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THE ROLE OF CONDITIONAL EVENT ALGEBRA

IN THE MODELING OF C3 SYSTEMS

I.R. Goodman
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Research, Development, Test and

evaluation Division
San Diego, CA 92152-5000

Abstract Many seemingly simple problems of combination of

This paper highlights the newly-emerging evidence belie such deeper mathematical and logical
Tisciplie ofconditionl even n aly-ebera.nB issues which must be addressed. For example, con-discipline of conditional event algebra, sider the job of a command unit in synthesizing theshowing boy this area can be of use in

combining conditional evidence in a C3 following information,a week before a given time
setting, compatible with 1 possibl deadlinethe size of enemy ground forces ready for

conditional probability evaluation#. Typ- combat:
ically, such information arises from many Source 1. "1 (John Doe) hope that (based upon my
different sources and has widely vary- expertise) the size is quite small - perhaps 8000
ing antecedents. Recent breakthroughs are or less."
underscored, including: (1) derivation of Source 2. Intelligence source 0. based on high
a number of new properties pointing to a technology devices, provides a known probability
particular conditional event algebra function over the interval (7000, 9000), in units
(GNW) as being one of the leading candt- of 200 troops.
date* of choice; (2) full development of
non-boolean operators acting upon con, Source 3. According to combat rule book R - "if
ditional events, including cartesian we&Wr condition b holds night before, t~en troop
products and inverse functious, resulting size a can hold', where a aind b can vary jointly in
in-a fully-developed model of joint con- sets A and 8, respectively, a and b have known -
ditional random variables. In addition, a updated to command unit's time - joint probabili-
recent uniqueness of representation of ties of occurrences. Typically, b could be the com-
fuzzy sets by random sets is shown for bination of factors "full moon, damp, between 60a
both the unconditional and conditional and 70", while a could be "between 11000 and
cases. Finally, a previously introduced 12000 troops'.
diagonalization technique for combining Source 4. According to combat rule book R - *If
different stochastic information is -l96Tcal condition d holds, then troop sze c can
further extended and justified, shoving hold", where crC, dcD. with known (updated) joint
how mUlti-bource linguiatic-based and sto- probabilities of occurrences, analogous to that in
chastic, conditional and unconditional, Source 3.
information can be combined.

by a concensus of experts, joint probabilities
of occurrences of all a,b,c.d can be estimated for

1 General Introduction Sources 3 and 4.
C3 systems reflect, to a large extent, everyday Clearly, Source 1 is more linguistic in nature,
real-world problems - in addition to the obvious involving the non-indicative modal form .. hope..
pressing (possibly life-threatening) decisions en- (a bouletic form). Source 2 is readily seen to be
tailed in a typical military scenario. Th s, in at- essentially characterized by a single ordinary
tempting to model and better understand C1 systems, probability distribution. Sources 3 and 4, most
we also enhance our own daily perspectives on com- naturally, represent tables of possible conditional
plex decision processes. The philosophy of a0proach probability relations. Later, it will be seen that
t'Ien here is that one needs first to develop a com- such information sources, despite their different
prehensive mathematical model of the problem, while structures, can be reasonably treated for fusion
at the same time understanding its empirical aspects. of data.
The model should also -emphaticallyl- be as natural
as possible, tie in with previously established re- In short, this paper continues - and extends
sults, and be derivable from a minimum of, if any, further - previous attempts at understanding exam-
ad hoc assumptions. ples such as above, and is aimed at establishing

a riaorous theory of data fusion that can be appliedThis paper continues the orgoing effort of the universally to all such problems. More specifically.
Author and others in attempting to deal with the this author has endeavored over the past several
data fusion aspect of C3 systems. years to address the following fundamental aspect
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of C3 modeling: response to the current 14ck in the 5tandard literd-

How can one establish a cohesive, universal. but ture of a full algebra or ,yn~ax of logical cptr,-

feasible, theory for fusing multiple source, dis- tions and relations which play a role relative to

parate information, which can be in any of several conditional probability evaluqtions., as the way now

forms, including any combination of the following: that boolean algebra plays with respect tO all uncon-

narrative / linguistic / human source-oriented; ditional probabilities. In short, it is cleat that

stochastic / mechanical sensor-orlented; condition- one can use boolean algebra to manipulate and help

al or unconditional; indicative or properly modal? in evaluations such as

In particular, in [1]-021] an attempt has been p(((a v ab)'v c ')'-c v ac')

made to treat this problem. This approach necessi- -p((a'vc')'c v ac') (by absorption)
tated the development of new "mathematical tools-
and the enhancement of established ones in dealing =p(acc v ac') (by OeMorgan)

with these difficult issues. These included: =p(ac v ac') (by idempotence)

(1) The modeling of conditional stochastic type =p(a(cvc')) (by distributivity)
information and the related concept of "conditional
e..znts" and their logical relations, especially =p~a) (by orthocomaplementatlon) (21|)

for the situations where they have differing ante- Here, R is some boolean algebra or events ab~cd,
cedents, through conditionat eutnt alg3ebra. (For
background, see the monographs [13],[14] and the with - or its omission between symbols denoting con-

survey paper (15].) junction or intersection, v denoting disjunction or
union, ( )' denoting negation or complementation. 0

(2) The modeling of natural language information being the zero or null (0), 1 being the unit or uni-
via fuzzy set theory and the one point coverage versal(O, etc.), s being the basic lattice order or
function representation by rvidom eets. (For back- subset relation (sJ, and p:R * 0.1] being some
ground, see, e.g. [16].) probability measure over R. (This notation will be

(3) The establishment of a technique for combining employed throughout the paper.)
any of several stochastic descriptions (distribu- On the other hand, suppose one wished to evalu-
tions, for example) of a common unknown parameter ate the conjunction of two conditional sentences,
of interest, extending - and compatible with - such as the ones given in the example of the intro-
classical estimation and regression theory, namely: duction representing Sources 3 and 4. Symbolically,
diagoalixation. (For background, see [31.) we write p((a b),(cfd)) as the desired evaluation,

(4) Derivations of procedures which utilize as- where we assume the conditional probability compat-

pects of both (1) and (2): Ibility relations

'(I) Conditioning of linguistic-based information p(alb)-p("if b then a") ; p(cjd)-p("if d then c'),

naturally modeled through oonditioninq of fuzzy with (2.2)

sets. (See [17]-(18] for a previous direction of p(aJb)4p(ab)/p(b); p(ctd)4p(cd)/p(d), (2.3)
analysis.) the usual conditional probability definitions,

(II) Modeling of modaZ / non-indioatiie linguistio assuming of course that p(b).p(d) 3 0
infor•,ition, utilizing conditional event represen-
tations and conditional event algebra or condition- Is there some computable "conditional eaent"

al fuzzy sets. (See [19].') (niB), o,=a(a,bc,d) cR, B=B(abc,d) tc such that
(o•j8) =(alb)-(cld) (2.4)

In addition, recent work should be mentioned on h e , a does te on i

the development of comparison criteria via game has meaning, as does the extension of conjunction,

theory for h~elp in choosing among competing un- also denoted as • on "conditional events", with the

certainty functions, for a given situation, the compatible evaluation

most appropriate. This includes the class of all p((QIB)) - p(ods) ? (2.5)
probability functions, possibility functions, and
Oempster-Shafer functions, among others. (See [50].) Or, is there a similar y,S c R, such that

A good summary of the above relatively new areas (y16) = (alb)v(cld) (2.6)
of investigation was provided in [12]. More recent-
ly, several additional breakthroughs have been ob- has meaning and

tained in these directions and form the focus of P((Wy6)) - p(Y16) ? (2.6')
this paper. In turn, these results have allowed the
closing of a number of gaps in the theory of data Clearly, if b-d, then a natural solution, fully com-
fusion and consequently have lessened the use of patible with traditional probability concepts is to
ad hoc constructs and assumptions. Overviews of choose in (2.4),(2.5), o=ac and B=b, yielding
these breakthroughs, followed by concise technical
details, are provided in the next sections. Finally, (acb) - (alb)a(cdb) (2.4')

the !Act section provides a procedure for Implement-- p((aclb))- p(aclb), (2.5')
ing them suitable for real-world - and in partic-
ular - C1 system usage. with the interpretation that (alb), (cib), (acjb) are

2 Conditional Event Algebra: Introduction simply a,c,ac, respectively, restricted to b, I.e.,
ab,d,acb, with initial R replaced by Rbg(xb:xcR) and

Conditional event algebra has been developed in p:R - [0,1] by the conditional probability measure
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Pb 9 P(ýJb):Rb - t0,11, etc. But, the general case form conditional events must take (see lthorem ?.I
later in this section) Goodman (30) showed Cala-where b#d cannot be treated this wy. 'brese' conditional events were also principal ideal

In order to answer the above questions, one cosets and proposed for the first time der-ivini con-
first must be able to identify just what we mean ditional event operations from first principal cou-
by a "conditional event". Since a,b c R. it is siderations, namely. via functional image extensions
natural to inquire whether (alb) E R or in some of the usual unconditional boolean operationt .v,
enlargement of R, which is still a boolean algebra ( )'. etc. This yielded closed computable forms,
(as Copeland and others originally thought (20), later extended in [13], sectson 3.2. Furthermore.
(21)). The only natural candidate for ( I ):R2?-R Goodman, Nguyen, and Walker((13), chapter 2. see
playing the role of a conditional event former is also Theorem 2.1 here) derived the form that con-
material implication -• , which is actually also ditional events nruut take, under a minimum of as-
the relative pseudocomplement operation for R, sumptions. For a thorough history of th*- problem
with form of defining conditional events and their operations

b-)a b' v a b' v ab . (2.7) see (15). In [13] a number of important properties

However. Calabrese (221 noted as early as 1975 of conditional event algebra,in general, and GNiW
that -, cannot be ( ) and pointed out (also later (Goodman-Nguyen-Walker) conditional event algebra,
inI i alit e in particular, are established, including tie-ins
in 1987 (23]) the inequality with three-value4 logic and Koopman's qualitative

p(b-'a)=l-p(b)+p(ab)-p(alb) + p((b').p(a'Jb) conditional probability.

z p(aIb) , (2.8) In summary. the most significant elementary re-
sults in the development of conditional event alge.with strict inequality holding in general except bra are:

for trivial cases. In addition, he also proposed
the question whether conditional events could be For any given boolean algebra R, define the
constructed outside of R, but gave back the com- space d)d(a
patible evaluations (RJ Ib):ab c R Pf R),

p((alb)) = p(alb) . (2.8') Iatb) Rb' va Rb' v ab
Indeed, in (23) Calabrese demonstrated that no bi- -1{,b' v ab:x c R)
nary boolean operation of any of the 16 possible (x:xcR & xb z ab) (2.9)

can be used to produce conditional events. (See d
also Popper's even earlier related results (24].) -(ab,b-a] - (x:xd R & absxsb',a)c.P(R),

Even more negative than this - and unknown to principal ideal coset of R with antecedent b and
Calabrese - David Lewis in 1973 ( but published in consequent or residue ab.
1976 (25) ) showed that no binary (and f~r that Conversely, given any osB c R the cZo•aed interimia
matter, n-ary) function of any kind f:RC - R of event8
exists such that for all prob. meas. p:R ( (0,1),

p(f(a.b)) = p(alb), all ab c R, p(b) O. (2.9) s that alR(so that also
(This, thus negated Copeland's attempts, mentioned
earlier.) (RIR) = ( 81 B]: asBc R. (2.11)

However, on the positive side of things, Cala- Also, note for any a,bcd c R
brese (23), independent of Lewis, demonstrated that
by going to P(R) (power class of R), one could a (2.12)
obtain well-defined conditional events, and in
fact,he postulated an entire c-lculus of operations identifying singletons with their elements, yielding
extending the ordinary boolean ones. Earlier, Schay
[26) independently also demonstrated the existence Rc (RIR) E P(R) ; (2.13)
of conditional events based upon three-valued in-
dicator functions, extending the usual two-valued (alb) - (ablb) (2.14)
ones for ordinary unconditional sets. Furthermore,
Adams (27], independent of Schay and Calabrese, (alb) = (cJd) iff ab = cd & b-aa = 64-c
though not identifying what a conditional event iff ab = cd & b = d ; (2.15)
should meandid define the very same operations
Calabrese proposed, as well as certain of Schay's! (aIO) - (010) = R (2.16)
(Schay actually proposed two sets of operations
for possible candidates and one definition for (OIb)=(b'lb)=Rb'=[O,b'];(l~b)=(blb)=Rb' v b Rvb
conjunction from one set and the other for dis- oCb,l]. (2.17)
junction coincide with Adams and Calabrese' common That (RIR) should be chosen as the conditional
definitions.) Hailperin [28) also independently event extension of R and each (alb) as a conditional
investigated conditional events, rigorizing certain event with antecedent b and consequent a or as
of Boole's ideas on 'Idivision of events" [29), "if b then a" or "a given V. is justified by
through the use of Chevalley-Uzkov algebraic
fractions. But, Hailperin did not develop any non- Theorem 2.1 ((13], chapter 2)
trivial opertaluns, uoLhor than cumnon antecedent
ones. He did show his "fractions" were actually Let R be any boolean algebra. S2R any space and
isomorphic to principal ideal cosets of R. the
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f:R12 S any surJective function such that for all (4!b) Cld)
prob. meas. p.R (Ol]. p can be extended In a well- d
defined way to. using same symbol. p:S 10.1] such (ab $ cdltd)
that for all a.bcR, with p(b)•O.- ((a~b)**(c~d))'

p(f(a,b) - p(ajb). (2.18) (ii) for all a b R ,

Suppose also that for all a.b,c,d c R. (

and f(ab) = f(ab,b) (2.19) (aIbl)v.-V(anlbn) (alb v .vannQv,.n) (2.32)adfie,b) = f(c,d) implies b =di.(l

Then, there is a bijection y:S-(RIR) such that for Q.-n alb 1 v' vanbn v bl bn (2.33)
all a,b c R. r(f(a,b)) - (alb). (2.20) Qvn 1 al v1 vanbn v b .. '..bn (2.34)

S (iii) Define for all a.bc,.d c R.

Next, for any boolean algebra R.P(O), for some (alb) ,(cJd) iff (alb) - (alb)-(cjd). (2.35)
set 0 (by the Stone Representation Theorem), define
associated 3-valu~d indicator function transform Then.
,:(RJR) - {O,u.l} , where (alb):s(cld) iff (cld) = (alb)v(cid) iff

OSu % 1 (2.20') abscd & b-.,a ! c Iff abscd & c'dia'b iff
represents an indeterminate value: For any a,b c R, the corresponding corners of [ab.b4a) s
and hence any (alb)c(RIR), *(afb):D (0,u.l) is . . .
given by (cd.d-*c) (2.36)

1. if x c ab , (iv) Bayes' theorem; chaining relations hold.etc.:
0(alb)(x) = 0, if x c a'b, (2.21)

u, if x bc W (acb) - (alcb)-(c-b). (2.36')

Note also that The common SAC (Schay-Adams-Calabrese) extensions
(2.22) of unconditional boolean operations are defined as:

(g: g:D'•[O.1] & 9-g(t)cR.ic(Ou,1))}-{(alb):a,bcR). (ab9 (a Ib) z (aIb)

extending the classical Indicator-set relations. (alb)@ d (ab v (alb) (2.38)
Theorem 2.2 (remark, (13), p.31) (albYcld) (ab v cdlbvd) , (2.38)

Let Rs P(D) be a boolean algebra. Then. there (alb)SEcld) ( ((alb)N)(cld)')'
is a natural bijection between (#(alb): ab c R) a ((a'b v c'd)'Ibvd)
and (RIR)via 4. 0 ((b.a)(d-0ac)bvd) . (2.39)

The GNW conditional event algebra operations are In addition, It should be noted that the two
summarized as follows: conditional event algebras proposed by Schay are

Theorem 2.3 ([13], Theorem 2. p. 62 extended) (alb)' 9 (a b)" I (alb)' (2.40)

Let R be any boolean algebra. Then, the function-
al image extensions of the usual boolean operations (alb)Qý(c d) d (alb)v (cId). (2.41)

V,,( - arefor any a,b,c,d £ R (2.23) (aIb)G; lcd) ((abcdbd) , (2.42)

where (aIb)Yz(c ld) (ab v cdlbd) , (2.43)
Q, ( a'b v c'd v bd - a'b v c'd v abcd (alb)qcld) $((alb)CJ(cJd) . (2.44)

= a'bd' v c'db' v bd = (by c'd)(dva'b),
(2.24) 3 Conditional Event Algebra: Key Past

(alb)v(cld)!(xvy:xc(alb),yc(cid)}=(ab v cd IQv)e(RIR), Results and Some Recent Developmentswhere (2.25)
where ab v cd v bd - ab v cd v a'bc'd (It fs ob~ious that even restrictifig possibleQ= d bcchoices to only GNW and SAC algebras, there is

a(' v cdb' v lbd - (b v cd) (d Y ab) , still a wide discrpency in forms and evaluations
(2.26) relative to conjunction and disjunction. One advan-

(alb)' d (x':xc(a b)) - (a'Wb) - (a'blb) ,(2,27) tage for using SAC is the "smoothing* property
whIen antecedents are disjoint

(cid),(alab) (-{x4y:xc(c~d),yc(a~b)} (2.28) For b.d = 0 , and hence abcd= 0,
(cld)' v (alb)= (c'd v ablc'd v ab v bd), (Ib)o(I) (alb)®(c~d) (ab v cdlbvd)(3.1)

(a~b)<-*(cjd)! (xe..y':xe(alb),yc(cJd)) while on the other hand GNW yields the trivial
=((c~d)-0(aIb))"((aJb)-0(cld)) results

=(alb)'.(cld)' v (alb).(cld) (aJb),(cld) - (Ola'b v c'd), (3.2)
=(ab<a>cdlbd), (2.29) (aIb)v(c.d) - (abv cdIab vcd) (3.3)
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which are obviously zero and unity in value for all related version of(j) is a popular choice for cup,-
well-defined probability evaluations. On the other uw m It Is important to persue these connect-
hand, note the following (GNW) Ions between interval algebra and conditional event

ab v (did) = (ab v diab Y d) (3.4) algebra further. In fact, some results in this di-
rection have already been obtained in showing, more

witn obvious unit probability evaluations, compat- generally than the boolean case, and including the
ible with the monotonic increasing property of v property of GhNW algebras, that Stone algebras with
and the fact that (did) is also an obviously unit certain additional properties propagate the same
probability event, but for SAC the same expression structure to all their higher order interval alge-
becomes bras (37].

ab(j)(did) - ab v d , (3.5)
The next critical result identifies a large

which if a probability measure p is chosen so that class of conditional event algebras with all three-
ab is small in value as is d, then despite (did) valued logics (truth-functionally defined)l
being a unity event, p(ab® (did)) Is also clearly n
small In value, showing the SAC v is not at all Call an operation f:(RIR)n (RJR) booZaa-like
monotonic increasing relative to probability eval- If tkere exist ordinary boolean operations
uations. However both GNW and SAC "anomolies can be fj:R - R such that, using the multivariable
accou for thgugh ir cnnction wjh l notationas vlltege seen. ne protlem ot chOOsing .ne notatio

appropriate conditional event algebra for a given (alb) 4((a 1 1bI)... (anlbn) r (RIR)n ,(3.81

situation must rely on both empirical and theoret-
ical guidelines. In this section other significant f(alI) = (f 1 (aIl,.... ,bn)If 2 (b b ).... t )).(3.9)
past-derived results are shown for GNW, SAC, and
Schay 1,2, together with the most recent discover- All of Schay's algebras as well as SAC and GNW are
ies. clearly boolean-like in all of their basic opera-
Theorem 3.1 tions.

3.1 Theorem 3.? ((33) ;[13), section 3.4)

(i) Both of Schay's algebras, SAC, and GNW all re-

duce to the usual fixed common antecedent coset There is a natural bijection, via the 3-valued in-
relations dicator function transform #, between all boolean-
(alb) v (clb)=(avcIb);(alb)-(clb)=(ac b), (3.6) like conditional event algebras and all truth-func-

tional (i.e., table-defined) 3-valued logics, such
etc., for all a~b,ccR, that thfJ isomorphisms hold, for any boolean-like

(ii) Both of Schay's algebras form full (meet-join) f:(RIR) -+ (RIR), assuming RsP(D):
lattices and cab be algebraically characterized, 0(f(aib))(x) = 4(f)(O(alb)(x)), (3.10)
leading to an extension of the Stone Representation
Theorem. for all xcD. ý(f):(O~u,l) can be explicitly con-

Theorem.structed.

(iii) GNW forms not only a full relatively pseudo- 
iRemars

complemented lattice, but is also a Stone lattice Remarks

(or Stone algebra), where the rel. pseudo. is 1. An immediate consequence of Theorem 3.2 is that

(cld) - (alb) = (alb) v c'd v b'd' (3.7) GNW algebra corresponds uniquely to Lukaslewicz'

Moreover, GNW can also be completely algebraically 3-valued logic (minmax.1-)), SAC 6lgebra uniquely

characterized, leading to an extension of the to Sobocinski's logic, and Schay's algebras to com-

Stone Representation Theorem, binations of Bochvar's and Sobocinski's logics (13).
(See also Rescher[51] for further details of these

(iv) SAC forms separate semilattices relative to logics.)

E) and (i(which are OeMorgan as is GNW), but,ln
general is not a full lattice. 2. Theorem 3.2 also shows that any properties of

Proofs:(i) is immediate from inspection of the de- a given conditional event algebra can be re-inter-

fTiTng equations. preted through an appropriately corresponding 3-

(ii) follows from (26] valued logic and vice-versa. This can be used to

(iII) follows from (13), chapter 4 explain, for example, the behavior of SAC and GNW

(iv) follows from (2.38),(2.39) readily, in (3.1)-(3.5), where it is seen the Sobocinski
* interpretation of u is "undefined" or "not applic--

ble, while the Lukasiewicz is as an actual inter-
Remarks In [13], Theorem 2, p.55, it was pointed mediate level of truth between 0 and 1. Another

tth-t SAC disjunction(D can be derived via ordin- approach for GNW, incidently, which avoids the
ary class intersection relative to P(R): for any trivial reductions for disjoint antecedents - ex-
a.b.c,d c R (boolean algebra,as usual), plained alsoby referring to inconsistent data -

is through the use of jolntness, i.e., cartesian
(alb) n (cid)= [ab,baa] n[cd,d-0cJ products and sums. (See Theorem 3.8.) Conversely,

6 ab v cd (b-a).d'4c) n (albffXcid) , (3.8) Theorem 3.2 also shows conditional event algebras
supply concrete representations for any given 3-

where here 6 js the Krbnecker delta function. (But valued logics. Thus, results in the areas of both
no rela ion with class union holds for SAC or others.) fields can be used to gain insight into the other.

It has also been verified that in the literature
of interval algebra (see, e.g. [311,[32]). the above 3. Some examples of charActerizations nf conditional



event algebras carried out via use of Theorem 3.1 6is 8 class homo0iorphism between VP(R) and P(R), In
are (see (34] and (13], section 3.5) particular, for any c,(8,y,6 t k with cg3, ys6.isy.8s6,

The only conditional event algebra(s) which ex- u[[o,8),fy,6]] (o,6]. (3.14)
tend (unconditional) boolean conjunction, dis junc- Then, for all a.b,c~dc R.
Lion, negation (with the extension (alb)'-(a'b))
and are: u((alb)l(ctd)) - (abcdlb-(cd v a-d'), 315)
(i) Oetorgan and mutually distributive is GNW, G((a.b)l(c)).((albfl(clb)) (abclc) (316)
(ii) Stone algebra is GWE.( m

(iii) OeMorgan, commutative, monotone increasing
for conjunction and disjunction, and continuous is Remark . 8y inspection of (3.12). ((alb)J(ctd)) has
GNW (continuity refers to the corresponding truth e pobability tautology form (ala) for some cat
evaluations never having, e.g. 0 in a conjunction (RIR) iff (cid) : (alb). (3.17)
going to anything but 0 and u values not going to whence;(
1, etc.). (afb)1(cld)) - (cdlcd) (3.18)
(iv) Non-Oetorgan full lattices a only Schay's
two algebras,
(v) DeMorgan, commutative, associative, idempotent Next, consider connecting directly the interval
and smooth (generalization of the property enjoyed form of a conditional event with its probability
by SAC because of its antecedents forms)is SAC. evaluation as a conditional probability. First, for

any weight I c [0,1] define the following sequence
4. Recently (35], it has been shown that a full of iterated weighted averages of s and t, for any
probability evaluation of (3.10) - with suitable sa C (0,1] .
modifications - holds for all probability measuresp wkl)(s,tI • (l-1)s $ Xt : (3.1i)
and r.v V:Sl-O actfng as an identity relative to p
(p(a) = p(V in a), all a in R), and repling u in for any integer q>2,
'(aWb) by p(alb), and u occurring in the domain of w(X,n)(s,tj +(l-w(An-l)(s,t])-s *wr(kr s.,tQ-t.
f(7)-by p(aI5 -and in its range by p(f(atb)), denot- (3.20)
ing these ubstitutions by the subscrlptf:-

E (f (f(alb))(-) -Ev(3.1(M#)(aJb)(V)))-p(f(alb)). Lemma 3.1 ((13], pp. 151,152)
S3For any s<t c (0,I0 ,

This allows for the development of a sampling / lim w(X,n)[s.t] = io[st] d s/(l-t+s) (3.21)
frequency theory for conditional event algebras. and sequence

The following characterization of GNW algebra (w(X~n)[s'tJ) is:
bolds relative to the compatibility of its algebraic n-1, 2 , is
order (s), and the numerical ordering for indicator decreasing down to Ao(s,t] iff I > Io Ist]
functions and probabilities: o 0
Theorem 3.3 (new result combining [13], Lemma 2, p. increasing up to 1o s,t] iff I < X 0 [st]

48 and Theorem lp.154 with the defin- identically to 1o(st] iff x = x [s,t]
ition in (2.21) here) 0 "

For all O<acb < I O,0<c<d-; a~bcd E Rc_P(D), In light of the above result, call A 0s,t] the
Foral libd point weighted aaer of [s.t].

*(alb) s *(cjd) pointwise over 0
iff p(alb) f p(cld) , for all prob. meas.p:D+[O,l] Theorem 3.5 ((13], pp. 151-152)
with p(b),p(d)>O For any boolean algebra R and any prob. meas.
iff (alb) : (cid) in the sense of GNW p:R-f0,lJ which is surjective. then for any a,b

a R, the functional ima extension of p acting
iff abs cd & c'd : a'b . on conditional event (afb)-[abb-o-a] is

By exploiting the closed interval form of con- p((alb)) (p(ab),p(b.a))=(p(ab),l-p(b)+p(a]
ditional events, higher order ones can be obtained and (3.22)
using also the relative pseudocomplement property
of (RJR)GNW (see (3.7): o0 (p((alb))) - p(alb) . (3.23)

Theorem 3.4 ((13], section 8.1) We conclude this section with the important re-
)For all a~b~c,d c R, relative to GN$W cent full development of non-boolean function ex-

tensions to conditional events with applications tc
((aJb)J(cld))9Q(xJy):xycR & (cJd)-(x(y)=(alb)'(cld)) cartesian products and sums and joint conditional

=((alb).(cld)1 (ced)) r.v.'s relative to distinct antecedents.

[(alb)"(cld) , (cid)-(alb)]cPP(R) First, let R and S be any two boolean algebras.
(3.12) Call f:R - S monotone increasing if

(ii) Letting uIPP(R)-P(R) be the class union opera- for all asb c R, f(a)sf(b) c S . (3.24)
tion, where, for ar0y AcPP(R),

u(A) U(C:Cc A. (3.13) In turn, the functional image extension of f (also

-6-



denoted by the same symbol) f:P(R) P(S), noting noting the complete analogue of eq .(3.35) to ton-
for any interval (a.b] c P(R), a sb c R , junction (2.23),(2,24) and of (3.36) to disjunction

f[ab] c tf(a).f(b)] , (3.25) (2.25),(2.26), for the GNW algebra.
in general with. however,the end events f(a),f(b) Next, apply the above results to the development
achieved. With this as motivation,define,then the of conditional random variables. (This rigorizes
natural approximation the previous ad hoc Involved Approach given In (13].

f(a,b] Lf(a),f(b). (3.26) section 5.3.) kkLet (lQ,A.p) be a fixed probability space. (R .8
omitting in practise, for converience, the hat no- the usual k-dimension real measurable space,
tation. This yields V:QlRm and :;$-Rn any two r.v.'s. Also, define
Theorem 3.6 (easily proven new result) for any ac r. bcBn. the product form conditional

event
Let f:R - 6 be a monotone increasing function (alb) & (a b lie x b) . (3.37)

between two boolean algebras. Thenthe functional
image extension (Q la (3.26)) f:(RIR) - (SIS) is Denote -M1in]q((alb]: acB", bBn) (3.3)
well-defined with, for any a~b c R,Q5B](ab:a ,b 3.)

Consider the joint or cartesian product mapping

f(afb) = (f(ab).f(bt-0a)] - ,f(ab)If(b-.,a)- f(0b)) VXW :$-rmxRn . where for any xc(!,
(3.27)

a (v xW)(x) 1(V(x)Ax)), (3.38)

Theorem 3.7 (corollary to Theorem 3.6 (36]) and its functinal imige extension
VxW:P(rk)-P( XP(R ) , appropriately restrict d

Let RsP(D) and SsP(F) be two boolean algebras and assured range-measurable, so. that VxW: A-?
and f:O-F be any function and f:f(O) - P(F) its is well-defined. In tjrnnusing Theorem 3.7,
functional image extension and f- :P(F)-'P(D) its VxW :(AJA)-(rErxrB UB ) is also well-defined.
inverse image extension. Then the above f and f-l 1 :[ tml (AA) as the re-
both satisfy the hypothesis of Theorem 3.6, with sodefine Vw" •AA) no the re-
(3.27) thus valid and f-l:(SIS) - (RIR) well-de- stri tion( XW) f A A), noting for any
fined, where for any c,d c S, ac., bcB. the identifications from Theorem 3.7,
f-l(cld)=f-l(cd,d,*c]= [f1 (cd),f-l(d.-c)] (V-W)-1 (aKb) V_ vIca)-.W1(b), (3.39)

=Cf-l(c).-f-l(d).f-l (d) f-l(c)] and as in (3.28),
:(f'l(c)1f.'a(d))) . (3.28) (VJw'l[alb]-({(VWf)'(a -b)I (VI w)'(Rxb))

Next, define the product boolean algebra R@S .(V1 (a)1' I 1b)1w'I(b))-'V'I(a)[W'1(b)).
of booleaa algebras R bad S as above by simply Thus: (3.40)
first forming Theorem 3.9 (new result 136])

R x S9 (axb :aR, bcS) (3.29) With the same assumptions as above,

and then lettinglRIS be the smallest boolean alge- I
bra r P(DxF) with RxSSIS, where, as usual, p([VIW] is in (aib])l p((VIw] laib])

(a)t)-(cxd) = ac x bd (3.30) -p(V I(a)IW -(b))

a xb = (a1l).(Ixb), (3.31) - p(V is in alW isin b). 4*
a axb)'- 0Ix b') v(a'x'l) (3.32)

axO = Oxa = 0 , (3.33) Thus, there is full compatibility between the
and cartesian sum is given by traditional approach to conditioning and the use

atb 4 (a' (b' )'= (I xib)v(axil). (3.34) of conditional event algebra to extend. Indeed, an-
alogous to the way an unconditional r.v. cr a fixed

Theorem 3.8 (new result (36]) antecedent conditional r.v. (VIW in b) induces apr~btll.tYnSpare, (VI•'] induces the spae
Given R and S as in Theorem 3.7, it follows that (qI"IIBn ,p.[yn W]-a), where p [VIW- -:estmeBn]

the operations x,t:(R,S)-*R@S are both monotone

increasing and an obvious modicatlon of Theorem 3.6 (AIA) produces conditional probability as in (3.41)
is valid here, yielding, for any a,bc R, c,dcS, and preserves all GNW operations. For example, forany a,c c Bn ticg, for "G1W conjunction
(alb)x(cld) - (ab x cd I((b-a) x (d~-oc)),-,(abxcd) p(any I[ "f ([albfc[cid])

= (ab x cdI (a'b xl)v(l xc'd)v(bxd)) Ip([V1w]'l ac x bd 1(ac xbd)v (a' xb)v(c' xd)

= (ab x cdI (a'b xl)v(l xc'd)v(ab xcd)) =p(V-l(ac).WI (bd) vIl(ac).W.I(bd))v(VI (a)Wl (b))
-- ((a Ib) (d I'd)),((b Ib) -(c Id) ) vCV_ I c),w_ I(d)))

- ((alb)xl)-(l x(cld)) (3.35)and ~ ~~=P((VI (a) Iwl (b))" (V' w"1 WI (d)))
ad=p( [V1Wl"I [alb]. [VIW]"l (cld])) (3.42)(anbd cd)= (ab tcd I((b-a•a)t(&-c))-•(ab tcd))p(j ai]vwY cd).342

Finally, consider the problem of modeling joint
"- (aotcd I(ab xl)vOxcd)v(bxd)) (3.36) conditional r.v.'s, especially those with no comaon

= ((alb)' x(cjd)')'-((aJb) xl) v(l x(cjd)) antecedent restriction.
7
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Theorem 3.10 (new result [36]) in addressing the higher order conditioning proulem,
As beforem (nAp) is a fixed probability space, since the union of the nested higher order intervalLet V.:foR ' ,J , W is1R fi be r.vbs, with all of algebras is also a certain type of Stone algebrathe dvelop:nent in eqs.0 3. 38)-(3.42) valid for jlof and closed with respect to conditioning.(See [37).);

2. Then, for any a. c "J, b cB J, j=1.2, relative Conditional event extension of the classical rela.
to GNW. tion between material implication being a tautology

and its antecedent being dominated by its consequencep([vi1 W1 ] is in [alb,] & LV2 1W2] is in (a 2 b2 J) relative to the basic order (s) [13), pp. 191-193 ,

dpCVIW [alb] " I "a~jb 2 ]) (38]; An extension of the normal disjunctive expan-=(l1 (V 2 2 sion of all boolean operations over boolean algebra
p(V (a )IWI- (bI)).(V2 " (a2)lW2 " (b 2 ))) R to all boolean-like operations over (RIR) [39);

= r(VKWXV xW is in [a lb ]x[a 'b2]) (3.43) A semantic extended division of indicator approach,
P 1VW2 2s 1 12'? with applications to an alterndte approach to con-

ditional events, the higher order conditioning
The following result shows that for fixed, but problem, and the definition of conditional fuzzy

not necessary equal antecedents. the cartesian sets [40]. Due to severe space limitations, only the
product and conjunction forms of conditional r.v.'s last-mentioned re'sult will be briefly outlined in
yields legitimate joint probability distributionsi the second part of this section, following an expo-

Theorem 3.11 (new result (36)) sition on a recenttbreakthrough in the representa-tion of fuzzy sets by random sets.
Let t c R be arbitrary and denote infinite left

ray 4 Modeling Natural Language Information
a(t) I (--,t] . (3.43') Through Fuzzy Set Theory and Relations

For any given probability space (nl,R,p) (R&P(fl) with Random Sets and Conditional Events
certainly a boolean algebra), choose any b. c R,
j=l,..,n, with p(b l-bn).O. Consider tleil,the 4.1 A Recent Result on the Uniqueness of
function Fb:Rn- [.11. where, for any t. (ti* dtn) Represenation of Fuzzy Sets by Random
C Rn - Sets

F_(t) - p((a(tl)Ib) .... (a(tn)b)), (3.44) The first premise here is that essentially all
cjti I n n natural language descriptions can be modeled in a

with Cnjunction in the GNW sense. Then, Fb is a straightforward way by formal logical combinations
legitimate joint cdf over Rn. - of membership relations between population elements,

or measurement variables connected with them; and
Remarks. Fo, n=2, one can write, using eqs. (2.23). modifiers or attributes - called fuzzy seta. For

4, example, the sentence
Fb((t) = c,(t)/(c-B(tl)-Y(t 2 )), (3.45) Sl ! "The sh'p is rather close to us, but is

whe-r still going very fast" (4.1)

o(_t)¥(a(tI).a(t 2 ).b 1 *b 2 ); 0(tI )9-p(a(tI).bV.b2 ); can be naturally interpreted as

y(t 2 )d-p(a(t 2 ).b'-b 2 ) - cgp(blvb2 ) .(3.46) S1  (dist(ship,us) c rathericlosel) &Y22)(speed(ship) c very[fast]) . (4.2)
Assuming probability density fb exists for Fb (sepe miship e fat) t (4.2)f t follows from standard relations-, ' The second premise is that the semantic or truth

evaluation of the sentence(s)'can be carried out
fb(t) " aFb(_)/3tlat 2 - A(t)/B(t)' , (3.47) truth-functionally, i.e.. in a homomorphic way-

where d preserving completely all formal relations, where
8hee (t) d c -(t) - y(t 2 ) , (3.48) the formal relation between element and fuzzy set

is converted to a corresponding membership function
) l).'t + over a domain of values of the attribute and with

B(t)_.(3a(t)/atd)Y,(t2) + (aa(t /at).01(t9) range values in the unit interval of truth possi-
2 - 2 bilities. In particular, all ordinary (unconditional)

+B(t) . 2 ,(_at)/ tt 2 " (3.48) settsand the ordinary membership relation (c) are
Thus, it is clear, by inspection, even if the special cases of fuzzy sets and their membership

p(a(t )1b ) are gaussian distributed in t , J=l,2, functions. Thus, as an example of evaluations,
fb(t)Jwili n in general take any Joint 4aussian s1 becomes (4.3)

dTstrlbution form. Of course, one notes, on the ir(s 1 ) - t&(4rath(4clos(d)). very (fast SM
other hand, the reduction of all of the above, when
b I=b b, in which case Fh(t) reduces simply to the where t :O,l]'-*[0,1] is a binary operation over
function p(a(t ).a(t2)lb iand fb(t)'accordingly, the unit interval squared, representing conjunction.
which is compatible with gaussian-forms. * This is often put in the form of min or more gener-

ally, a t-norui or coputa. A t-norm t:[0, 1]'[0,1 is
Other recent developments in conditional event a nondecreasing - usually continuous - function with

algebra include:A full extension of GHW algebra to boundary conditions
the consideration of certain types of Stone algebras (4.4)
and the higher order interval algebras g nerated for all x [ 0,1], t(x,0)'t(0,x)=O;t(x.l)=t(l.x)=x,
from them - which can be shown also to have a certain and being an associative, commutative function.
Stone algebra structure. This structure is useful
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The latter conditions allow the t-norm to be extend- addition, can the problem of determining the most
ed to any finite number ofarguments unambiguously, appropriate fuzzy set operations to choose be re-
Usually, the t-norm chosen and its t-conorm partner lated to the one point coverage problem ? Although
are in a DeMorgan relation, with the t-conorm satis- Zadeh originally proposed from an ad hoc viewpoint
fying dual conditions as for t-norms and with nega- the system (min,max,l-( )) for conjunction, disjunc-
tion being represented by the membership function tion, and negation, respectively, a plethora of

1-( ). (4.5) more general classes of systems have since been"Onot I proposed, including the t-norms, t-conorms mention-
Thus, t-conorms, representing disjunction, if in a ed earlier. These issues have really remained open
DeMorgan relation to their t-norm partners, can be now for the past dozen or more years since they
written have been proposed. (See, however, e.g. (13) for

i(x,y) = l-t(l-x,l-y) , all xy c (0 1]. some progress in this area.) Finally, with some
(See [41] or [16] for background.) recent discoveries, it appears that the"e issues

Also, a copula is a function which is formally are now close to being retolved'
the same as the cdf of any n-ary joint r.v. all of In the following, let (11.A,p) be some cornvenient-
whose marginals are distributed uniformly over ly chosen probability space, f:D- [0,1] any given
[0,1J In connection with this, the following result function, R(D) the class of all random subsets
is critical-, S:0-•P(5), which are c nsidered as distinct only if

Theorem 4.1 (A.Sklar, 1973 [42]) they induce distinct distributions via pand R f (O).
the class of all one point coverage equivalent

(i r any positive integer n and any joint cdf random subsets of 0 to f. Also, let V D) denote the
F: '-ý,Or, I , denoting its one-dimensional marginals class of all stochastic 0-1 valued pricesses of the
as F.:R - [0,1], j=l....n, there is always some cop- form V=(V= ) V x:SI (0,1) a r.v., for all xcO,
ula Jcop:lO,l]n_[O,l] such that xX0 "x

F = copo(Fi,.Fn d. (4.7) such that P(Vx~l) = f(x), all xcD. In addition,

denote the corresponding cdf of each V as F(Vx)and
(ii) Conversely, the right hand side of (4.7). for call Ft{Ythe class of all joint cdf's o er the setany choice of cop and one-dimensional marginal cdf's {0lO or which the marginals F(V a

yields F as a legitimate cdf over e. ) are fixed, xEO.

Theorem 4.2 (originally shown in [12], Theorem 2.1.1
Returning to the example in eq.(4.3), *rath ,very: in a modified form; [45]-L47])

[0,1] - [0,1] are natural interpretations, with (i) Using the above notation, the following diagram
being nondecreaslng, 0 at 0. 1 at 1. o holds for any given f:D.[o,lj ,#belng Indicatorevery clos function.

RW-U,I] represents possible distances from "us" and * F
is I at 0 and nonincreasing approaching 0 at large R(i0) V( 0) J5-0---I' F(V(D))bijection . e u ctio~n
values. Similar comments hold for *fast ILU # IU F IU

Despite the direction of the majority of the fuzzy Rf(0)b-Vje-t on f(0)b i on F(Vf(0))
set community - and that of the larger probability
community - in creating a separation of perspectives (ii)By Sklar's Theorem,
in modeling information, a relatively small group of F(V (D)) = {copa((F(V )) cop arb over[O,13D
individuals have observed connections between the f d X xcD
two areas (Hihle, Goodman, Nguyen, etc.). See, e.g. S(cop,f)dtypical 1-pt equiv.r.set to f
(133, chapter 5 and recent comments in [44]. Specif- =0 (1aIF(0- o(copo((F(V x)) ) (4.10)
ically, it is now fairly well known that fuzzy set Rf(D)= {S(cop,f): cop arb
fpembership functions correspond to the weakest basic f over

way random sets can be specified, analogous to the (iii) All of the above results can be extended to
situation in classical r.v. usetwhere one knows only the following typical joint situation, where 0 is
the mean of the r.v.'s involved, not the entire dis- replaced by 2 =(Oij)icI, , f by f =(fij)icl,
tributions. Quantitatively, this can be interpreted jEJ jcJ
as follows: For any given function f:D-["O,l],there f * [ - (0,I] , with Rf(D) replaced by Rf(D),Vf(D)
exist - in general infinitely many - random subsets iJi _-
S:Q-'P(D), for some probability space (OAp) such replaced by Vf((D), etc.
that S is one point coxverage function equivalent to
f, i.e., Thus, eqs.(4.lO),(4.11) show that by choosing

p(xcS) -f(x) , all xc D. (4.8) arbitrary copulas, one can construct all solutions

One such random set is easily constructable : the to the one point coverage equivalence problem.
canonical nested random set or easy nru ablevl ethe ( Theorem 4.2(iii) provides the setting for thecanonicai nested I donm ost; or r01 dom we ev 1 et (or new characterization of fuzzy set operations com-ra'domautaet 1 S (U):fQ÷ [0,1], where U:fl, (0,1] is patible with probability interpretations:

a uniformly distributed r.v. (surjective) and

Sf(U) d f-l[u,l] .(x:xCD & ftx)!U). (4.9) Theorem 4.3 tnew result [44],[45])

Fix probability space (PA,p) and consider any
A major stumbling block in the utilization of operator pair for conjunction disjunction in the

this relationship has been which one(s) of the form (copcocop) which is also a (DeMorgan, con-
one point coverage equivalent random subsets of D tinuous) t-norm,t-conorm pair. Also, for any choice
are the most appropriate to replace the original of finite collecLian of fInite sets 0, any func-
fuzzy set membership function they represent? In tions f, as aboVe,any x W(xi ) i x i CO ij
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!(X) (fi (x ,j) ic nd any random sets S Leemma 4.2 Again, assume the hypothe~ls of Theorvim
-- T.T. but here lessen the requiremwnt by replacing

cop by just a continuous t-norm and cocop tb the(Sij) c Rf(0)_ i.e., s c R (0..). such that corresponding (etDorgan) t-conorm (only hen, nfor
jcj U all f. xcO (f :0 •0[0.1)). and all 10,1)',

it is generated by cop -Ij . S ij(copf ij) as in for appropri&atyld3 etermlird n . uslng9 notation3 13sK~ d(s I the fo~lloing 8 Statmnt• are equi-
(4.10i, the following two statements are equivalent: SK 3j g

(1) For all possible f. .:0, i-(0,.] . all possible valent:3I o llpsil fi Ia I) for all s tl~s) y (. 1 )caro(K).l.•( r)(~4 lI•

corresponding S ij , all possible x ij . cop.cocop 0 f a s .... n)

and Sij are such that the following homomorphism

holds for all possible combinations of cop over (ii)For all sl's2.s3 c (0.13,
cocop and cocop over cop relative to corresponding t(sl,1(s 2 ,5 3 )) - t(s.s )#t(si.s3 )-t(s1 .5,, 3 )
probabilities of combinations of ordinary conjunc- (4 1
tions over disjunctions and disjunctions over con-
junctions of one point coverage relations of xij (iii) (tj) is either (min.max)or(prodprobsum).
by Sij . That Is, .

Leama 4.3, if the hypothesis of Theorem 4_2 holds.
tr(& or (xij c fuzzy set corresponding to f.i) We-nby combining Lemmas 4.1 and 4.?, eq.(4,12)
j.jcJ l holding tiplIes that (co,.cocop) must be either

" cop(kocop((f j(x )icJ) (min,max) or (prodprobsum).
ij ij iciJC

" p( & or x. .j Sij)) (4.12) Lemma 4.4 If the hypothesis of Theorem 4.3 holds,
jEJ ic J and- 'tqs.(4.12) and (4.13) also both hold, then

and necessarily cop must be distributive over cocop, m

tr( or & (xij E fuzzy set corresponding to f(j) Finally, the proof of Theorem 4.3 is comleted
Ic jCJ when it is noted that prod in general is not dis-

Scftributlve over probsum, and hence the conclusion of
ij ij)jCJ)ic) Lemma 4.3 must be restricted to (min,mx). Also.

= conversely, as a chect, It can be easily verified
- p & xij Sij'' (4.13) that (minmax) does satisfy both eqs. (4.12) and

l jJ (4.13) for all possible allowable variables and

(2) (cop,cocop) = (m~n,max) (4,14a) that this determined that eq.(4.14b) holds.

and
S f (U) , all icl, jcJ , (4.14h) Many fuzzy set concepts -sudias the extension

S j of ordinary functions to fuzzy sets ('extension
where U:Q-[OlJ iS a fixed uniformly distributed principle') and fuzzy relations - can be defined
r.v., as before. through combinations of conjunctions and dlsjunc-

Proof: The proof is rather long and detailed and tions.'foratiwtof Theorem 4.3 is that: Unless
ispovided in (46). However, an outline of it is prior information indicates other facts, tA# omlpresented below, since the key steps are of interest univarW inte4z rettion of fussy et th• ory o4n-

in themselves:
omi;*r~Q sense amat be thr~ough CA.iescmioal nseeted

Lemma 4.1 If the hypothesis of Theorem 4.3 holds rudia "to mid only Zadh'. ori.gina• (mln,max,l-()
TprTor to statements (1) and (2) ), then extending system provide* this ooupat*• lita. Hence, in cow-
the above multivarlable notation in the obvious way, bining linguistic information with stochastic In-
the following two statements are equivalent: formation, It is natyral to convert all of the lin-

) & (x c Sguistic information first to the nested random set
cocop(cop(_f(x))) p(or (x S)) (4.15) form, and then combine the resulting all-stochastic

(ii( cCarpK)1"c)" (4.16) information as will be seen in section 5.2.(ii) cutup(fix}) _cadXlcoWj(,)0

( ic!,\ 4.2 An Extended Numerical Division of
(jcK) Indicator Functions Applied to the

a Develop nt of Conditiona.l -'vientu
The next result modifies Frank's well known and Fuzzy Conditional Events

theorem ([48), Theorem 5.1, pp. 220-222) by replac-
ing his modularity assumption (essentially, the re- Throughout this subsection, T will always refer
lation expressed in (4.16) for car(K)-2) by a De- to an arbitrary fixed nondecreasing continuous
Morgan one and his conclusion. which includes the function with boundary conditions the same as for
class of all possible' ordinal some ( certain types t in (4.1). That is, T is a generalization of
of affine transform)on t-norm, t-conorm pair classical logic table for conjunction, and in fact
(prodprobsum), by only (prod,probsum) itself. (As that of the form of t-norms or copulas described
usual, prod indicates arithmetic multiplication and in section 4.1.
probsum is its DePorgan transform.)
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Next, define T-exten&d dAviin (.-..)T' j 1 0,- 1ttvated by the 141t .atisfactury tie-ins. 1*-

p(O,11, where, for any r,s E (0,11 (including 0 tween the previout algebraic/syntacttc approach to
values traditionally banned from division in ordin- conditioning and the more nueerlc/sevntic (by T-
ary arithmetic division), extendoed division, we now define T-odi•.'.',!

(r/s)T d (x:x c (0,I) & T(xs) - min(rs)) fus-x etee as siely the covMonentwise definition
given in eq.( 4 .22 , to be read *f given 9 through

(min(rs)/s)T . (4,19) T" or "if f then q, wrt I", etc.) T Th e AC (. result Pro v id es• M I A- UAa ed f WZ Jy (LO fl-

Extending this further, define (./..)y:P[O.l].PJOl1 ditionrls l
where for any a,Bs [0,1],

Theorem 4.5 (new result 140])
(o18)T (mn(QB)/8)T < (y:y.AO,1]& T~y,8) Let T - min here. Then, for any fg.t,.g :040,. 1

min(Q,09) and any x t D .

a maximal (classwise inclusion)y such that 19( X)[g(x).l If g(x) ft(A)

T(ysf) - mtn(o•,O) . (4.20) ( MIn(A) jf(A) . If f(a) tg(x)

where mln(a,d) is the usual functional image ex- ( min(f(.1) g( 4. 90)f(X)1.
6nsion of min applied to a,8, and similarly,for ( NOTIT,B). 42}

Clearly, for many pairs of •,8 , (o/1B)T will analogous to the interval form in eq.(2 9), whiere,

be vacuous (except for T-min). But for a large here * in (4.26) denotes the relative pseudco~le
class, including Intervals from (0.1) nontrivial ment (as Is •* for boolean algebra) for the lattice

extended divisions will result. Note also the re- ( mln]mn x). where for any r, c 10.1)

duction of the definition to the ordinary arith- I . if rs5,
retic division for any r.s c [0.1]: is . if s-r

.(r /s)prod .r/s (s>0) . /4.21)

In turn, now using the obvious componentwise I min /( 2)winn(x)
definition, T-extended division can be applied to
any pair of functions f,g:0-[0,1] to yield [min(f (x),gl(x),f2(x),9,(x)) . (g2(x)_f2(x))_

WO/g):0PO.0l].where for any x c (0,1],[i1 1 x, 1(~ 2 i, 2 x), (gI(x).f l(x).
(f/g)T(X) (f(x)g(x))T (42)(4.28)

By restricting f and g to ordinary set indica- resulting in a (0.1)-sub interval valued function,

tor functions *(a),+(b):O - (0.11 , for any ab £ readily computable.

P(D), and to the three-valued indicator functions (ill) In general, though all higher order sin-con-
of conditional events *(alb). as given in eq.(2.21). ditional fuzzy sets can be obtained as strailght-
where here - and from now on. unless otherwise in- fnrward generalizations of (4.8), they do not
dicated - one identifies the third value reucte to the sam forms, as is the case in (4-6.)

U [0,1] , (4.23) for ordinary conditional events.

the following result obtains: Theorem 4.6 (new result (40])
Theortm 4.4 Derivation of conditional eventstho--teridiao untosSuppose T is now arbitary strictly increasingthrough their indicator functions In Its argument~s. Then, for any f~g,f ID:- [0.1]

being T-extended divisions of uncon- a fgfg:
ditional consequent indicator functions and xc(0,1]:

by antecedent ones and u.¢!lorure of ((0,1] , if g(x) - 0,
higher order conditional events (flg)T(x) - I~,
through T-extended division.(new (f(x)I/g(x))T c (0,1]
result [40)). if g(x) 30 (4.29)

Let D be any (nonempty) set and a,bc,d £0 arb. (i0) 0
Then for T arbitrary as before: [0.1] , if g1(x) *0
(0) (*(a)/l(b))T - (*(ab)/#(b))T - *(alb); (4.24) ((fl/gl)T/(f 2/g 2)T)T(x) ' [O-(fl(x)/g1(x))T)

(ii) if gl(x))0, g 2 (x)-O
interpreting conditional event conjunction \ (0,1], if gl(x),g 2 (x) >0

as GNW (eqs.(2.23),(2.24)), (4.30)

(f(alb)/O(cld))T = (.((&Jb)'(cld))/l(cld))T (iII) All third and higher order T-conditional

*(u((alb)t(ctd))) (4.25) fuzzy sets reduce to the second order form as given- 4 (bin (ii)

where ; is the class union operator used'to reduce The next result shows compatibility between the
higher order conditional events homomorphically Ideas of T-conditional fuzzy sets, the one point
(see Theorem 3.4). * representAtion of fuzzy sets by nested random sets,

and the conditional events formed from these random
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sets.
first, consider fg:0..(0,lj and recall (see b min(|(x)-f(x),g2{)-tt()) (43/)

(4.8).(4.9)) the one point coverage equivalent rep-
resentations of them through the nested random sets finally, It can W observed that the flx.d point
Sf (U)S 9 (U), s0 thatone has for all x D, weighted average function can also be us.ed to evalu-

S()) I(*(S (0)(0)ý f(s) ate probabilistIca1ly T-conditional fuzzy i.C5,
p(fcLS f(x (4,31) since they are actually set-valued and, in paruc-
p(xc S (U)) - E((S(U))x)) g(x) ular, for T-min or T stictly increasing. interval-g U g 9or point-valued relative to £0.1). For example. let

Recall also the fixed point weighted aver.X9 s.t't] V be any r.v. playing the role of an identity fint:-
for any interval of numbers (s,t] r0 [Oj] giveA in tion so that p(V is in a) - p(a), for 411 ac P(D).
eq.(3.21) and denoteas usual,# to mean either the Then for T being strictly increasing. using Theorem
ordinary set indicator function or the geheraliza- 4.6(1),
tion to the indicator function of conditional p((flg)T (V is in (f/9)T t (IoV((f/g)T(V)))
vents, with the identification for u given in
(4.23). Also note that (Sf(U)ISg(U)).11,(0)IP(D0)) lO(.,1 -
is a v01dom condlitionaZ event, where for any wi0 1o((-Q)-0 , (-). 0 -B

(S f(U)ISg(U))(m ) I (Sf(U{w))!S 9 (U(w))). (4.32) * re , (4 31)
where

In addition, for any xcO, analogous to (4.31), Q,4p(g(V)-O); 82E((f(V)/g(V))Tg(V) 0) (4.39)
it is natural to define the one point cover<
function of a random onaditionaZ set typically See again (13], section 7.5 for previous related
as results.

p(xc(Sf(U)IS9 (U))) 1 EU (IS f(U) I Sg(U))(x))

I -p(xcE5Sf(U).S (U)L) + O.p(xc(Sf(U)'.Sg(U)M S CombinJing Inforumation

+ (0.l)-p(xcS (U)W) With all of the major results set in place, some
g applications to combining eviuence will be consid-

[ (min(f(x),g(x)) , mln(f(x),g(x)) +1 -g(x)) ered next. First, the previously introduced diag-
(4(0,1] ,onalization procedure will be reviewed and a new
0 ,(4.33) loss function further Justifying its use will be

using (2.21). presented. This will be followed by an illustrative

All of the above, finally leads to. exale and related concepts.

Theorem 4.7 (new result (40]) 5.1 Diagonalization

Using the above notation, let fg:O+[.0,l1 be A'keyelement in combining evidence.from this
any two given fuzzy set membership functions. Then, author's viewpoint,is diagonalization of informa-
for all xcD, tion, mentioned briefly in item (3) of the list of

Io(P(xc (Sf(U) Is MU)))) new mathematical techniques developed for analyzing
0 and treating this problem given in the Introduc-

= (f/g) (X) tion. This procedure, originally introduced in (3]
prod with additional properties presented in (12), sec-

- EU( WS(f/g)(U) )(x)) ( 4.34) tion Z.2, is related to (but distinct from) the
prod logarithmic pooling procedure (52). In brief, let

the bottom equation holding except when (x) -0. ff:OR represent the jth source's description of
a common but unknown parameter of interest Oc D S

m rg, where f is a pdf or pf (probability density

Remarks.Previously in (17), eq.(9.21) (see also or probability function), known, and f:0"- t is
tT'J3thapter 7) fuzzy conditiona events were de- a constructed known joint pdfor pf, whose j " mar-
fined in a,more or less,ad hoc manner, which in ginal is f1 , J-1.l.. n. Often, with no other inform-
the notation here led to the form (f/g)orod , for ation preshnt, appealing e.g. to the maximal entropy
any given fg:DQ[O,lJ, fortunately the same as principle, f can be considered statistically inde-
in Theorem 4.7 I. pendent andlAencef as a product of the f. in dif-

Also, fuzzy set operations, such as Zadeh's ferent arguments. Then, diag(f):o, R is liven, for
(minmax.l-()) , or any t-norm,t-conorm system,
can all be applied to fuzzy conditional sets as diag(f)(x) 9 f(x, ... x)/cf , (5.1)
defined above by using the functional imae ap- where cf g ff(x,.,,x)dx. (5.2)
proach. For example, for any f ,g :0-O[.1], xcD, 0,

for conjunction represented by Zadeh's min, It was shown in [3] (see also (12)) that diag has
I (a(x),b(x)] quite a number of desirable properties, including:

mi lm(f1/gI)min'f2/92)min)) ( .) extending optimal estimation and regression, such as

where(4.35) gaussian linear regressionjforthe independent source
a(x) mWn(fl (x),gl (x), 2 (x),g 2(x)) (4.36) case being a symmetric, associative. bayesian updat-

ing-Invarrant, related to surface integral represen-

-12-



tation for probaility measures conditioned on par- space, so that for any a,.a 2 L8 * one can compute
ticular regions, namely here the joint probability

diag ( () ((x,..,x): x OD)sEPn (5.3) p(V 1  in a1  & V2  in a2) p(V I(aI )-V (a9). 1 (a

However, despite all of the above justification ionThen apply diagonalization via the restrict-
for use, no basic loss function emerged for deriv- a 1 a2 . (Ax. t U (5.9)
ing use of the procedure until recently (49). This t ois summxarized below: to obtain the desired result. Thi, tis the direct

application case for diagonalization.
Let n be any positive integer and choose any

weights wi. X. such that Case 2. Both sources provide stochastic descriptions
ieh In-conditional r.v. form.

OswiWxsl ! I wI+W 2  1 t+"+xn (5.4) Let (Vji W) be a conditional r.v.. where V J:-0O

Let f:on- R+ be the joint pdf describing the and W :a-Bj ERmJ . j-l,2, for (lQA,p) a fixed prob-

joint density of the n sources describing OcO ability space, so that for any a cO, b c j, .1,2,
and let h: On - 0 be any procedure which reduces I
the joint description space to the space of the one can compute the joint probability
parameter itself. Then, define the following loss p(([V,1W)] in [a,1b,1 )&((v 21W2) in Ia 2 1b2 ])) (see
function L(h) representing an expected weighted Theorem 3.10). Then,keeping in mind Theorem 3.11
combination of squared distances between any given and the following Remark, one can apply diag to
value of h(x) and the possible components of x obtain -- .
a direct measure of fit between h(x)and f, plus da9(J-l(b? b(blb 2 ), etc.',constranlng
a weighted amount of the dispt.rsion of f inter- the a as in (S.43'. In turn, one can seleft some
acting multiplicatively with the square of h(x): reasolgable distribution of b through p4-" - such

n as singleton restriction - and obtain finally
L(h) I I((Wl. .1A Jxjh(x))2 +w2 " 1 (x.-x )zh(x)z) EW(diag(fW.l(.))).

-c~n j=1 (IJSA) f(x)dx - In practise, spaces B ,8 can represent auxil-
iary attributes serving Is intecedents in the des-

(5.5) criptions of B, as given in the example in the In-
* troduction (Sources 3 and 4)

Theorem 5.1 (new result (49)) Case 3. Source 1 is linguistic-based and provides

(iQ inf L(h) occurs for h ho fuZzy set membership function g:0 -[0,1), while
0 over all h:On-D o source 2 is stochastic, corresponding to uncon-

ditional r.v. V:-n D.
where for any c- (56) Apply the principle of identifying g with nested

(ci random set S (U):Q'.P(D), by invoking Theorem 4.3
h ( d n'l x...xn € * and the ensui~g Remark. It is reasonable here to

o d I Xw - Mw w. JXiX.x) 2) , assume r.v. U over (0.1) is statistically Indepen-
jul / .(1 i-xJ)n ) dent of V, and hence S (U) and V are independent.

Sar ohwie cFurthermore. in order 9to apply diag in a non-triv-Sif xl .... xn are otherwise c 0. ial way, either V as a singleton point-valued

x if x function should be "brought up' to the typical
(ii) hlax) d lim hx) = i 0 f o~herwi'e. range level of SU9 M. or Sg(U) restricted down to

1wl :/ (5.7) the point values of V (all with suitable norml-2, ization of values).
(iII) The pdf of h (x) for x having pdf f is In the case of-the former, one st naturally
diag(f), as given In~eqs.(5T),(5.2). a can replace V by VC:lP(D), where V is a random

subset of 0 with -asstingD finite - pf given as
5.2 A Generic Example Illustrating Some pit - a)- p(V in a)/ I p(V in b) , all acP(0).

Application of the Previous Theory bWP(D) (5.10)
Consider, for simplicity, two different sources

of information to be present, both attempting to In the case of the latter, one could consider
estimate common unknown parameter Oc 0 S R, with normalized one point coverage probabilities, i.e,

D a known set. One. or both of the sources may b normalized fuzzy set membership value1 , thus
diag here yields dlag(g/ Zg(x) , pV-).

linguistlc-based,with the other, if any, stochastic, xcD
and similary for conditional information vs uncon- Other cases which can be treated In a similar
ditional. For simplicity here, modal or non-indic- way include:
ative forms will be omitted. See (19] for a con- Case 4. Both sources are linguistic-based: Use
ditional event reduction of such forms. agiaTn the principle based on Theorem 4.3.

Case 1. Both sources provide stochastic descriptions Case 5. One or both sources are conditional lin-
T- T[he form of unconditional r.v.'s.

Let Vl,V2 :1: D , (ilA,p) a fixed probability guistic: Use the principle of Identification
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with ordinary conditional random sets,via Theorem Qk•-8i (1989 Tri.Service Data Fusion Sympus.
4.7 and the ensuing comnents, and then apply a pro- at Applied Physics Lab., Laurel, MO, May 16-
"cedure similar to Case 2. 18. 19 8 9 ),pp.)81-193.

wiMre generally, consider several information 4. Goodman. I.R. "Extension of the PACT algo-
sources s., j=l,...n.being present, some possibly rithm to a conditional event algebra format",
providingJlinguistic-based descriptions, others. Pivc. 1Wt;-90 (1990 Joint Service Data fusion
stochastic ones, some (either linguistic or sto- Symp. held at Applied Phys. Lab., Laurel.MO.
chastic) conditional, others unconditional (either May 15-18. 1990). pp. 275-288.
linguistic or stochastic). One then converts each 5. Godmfl.R.. "Modeling and fusing of lin-
linguistic source, say s., j~l.... to stochastic guistic, probabilistic, and/or conditional
form as a nested random Jset S(s.), in either un- and unconditional forms', hardcopy of invited
conditional form (when s is in Anconditional form) tutorial, Prtc. alfS-s, hard. iy o(99 joint
based on the ideas of Sie~tion 4, especially Theorem Service Data Fusion Symposium, at Applied
4.3, or in conditional form (when s. is in con- Phys. Lab Laurel MD, Oct 7-11 1991)
ditional form) based on Theorem 4.77. Since the con- h .. O.
ditional case includes the unconditional, one can 6. Goodman, I.R., "Combination of evidenct in
assume, without loss of generality, all S(s.) are C3 systems", pvc. 8thm7IT/ONR Wokshp C• Sye
represented as conditional random sets. (at MIT, Cambridge. MA, June 24-28, 1985).

Following this, utilizing either Theorem 3.11 or pp. 161-166.

a variation, based on the logical combination de- 7. Goodman,1.R., "A probabilstic/posslbilistic
sired (such as combinations of conjunctions, dis- aogroach to modeling of C- Systems", Pzoc.
junctions, negations), a single joint conditional 9 NIT/ONR Wr•khp C' SJsenm (at Naval Post-
probability distribution F(S(s)) is obtainable with grad. Schl, Monterey, CA, June 2-5, 1986),
corresponding pdf or pf, say. f(S(s))), describing pp. 53-58.
the situation of interest - e.g., the unknown par- 8. Goodman, I.R.,"A probablistic/possibilistic
ameter 8 . Next, applying the diagonalization an, I.hto podeig listc/ssbr t c
transform yields diag(f(S(s))), a single pdf or pf, approa;h to modeling C systemsaPart 2",oMe.
representing the combined description. Thus, it is Wash.,8.C.R June 16-18, 1987a,pp.41-48.
reasonable to replace any decision problem based C
on the initial collection of sources s, by one 9. Goodman, I.R., "Toward a general theory of C3

Sbased on dlag(f(S(s))). Hence, standa~rd probabil- processes%, Peoc. 1988 Symp. e2 Raaearc)
ity models apply to the choice of optimal decisiors, (at Naval Postgrad. SchL,, Monterey, CA, June
";decision errors, and information bounds. 7-9, 1988), pp. 92-105.

However, it is still of interest to determine 10. Goodman, I.R., "Toward a general theory of
what loss of information occurs between f(S(s.)) 3poes:Pat2.ro 299Smeand diag(f(S(s))), and to compare the gain fTS(s)) pearos :P (at Nat. 2ef. Univ., Wash., D.C.,

produces compared to prior knowledge of the sit- June 27-29, 1989, pp.57-67.
uation. Analysis of these issues will be forthcom-' 11. Goodman, I.R.,"Appltcations of on exact lin-
ing in a later publication. earization-gaussian sum technique to the mod-

eling of C3 nodes*, froo. 1990 Slnp 0 Roa.
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futiy s•tLs and oLher Iuglcs'iv k.f y of 4 1VIOp44t / IrVuu•iy LOury lr Lon.

Sys.AntaZyaia World C4lgra . Univ. of Wash. di tional events" , to be submitted.

Seattle. Aug.. 1989. pp. 361-364. 31. Goodman. I.R., "Non-boolean functional ;mzge

19. Goodman, I.R. , "Identification of compound extensions to conditional event algebra and
the development of joint conditional random

modal forms with conditional events, with variables with differing antecedents", tc be
applications to the combination of evidence submitted.
problem", to be submitted.

20. Copeland. A.H., "Implicative boolean algebras', 37. Goodman. I.R.. 'Preservation of Stone alge-
' " eitchr'J) bra property in forming all higher order in-

9.0,S, p. 285-290. terval algebras, upper and lower approxima-

21. Copeland, A.H. & Harary,F., "The extension of tions of conditional events, and the closure
an arbitrary boolean algebra to an implica- problem", to be submitted.
tive boolean algebra", Proc., Aer.Mxath.Soc.,4, 38. Goodmanl.R., "G(W conditional event algebra
1953, pp. 751-758. as a non-equational logic and a theory of

22. Calabrese. P.G., "The protability that p im- partial deducts", to be submitted.
plies q", Preliminary repor't, Amnr.hath.Soc. 39. Goodman, I.R., "The canonical normal disjunc-
Notice.,22, 1975, pp. A430 A431. tive form for boolean operators has a natural

23. Calabrese, P.G.. "An algebraic synthesis of extension to conditional event algebra", to
the foundations of logic anc probability", be submitted.
Inforw.Sci.,42, 1987, pp. 187-237. 40. Goodman, I.R., "A numerically-based approach

24. Popper, K., Conjectures fi Paefutations, to the development of conditional events and
Routledge and Kegan Paul, London, 1963, p390, fuzzy conditional events, utilizing extended
formula 22. numerical division", to be submitted.

25. Lewis, 0., "Probabilities of conditionals and 41. Oubois,D. & Prade,H., Fuzy SetsJ Sys teme.

conditional probabilities", Phi.lo.fiev.,8S, Academic Press, New York, 1980.

1976, pp. 297-315. 42. Sklar,A.,*Random variables,joint distributions

(f 26. Schay, G., "An algebra of conditional events", and copulas,41bernet iko.,9(Czech),l973, 449-460.

Jou2,n.Math.Analysie A Applc. 24, 196 8,pp. 43. Dal1'AglioG.,KotzS. & Salinetti,G.(eds),
334-344. Advances in PzrobabiZity Distributions with

27. Adams, E.W., The Loaic of Conditionals, O. Given MarginaLe,Kluwer,OordrechtHolI..1 991.
Reidel Co, ordrecht, Holland, 197 5 ,pp.4 6- 4 7. 44. Hohle,U.,"Editorlal".special vol .on math.of" . fuzzy sets ,piwCy Sets a Sys., O.199 1, 25 3-25 6 .

28. Railperin,T., Bool ' Logic and Probability.t - 45. Goodman.I.R. & BlerV.M., "A re-examination
North-Holland, Amsterdam, 1976. (Also. expan- of the relationship between fuzzy set theory
ded Second Edition, 1986.) and probability theory" ,lecture,29th Annual

29. Boole, G., Tuh Laise of thought, Walton & Bayesian Researc Conf.,U.S.C.,Feb.IS,1991.
Maberly. London, 1854 (reprinted by Dover Co., 46. Goodman,I.R.,"Zadeh's (min,max,l-()) fuzzy

New York, 1958), especially Chapters 5,6 et logic as the unique probability-compatible

passim. one*, to be submitted.
47. Goodman,I.R.,"A new result supporting the

30. Goodman, I.R., "A measure-free approach to nested randomaset model as the ýunique proba-
conditioning", Proo.Third AAA, vLrk•hp.aMoert. bility-compatible interpretation of linguistic
AZ', Univ. of Wash., Seattle, July, 1987. pp. based information in combination of evidence".
270-277. lecture,3Oth Annual Bayesian Pesearch Conf.,

31. Igoshin, V.V., "An algebraic characterization Univ.S.Cal.,Los Angeles, Feb. 13, 1992.
of interval lattices", Translation of Uspekhi" 48. Frank,M.J., "On the simultaneous associativity
hat-. Nauk. *, 0(3), May-June, 1985 ,pp.233-234. of Ix~y)and x+y-F(xy).",Aq..Kztk,19,19994-226.

32. Ig9shin, V.V., "Identities in interval lattices 49 Goodman,I.R., "A new formulation of the diag-

of lattices" , Coltoq. Mth. Soc..Boyai, 33,Con- onalization technique for combining probabil-

tributione to Lattice 2%eorjj, Szeged, Hungary, itles*, to be submitted.

1980, pp. 491-501. 50. Goodman,I.R.,Nguyen,H.T. & Rogers, G.S.,"On
the scoring approach to admissibility of un-

33. Goodman, I.R., "Three-valued logics and con- certainty measures in expert systems;, Jowrn.
ditional event algebra", Pwo.Fzvt Inter. Math. Analy.teis Applio.,169(2),1 991,.550-3 94 .
Synrp.on Unoert. Modl £ Applic., Univ. of MO,
Dec. 1990, pp. 31-37. 51. Rescher,N., Many-vaZued [no, McGraw-Hill,' ' "New York, 1969,

34. Goodman, I.R.,.-"New axiom systems characteriz- N Y 1969 .

ing some proposed conditional event algebras 52. GenestC. & ZidektJ.V., "Combining probability

and corresponding three-valued logic", to be distributions: a critique and i n annotated

submitted. bibliography", St .tis .

35. Goodman, I.R., "Extension of the canonical

-1.5-


