure 8. The implementation details will be presented in
Section 7.

Let an interrupt request be received in cycle 8. The processing of the
received interrupt request will be described in the following section.

6. Interrupt Handling

Upon the receipt of an interrupt request, the processor responds as
follows:
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1) At the start of the following cycle, an Interrupt Request Signal is
generated, and sent to the executing functional units. This aborts
all instructions that have not passed their NRPs. Any instruction
which has passed its NRP is allowed to complete its execution.

2) When all instructions that are permitted to proceed complete
their execution, the processor state is saved. The IW is included as
a component of the processor state and the contents of the
occupied cells of the IW are saved.

3) The appropriate interrupt handler is then fetched from memory
and executed by the processor.

In the proposed scheme, the IW is included as a component of the
processor state. The saved contents of the IW provides a modified "precise”
interrupt point. The TW does not idenlify one instruction which defines the
precise interrupt point; rather, it identifies a group of instructions in the IW,
which jointly define the "point", where the interrupted processing should
resume.

As a component of the processor state, the saved contents of the IW
cannot be modified by any interrupt handler.

If an instruction remains in the IW, its VEN field specifies the number
of elements to be processed for the given instruction. This information is
used to restart the processor at the completion of the interrupt handling
procedure. The introduction of the VEN field obviates the need for the
processor to re-execute an incomplete vector instruction from the very
beginning when the processing resumes.

Returning to our example, the interrupt request was received during
cycle 8. The processor then generates the Abort Signal during cycle 9.

At the start of cycle 9, the second element of the vector operand
specified vy instruction 3, and instructions 1 and 4, pass their respective
NRPs. Thus the instructions bearing tags 1 and 4 are eliminated from the IW
during cycle 9, and the VEN value for instruction 3 is decreased by 1. The
resulting contents of the IW are shown in Figure 9; it is saved as part of the
processor state.

Note that Registers R0, R4, and the second element of the vector
register, VRO, are all updated by the execution of instructions 1, 4 and 3
respectively.

Furthermore, in cycle 9, all functional units are flushed thereby
eliminating all instructions which have not passed their NRPs. The
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maximum number of execution cycles that could be wasted on an instruction
by flushing the functional units is the latency of the "siowest” functional
unit. This is the greatest number of cycles that may have elapsed between the
issuance and one cycle before the instruction passes its NRP.

The processor state is saved during cycle 10. Note that instructions 3, 5,
6 and 7 define jointly the "precise” interrupt point. Only the last element of
the vector add remains to be processed when the execution of the interrupted
process resumes. Note that instruction 4, which follows instruction 3, does

not appear as it has already completed its execution before the interrupt
request arrived.

The interrupt handler is then fetched and executed. As a specific
example, suppose one of the instructions being executed causes an exception
due to overflow; the interrupt handler can execute the program, starting with
the instructions remaining in the IW - the modified "precise” interrupt point,
one instruction at a time to identify the source of the problem.

As in any processor, after completion of the interrupt handler, the
original processor state, of which the IW is a component, is restored.
Instruction issuing is then restarted from the top of the IW.

Returning to the example, the IW will be restored as shown in Figure 9
at the completion of the interrupt handler. Let the processor state be restored
at cycle X. Thus, instruction 3 is issued again with the VEN field being 1 in
cycle X. In cycle X+1, instruction 5 is issued to the integer adder. In cycle X+2,
instruction 6 is issued. Finally, instruction issuance completes in cycle X+3,
when instruction 7 is issued to the adder.

Z._Implementation

The Instruction Window (IW) plays an important part in the proposed
interrupt handling scheme; it also serves as the staging registers for
instruction decoding. The IW differs significantly from a "reorder buffer” [14]
in that the computation results are not deposited into the IW and more
importantly instructions can be removed from it "out-of-order”. We now
examine the implementation issues in more detail and assess its potential
impact on machine cycle time.

We propose that, as depicted in Figure 8, in each machine cycle "fill",
"issue” and "tag match” take place concurrently. And remove/update follows
tag match.

At the beginning of each machine cycle, the remaining instructions in
the IW have already been moved to occupy the top cells. And the incoming
instructions are placed into the cells adjacent to the occupied ones.
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The identification of instructions that can be issued deserves more
scrutiny. The first task is to identify instructions, at the top of the IW, that
have not yet been issued. Since every cell carries an "issue” bit, simple
combinational circuit can be used to accomplish this.

For conventional processors, where at most one instruction is issued
per machine cycle and instructions are issued according to their order in the
instruction stream, only the top unissued instruction in the IW needs to be
examined for possible issuance. This is exactly what is done anyway; no
additional control complexity is introduced. For future processors which may
issue multiple instructions, more complex circuits to detect and resolve
dependencies have to be installed. For an 8-cell IW and a 16-element register
set, we find that the "multiple issue” critical path incurs a 16-gate delay. The
actual path length is of course determined by the packaging details.

We now discuss the tag match, followed by remove/update. With the
"1 out of w" coding scheme, all returning tags from the executing functional
units are "or-ed” into one. This one tag is matched with all the cells whose
instructions have been issued. Matched cells are marked for removal or
update in the second half of the cycle.

A marked cell is removed if its VEN field contains 1; otherwise, the
value in the VEN field is decreased by 1. Since we require that all remaining
instructions be pushed to the top portion of the IW, combinational circuits
are provided to write into each cell every cycle. For an 8-cell IW, we find that
the path length is 12-gate long. Keep in mind that the remove/update
operation follows an associative memory search for tag matching; the total
length matches very nicely with the "issue” critical path.

To summarize: the implementation of these operations for a
moderately sized IW produces a critical path, which can work with a very
short machine cycle time. We have not yet studied rigorously the size of the
IW, which can be much larger that 8 for future processors

8. Evaluation

Now we evaluate the scheme with IW and other schemes reported in
Section 3, using the criteria enumerated in Section 2. Table 1 provides a
sum.nary. The "Abort”, "Execution inhibition" and "Updating” performance
degradations are defined in Section 2.
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Table 1: Evaluation of interrupt handling schemes

Latency Component Performance
Cost Degradation
On the average,
CDC6600 [9] two instructions |Provisions for None.
are to be issued  [exchange jump.
and executed.
All issued
360/91 [10] instructions are |None None
allowed to
complete.
All vector and
memory bank
CRAY-1[11,12] reference inst's | None None
are allowed to
complete.
Needs to return |registers, memory
HPS [13] to the nearest and data paths Abort and update
consistent state. |needed to degradations
implement incurred.
checkpoints.

In-order Inst.
Completion [14]

Relatively short.

Needs a "Result-
shift” register file.

Abort, execution
inhibition and
update
degradations
incurred.

Reorder(History,
Future File)
Buffer [14, 15]

Relatively fast.

Needs buffers and
data paths.

Abort, execution
inhibition and
update
degradations
incurred.

Reorder Buffer

Relatively fast.

Needs buffers and

Abort and update

with bypass {14,15] elaborate data degradations
paths. incurred.
No update and
Instruction Flexible with Needs to execution
Window (IW) adaptive NRP implement IW. [inhibition
settings. degradations.

Abort penalty is a

function of NRP.
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Figure 2: The Instruction Window (IW)

1 ADD RO, R1, R2 1
2 ADD VRO, VR1, VR2 2

Figure 3: Occupied Cells in the IW

MULT RO, R1, RO
ADD R2, R3, R2
ADD VRO, VR1, VRO
ADD R4, RS, R4
ADD R6, R7, R6
ADD R8, R9, R8
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Figure 4: The IW after Cycle 6
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1 MULT RO, R, RO 3
2 ADD R2, R3, R2 1
3 ADD VRO, VR1, VRO 3
4 ADD R4, R5, Ré I
5 ADD R6, R7, R6 3
6 ADD R, R9, RE :

Figure 6: The IW after Cycle 7
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Figure 8: Timing of IW Operations
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An Out-of-Order Superscalar Processor with Speculative
Execution and Fast, Precise Interrupts

Harry Dwyer
IBM Corporation
9737 Great Hills Trail
Austin, Texas 78759

Abstract

The achievement of fast, precise interrupts
and the implementation of multiple levels of
branch predictions are two of the problems
associated with the dynamic scheduling of
instructions for superscalar processors. Their
solution is especially difficult if short cycle time
operation is desired. We present solutions to
these problems through the development of the
Fast Dispatch Stack (FDS) system.

We show that the FDS is capable of
scheduling storage, branch, and register-to-
register instructions for concurrent and uut-of-
order executions; the FDS implements fast and
precise interrupts in a natural, efficient way; and
it facilitates speculative execution -- Instructions
preceding and following one or more predicted
conditional branch instructions may issue. When
necessary, their effects are undone in one
machine cycle.

We evaluated the FDS system with extensive
simulations.

1. Introduction

Superscalars exploit instruction level
parallelism by issuing multiple instructions each
cycle to functional units when dependencies
allow. Instruction scheduling can be performed
during compilation (static scheduling) or during
execution (dynamic scheduling), or both.
Dynamic scheduling detects instruction
dependencies in a segment of the dynamic
instruction stream. The most general form of
dynamic scheduling, the issue and execution of
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multiple out-of-order instructions, can
significantly enhance system performance
[1)[4][9]. However, there are problems with this
scheme that undermine its usefulness.

The achievement of precise interrupts is
difficult, particularly if a fast response time is
desired. Interrupts are precise if processor state
visible to the operating system and application
can be reconstructed to the state a processor
would have, had all instructions executed in
sequence up to the point of an interrupt; this is
costly to implement, particularly if out-of-order
stores to memory may oceur.

Branches, about 15% to 30% of executed
instructions for many applications {6], decrease
the effectiveness of multiple issues to functional
units if instructions following an undecided
branch cannot be issued. Performance may be
improved by enabling speculative executions on a
predicted path of instructions. If the gains on
correct paths outbalance the losses from nullifying
execution effects on incorrect paths (squashing),
performance improves.

It is imperative that cycle time be considered
when investigating new processor structures.
Since a processor's performance depends on
throughput (instructions issued per cycle) and
cycle time, if throughput is increased at the
expense of cycle time, a net performance
improvement may not occur; performance may, in
fact, decrease during the execution of inherently
sequential code. Hence, we have developed FDS
structures that operate on a short cycle time.

This paper is organized into 5 sections. A
dynamic scheduling mechanism that may issue
multiple, out-of-order instructions each machine
cycle is presented in Section 2. A fast, precise

-@J




interrupt handling capability is derived in
Section 3 and an instruction squashing capability
is presented in Section 4. The performance of the
proposed structure is evaluated in Section 5 and
tradeoffs are analyzed with simulation. In
Section 6, we present conclusions.

2. The Fast Dispatch Stack System

We present an overview of the structure and
operation of the Fast Dispatch Stack (FDS)
system (Figure 1) in this section. A detailed and
comprehensive presentation of the FDS system,
a major enhancement of the Dispatch Stack [1],
can be found in [2]. The FDS contains a Buffer
Unit (BU) and an Issue Unit (IU). The BU
supplies instructions to the IU in a form that
facilitates fast dependency detection. The IU
detects instruction register dependencies and
issues instructions with no dependencies to the
functional units (FUs) each cycle via an
interconnection network.

Register
Functional Dats
Units Unita Dete
£d
Addrens | Confliet-
Bus Free
lssue Unit Bus
-G roup
{-Group Address
. Stack
H
i roup
]l-Gmup-
. Togn and Typovestors
Buffer Unit
laatructiona

Figure 1: Fast Dispatch Stack system.

The FUs indicate instruction completion by
returning tags that are issued with instructions.
The FUs read operands from and return results
to the Register File. Data Units receive storage
instructions from the IU, generate their effective
addresses, insert them into the Address Stack
where address dependencies are detected, and

perform dependency-free memory accesses. A
Load/Store instruction set architecture is
assumed.

2.1 The Buffer Unit

The BU fetches multiple instructions per
instruction cache access (a fetch block) and
generates four vectors for each instruction: a tag,
a read-vector, 8 write-vector and a type-vector.
Read-vector, and Write-vector; are generated from
instruction ¢; and specify the registers that g,
reads and writes respectively in vectors of binary
elements, one element for each register. An
element in position j is 1 if register j is accessed,
and 0 otherwise. A type-vector specifies an
instruction’s type in a linear array of elements,
one position for each type.

9: ADD 3, 5, 6

The sum of the contents of registers
3 and 5 is written into register 6.

I-Group
Tag; Type-Vector; 9, :
. 18843218 §431310 .
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Figure 2: An example I-Group.

A tag is a vector of binary elements with a
length equal to the number of available tags. Each
tag is unique with one element in each tag set to
1 and the remainder to 0. Instruction gs tag is
designated Tag,.

An instruction together with its vectors
constitute an I-Group. I-Group; is derived from q..
Figure 2 shows an ADD instruction’s I-Group.
Tag; and Type-vector; have representative
assignments. [-Groups are either transferred
directly to the 1U, or are temporarily buffered in
the BU to be forwarded later. The BU also
transfers an instruction's tag and type-vector to
the Address Stack.

A limited form of register renaming is
performed in the BU [2]. An architected register
in an instruction is given the name of one of two
physical registers that are reserved for its
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exclusive use. A write to an architected register
causes it to be given a name different from its
previous one. This scheme is used in Section 5.

2.2 The Issue Unit

The IU is composed of the Stack and the
Dispatcher (Figure 3). The Stack stores I-Groups
received from the BU in individual buffers (slots),
detects register dependencies between
instructions, repositions I-Groups, filling empty
slots, and removes completed I-Groups. The
Stack determines which slots contain register
independent instructions each cycle.

The critical path length in an IU with 8 slots
is 14 to 18 gate-delays, depending on
implementation details [2]. A maximum gate fan-
in of 9 is assumed. If this fan-in cannot be
achieved, the critical path length must be
increased by a small amount.

Issue Unit
Tag Bus
e Re'igrned
28
Stack
Sloto
Slotl D
s Port,
P ’ .
. : P °‘:‘1 . Instn&ctmns
c L ]
] . Tags
° le] Porty
r ——
S]Oln,l
|
I-Groups

each bus.

A stack of size n is an array of n slots with
Slot, at the top. A slot contains conflict detection
logic, tag comparison logic, registers to hold an
I-Group, and logic for transferring an I-Group into
the slot. The Stack may therefore hold n
instructions in n I-Groups. I-Groups occupy
positions in the Stack based on precedence, with
the instruction of the highest precedence in Slot,.
Therefore, an instruction’s register usages need
only be compared with those of instructions in
higher slots. Independent instructions are issued
from the IU, contiguous, completed instructions
are removed from the Stack, remaining I-Groups
are moved upward, and new I-Groups are
transferred into the Stack at the end of each cycle.
A detailed description of the logic that performs
these functions is found in [2].
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Figure 4: Top compression and total compression.

Stack compression logic selects I-Groups for
removal and transfer. We have developed two
selection methods: Total Compression which
removes completed I-Groups from all slots; Top
Compression which removes only a contiguous
sequence of completed I-Groups from the top of
the Stack (Figure 4).

Figure 3: A block diagram of the Issue Unit.

The Dispatcher prioritizes register
independent instructions each cycle based on
their precedence and transfers a subset of them
to output ports. A port is an entry point into the
interconnection network for one instruction and
its tag. The network may consist of buses, one
attached to each port, with one or more FUs on
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Figure 5: Illustrative pipeline timing of two
ADD instructions in a FDS system with no
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The pipeline timing of two ADD instructions,
g; and q;,,, in a FDS system with no resource
conflicts is shown in Figure 5. The instructions
are fetched together; however gq,,, is executed
after g, because it has a data dependency on it.

2.3 The Address Stack

The Address Stack is a linear array of n slots
with A-Slot, at the top. There is a one-to-one
positional correspondence between IU stack slots
and Address Stack slots. Information on a given
instruction is held in identical slot positions in
the IU and the Address Stack. This
correspondence is maintained with simultaneous
compression operations in both stacks. A-Slot,
contains the tag and type, and, if a storage
instruction, an effective address when generated,
address conflict, and memory access status
information on the instruction in IU Slot,. When
the Buffer Unit transfers I-Group, to IU Slot;, a
copy of Tag, and Type-Vector, is transferred to
A-Slot;.

A data unit generates and inserts the
effective address of storage instruction, qg, into
the Address Stack slot containing a copy of its
tag, Tag;. The effective address of a storage
instruction, g, is compared with that of
preceding storage instructions in the Address
Stack, i.e., with those in higher slots. The tag of
an address conflict free storage instruction is
asserted and maintained on the Conflict-Free
Bus until it completes. This bus, similar to the
Tag Bus, simultaneously accommodates multiple
tags. It is monitored by one or more data units
for address conflict information on multiple
storage instructions.

2.4 The Data Unit

A data unit generates the effective addresses
of storage instructions, accesses the register file,
and performs memory accesses requested by the
IU and approved by the Address Stack. It may
temporarily buffer data transferred between the
cache and the register file to release
dependencies of following instructions on storage
instructions and to prefetch data. A FDS system
contains one or more data units. Each may
submit at most one memory access request via a
dedicated connection (port) to the Cache each
cycle. A request includes a storage instruction’s

tag. The cache returns the tags of completed
accesses on the Memory Tag Bus which is
monitored by the Address Stack and data units
for access completions.

2.5 Storage Instruction Execution

The 1U issues a storage instruction, gg, to a
data unit and then provides it with register
conflict information on g, Based on this and
address conflict information from the Address
Stack, the data unit executes gg in phases,
informing the IU when to release dependencies on
gs by deleting register use representations from
its I-Group.

A register used in the generation of the
effective address for g5 is an address register of
gs- A register whose contents are fetched or stored
by g4 is a data register of g;.
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Figure 6: [llustrative load and store instruction
timing assuming a 1-cycle data cache access and
no register or address conflicts.

Execution proceeds in two phases that are
entered in sequence: Phase A and Phase B (see
Figure 6). Phase A is initiated by the issuance of
gs to an available data unit when its address
registers have no conflicts. The data unit
generates and inserts g/'s effective address into
the Address Stack slot containing a copy of its tag,
Tags. Phase B is initiated by the IU, when g;'s
data register has no conflicts and Phase A has
begun, by placing q¢'s tag on the Tag Bus during
a specified part of a machine cycle. When a tag in
a data unit matches one on the Tag Bus, the unit




may access the data register of the associated
instruction.
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Figure 7: A FDS system with a precise interrupt
capability.

3. Precise Interrupt Handling

A precise interrupt may be caused by an
instruction, g;, that is executing out-of-order, i.e.,
not all instructions preceding q; have completed.
To achieve a processor state that reflects that of
a conventional machine that executed
instructions up to g;, instructions that precede g,
must complete execution. If an instruction g,
which precedes instruction g, causes an
interrupt while the conventional interrupt point
for g, is being achieved, the saved state is that of
a conventional machine that executed
instructions up to g,.

Recall that top compression removes a
contiguous sequence of I-Groups whose
instructions are complete from the top of the
Stack each cycle. Instructions are removed from
the IU in the order they entered, ie. in
instruction stream order. This fact is central to
the scheme presented.

Figure 7 depicts a FDS system with a precise
interrupt capability. FUs and data units read
operands from and write results to a set of
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Figure 8: Comparison of A-Reg states in a FDS
system and in a conventional machine.

working registers (W-Regs). The W-Regs have a
one-to-one correspondence to the architected
registers (A-Regs). The 1U controls the transfer of
none, one, or multiple results from the W-Regs to
the A-Regs each cycle, causing the A-Regs to
assume states that are consistent with sequentia}
instruction execution.

Recall that the write-vector in an instruction’s
I-Group specifies its destination register. The
contents of W-Reg, are transferred to A-Reg, if
W-Reg, is a destination register in the write-vector
of an [-Group that is compressed out.

3.1 States Assumed by the Architected
Registers

The A-Regs change state only after
compression operations in the IU. The A-Regs are
in the state they would have in a conventional
machine after it executed the last instruction in
the most recently compressed out group of
I-Groups. A compression-block is a group of
I-Groups containing instructions that are
concurrently compressed out and is identified by
the last instruction in the group. Let instruction
g, be the last instruction in compression-block,.
Let s, be the state of the A-Regs in a conventional
machine after executing q,.

Figure 8 illustrates how the A-Regs in a FDS
system change states in two situations: once with
no interrupts (Figure 8(a)), and once with an
interrupt (Figure 8(b)). When no interrupts occur,
the A-Regs in a FDS system experience states s, ,,
s;; and s, assuming the compression blocks
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shown. The instruction stream is again processed
in Figure 8(b), but this time g, causes an
interrupt. Since q,,; does not complete, it is not
compressed out and preceding instructions are.
After instruction q,, is compressed out, the
A-Regs constitute part of the process state of a
conventional machine that completed q,,,, s,,,.

As discussed above, one or more I-Groups
may be removed from the IU concurrently. The
write-vectors of these I-Groups are placed on the
Register Bus. Write-vector elements on the bus
control the transfer of data from the W-Regs to
the A-Regs via Register Transfer Logic. The
assertion of a write-vector element specifying
destination register R; on the Register Bus
transfers a datum in W-Reg, to A-Reg,. Since each
write-vector contains at most one True (1)
element, the destination registers of multiple
I-Groups may be specified on the Bus causing
concurrent transfers.

The FDS must determine when to restore the
W-Regs to a conventional machine state. An
Interrupt Bus (Figure 5) connects IU Slot, with
system units that can detect an interrupt-causing
condition. These units may include the FUs, the
cache, and units that detect external interrupt-
causing conditions (e.g., I/O or sensor interrupts).

An interrupt is associated with an
instruction, q,, if g, caused a condition that must
be identified with it. The unit detecting the
condition asserts g,'s tag on the Interrupt Bus.
Since g,'s tag is not asserted on the Tag Bus, it
does not complete and is not compressed out of
the IU. Logic in IU Slot, detects the presence of
an instruction associated with an interrupt by
comparing an instruction’s tag with those on the
Interrupt Bus each machine cycle.

let q,s be associated with an interrupt
detected in a FU. Its tag is placed on the
Interrupt Bus by the FU. Instruction g, will
occupy Slot, after preceding instructions have
completed. The instructions preceding g, ; may
complete concurrently and out-of-order. The time
these instructions take to complete is not lost
because they are not re-executed when processing
resumes. The match of g, s tag in Slot, with
that on the Interrupt Bus causes the A-Regs to
be transferred to the W-Regs, placing them in
the state they would have in a conventional
machine that executed instructions preceding
q..s- If more than one tag is asserted on the
Interrupt Bus, the interrupt taken is the one
associated with the instruction of the highest
precedence. It will reach Slot, before other

7

interrupt-causing instructions.

An interrupt may be caused by a condition
external to the processor (e.g., an /O or sensor
interrupt). In this case, further instruction
processing is not necessary to achieve a
conventional interrupt point. For fast operation,
the interrupt point saved is the one associated
with the instruction in Slot,. The unit detecting
the interrupt condition asserts all tags on the
Interrupt Bus concurrently by placing all 1son it.
Slot, detects a tag match and causes a transfer of
A-Regs to W-Regs.

A problem is caused by an instruction that
overwrites a value in a W-Reg before it is
transferred to an A-Reg. To prevent this hazard,
an instruction that writes to the destination
register of a preceding, completed instruction in
the U is not issued.

3.2 Precise Interrupts and Memory

We outline a scheme that causes main
memory to experience states consistent with
sequential instruction execution while multiple
out-of-order load and store instructions are
executed. A comprehensive treatment is found in
[2]. If an instruction, g, causes an interrupt,
memory is left in a state as it would be in a
conventional machine that has executed all
instructions preceding, but not including, q,.

A copy-back cache is used; a datum that is
stored into a copy-back cache may be transferred
to main memory at a later time. We replace each
cache line with a cache line couple composed of
two cache lines. A line of data in main memory,
previously mapped to a cache line, is mapped to a
cache line couple. Items in one line of a cache line
couple have a one-to-one positional correspondence
with those in the other line. Two corresponding
items form a data couple. Items in a data couple
share the same address and are given a status of
Current or Pending. At any time, one datum is
current and one is pending.

A new cache line that is fetched from main
memory is copied into both lines of a cache line
couple. Items are marked Current in one line and
Pending in the other. A store instruction
overwrites the pending datum of a data couple.
When a store instruction compresses out of the
IU, the datum it stored (marked Pending) is
marked Current and the other datum of the data
couple (marked Current) is marked Pending.
Recall that the Address Stack prevents a store to
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the effective address of a preceding completed
store instruction in the IU. Therefore, a pending
datum can not be overwritten before it becomes
current. Data are marked Current as store
instructions are compressed out of the IU in
instruction stream order, so that current data in
the cache is consistent with sequential
instruction execution. Only current data is copied
back to the main memory.

Let instruction ¢q; cause an interrupt.
Preceding instructions complete and are
compressed out of the IU. When a store
instruction is compressed out, the datum it wrote
is marked current. When g, reaches Slot, in the
IU, a pending item remaining in the cache is
overwritten with the current item in its data
couple. Current data may be copied back to the
main memory if necessary. Main memery (and
the cache) is now in a state consistent with
sequential instruction execution up to g,.

3.3 Comparisons with Previous Work

Smith and Pleszkun have presented solutions
(i.e., Reorder Buffer, History Buffer, and Future
File) to the precise interrupt problem for systems
in which at most one instruction may issue (in-
order) and complete (possibly out-of-order) each
cycle and store instructions are executed in-order
{7]. The FDS does not have these restrictions on
issuances and completions. It has, in effect, an
integrated reorder buffer that may update
architected registers with multiple results each
cycle, causing them to "skip” some conventional
machine states that are unnecessary for them to
assume. We avoid a potential bottleneck in the
FDS design by not routing results through
instruction issuing logic as in Sohi’s RUU [8].

Another approach, supporting a model of
execution similar to Smith and Pleszkun’s, is
checkpoint repair [3]. A minimum of 3 sets of
registers are used to save and restore state. A
tradeoff must be made between the frequency
with which state is saved and the amount of
useful results that may be discarded and
recalculated upon an exception. The scheme may
cause instruction issuing to stall under certain
circumstances.

N8

4. Instruction Squashing

As an uncompleted branch instruction is
compressed upward in the IU, the number of
instructions which can be issued becomes smaller,
decreasing throughput. In this section, we present
an instruction squashing scheme that facilitates
the use of branch prediction techniques in the
FDS.

A branch instruction, g4, transfers control to
gs.; or to an out-of-sequence branch target
instruction. The branch target is not known until
qp executes. Since gg,, is often fetched before ¢,
executes, a transfer of control to g, usually
causes little or no processing delay. Processing is
likely to be delayed if control is transferred to an
out-of-sequence branch target that is fetched after
@ executes.

Branch prediction schemes attempt to reduce
processing delays by predicting and fetching the
branch target instruction before the branch is
executed. Branch prediction techniques have been
presented by others [5][6]. A prediction accuracy
of about 80% to 98% is achieved depending on the
nature of the computation and the technique
employed.

A key issue associated with using branch
prediction in a processor that may issue multiple,
out-of-order instructions is the expeditious
squashing of instructions executed on an
incorrectly predicted path. This is more difficult
than in a conventional machine because
instructions preceding and following a predicted
branch instruction may coexist in the issuing
mechanism and may execute concurrently and
out-of-order before the branch outcome is known.

When the Buffer Unit detects a branch
instruction, qg, in a fetch block, an algorithm is
used to predict the outcome of the branch. If the
branch is predicted to be taken, the target
instruction and instructions following it are
fetched and transferred to the IU; otherwise, the
fetching of instructions continues on the present
path. The BU saves g, its tag, and its predicted
outcome and forwards instruction g, to the IU.

When dependencies allow, the IU issues ¢, by
placing its tag on the Tag Bus (Figure 7). The BU
and the data units monitor the Tag Bus at this
time. The BU executes g5 when its tag matches
that on the Bus and compares its cutcome with its
predicted outcome. If the predicted outcome is
correct, the Buffer Unit places q,'s tag on the Tag
Bus just as functional units do for completed
instructions. The branch instruction is then
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marked complete in the IU. If qu's predicted
outcome is incorrect, the BU places qg's tag on
the Interrupt Bus and invalidates instructions in
its buffer.

Assume that g, has executed and is found to
be incorrectly predicted. Since g¢y's tag is not
asserted on the Tag Bus, it is not marked
complete in the IU and so it eventually occupies
Slot, in the IU Stack. Recall that the tag of the
instruction in Slot, is compared with tags on the
Interrupt Bus. Slot, detects a tag match with a
branch instruction and knows that this is a
branch prediction interrupt. The contents of the
A-Regs are transferred to the W-Regs and all
instructions in the IU are invalidated. After the
transfer, the A-Regs and the W-Regs are in the
state that they would have in a conventional
machine that executed instructions up to but not
including g5 ..

An instruction that writes to the destination
register of a preceding completed instruction in
the IU is not issued. This dependency control is
part of the precise interrupt scheme adopted
(Section 3) and prevents the overwriting of a
W-Reg before its contents are transferred to the
corresponding A-Reg.

Table I: [nstruction execution times.

Type Machine
Store 1 Cycle 2 Cycles
Load 2 Cycles 4 Cycles
Branch 2 Cycles 3 Cycles
Integer 1 Cycle 1 Cycle
Fl. Pt. 1 Cycle 1 Cycle |
The instruction squashing capability

presented supports the multiple, out-of-order
issue of instructions preceding and following
multiple predicted conditional branch
instructions. Useful work is not undone in the
process. The transfer of A-Regs to W-Regs occurs
in one cycle when g reaches Slot,. The effects of
the execution of instructions that followed ¢ are
thus eliminated in one cycle. Cycles expended
while g5 moves to Slot, are productive because
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useful instructions preceding g, are executing.
These instructions are issued in multiples and
out-of-order as dependencies allow.

5. Measurements

We wuse 14 Livermore Loops and the
Dhrystone benchmarks to study the FDS
behavior. Two traces of the 14 Livermore Loop
benchmarks are used, LL_16 and LL_32, for 16
and 32 register CPUs respectively. The Dhrystone
benchmark trace is for a 32-register CPU.

Throughput comparisons are made with a
pipelined "Base Machine", which issues at most
one instruction per cycle, in order, to one FU. The
14 Livermore Loops throughput is the harmonic
mean of the individual loop throughputs.

Table 2: Benchmark throughputs on FDS
systems with register renaming, precise
interrupts and branch prediction over a range of
branch prediction accuracies (P.A.s).

lasue Unit Stack Size
8 | 12 16 32
LL_16
1.32 1.60 1.73 1.91
1.36 1.62 1.78 1.95
1.39 1.63 1.80 1.97
LL_32
50% “ 0.91 1.32 1.60 1.73 1.94
85% 0.92 1.36 1.62 1.78 1.98
100% Il 0.92 1.39 1.63 1.80 2.00
Dhrystone
0.91 1.00 1.04 1.05
1.04 1.15 1.19 1.21
1.08 1.19 __1__2_2__ 1.24
Base Machine
LL_16: 0.72, LL_32: 0.72, Dhrystone: 0.65
Base+BP Machine {(100% Prediction Accuracy)
LL_16: 0.79, LL_32: 0.79, Dhrystone: 0.78
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Instruction execution times of the Base
Machine and the FDS are given in Table 1. They
include the time necessary to eliminate the
dependencies an instruction may inflict on
following instructions.
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Figure 9: Dhrystone benchmark throughputs on
FDS systems with register renaming.

Benchmark throughputs on FDS systems
with register renaming, precise interrupts, and
branch prediction mechanisms with various
prediction accuracies (PAs) are given in Table 2.
These systems have unlimited numbers of FUs.
Included in Table 2 are throughputs measured on
the Base Machine (Base) and on the Base
Machine with 100% PA (Base+BP). These
machines are identical except for their branch
instruction execution times.
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Figure 10: LL_32 Benchmark throughputs on
FDS systems with register renaming.

The Base+BP machine performance on the
Dhrystone benchmark (0.78) surpasses that on

a FDS system with 4 slots and a 100% PA (0.72).
In this instance, a conventional machine with a
shorter branch instruction execution time has
higher throughput than the FDS.

—w— L1 18, no renaming
—a— LL-32, no renaming

—w— 1116, renaming
—o— LL-32. renaming

«—o~ Dhrystone. renaming === Dhryetone. no renaming
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Figure 11: Throughputs on FDS systems with
register renaming, 2 integer, 2 F1. Pt., and 2 data
units, a fetch block size of 4, and 4 IU ports with
a 85% PA.

Figure 9 includes a plot of a FDS system with
total compression and register renaming but
without precise interrupts. Recall that total
compression removes all completed instructions
from the IU each cycle. We see that increases in
Dhrystone tliroughput from speculative executions
more than compensate for the use of top
compression and the instruction dependency
imposed by the squashing capability.

Table 3: Percent decrease in LL_16 throughput
on a FDS system with precise interrupts
compared to a FDS with total compression.
Register renaming is denoted by RR.

[ssue Unit Stack Size

4 8 12 16 32

no

RR 102 153 132 138 143

RR 92 17.5 144 144 123

LL_32 throughputs on systems with PAs of
50%, 85% and 100% are plotted in Figure 10.
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Here we plot a FDS system with total
compression and register renaming but without
precise interrupts. We see that for the LL_32
benchmark, the benefit of speculative executions
does not compensate for the negative effects of
the squashing scheme adopted.

Throughputs on FDS systems with limited
resources are plotted in Figure 11. These
systems have 2 integer and 2 Fl. Pt. point FUs,
2 data units, a fetch block size of 4, and 4 1U
ports. The benefit of register renaming is
apparent in this plot.

The cost of fast, precise interrupts in a FDS
system may be expressed as a decrease in
throughput compared to a system with total
compression. We see (Table 3) that it is less
than 15% in systems with 12 or more IU slots.

6. Conclusions

We have presented a mechanism -- Fast
Dispatch Stack (FDS), which performs in an
integrated fashion the following tasks,
indispensable for a superscalar processor:

a. the detection and dispatching of multiple
instructions, possibly out-of-order, to
available functional units;

b. the implementation of fast,
interrupts;

c. the implementation of a "squashing"
capability so that speculative instruction
execution along predicted paths can be
undertaken without attendant
performance penalty.

We evaluated the design trade-offs and the
performance of the resulting superscalar
processor with extensive simulations. The results
are presented.

We expect that the FDS we have developed
can be extended to process established complex
instruction sets, such as DEC Vax 780, IBM
System 390, and Intel x86. Furthermore, we
expect to study the interaction between compilers
and the FDS and to study its behavior on other
benchmarks.
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ABSTRACT_ _ Fine grain parallelism is an
effective approach to enhancing processor
performance through multiple and possibly out
of order instruction issue and execution. We
define, design and evaluate a basic central
window, which works with dynamic
instruction stream. Several schemes are
presented to reduce the window's potential
impact on processor cycle time and its
hardware cost. Finally, we show that a
central window can function effectively as a
buffer for speculative execution and for
handling interrupts and exceptions.

1. INTRODUCTION

The drive to enhance processor performance
and the advances in device technology have
led designers to explore various instruction
issuing schemes.

Most processors, including 360/91{1] and CRAY
machines [2], examine one instruction at a time.
If that instruction is free of data and resource
dependencies, it is issued; otherwise, the issue
process stops until the relevant dependencies
have been resolved. Consequently, at most one
instruction is issued per cycle.

To enhance processor performance, designers
have been pursuing among other things fine
grain parallelism in instruction issuances; this

The research reported herein has been
supported in part by the Joint Services
Electronics Program, Contract Number F49620-
90-C-0039.

entails the following:

1. issue more than one instruction at a
machine cycle — multiple instruction issuance;

2. issue instructions out of program
sequence — out of order instruction issuance.

In order to realize the intrinsic potential for
multiple and out-of-order instruction issuance
for a given set of programs, the designers have
to endow processors with the capacity to
detect execution concurrencies that exist among
instructions in an  instruction stream.
Specifically, instructions in an instruction
stream can be issued concurrently and/or out-
of-order, if it can be established that there
exist no hazards [3, 4] due to:

1. resource conflicts;
2. data dependences;
3. control dependences.

The detection of instructions for multiple and
out-of-order issuances is an important task in
the design of high-performance processors; we
addressed it in this paper.

Section II discusses briefly static means to
achieve multiple and out of order instruction
issuance. We will introduce the instruction
windowing mechanism, which extracts
instructions for concurrent issuance in Section
III. The basic implementation issues are
explored in Section IV. In Section V, we
present modifications to the basic realization




schemes. The use of an instruction window to
support speculative execution is outlined in
Section VI. Section VII presents two window
aided approaches to handling interrupt.
Concluding remarks are presented in Section
VIIL

1I. COMPILERS FOR FINE GRAIN
PARELLISM

The extraction of instructions that can be
issued concurrently can be performed
statically at compile time. It may come under
the name of “program restructuring” [5}. In the
“very long instruction word” (VLIW)
approach, possible concurrent operations are
identified and packed into instructions. It is
advantageous to put as many operations into
an instruction as possible. In order to specify
many operations with one instruction, an
instruction will have many fields and thus
become very long [6, 7).

At compile time, the "scope”-- the number of
instructions that can be examined at the same
time-- is relatively Jarge. One such technique
is Trace Scheduling [8]. A trace represents a
path, which may encompass several basic
blocks. Instructions in these blocks can be
moved and packed into very long instruction
words. Since there are many traces possible for
a given program, only those with "high”
probabilities of occurrence are processed. In
executing a trace, we run the risk that it may
have to be aborted due to the fact one of the
conditional branches does not produce the
corresponding path. Provisions, which may be
costly, have to be made in the specific trace to
ensure semantic correctness for the program.

Various schemes for constructing VLIW have
been reported; see for example [9, 10]. It is
difficult for machines which rely entirely on
compiler technology to extract fine grain
parallelism due to variable memory latencies
and other variable delays. In addition,
dynamic branch prediction is frequently more
accurate than static branch prediction.
Although it is essential to have good
optimizing compilers, it is equally important
to have good dynamic instruction scheduling.

1. INSTRUCTION WINDOWING

Due to resource and data considerations, we
cannot expect to extract all the concurrencies
with static means. Dynamic scheduling must
be examined. Some recent machines {11, 12]
examine and issue multiple instructions
concurrently per machine cycle, limited by the
order and mix of instructions in the dynamic
instruction stream. Multiple instructions are
issued only when 3 or 4 consecutive instructions
are of specific types; such restrictions severely
limit the utilization of the hardware
resources of the processor, and degrade its
performance.

Interesting studies on dynamic instruction
scheduling have been actively pursued; see for
example [13).

In a classical processor, only the instruction at
the head of an instruction stream is examined
by the instruction unit. It can be said that it
constitutes a window with a size of one
instruction. In order to extract fine grain
paralleism from a dynamic instruction stream,
we believe that we have to endow processors
with the ability to look at more instructions
at any given time; thus the concept of
"windowing”. A processor, through an
instruction window, can extract multiple, and
possibly out of order, instructions for issuance.

It can be said that processors have always
had an instruction window. We simply
propose that the size of the window be
increased from one to an integer much greater
than one. A processor, being able to see more,
should be able to “"do" more.

IV. WINDOW IIMPLEMENTATON

The general organization of a processor is
shown in Fig. 1 [14). Note the presence of
multiple functional units in a processor. As
technology allows us to fabricate with
increasing number of transistors per chip,
adding multiple functional units becomes
increasingly commonplace. A basic instruction
window, called a Dispatch Stack (DS), is
shown in Fig. 2 [14]; it contains essentially a
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stack of registers (slots), with each housing
one instruction.

The DS contains instructions which are either
waiting to be issued, being executed, or
waiting to be removed after execution
completion.
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Fig. 1. General Organization of a Processor
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Fig. 2. A Basic Instruction Window

When one completes, the instructions below
are moved up to fill the vacated slots,
creating space at the bottom for new
instructions to be brought in from the an
Instruction Cache, or an Instruction Buffer
Unit,

Instructions are selected for issue from the DS
with the instructions toward the top having
higher priority than those below.

In its most elementary implementation
instructions are brought into the DS when
conditional branches have been resolved. An
unresolved branch may halt the supply of
instructions to the DS.

Data dependencies among instructions in the
DS are kept with “"counters” for each
instruction [14]. Combinational logic circuits
are used to update the counters. If no
dependencies exist — all associated counters
contain 0 for an instruction, it is considered
independent and can be issued. Several
instructions may be issued concurrently, the DS
directs the routing of selected instructions to
available functional units.

In evaluating such a window, we pay
attention to several items:

the implementation cost -- how much
chip area would this mechanism consume?
This concern has been lessened due to advances
in chip technology;

the performance cost -- since the
arcuits are needed to update the dependence
counts, issue independent instructions, remove
completed instructions, and finally bring in
new instructions, these circuits may have an
adverse effect on the clock rate. To put it
differently: if we have to increase the
processor cycle time, the performance gain due
to multiple instruction issue may be nullified.

V. NEW IMPLEMENTATION SCHEMES

To address the concerns on its potential
adverse impact on cycle time, we have
developed several new schemes: the use of bit
vectors [15, 16]; the use of pointers; and
finally a block based window [17].

Bit Vector
In using bit vectors, each instruction is

represented with an “I-Group”, which cansists
of a tag. a type vector, the instruchon itself, a
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read-vector, and a write-vector; one such
group is shown in Fig. 3.

A tag is a bit vector with one and only one bit
set to 1; each tag identifies an instruction
uniquely.
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Fig. 3. An lllustrative I-Group

The type vector specifies an instruction's type
with one position for each type.

In the read-vector, each bit is assigned
exclusively to an architected register. A bit in
the vector is set to one if and only if its
corresponding register provides an operand for
the intended operation. The write-vector can
be explained similarly.

The formulation of the I-Groups facilitates
the detection of data dependencies among
instructions, the removal of completed
instructions, and the dispatching of
instructions to functional units.

For an 8-slot DS with a set of 16 architected
registers and 4 instruction dispatching ports,
Dwyer [16] performed a detailed design and
found that the critical path imposes a delay
of 16 gates.

Pointers

Instead of shifting instructions in the DS to
maintain the proper order of appearances
among them, Marr {17) proposed that two
pointers, head and tail, be used. This brings

about considerable reduction in circuit
complexity for the DS.

There are however some complications. One of
these is that the head pointer can be moved if
and only if a contiguous set of instructions,
including the top one, have been completed;
this is termed “top compression” by Dwyer
and the performance degradation due to this
restriction is not significant {16]. In addition to
accommodating the installation of a head
pointer, top compression brings with it
additional advantages, which will be
discussed in Sections VI and VII.

The tail pointer indicates the last instruction
entered into the window. Every time new
instructions are placed into the window, the
tail pointer is moved down. If the window is
full, then the tail pointer must wait until the
head pointer moves to give room to place new
instructions.

The result of this is that the window can
become "fragmented”, meaning that although
there may be completed instructions in the
window, new instructions cannot be placed into
the window until those at the head are
retired.

Organizing Slots into Blocks

To reduce circuit complexity for the DS even
more, Marr [17] proposed that a fixed number,
which can be 1, 2, 4, ..., of contiguous slots be
organized into blocks. The head pointer is
moved only when the instructions in the top
block are completed. Similarly, the tail
pointer is moved when new instructions can be
brought into the window. The advantage of
organizing instruction slots into blocks is that
being able to do things a "block™ at a time
enables considerable saving in instruction
fetch, dependency evaluation, instruction
issue and replacements.

The organizational diagram of a block-based
instruction window is shown in Fig. 4. A new
window organization, incorporating the
pointer and block concepts, can be found in [17].
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V1. CONDITIONAL BRANCH HANDLING

One of the vexing problems in processor design
is the handling of conditional branches. For
processors employing instruction windowing,
the simple fact is that we want a large number
of instructions in the window to provide more
instruction level parallelism. Conditional
branches often make it difficult to keep the
window full.

Branch prediction techniques have been
develcped [18, 19] to fetch and to execute
speculatively along a likely path. Even
though the achieved prediction accuracy can
reach 80% to 98%, some guesses will prove to
be wrong. When a branch is incorrectly
predicted, changes in machine state need to be
removed. Doing so may involve a penalty.
Instruction windowing can make an important
contribution in this area {15, 16).

Conditional branch instructions along with
those instructions on the predicted branch
path are brought into the instruction window
to be executed speculatively. The execution
results are written into an additional set of
registers, called the "working registers” for
temporary storage and access by subsequent
instructions. These results are copied into the
"architected registers” once the instructions
are retired from the window.

We now require that a rew instruction
removal mode be instituted: only those
instructions at the top of the window may be
retired; multiple instructions are retired at
once if they form a contiguous sequence of
instructions at the top of the window. This
instruction retirement mode is called top
compression [16].

When the prediction made for a conditional

Issue Priority branch is found to be correct, it can be removed

from the instruction window when it is
included in a contiguous segment of completed
instructions, including the top one in the
window. Again, note that when an instruction
is retired from the window, its result is made
permanent by being copied into an architected
register.

When the prediction made for a conditional
branch is found to be incorrect, it will not be
retired from the instruction window. All
instructions which follow the branch are
removed from the window. When the branch
is retired from the window, the contents of the
architected registers are copied into the
working registers. The instruction window is
then filled with instructions from the correct
path. Fig. 5 provides a schematic diagram.
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Although the instruction window does not
improve branch prediction accuracy, it can
help to mitigate the performance degradation
due to incorrect branch predictions.

VII. INTERRUPT HANDLING

It is imperative that processors, especially
high performance processors which execute
instructions concurrently and possibly out of
order, handle interrupts and exceptions
properly and efficiently. In this section, we
present two window aided approaches to
handling interrupts.

The central point in interrupt handling is the
definition of the “interrupt point". The
interrupt point is defined to be the instruction

@, such that all instructions but not including

instruction O are completed. The interrupted
program will then resume precisely at

instruction . An instruction window can be
used advantageously to implement this view
point [16].

One-instruction Interrupt Point

Consider the structure depicted in Fig. 5. The
interrupt point, is identified in the window.
When it reaches the top slot, the contents of
the architected registers are stored as part of
the processor state and the window is flushed
to received instructions for the process which
services the requested interrupt.

It is to be noticed that such a processor
executes multiple instructions concurrently and
possibly out-of-order. However, when an
interrupt is requested, a one-instruction
interrupt point can be clearly implemented.
Smith and Pleszkun have proposed a specific
buffer to perform the same function [20]; here
the instruction window, in addition to
multiple and out of order instruction
dispatching and other services, does it
without appreciable extra cost.

Multi-instruction Interrupt Point

In evaluating an interrupt handling scheme,
we have to consider three factors: latency,
component cost, and performance degradation
[21]. One will notice that, in implementing a
one-instruction interrupt point, the processor
has to wait for the completion of all the
instructions that precede the interrupt point to
complete; it takes time. Furthermore, all
instructions that follow the interrupt point,
some of which may have already been
completed, have to be discarded.

With an instruction window available, Torng
and Day [21] have developed an alternative
approach: the instruction window is included
as a component of the processor state; the
saved contents of the window provides a
modified interrupt point. A group of
instructions in the window jointly define an
interrupt point, where the interrupted
processing should resume.

VIIl. CONCLUDING REMARKS

With the increased and ever increasing device
density, it is now feasible to implement an
instruction window for high performance
processors. The windowing technique will
enable multiple and out-of-order instruction
issuance; provide indispensable support for
speculative execution; and implement precise,
responsive, flexible interrupt handling.

Furthermore, these can be achieved without
increasing the length of the critical path,
which in turn determines a realistic processor
clock rate.
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