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THE ROLE OF CONDITIOMAL EVENT ALGEBRA
IN THE MODELING OF C3 SYSTEMS

I1.R. Goodman
Code 421, NRaD,
Naval Cosmand, Control
and Ocean Surveillance Center,
Research, Developament, Test and
Evaluation Division
San Diego, CA 92152-5000

Abstract

This paper highlights the newly-emerging
discipline of conditional event algebrs,
showing how this srea can be of use in
combining conditional evidence in & C3
getting, compatible with all possible
conditional probability evaluations. Typ-
ically, such information arises from many
different scurces and has widely vary-
ing antecedents. Recent breakthroughs are
underscored, including: (1) derivation of
a number of new properties pointing to a
particular conditional event algebra
(GNW) as being one of the leading candi-
datas of choiceo; (2) full development of
non-boolean operators acting upon conw
ditional events, including cartesian
products snd inverse functions, resulting
in -a fully-developed model of joint con-
ditional random variables. In addition, a
recent uniqueness of representation of
fuzzy sets by random sets is shown for
both the unconditional and conditional
cases. Finally, a previously introduced
diagonalization technique for combining
different stochastic information 1s
further extended and justified, showing
how multi-source linguistic-based and sto-
chastic, conditional and unconditiomal,
information can be coumbined.

1l General Introduction

€3 systems reflect, to a large extent, everyday
real-world problems - {n addition to the obvious
pressing (possibly life-threatening) decisfons en-
tailed in a typical military scenario. Thys, in at-
tempting to model and better understand C3 systems,
we also enhance gur own dafly perspectives on com-
plex decision processes. The philosophy of approach
t2ken here {s that one needs first to develop a com-
prehensive mathematical model of the problem, while
3t the same time understanding 1ts empirical aspects.
The model should also -emphaticallyl - be as natural
as possible, tie in with previously established re-
sults, and be derivable from a minfmum of, 1f any,
ad hoc assumptions.

~ This paper continues the ongoing effort of the
akhor and others in attempting to deal with the
data fusion aspect of (3 systems.

-1~

HMany sensmingly simple problems of cosbination of
evidence belie much deeper mathematicsl and logical
issues which must be addressed. for exaample, con-
sider the job of a command unit in synthesizing the
following {nformation,a week before a given time
deadline,the size of enemy ground forces ready for
comdat:

Source 1. 1 (John Doe) hope that (based upon ay
expertise) the size is quite small - perhaps 8000
or less.”

Source 2. Intelligence source {Q, based on high
technology devices, provides & known probability
function over the fanterval [7000, 9000]), in units
of 200 troops.

Source 3. According to combat rule book R, : “If
weather condition b holds night before, t%en troop
size 3 c3n hold”, where a2 and b can vary jointly in
sets A and 8, respectively. a and b have known -
updated to command ynit's time - joint probabili-
ties of occurrences. Typically, b could be the com-
bination of factors "full moon, damp, between 60°
and 70°", while a could be "between 11000 and

12000 troops”™.

Source 4. According to combat rule book R,: °If
political condition d holds, then troop s?ze c can
hold”, where ceC, deD, with known (updated) joint
probabilities of occurrences, analogous to that in
Source 3.

By a concensus of experts, joint probabilitfes
of occurrences of all a,b,c,d can be estimated for
Sources 3 and 4.

Clearly, Source 1 {s more lingquistic in natyre,
{nvolving the non-indfcative modal form . _hope..
(a bouletfc form). Source 2 is readily seen to be
essentially characterized by a single ordinary
probability distributfon. Sources 1 and 4, most
naturally, represent tables of possible conditional
probability relations. Later, it will be seen that
such information sources, despite their different
structures, can be reasonably treated for fusion
of data.

In short, this paper continues - and extends
further - previous attempts at understanding exam-
ples such as above, and is aimed at establishing
a riagorous theory of data fusion that can be applied
universally to all such problems. More specifically.
this author has endeavored over the past several
years to address the following fundamental aspect




of ¢3 modeling:

How can one establish a cohesive, universal, but
feasidle, theory for fusing myltiple source, dis-
parate information, which can be in any of several
forms, including any combination of the following:
narrative / linguistic / human source-oriented,
stochastic / mechanical sensor-oriented; conditicon-
al or unconditional; indicative or properly modal?

In particular, in [1]-{12] an attempt has been
made to treat this problem. This approach necessi-
tated the development of new "mathematical tools”
and the enhancement of established ones in dealing
with these difficult issues. These included:

(1) The modeling of conditional stochastic type
information and the related concept of “"conditional
evants” and their logical relations, especially
for the situations where they have differing ante-
cedents, through conditional event algebra. (For
background, see the monographs [13],{14] and the
survey paper [15].)

{2) The modeling of natural language information
via fuzzy set theory and the one point coveraye
funetion representation by random sete. (For back-
ground, see, e.g. [16].)

{3) The establishment of a technique for combining
any of several stochastic descriptions (distridbu-
tions, for example) of a common unknown parameter
of interest, extending - and compatible with -
classical estimation and regression theory, namely:
diagonalization. {For background, see [3].)

{(4) Derivations of procedures which utilize as-
pects of both (1) and {2):

(1) Conditioning of linguistic-based information
naturally modeled through conditioning of fusay
sets. {See [17)-[18] for a previous direction of
analysis.)

(11} Modeling of modal / nom-indicative linguistie
information, utilizing conditional event represen-
tations and conditional event algebra or condition-
al fuzzy sets. (See [19].)

In addition, recent work should be mentioned on
the development of comparison criteria via game
theory for help in choosing among competing un-
certainty functions, for a given situation, the
most appropriate. This includes the class of all
probability fuactions, possibility functions, and
Dempster-Shafer functions, among others. (See [50].)

A good summary of the above relatively new areas
of investigation was provided in [12]. More recent-
1y, several additional breakthroughs have been ob-
tained in these directions and form the focus of
this paper. In turn, these results have allowed the
closing of a number of gaps in the theory of data
fusion and consequently have lessened the use of
ad hoc constructs and assumptions. Overviews of
these breakthroughs, followed by concise technical
details, are provided in the next sections. Finally,
the iact sectfon provides a procedure for implement-
ing them, suitable for real-world - and in partic-
ular - C3 system usage.

2 Conditional Event Algebra: Introduction

Condftfonal event algebra has been developed in

-2~

response to the current lack inm the stendard Yitera-
ture of a full algebra or <yntax of logical opers-
tions and relations which play 8 rolte relalive to
conditional probability evelugqlions, 43 the way now
that booltean algebra plays with respect o 811 uncon-
ditional probabilities. In short, it 15 clear that
one can use boolean aligebra Lo manipulate and help

in evaluations such as

p{{{a vabl’ve')'-¢c v ac'}

(by absorption)

{by DeMargan}

{by idempotence)

{by distributivity)

{by orthocomplementation} {2.1)

ap{{a‘vc')’c v ac*}
=placc v ac’)

=p{ac v ac')
sp{afcve’))

=p{a) .

Here, R 15 some boolean algebrs of events &,b,c.d,..
with - or its omission between symbols dencting con-
junction or intersection, v dencting disjunction or
union, { )' denoting negation or complementation, 0
being the zero or null ?.). 1 being the unit or uni-
versal{ql, etc.), s being the basic lattice order or
subset relation (g}, and p:R » {0,1] being some
probability measure over R. (This notation will be
employed throughout the paper.)

On the other hand, suppose one wished to evalu-
ate the conjunction of two conditional sentences,
such as the ones given in the example of the intro-
duction representing Sources 3 and 4. Symboiically,
we write p((alb)-(c?d)) as the desired evaluation,
where we assume the conditional probability compat-
ibility relations

plalb)=p{*if b then a") ; p{c]jd)=p("if d then cz),
2.

with 2)

plalb)ip(ab)/p(b); plcid)dp(cd)snld). {2.3)
the usual conditional probability definitions,
assuming of course that p{(b).p(d} > 0 .

Is there some computadle “conditional cvent”
(alB), o=a(a,b,c,d) e R, B=B{a,b,c,d)} e such that
(a}8) = (a]|b)-(c|d) (2.4)

has meaning, as does the extensfon of conjunction,
also denoted as + on “conditional events”, with the
compatible evaluation

p({al8)} = pla]B) ? (2.5)
Or, is there a similar y,§ ¢ R, such that
{vl6) = (a]b)v(c|d) (2.6)
has meaning and
pl{v|8)) = ply|8) 7 (2.6%)

Clearly, if b=d, then a natural solution, fully com-
patible with traditional probability concepts is to
choose in (2.4),(2.5), o=ac and B=b, yielding

(ac|b) = (a]b)-{c|b)
p((ac|b))= placlb),
with the interpretatfon that {alb), (cjb), {ac|b) are
simply a,c,ac, respectively, restrictedqto b, 1.e.,

abgb,ach, with initial R replaced by Rb®{xb:xeR} and
p:R + ([0,1] by the canditional probability measure

(2.4')

and (25»)




Py ¢ p(-]b):Rb » [0,1], etc. But, the genera! case
where b#d cannot be treated this way.

in order to answer the above questions, one
first must be able to identify just what we mean
by a "conditional event”. Since a,b ¢ R, it is
natural to inquire whether (alb) € R or in some
enlargement of R, which is still a boolean algebra
(as Copeland and others originally thought [20],
{21)). The only natural candidate for { | ):RZ+R
playing the role of a conditional event former is
material implication =» , which is actually also
the relative pseudocomplement operation for R,
with form

boa 3 b’ va=0b'vab. (2.7)

However, Calabrese [22] noted as early as 1975
that < cannot be { | ) and pointed out {also later
in 1987 {23]) the inequality

p(baa)=1-p(b)+plab)=plajb) + p((b').pla’|d)
z plald) {2.8)

with strict fnequality holding in general except
for trivial cases. In addition, he also proposed
the question whether conditional events could be
constructed outside of R, but gave back the com-
patible evaluations

p{(afb)) = plalb} . (2.8")

Indeed, in [23] Calabrese demonstrated that no bi-
nary boolean operation of any of the 16 possible
can be used to produce conditional events. {See
also Popper's even earlier related resuits {24].)

Even more negative than this - and unknown to
Calabrese - David Lewis in 1973 { but published in
1976 [25] ) showed that no binary {and fgr that
matter, n-ary) function of any kind f:R¢ = R
exists such that for all prob. meas. p:R + [0,1],

p{fla,b)) = plalb), all a,b e R, p{b}s0. (2.9)

(This, thus negated Copeland’'s attempts, mentioned
earlier.)

However, on the positive side of things, Cala-
brese (23], independent of Lewis, demonstrated that
by going to P(R) (power class of R), one could
obtain well-defined conditional events, and in
fact,he postylated an entire calculus of operations
extending the ordinary boolean ones. Earlier, Schay
[26] independently also demonstrated the existence
of conditional events based upon three-valued in-
dicator functions, extending the usual two-valued
ones for grdinary unconditional sets. Furthermore,
Adams {27], independent of Schay and Calabrese,
though not identifying what a conditional event
should mean,did define the very same operations
Calabrese proposed, as well as certain of Schay'sf
(Schay actually proposed two sets of operations
for possible candidates and one definition for
conjunction from one set and the other for dis-
Junction coincide with Adams and Calabrese' common
definitions.) Hailperin [28] also independently
investigated conditional events, rigorizing certain
of Boole's ideas on "division of events" [29],
through the use of Chevalley-Uzkov algebraic
fractions. But, Hailperin did not develop any non-
trivial gpertatuns, othor than comuon antecedent
ones. He d1d show his "fractions" were actually
isomorphic to principal ideal cosets of R, the

3=

furm conditiond] events must take {(see Theorem 7.1}
Tater 1n this section), Goodman {30) showed Cata-
brese’ condilional events were also principal ideal
cosets and proposed for the first Lime dertuving con-
ditional event operations from first principsl con-
stderations, namely, vis functionsl lmage extensions
of the usual unconditional boolean operations v,

( ). etc. This yielded closed computable forms,
later extended 1n {13], section 3.2. Furthermore,
Goodman, Nguyen, and Walker{[13]}, chapter 2, see
also Theorem 2.1 here) derived the form that con-
ditional events must take, under a minimum of as-
sumplions. For a thorough history of the problem

of defining conditivnal events and their operations
see [15]. In [13] & number of important properties
of conditional event algebra,in general, and GNW
{Goodman-Nguyen-Walker) conditional event algebrs,
in particular, are established, including tie-fins
with three-valued logic and Koopman's gqualitative
conditional probabtifty.

In summary, the most significant elementary re-
sults in the development of conditional event alge-
bra are:

For any given boolean algebra R, define the

space d
(R{R)=({{a]b}:a.b ¢ R } s P{R},

(a}b)gﬂb‘va = Rb'v ab
={xb' v ab:x ¢ R)
={x:xeR & xg = ab} (2.9)
={ab, 223} = (x:xeR & absxsbsaleP(R),

principal ideal coset of R with antecedent b and
consequent or residue ab.

Conversely, given any asB ¢ R, the closed interval
of events

(Q.B]g {x:xeR ¢ asxs8) = {a{B*a) € (RIR), {2.10)
s0 that aiso
(RIR) = {[u B): asBe R}. {(2.11)

Also, note for any a,b,c,d € R ,

(aj1) = a , (z.12)
identifying singletons with their elements, yielding
~Reg (R|RYg P(R) ; (2.13)
(a[b) = (ablb) {2.14)
{alb) = (c]d) iff ab = cd & ba = d=¢

iffab=cd & b=4d; (2.15)
(alo) = (0lo) = R (2.16)

(0]b)={b'|b)=Rb'=[0,b'J:(1]b)=(b]|b)=Rb' v b = Rvb
«fb,1]. (2.17)

That (R[R) should be chosen as the conditional
event extensfon of R and each (a[b) as a conditfonal
event with antecedent b and consequent a or as
“if b then 3" or "a given b", is justified by :

Theorem 2.1 ([13], chapter 2)
Let R be any boolean algebra, S2R any space and




f:R2-S any syrjective functfon such that for all
prob. meas. p:R+{0,1], p can be extended in a well-
defined way to, using same symbol, p:S»[0,1] such

that for a}) a,bcR, with p{b}>0,
p(fla,b) = plajd). {z.18)
Suppose also that for all a,b,c,d ¢ R,
f(a,b) = f(ab,b) (2.19)

a0d ¢(5.b) = fc.d) implies b = ¢},

Then, there is a bijection 1:S~+ (R|R) such that for
all a,b e R,

(2.20)
»

(f{a.b)} = {a|b).

Next, for any boolean algebra RgP{D), for some
set 0 {by the Stone Representation Theorem), define
associated 3-va1usd indicator function transform
$:(RIR) » {0,u,1}Y, where

Osu s (2.20%

represents an indeterminate value: for any a,b ¢ R,
and hence any (a}b)e(R|R), ¢(a]d):0 + (0,u,1) is
given by

1, if x ¢ ab ,
0, if x ¢ a'd,
u, If x ¢ b* .

¢(ajb)(x} = (2.21)

Note also that-] (2.22)
{g: ¢:0+[0,1] &8 ¢" (1) eR,ic{0,u,1}}={e{a]b);:a,beR}),
extending the classical indicator-set relations.
Theorem 2.2 (remark, [13], p.31)

Let Rc P(D) be a boolean algebra. Then, there
is a natural bijection between {¢{a|b): a,b ¢ R}

and (R[R)via ¢. -

The GNW conditional event algebra operations are
summarized as follows:

Theorem 2.3 ([13], Theorem 2, p. 62 extended)

Let R be any boolean algebra. Then, the function-
al image extensions of the usual boolean operations
v.{ ), , %>, + are,for any a,b,c,d ¢ R (2.23

W01+ (c0dtxeyixelalb) yelclan =tabed]a. ) € (RIR).
where
Q. $a'bvc'dvbd=a'byvc'dyv abed

= a'bd' v c'db’ v bd = (bvc'd){dva'b),

d (2.24)
{alb)v{cld)* {xvy:xe(a|b),yel{c|d}}={ab v cd le)c(gg%).

where (2
va-abvcdvbd=abvcdva‘bc‘d

abd' v cdb’ v bd = (bvecd) (dv a?) s )
2.26
{alb)' ¢ (x':xe(a b)} = (a'[b) = (a'bjb) ,(2.27)

{cjd) = {a]b) ¢ {x>y : xe(c|d),ye(a]|b))

(2.28)

= (c]d)' v (alb) = (c'd v abjc'd v ab v bd)

(alb)@(cld)g {xe>yixela|b}, ye{c|d)}
=(tcla)»(ab))-((alb)>(cld))
={a|b}'-(c]d)' v (a]b)-(c}d)

={abe>cd|bd), {2.29)

(et} + (eld) ¥ txeyxe(afo), e (ela)l
= {ab ¢+ cdfbd)
v {(alb)ee{cld))’ (2.30)

it) f P a, b, ¢ R,
(i1} For & by ¢

(6]‘ bl)‘”'(an'bn) = {a,b, - aﬂbni(}“n), {2.31)

(a]]b‘)v--v(a“!bn) = (a‘b‘v --vanbn((},.n) . 2.3}
Q0 $aydy vevag'bn v obyeeh, (2.33)
Qv.n g a‘b‘ "‘Vanbn v b]"“"bn . (2.34)
{ii1) Define for al1 a,b,c.d ¢ R,

{alb) s (cld) iff (a|b) = (a]b)-{cid). (2.3%)

Then,

(a]b) s (cld) iff (c]d) = (albIvic|d) iff

abscd & bPas doc fff abscd dc'dsa‘'d iff

the corresponding corners of [ab,beal s

T T feduded (2.36)

{1v) Bayes' theorem; chaining relations hold,etc.:
(acib) = (alcb)}e(c|b). {2.36")

The common SAC {Schay-Adams-Calabrese) extensions
of unconditional boolean operations are defined as:

(alb)og (a'[b) = (a]b)* .- (2.37)
(albYDcld) ¥ {ab v cd[bvd) . (2.38)
(albXXcid) 9 ((alb)@Acld)')"

= {{a'b v c'd)'|bvd)
» ({bes)(doc){bvd) . (2.39)

In addition, it should be noted that the two
conditional event algebras proposed by Schay are

(afb)* ¢ (a v)'2 ¢ (alb) (2.40)
(a10)@(cld) € (a[v) v (cle), (2.41)
(alb)c(d) d (abed|bd) (2.42)
(a|b)@fcld) € (ab v cdlba) (2.43)
(ab)Bcld) ¢ (alb)@Ac|d) . (2.48)

3 Conditional Event Algebra: Key Past
Results and Some Recent Developments

Tt §s obtious that even restricting possible
chofces to only GNW and SAC algebras, there is
still a wide discrpency in forms and evaluations
relative to conjunction and disjunction. One advan-
tage for using SAC is the “smoothing™ property
when antecedents are disjoint :

For b.d = 0 , and hence abcd = 0,
" (a]b)®(cld) = (alb)@(cld) = (ab v cd|bvd){3.1)

while on the other hand GNW yields the trivial
results
(ajb)-{cld) = (O]a‘b v c'd),

(aiblv{c|d) = (abwv cd]abvcd),

(3.2)
(3.3)

b




which are obviously 2ero and unity in value for all
well-defined probability evaluations. QOn the other
hand, note the following (GNW)

ab v {d{d) = (ab v dlab v 4) ., {3.4)

with obvious unit probability evaluations, compat-
ible with the monotonic incredsing property of v
and the fact that (d}d) is also an obviously unit
probability event, but for SAC the same expression
becomes

ab® (did) « abv d , {3.5)

which {f a probablility measure p is chosen so that
ab is small in value as is d, then despite (did)
being a unity event, p{ab @ (did)) ts also clearly
small {n value, showing the SAC v is not at all
monotonic increasing relative to probability eval-
vations. However both GNHiand SAC "anomolies can be
3 U Be Ol SRu IR SDTdn SPMRESSIonMIER A281C
appropriate conditional event algebra for a given
situation must rely on both empirical and theoret-
ical guidelines. In this section other significant
past-derived results are shown for GNW, SAC, and
Schay 1,2, together with the most recent discover-
jes. .

Thegrem 3.1

(i) Both of Schay's algebras, SAC, and GNW all re-
duce to the uysual fixed common antecedent coset
relations

(alb) v (clb)=(avc|b);{a]b)-(c|b)={ac b),
etc., for all a,b,ceR.

(ii) Both of Schay's algebras form fyll (meet-join)
lattices and cah be algebraically characterized,

leading to an extension of the Stone Representation
Theorem,

(3.6)

(i) GNW forms not only a full relatively pseudo-
complemented lattice, but is also a Stone lattice
(or Stone algebra), where the rel. pseudo. is

(c]d) + (a}b) = (alb) v c'd v b'd" (3.7)

Moreover, GNW can also be completely algebraically
characterized, leading to an extension of the
Stone Representation Theorem.

(iv) SAC forms separate semilattices relative to
@ and @ (which are DeMorgan as is GNW), but,in
general 1s not a full lattice.

Proofs:(1) is immediate from inspection of the de-
fining equations.

(11) follows from [26]

(1i1) follows from [13], chapter 4

(iv) follows from (2.38),{2.39) readily.

Remarks In {13], Theorem 2, p.55, it was pointed

out that SAC disjunction @ can be derived via ordin-
ary class intersection relative to P(R}: for any
a,b,c,d ¢ R {boolean algebra,as usual),

{alb) n (cld) = [ab,b®>a] nlcd,d=c]

*Sab v cd < (b=a}d=c) ” (afbYXcid)} , (31.8)

where_here § js the Kronecker delta function. (But
no relagxon wgth cfass unfon hofAs for SAC or others)
It has also been verified that in the literature

of interval algebra (see, e.9. [31],(32]), the above

related version of () is a popular choice for cun-
Junotton. 1t is important to persue these connect-
1ons between interval algebra and conditional event
algebra further. In fact, some results in this di-
rection have 2lready been obtained 1n showing more
generally than the boolean case, and including the
property of GAW algebras, that Stone algebras with
certain additional properties propagate the same
structure to all their higher order interval alge-
bras {37].

The next critical result tdentifies ¢ targe
class of conditional event algebras with ail three-
valued logics (truth-functionally defined)!

Call an operation f:(R|R)" = (R|R) boolean-like
if (gere exist ordinary boolean operations
fj:R + R such that, using the multivariable

notation n
(219 ¢ ((ayfo)), - k2 1b,) € (RIR) (3.8)

flalb) = (f,(aqdyh....ab b }{f,(ab,,..,a0 1) (3.9)

nn n
A1l of Schay's algebras as well as SAC and GNW are
clearlty boolean-1{ke in all of thetr basic opera-
tions.

Theorem 3.2 ({33};[13], section 3.4)

There is a natural bijection, via the 3-valued in-
dicator function transform ¢, between all boolean-
Tike conditional event algebras and all truth-func-
tional (i.e., table-defined) 3-valued logics, such
that thﬁ isomorphisms hold, for any boolean-like
f:(R|R)" + (R|R}, assuming R P(D)

o{f(alb)){x) = ¢(F)(elald)(x)), (3.10)
¢(f):{0,u,1} can be explicitly con-
»

for all xeD.
structed.

Remarks

1. An immediate consequence of Theorem 3.2 is that
GNW algebra corresponds uniquely to Lukasiewicz'
3-valued logic {min,max,1-{)), SAC &lgebra uniquely
to Sobocinski's logic, and Schay's algebras to com-
binations of Bochvar's and Sobecinski's logics [13].
{See also Rescher{51] for further details of these
logics.)

2. Theorem 3.2 also shows that any properties of
a given conditional event algebra can be re-inter-
preted through an appropriately corresponding 3-
valued logic and vice-versa. This can be used to
explain, for example, the behavior of SAC and GNW
in (3.1)-(3.5), where it is seen the Sobocinski
interpretation of u is “undefined" or "not applic--
ble, while the Lukasiewicz is as an actual inter-
medfate level of truth between O and 1. Another
approach for GNW, incidently, which avoids the
trivial reductions for disjoint antecedents - ex-
plained also by referring to inconsistent data -

js through the use of jointness, i.e., cartesian
products and sums. (See Theorem 3.8) Conversely,
Theorem 3.2 also shows condftional event algebras
supply concrete representations for any given 3=
valued logics. Thus, results in the areas of both
fields can be used to gain insight into the other,

3. Some examples of characterizations nf conditional
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event algebras carried out via use of Thegrem 1.1
are {sce {34] and {13], section 3.5):

The only conditional event algebra{s) which ex-
tend (unconditional) boolean conjunction, disfunc-
tion, negation (with the extenston {afb)'={a‘']b))
and are:

{i) DeMorgan and mutually distributive is GNW,
(ii) Stone algebra is GNW,

(iii) DeMorgan, commutative, monotone increasing
for conjunction and disjunction, and continuocus isx
GNW (continuity refers to the corresponding truth
evaluations never having, e.g. 0 in a conjunction
going t()) anything but 0 and u values not going to
1, etc.},

{iv) Non-DeMorgan full lattices are only Schay's
two algebras,

{v) DeMorgan, commutative, associative, idempotent
and smocth {generalization of the property enjoyed
by SAC because of its antecedents forms)is SAC.

4. Recently [35], it has been shown that a full
probability evaluation of (3.10) - with suitable
modifications - holds for all probability measuresp
and r.v V:1+D acting as an identity relative to p
(p(a) = p{v in a), a1 a in R), and replging u in
0(3;9) by p(aly), and u occurring in the domain of
$(¥) by p(a|B) and in its range by p(f{alb)), denot-
{ng these substitutions by the subscript:™

Ey(0,(F(al0)) (W=E (o Aol (M=e(rlaled).

This allows for the development of a sampling /
frequency theory for conditional event algebras.

-
The following characterization of GNW algebra
tolds relative to the compatibility of its algebraic
order (s), and the numerical grdering for indicator
functions and probabilities:

Theorem 3.3 (new result combining {13}, Lemma 2, p.
48 and Theorem 1,p.154 with the defin-
ition in (2.21) here)

For all O<a<b <Y , 0 <c<d; a,b,c,d ¢ ReP(D):
¢(alb) s ¢(cld) pointwise over 0 ‘

iff  plalb) s plc|d) , for all prob. meas.p:0+[0,1]

with p(b),p(d)>0
1ff  (a]b} < (c]d) 1in the sense of GNW
iff abscd &c'dsa'd.

By exploiting the closed interval form of con-
ditional events, higher order ones can be obtained
using also the relative pseudocomplement property
of (RIR)GN“ (see (3.7):

Theorem 3.4 ([13], section 8.1)

{i)For all a,b,c,d ¢ R, relative to GNW

((alo)|(cld)?iixly) :x,yeR & (cld)-(xly)=lalbMc]d))
={(a]b)-(c]d) | (c|d))

= [(a|b)-(cld) , (cld)*(alb)]cPP(?;1

. 12)
{ii) Letting u:PP(R)+P(R) be the class union opera-
tion, where, for aay Ae PP{R),

ulA) ¥ U(c:ccal (3.13)
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als & class homomorphism between PP{R) and P(R). In
particular, for any a,B,7y,6 ¢ R with us8, ysb,axy,
g8sé,

o[la.8].(y.8]] = (a.6]. {3.14)
Then, for all a,b,c.de¢ R,

al(alb){{cld)) = (abcalb-(cd v a'd"), {(3.1%}

u((alb) [ (c))=ul{alb)i(cIb)) = (abclc) (3.12)

Remark . By fnspection of (3.12}, {({ajb)l(c]d)) has
the probability tautology form (ala) for some ac

(gla) 1Ff (c{d) s (alb), (3.7
RENCELLalb) (cld)) = (cd]cd) (3.18)
-

Next, consider connecting directly the interval
form of a conditional event with its probability
evaluation as a conditional probability, First, for
any weight X € [0,1] define the following sequence
of iterated weighted averages of s and t, for any
s<t ¢ {0,171,

WO s, € (eys 0o
for any integer na?2

{3.19)

wix,n)s,t} (I-Q(A,n-\)[s.t])-s w{and{st]-t.
$3.20)
Lemma 3.1 ([13], pp. 151,152)
For any s<t ¢ [0,1] ,
Hmw(a,n)(s.t] = 4 (s.t) $ s701otes)  (3.21)
and sequence
(w(x.n)[s.t])nﬂ'z’” is:
decreasing down to xo[s,t] iff 12> Ao[s.t] .
increasing up to xo[s,t] iff A < xois,t] .
identically to xo[s.t] iffa = xo[s,t] . .

. In light of the above result, call A [s,t] the
fized point weighted average of [s,t]. °

Theorem 3.5 ([13], pp. 151-152)

For any boolean algebra R and any prob. meas.
p:R*[O,’l{ which is syrjective, then for any a,b
€ R, the functional image extension of p acting
on conditional event (ajb)={ab,bba] is

p((a]b)) = [p(ab),pib=>a)] =[plab),1-p(b)+plati]
(3.22)

(3.23)

[ ]
We conclude this section with the important re-
cent full development of non-boolean function ex-
tensfons to conditional events with applications tc
cartesian products and sums and joint conditional
r.v.'s relative to distinct antecedents,

First, let R and S be any two boolean algebras.
Call f:R + S monotone increasing if

for 211 asb e R, fla)sf(b) € S . (3.24)
In turn, the functional image extension of £ (also

and

A (p(afb))) = plafb) .




denoted by the same symbol) f:P(R)~P(S), noting
for any interval {a,b) ¢ P(R), asb e R ,
fla,b] < [f(a),f(b)]) , (1.25)

in general with, however, the end events f{a}, f(b)
achieved. With this as motivation,define,then the
natural approxfmation

-~

fla.b) ¢ Lf(a).f(0)],

omitting in practise, for converience,
tation. This yields

{3.26)
the hat no-

Theorem 3.6 (easily proven new result)

tet f:R +« B be a monotone increasing function
between two boolean algebras. Then,the functional
image extension (3 la {3.26)) f: (R{R) (sls) is
well-defined with, for any a,b c R,

f(ajb) = [flab).f(bsa)]) = (flab)|f(boa)> f:ab))
3.27)
a

Theorem 3.7 (corollary to Theorem 3.6 [36])

tet RcP(D) and S<P(F) be two boolean algebras
and f:0+F be any function and f: f(o) - P(F) its
functional image extension and f~!:P(F)+p(D) its
inverse image extension. Then the above f and f-]
both satisfy the hypothesis of Theorem 3.6, with
(3.27) thus valid and f-1:(S|S) = (R|R) well-de-
fined, where for any c,d ¢ S,

F1(c|d)=f1{cd,dvc]e [f°](cd).f"(d~>c))
[V e)-£1(d)  F- 1 (d)=» £ 1 ()]
(V)1 (a)) . (3.2§)
Next, define the product boolean algebra R®S
of boole«n dlgebras R snd S as above by simply
first forming
Rxs ¢ (axp: acR, beS) (3.29)

and then letting R®S be the smallest doolean alge-
bra & P(DxF) with RxScRRS, where, as usual,

{axt)-(cxd)= ac xbd, (3 %)
axb = (ax1)-(I1xb), (3.31)
{ axb)'= (1xb') v{a'x1)"® (3.32)
ax0 =0xa =0, {3.33)
and cartesian sum is given by
atb 9 (a'xb')'= (Ixtv(axt). (3.34)

Theorem 3.8 (new result [36])

Given R and S as in Theorem 3.7, it follows that
the operations x,1:(R,5)~+R®S are both monotone
increasing and an obvious modication of Theorem 3.6
is valid here, yielding, for any a,beR, c,deS,

(alb)x(c|d) = (ab x cd |{{b>a) x {d>c))»(abxcd)

(ab x cd| (a'bx1)v(1 xc'd)v{bxd))
(ab x cd | (a'b x1)v{1 xc'd)v(ab xcd))
(talb)x{d]d})e((b]b) x(c|d))
(Ca]b) x1)(1 x(c]d))

"

(3.35)
and

(atb)f(cid)

(abtcd K(b>alk(d>c))>(ab t cd))
(a0 tcd |(abx1)v( xcd)vibxd)) (3 36
= ((alb)* x(c]d))* ={(a]b) X1} v(1 x(c]d)
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conditional r.v.’
antecedent restriction.

noting the complete analogue of eq .(3.35) to éon-
junction (2.23),{2.24) and of (3.36) to disjunction
(2.25),(2.26), for the GNW algebra.

Next, apply the abuve resulls to the development
of conditional random variables. (This rigorizes
the previous ad hoc {nvolved dpproach given ta {13],
section 9.3.})

Let {(0,A.p) be a fixed probability space, (R 8 )
the usual k-dimension real measurable space,
VR and H.0-R" any two r.v.'s. Also, define
for any acf ., bcB", the product form conditional

event
(alb) & (axb [ = b) .

Genote (o®18n19((a1b]: acB™, bcBY - (3.37)
Consider the joint or cartesian product mapping
Vxl 2+ RPxR" , where for any xeQ,
(v ) ¢ (v(x) Win),
and its functignal image extension
VxW: P()+P(R ) xP(R ) . appropriately restricted
and assumed range-measurable, so that VxW: A»B‘xgﬂ

is well-defined. In t ro , using Theorem 3.7,
VvxW : (A}A) ~ (B =8"IB uB } is also well-defined.

Also, define gviu] IB“?*UW as the re-
str tion (xnu) lB" {A}A), noting for any
B& befB . the ideauﬂcations from Theorem 3.7,

(vxu)~ (arb) = V”}(a)«“(b)‘ {3.39)
and as in {3.28),
viwd ™ CalbI=C(vxw) " (a xb) | (vxu) (ROxb))
v @ o W e)) = v Ha W (o).
{3.40)

(3.37}

(3.38)

Thus :
Theorem 3.9 (new result [36])
With the same assumptions as above,
pLLVIN] is in [alb])€ p(Cv]¥] ' (a|b])
= p(v (a) (b))

= p(Y is in a|® isin b), (3'”_)

Thus, there is full compatibility tetween the
traditional approach to conditioning and the use
of conditional event algebra to extend. [ndeed, an-
alogous to the way an unconditional r.v. cr a fixed
antecedent conditional r.v. (¥]W in b) induces a

prpbability space, [v|¥] induces the space
(Hm,rdkm J.pelv|¥]- i , where 9°[VIH3'$158'“lB"]-'
{AlA) produces conditional probability as in (3.41)

and preserves all GNW operations. For example, for
any a,c € B,b,dc B, for GW conjunction

o VT (Ca b+ [c1])

p(IV[W] " (ac * bd [(ac xbd)v (a® xb)vic' xd)))

(v (ae) W N od) v ac) Wt (ba)) v(v T (a) W b))
v o)W )

(v W N - (v i o))

=p(IVINY ' Lalod- [viWY VLcld)) . (3.42)

Finally, consider the problem of modeling jeint
s, especially those with no common




Theorem 3.10 (new result [36])

As beforem.(n,A,g) is a fixed probability space.
Let v.:a+R ™, WpR+R™S be r.v.'s, with all of
the ddvelopment in eqs. 3.38)-(3d42) valid for j=1,
2. Then, for any a, ¢ BJ, b, eRJ, j=1,2, relative
to GNW, 1 J

p([vllu‘] is in [a‘lb‘] s lvzwz] is in [aszzl)
RIUNCN A L R CAT I e
= (v () 1My 0= (V, (ag) W, (b))
= p(vppxxiy is i {ay [bgIx(a,[b,]) (3.43')‘

The following resylt shows that for fixed, but
not necessary equal antecedents, the cartesian
product and conjunction forms of conditional r.v.'s
ylelds legitimate joint prodability distributions!

Theorem 3.11  {(new result [36))

let t ¢ R be arbitrary and denote infinite left
ray
a(t) ¢ (-=,t] . (3.43)
For any given probability space (Q,R,p) (Rs 2(Q)
certainly a boolean algebra), choose any b, ¢ R,
3=1,...n, with p(b,-+by) > 9. Consider t]eﬁ,the.
function Fb:f('»(o,!]. where, for any t (tl""tn)

n v
efR .
F(t) € p(lale, )by e o (att )b )y (3.44)
with conjunction in the GNW_sense. Then, Fy is a
legitimate joint cdf over R . = -

Remarks. Fos n=2, one can write, using eqs. (2.23),

TRl = a(t)/te-BlL )-vlty)), (3.45)

whers d
o(t)3g(alt,) -a(t,)-by-b,); B(t‘)-p(a(t])'b]-bz');
v(t,)%(alt,) by +by) = cdp(byvb,) .(3.46)

Assuming probability density f,_ exists for Fb ’
it follows from standard relatioas, ~

f (L) = a’rg(g)/at,atz = Alt)/B(t)* ,  (3.47)

“here gty Sc - m() - y(t,) (3.48)

ae) 9 28(8) o(t)-8° (1)) v (1,) +
B(t)*-(3a(t)/3t,)-y*(t,) + (3a(t)/at,)-8'E)
+B(t)* -a%a(t)/at,at,. (3.48)

Thus, it is clear, by inspection, even 1f the
p(a(tj)lb.) are gaussian distributed in t,, §=1,2,
fb(E) will not in general take any joint 6aussian

distribution form. Qf course, gne notes, on the
other hand, the reduction of all of the above, when
b]=b =b, in which case Fp(t) reduces simply to the
flnction pla(t )-a(t2) b} and f,(1) accordingly ,
which is compa{ible with gaussidn forms,

Other recent developments in conditional event
algebra include:A full extension of GNW algebra to
the constderation of certain types of Stone algebras
and the higher order interval algebras gonerated
from them - which can be shown also to have a certan
Stone algebra structyre. This structure fs usefy)l
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in addressing the higher order conditicning pmo!em;
since the union of the nested higher order interval
atgebras is also a certain type of Stone algebra

and closed with respect to conditioning.{See [37].};
Conditional event extension of the classical rela-
tion between material implicalion being a tautology
and its antecedent being dominated by its consequence
relative to the basic order (s) (13], pp. 1912193 ,
{38]; An extenston of the normal disjunctive expann
sfon of all boolean operations over boolean algebra
R to all boolean-like operations over {(R|R) [39];

A semantic extended division of indicator approach,
with applications to an-alterndte approach to con-
ditional events, the higher order conditioning
problem, and the definition of conditional fyzzy
sets {40]. Due to severe space )imitations, only the
Yast-mentioned result will be briefly outlined in
the second part of this section, following an expo-
sition on a necent:breakthrough in the representa-
tion of fuzzy sets by random sets.

4 Modeling Matural Language Information
Through Fuzzy Set Theory and Relationsa
with Random Sets and Conditional Events

4.1 A Recent Result on the Uniqueness of
Represenation of Fuzzy Sets by Random
Sets

The first premise here is that essentially all
natyral language descriptions can be modeled in a
straightforward way by formal l¢gical combinations
of membership relations between population elements,
or measurement variables connected with them; and
modifiers or attributes - called fuzxy sats. For
example, the sentence

5 g “The sh’p 1s rather close to us, but is
still going very fast® {4.1)

can be naturally interpreted as

$ = (dist{ship,us) ¢ rather{close]} &
{speed(ship) € very[fast]) . {4.2)

The second premise is that the semantic or truth
evaluation of the sentence{s) 'can be carrfed out
truth-functionally, fi.e., in a homomorphic way-
preserving completely all formal relations, where
the formal relation between element and fuzzy set
is converted to a corresponding membership function
over a domain of values of the attribute and with
range values in the unit interval of truth possi-
bilities. In particular, all ardtnary (uncondftional)
sets and the ordinary membership relatfon (e) are
special cases of fulzy sets and their membership
functions. Thus, as an example of evaluations,
sy becomes (4.3)

tr(s‘) = Q&(Qrath(°c‘°5(d)) 'Qvery(éfast(s) )) .

where ¢,:(0,132+[0,1] is a binary operation over
the unif interval squared, representing conjunction.
This is often put in the form of min or more gener-
ally, a t-norm or copula. A t-norm t:[0,1]1*+[0,1] is
a nondecreasing - usvally continuous - function with
boundary conditions (4.4)

for all x e [0,1], t{x,0)=t{0,x)=0;t{x,1)=t(},x)=x,
and being an associative, commutative function,




The latter conditions allow the t-norm to be extend-
ed to any finite rumber of argunents unambiquously,
Usually, the t-norm chosen and its t-conorm partner
are in a DeMorgan relation, with the t-conorm satis-
fying dual conditions as for t-norms and with nega-
tion being represeated by the membership function

Pot = L. (4.5)

Thus, t-conorms, representing disjunction, if in a
feMorgan relation to their t-norm partners, can be
viritten

t{x,y) = 1-t{1-x,1-y) , all x,y ¢ [01].
(See [41] or [16] for background.)

Also, a copula is a function which is formally
the same as the c¢df of any n-ary joint r.v. all of
whose marginals are distributed uniformiy over
{0,1] In connection with this, the following result
is critical:

Theorem 4.1 (A.Sklar, 1973 [42])

(i) _for any positive integer n and any joint cdf
F:Rf#[o.t], denoting its one-dimensional marginals
as F.:R -+ [0,1], j=1,...n, there is always some cop-
ula Ycop:{0,1]0+[0,1] such that

F = copo(FI...Fn). (4.7)

(ii} Conversely, the right hand side of (4.7), for
any choice of cop and one-dimensional marginal cdf's
yields F as a legitimate cdf over .
Returning to the example in eq.(4.3), °rath’°very'
[0,1] » [0,1] are natural interpretations, with

%yery Deing nondecreasing, 0 at 0,1 at 1. ¢, :

R*+{0,1] represents possible distances from “us" and
fs 1 at 0 and nonincreasing approaching 0 at large
values, Similar comments hold for ¢fast‘

Despite the direction of the majority of the fuzzy
set community - and that of the larger probability
community - in creating a separation of perspectives
in modeling information, a relatively small group of
individuals have observed connections between the
two areas {Hghle, Goodman, Nguyen, etc.). See, e.q.
[13], chapter 5 and recent comments in [44]. Specif-
ically, it is now fairly well known that fuzzy set
membership functions correspond to the weakes! basic
way random sets can be specified, analogous to the
situation in classical r.v. use.where one knows only
the mean of the r.v.'s involved, not the entire dis-
tributions. Quantitatively, this can be interpreted
as follows: For any given function f:D-+[0,1], there
exist - in general infinitely many - random subsets
S:0+P(D}, for some probability space (R,A,p)} such
that 5 {s one point coverage fwiction equivalent to

f, i.e.,
p{xeS) = f(x) , all xeD. (4.8)
: the

One sych random set is easily constructable
canonical nested random set Qr random level set (or
rondomcut set 1 S _{U):2+ [0,1], where U:2+ [0,1] is
2 uniformly dist;ibuted r.v. (surjective) and

s 4T U 5 Texed & fLx)20). (4.9)
A major stumbling block in the utilization of

this relationship has been which gne(s) of the

ane point coverage equivalent random subsets of D

are the most appropriate to replace the original

fuzzy set membership function they represent? In

9.

addition, can the problem of determining the most
appropriate fuzzy set operations to choose be re-
lated to the one potnt coverage problem ? Although
ladeh originally proposed from an ad hoc viewpoint
the system (min,max,1-{ }) for conjunction, disjunc-
tion, and negation, respectively, a plethora of
more general classes of systems have since been
proposed, including the t-normis, t-conorms mention-
ed earlier, These issyes have really remained open
now for the past dozen or more years since they
have been proposed. {See, however, e.g. {13} for
some progress in this area.) Finally, with some
recent discoveries, it appears that these issues
are now close to being redolved:

In the following, let ({1,A,p) be some convenient-
ly chosen probability space, f:0~ [0,1] any given
function, R(D) the class of all random subsets
S+ P(B), which are c.nsidered as distinct only if
they induce distinct distributions via p,and Rf(D).
the class of all one point coverage equivalent
random subsets of D to f. Alsg, let Vi&) dencte the
class of all stochastic 0-1 valued processes of the
, vx:n~’(0,1) a r.v., for all xcO,

such that p(szl) = f{x}, all xeD. In addition,

denote the corresponding ¢df of each V_ as F{V,)and
call Hythe class of all jaint cdf's ofer the set
{0,1}0 for which the marginals F{V,) are fixed, xeD.

Theorem 4.2 {originally shown in [12], Theorem 2.1.1
- in a modified form; [45]-147])

(i) Using the above notation, the follewing diagram
holds, for any given f:0+{0,1] ,§ being indicator

function, . A
PO SIS —
RO e tion Y40 i3ection FLYION)
A F

RO rgectton ¢ DpiJectron FV((0)

{(11)By Sklar's Theorem,
F(Vf(D)) : (C°p“«F(Vx))ch: cop arb over[G,l]o
S(cop,fl=typical 1-pt equiv.r.set to f

= (o7 eF () Tolcope((FV)). o))y (a.10)

R.(D}= {S(cop,.f): cop arb over fS,\]D),(d.IT)
{i§3) All of the above results can be extended to
the following typical joint situation, where D is
replaced by D =(D‘J)1€1. o Fby £ =00

icl,
! Y0¥, (0)

f‘.J:Dij-»[O,]] , with nf(o) replaced by RI(__). ¢

replaced by V(D). etc. a

Thus, eqs.(4.10),(4.11) show that by chbosing
arbitrary copulas, one can construct all solutions
to the one point coverage equivalence problem.
Theorem 4.2{iii) provides the setting for the
new characterization of fuzzy set operations com-
patible with probability interpretations:

Theorem 4.3 (new result {44],(45})

Fix probability space {f1,A,p) and consider any
operator pair for conjunction disjunction in the
form (cop.cocop) which is also a {DeMorgan, con-
tinuous) t-norm,t-conorm pair. Also, for any choice
of finite colleciion of finite sets D, any func-
tions f, as above,any x (xij)icl,ij R ‘13C°ij .




f(x) ¢ (fij(xij)) and any random sets S ¢

iel, *

Jjed
(Sij)ic!. € nf(g), ie., sij € R{_'(Oij). such that
Jed - V)
it is nerated b -~ S, =S5 . i
generated by cop SU S‘J(cop.fu) as in

(4.10;, the following two statements are equivalent:
(1) for all possible f‘.j:DU'(O,l] , all possible
corrasponding Sij , all possible ‘SJ . COp,COCOP
and Sij
holds for all possible combinations of cop over
COCop and cocop over cop relative to corresponding
probabilities of combinations of ordinary conjunce

tions over disjunctions and disjunctions over con-
Junctions of one point coverage relations of X

are such that the following homomorphism

}
by Stj . That is,
tr{% or (x‘. . ¢ fuzzy set corresponding to f__)
jed ier M N
= cop((cocop((f‘.jlx‘-j))id »ij)
=pl & or ,x.. €5..})) (4.12)
jed iet 3
and
tr{ or & (xU £ fuzzy set corresponding to ! )
il jed 4
= cocop{{cop({ fij(xij))jcd))ic!)
=plor & {x,,e5,.}) . (4.13)
jel jeg 4 1
{2) {cop,cocop) = {min,max) (4.143)
and
(4.14n)

Sij = Sfi '(U) . 311 del, Jed ,

where U:0+{0,1} is a fixed uniformly distridbuted
r.v., as before.

Proof: The proof is rather long and detailed and

is provided in [46]. However, an outline of it is
presented below, since the key steps are of interest
in themselves:

Lemma 4.1 If the hypothesis of Theorem 4.3 holds
(prior to statements (1) and (2] )}, then extending
the above multivariable notation in the obvious way,
the following two statements are equivalent:

(1) cocop(cop(f(x))) = plor & (x ¢ S)) 54.153
4.16

(1) cocoplf(x)) = § (1)K opqq (x: 1),
otkey Yk

)

The next result mod!ifles Frank's well known
theorem ([48), Theorem 5.1, pp. 220-222) by replac-
ing his modularity assumption {essentially, the re-
Yation expressed in (3.16) for car(X)=2) by a De-
Morgan one and his.conclusion, which includes the
class of all possible’ ordinal sums { certafn types
of afffne transform)on t-norm, t-conorm pair
{prod,probsum), by only {prod,probsum) {tself. (As
ususl, prod indicates arfthmetic myltiplication and
probsum is its DeMorgan transform.)

~-10-

Lemma 4.2 Again, assume the hypothesis of Thegrem
77 but here lessen the requtrement by reglacing
cop by Just 4 contlinuous U-norm and Cocop Ly the
corresponding (DeMorgan) t-conors Lonly. Then, for
all f, xc0 (f, .20, = {0,1])), and al1 5 ¢ [0,1]",
foraipproar\ai}!y Joetermined n , using notetion
Sy (;))j“, the following 8 Stalments are egult-
valent:

(1) for a1 5 (s)  f IR TR ITRES
efkg {1, . .nl
(i\')For all 5"52-53 € [0.1].
t(s‘.tisz.sl)) . t(s,.xz)'t(s‘.%)-t{u‘.s?.sj)
{4.18)
{117) {t b} 1s either (min,max}or{prod, prodsum},

-
Lemmg 4.3, 1f the hypothesis of Theores 4.1 holds,
then by combining Lesmas 4.1 and 4.2, eq.{4.17)
holding tmplies that {cop,cocop) must be either
{min ,max) or (prod,probium). .

Lemmy 4.4 [f the hypothesis of Theorem 4.3 holds,
and eqs.{4.12) and {4.13) also doth hold, then
necessarily cop must be distributive over cocop.

Finally, the proof of Theorem 4.1 {s completed
when 1t {5 noted that prod in general is not dis-
tridbutive over probsum, and hence the concluston of
Lewma 4.3 must be restricted to (min max). Alsc,
conversely, as & check, 1 can be easfly verified
that {nin max) does satisfy both egs. {&.12) and
{4.13) for all possible allowable variables and

that this determined that eqg.{4.14b) holds. -

Many fuziy set concepts -sud as the extension
of ordinary functions to fyzzy sets (“extenston
principle”) and fuily relations - can be defined
through comhinations of conjunctions and disjunc-
tions,Tws, O imore of Theorem 4.3 is that: Unless
prior information indicates other facts, the only
wtwereal interpretation of fussy set thaory com-
patible with probability theory in the ome point
cowirage sense mat be through the oanonioal nested
random sete and only Zadah's original {win,max,1-{})
system provides thie compatilility. Hencs, in com-
bining linguistic information with stochastic in-
formation, 1t {s natyral to convert all of the lin-
guistic Information first to the nested random set
form, and then combine the resulting all-stochastic
information as will be seen in section 5.2.

4.2 An EBExtended Numerical Division of
Indicator Punctions Applied to the
Development of Conditional Ivents
and Puzxxy Conditional Events

Throughout this subsection, T will always refer
to an arbitrary fixed nondecreasing continuous
function with boundary conditions the same as for
t in {4.1). That is, T is a generalfzation of
classical logic table for conjunction, and in fact
that of the form of t-norms or copulas described
in section 4.V,




Next, define T-extend:d division (./.)7:(0,17 =
P{0,1], where, for any r,s ¢ {0,1] {including ©
values traditionally banned from division in ordin-
ary arithmetic division),

(r/s).rg {x:x ¢ {0,1) 8 T(x,5) = min(r,s))
= (min(r,s)/s), . {4.18)

3
Extending this further, define (./..)yp:2{0,1]~#0,1]
where for any a,Bs {0,1],

{o/8)y = (mtn(a,B)/8)y 0 (yovel0.118 T(y.8) =
min{a,8})

« maxima) (classwise fnclusfon)y such that
T{y.8) =« atn(a,8) , {4.20)

where min{o,8) fs the usual functional image ex-
énsion of min applied to o.8, and similarly, for
T(y.8).

Clearly, for many pairs of a,8 , (a/B)T will

be vacuous {except for Yemin). But for a large
class, including intervals from [0,1], nontrivial
extended divisions will result. Note also the re-
duction of the definftion to the ordinary arith-
metic division for any r,s ¢ {0,1]:

Ar /s) r/s (s>0) . (4.21)

prog :
In turn, now using the obvious componentwise
definition, T-extended division can be applied to
any pair of functions £,g:0-+[0,1] to yicld
(f/g)T:D*P(O,l].where for any x ¢ {0,1],

(£7g)5tx) & (F(x)/g0x));.

8y restricting f and ¢ to ordinary set {ndjca-
tor functions ¢(a),#(bY:0 « (0,1} , for any a,b ¢
P{D), and to the three-valued indicator functions
of conditional events ¢(ajb), as given in eq.(2.2V),
where here - and from now on, unless otherwise in-
dicated - one {dentifies the third value
us=[0,1],

the following result obtains:

Theorem 4.4 Qerivation of conditiona) events
through their indicator functions
being T-extended divisions of uncon-
ditional consequent indicator functions
by antecedent ones and u:clocure of
higher order conditions) events
through T-extended division.{new
result [40]).

tet D be any {nonempty) set and a,b,c,d gD arb.
Then for T arbitrary as before:

{4.22)

(4.23)

(¢ta)/e(b))y = (elab)/a(b)); = ¢lalb); (4.24)

(i) Interpreting conditional eveat conjunction -
as 6N (eqs.(2.23),(2.24)),

(¢(alb)/elc]d))y = (6((afb)-(c]d)}/o(cld))y
= ¢(u((alb)|(cld))), (4.25)

where u fs the class ‘union operator used to reduce
higher order conditional events homomorphically
(see Theorem 3.4).

Motivated Ly the last salisfactory Lie-iny Le-
tween the previcus algebraic/syntsclic approach to
conditioning and the more auseric/semantlic by V-
extended division, we now define T-ounf tional
fuzay eets 85 simply Lhe componentwise detfinttion
given in eq.(&..?;g, to be read “f givern g through
1" or "if f then g, wrt 17 etc.

The neatl result provides min-Lased fully con.
ditionals.

Theoren 4.5 {new result (40])
Let T o min here. Then, for any f,9.f
and any x ¢ D

B (g, (a0 = t

j.g::ﬂ{c,!}

{glx), 1), 0F glx) s 9(x) ,
f(x) , 1 f{x) <glx)

« [min{f{x},q{x)}. gta)ef(x}],
{4 2¢)

anatogous to the interval form in eq.{2.9), where,
here + in (4.26) denotes the relative pieudocomple-
ment {as ts < for boolesn algebra) for the latlice
(OJjéltn,n:x), where for any r,s ¢ (0,1]
v, tfres,
res =

{¢.22}

s i s«r

(1)

((f,/g‘) /(12/92) ) {1} =

min min'min

[mta(f,(x).g, (x),1,(x),g,(x)) . (g,(x)=1,(x)}
(g, (x00,(x))],
{4.28)

resulting tn a [0,1]-sub interval valued function,
readily computabie.

(§31) In general, though all higher order min-con-
ditfonal furly sets can be obtained as s!ru%m—
forward generslizations of {4.28), they do no

reduce to the same forms, as {s the case in {4.25)

for ordinary conditional events, -

Theorem 4.6 (new result {40])

Suppose T 1s now arbitary strictly incressing
in {ts arguments. Then, for any f.g.fj,g":o-' {011,
and xe {0,1]:

(') [0.‘) » ‘f G(x) - O-
79yt = rtasglan); € (001,

if g(x} >0 . (6.29)

(13)
[0, , tf gl(x) =0,
((£,79)) /(0,095 ) (x) = [0,(F,(x)/g,(x});] s
11 g,(x)>0,g,(x)=0
e [0,1], if q](x),gz(x) >0
(4.30)

{i14) A1l third and higher order T-conditional

fuzzy sets reduce to the seccnd order form as given
fa (11} .

The next result shows compatibiifty between the
{deas of T-conditional fuzzy sets, the one point
representdtion of fuzzy sets by nested rapdom sets,
and the conditional events formed from these random

~11~




Tsets.

) First, consider f,g:0+(0,1] and recall {see
(4.8),(4.9)) the one point coverage equivalent rep-
resentations of them through the nested random sets
Sf(U) .Sg(U), 50 that one has for all x¢ D,

p(chf(U)) = EU(O(Sf(U))(K)) = f(x) ,

(4.31)
p(chg(U)) * €U(0(59(U))(X)) * g{x) .

Recall also the fixed point weighted aver A {s,t]
for any interval of numbers [s,t] ¢ [0,1] given in
eq.{3.21) and denote,as usual,é to mean either the
ordinary set indicator function or the geheraliza-
tion to the indicator function of conditional

vents, with the identification for u given in

(4.23). Also note that (sf(u)lsg(u))moav(o)ip(o))

is a random conditional event, where for any we
(5 (0I5 gte) T (s (o) s (W), (4.32)

In addition, for any xe D, analogous to (4.31),
it is natural to define the one point ooverage
Sfunction of a random oonditional set typically
as

plxe (s (nls tun) £ £ lots (0) | s ()ix)
= 1plxeB (V)5 (U} ¢ O-p(xefs (U)-5 (LN

*[0.1}p(xcsg(ur)
= [min{f{x),g(x)) , min{f{x),g(x)) +1 - g(x)]
s (0.1, (4.33)°
using (2.21}.
A1l of the above, finally leads to:
Theorem 4.7 (new result [40))

Using the above notation, let f,g:0+{0,1] be
any two given fuzzy set membership functions. Then,
for all xe O,

xo(p(xe (5.(v) ISg(G))))

=(ﬁwpmAX)
= E, (65 (v M%), (4.34)
u (f/g)prod
the bottom equation holding except when g{x) = 0,
|}

Remarks .Previously in [17], eq.{9.21) {see also

, Chapter 7) fuzzy conditional events were de-
fined {n a,more or less,ad hoc manner, which in
the notation here led to the form {f/g), 4 . for
any given f,g:0+[0,1], fortunately th8 8me as
in Theorem 4.7 !,

Also, fuzzy set operations, such as Zadeh's
(min,max,1-(}), or any t-norm,t-conorm system,
can all be applied to fuzzy conditional sets as
defined above by using the functional image ap-
proach. for example, for any fj.gJ:D+[0,l , Xe D,

for conjunction represented by Zadeh's min,
(min((f,/g‘)min.(legz)min))(x) * [“"'”‘f333§>

MPeTE a(x) L mtnlf,(x),g,(x),fpx) g, () (4.36)
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t{x) gm’ﬂ(gi(x}'f‘(;).92{1)'!?(332_ {4.317)

Finally, 1t can Lo observed Thal the fiaed pulnt
weighteg average funclion ¢an elso be uied Lo evalo-
ate probabilistically T.conditional fulzy sets,
since they are actually set-valued and, o partic-
ular, for Temtn or T stictly increasting, 'nlerval-
or point-valued relative to {0.1]. For eaample, let
Y be wny r.v. playing the role of an identity func-
tion so that p{v is in a) » pla}, for all a¢ P(D).
Ther(x )for Y being strictly incressing, using Theorem
4.6(1),

ot(1/g1) ¢ ptv 55 1n 17g);) € (e, (L17g) M)
< dla-f00] + (-0} 8)
< 2[{(1-afg , (1-0)-8 va]

=8, (4.34)

whe re
afplg(v)0); 8 TECLF(VI/g(¥) 1 la(v) 20).  (a.39)

See again [13], sectton 7.5 for previous related
results.
-

S Combining Information

With all of the major results set in place, some
spplications to combining evicence will be consig-
ered next. First, the previously fntroduced diag-
onalfzation procedure will be reviewed and a new
loss function further justifying 1ts yse will be
presented. This will be followed by an {llustrative
example and related concepts.

5.1 Diagonalixation

Akeyelement in combining evidence,from this
author's viewpoint, is diagonalization of informa-
tion, mentioned briefly in ftem (3) of the list of
new mathematical techniques developed for analyzing
and treating this probles  given in the Introduc-
tion. This procedure, originally introduced in [3]
with additional properties presented in [12], sec-
tion 2.2, is related to (but distinct from) the
logarithmic pooling procegure (52]. In brtef, let
fj:D*R’ represent the Jth soyrce’s description of
avcosmon byt unknown parameter of interest 8¢ D ¢

, where f. is & pdf or pf {probability density
or probabiﬂty function), known, and f:d’*&’: is
3 constructed known joint pdfor pf, whose J~ mar-
ginal is f¢, j«i,...n. Often, with no other inform-
ation presént, appealing e.g. to the maximal entropy
principle, f. can be considered statistically inde-
pendent and, hence,f as a product of the f, in dif-
ferent arguments. Then, diag(f):D+R’ is Yiven, for
any x¢ D,using the pdf form,

diag(f)(x) ¢ f(x,.. /e, (5.1}
where cp ¥ frlx,..ox. (5.2)
xcD

It was shown in [3] {see also [12]) that diag has
quite 2 number of desirable properties, including:
extending optimal estimation and regression, such as
gaussian Vinear regression;forthe independent source

case,bein? a symmetric, assocfative. bayesian updat-
1ng-1nvar ant, related to surface integral represen-




tation for probaility measures conditioned on par-
ticular regions, namely here

diag{D) = ({(x,...x): xeb}c 0" . (5.3)

However, despite all of the above Justification
for use, no basic loss function emerged for deriv.
ing use of the procedure until recently {491, This

is summarized below:
Llet n be any positive integer and choose any
weights Wi )\J. such that

Osu)..xjsl RN R LI {5.4)
tet £:0"+ R* be the joint pdf describing the
joint density of the n sources describing 98¢ 0
and Yet h:DV'+ D be any procedyre which reduces
the joint description space to the space of the
parameter itself. Then, define the following loss
function L{n) representing an expected weighted
combination of squared distances between any given
value of h(x} and the possible components of x ,

a direct measure of fit between h(x)and f, plus

a weighted amount of the dispersion of f inter-
acting multiplicatively with the square of h(x}:

L(h) ;gﬂ"‘ j};‘)\j-(l_) h(ﬁ)) “(\‘129 <§Ejs(l:i5xj)zh(£) )
f(x)dx .
{5.5)

Theorem 5.1

(i)

{new result [49])

inf
over all h:p"+p
where for any xeR® ,

L{h) occurs for h=h

(5.6)
X .nif Xy=eo=xo €D,

R R S R L
(1gi<jsn)
tf l}...,xn

hy(x) ¢

are otherwise ¢ D.

(1) hy(x) € tim b (x) = {x , i xy2eex ox € D

0 . if ofherwile.

w, +0,

(“;ﬂ) (5.7)
(111) The pdf of h,(x) for x having pdf f is
diag(f), as given ]n eqs.(5.1).(5.2). -

5.2 A Generic Example Illustrating Some
Application of the Previous Theory

Consider, for simplicity, two di fferent sources
of information to be present, both attempting to
estimate common unknown parameter 8¢ D c R, with

D a known set. One or both of the sources may be

linguistic-based,with the other, 1f any, stochastic,
and similary for conditional information vs uncon-
ditional. For simplicity here, modal or non-indic-
ative forms will be omitted. See [19] for a con-
ditional event reduction of such forms,

Case 1. Bath sources provide stochastic descriptions
in the form of unconditional r.v.'s.

Let vy,¥,:R+D , (0,A,p) a fixed probability
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space, so that for any 0}:32€B . One can compute
the joint probability

) . -1 -3
p(V‘ in a 3 V) ina,) = pl¥, (a‘)-vi, “2”' {5.8)
Then, apply dlagonalization via the restrict.
ion
{$.9)

to obtain the desired result. This 1 the direct
application case for diagonalization.

4y =4y ¢ {x}, x¢ D

Case 2. Both sources provide stochastic descriplions
Tn Conditional r.v. form.

Let (VJIHJ) be a conditional r.v., where VJ N0
and \iJ:Q*B’i Sij . J=1,2, for (fi,A,p) a fixed prob-

ability space, so that for any ejc o, bjtaj. 31,2,
one can compute the foint probability

Thegrem 3.10). Then, keeping in mind Theoream 3.1}
and the following Remark, one can apply diag to
obtain d“g(fﬁ‘](b)) . b =(b‘ .bz), etc. ,constraining

the a; as in (5.9). In turn, one can selc?t some
reasol‘able distribution of b through ped™' - such
as singleton restriction - and obtain finally
Eu(diag(fu-u,))).

“ In practise, spaces B,,B, can represent ayxil.
iary attributes serving ls intecedents in the des-
criptions of 8, as given in the example in the In-
troduction {Sources 3 and &)

Case 3. Source ! {s linguistic-based and provides
fully set membership function g:0 +[0,1], while
source 2 is stochastic, corresponding to uncon-
ditional r.v. V1D,

Apply the principle of fdentifyfng g with nested
random set S _{U):0-+P(0}, by imavoking Theorem 4.3
and the ensuiﬂg Remark. It is reasonable here to
assume r.v. U over [0.\2 is statistically indepen-
dent of V¥, and hence S (U} and ¥ are independent.
Furthermore, in order Jto apply dlag in a non-triv-
1al way, efther V as a singleton point-valued
function should be “broyght up®™ to the typical
range level of Sg(U). or Sg(U) restricted down to

the point values of ¥V (all with suitable normal-
1zation of values).

In the case ofithe former, one eost natyrally
can replace V by V:+ P(D), where V¥ {5 a random
subset of D with -assumingD finite - pf given as

p(Q = a)= p{V in a)/ § p{V in b} , 211 ac P(D).
beP{ D)
{5.10)

In the case of the latter, one could consider
normalized one point coverage probabflities, i.e,
normalized fuzzy set membership "]ue?' thus
diag here yields diagl{g/ £ g(x) , pev-?),
xeD

Other cases which can be treated in a similar
way include:

Case 4, Both sources are linguistic-based: Use
2gaTn the principle based on Theorem 4.3.

Case 5. One or both sources are conditional lin-
guistic: Use the principle of tfdentification




with ordinary conditional random sets,via Theorem
4.7 and the ensuing comments, and then apply a pro-
cedure similar to Case 2.

More generally, consider several information
sources s ., j=1,...n,being present, some possibly
providing“linguistic-based descriptions, others,
stochastic ones, some (either linguistic or sto-
chastic) conditional, others unconditional (either
linguistic or stochastic). One then converts each
linguistic source, say s., j=1,..,m, to stochastic
form as a nested random “set S{s.}, in either un-
condi tional form {when s, is in Enconditiooal form}
based on the ideas of Seétion 4, especially Theorem
4.3, or in conditional form {when s. is in con-
ditional form) based on Theorem 4.77 Since the con-
ditional case includes the unconditional, one can
assume, without loss of generality, al) S(sj) are
represented 3s conditional random sets.

fFollowing this, utilfzing efther Theorem 3.11 or
a variation, based on the logical combination de-
sired (such as combinations of conjunctions, dis-
Junctions, negations), a single joint conditional
probability distribution F{5{s)) is obtainable with
corresponding pdf or pf, say, f(S(s))). describing
the situation of interest - e.g.., the unknown par-
ameter 8 . Next, appiying the diagonalization
transform yields diag{f(S{s))), a single pdf or pf,
representing the combined description. Thus, it is
reasonable to replace any decision problem based
on the initial collection of sources s, by one
based on diag{ f(S(s))). Hence, standard probabil-
ity models apply to the choice of optimal decisiors,
‘decision errors, and information bounds.

However, it {s still of interest to determine
what loss of information occurs between f(5(s})
and diag(f(S(s))), and to compare the gain fIS(s))
produces compared to prior knowledge of the sit-
vation. Analysis of these issues will be forthcom--
ing in a later publication.
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