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Executive Summary

This research aims to develop new and more accurate acoustic models for speaker- independelit

continuous speech recognition, by extending previous work in segment-based modeling and by intro-

ducing a new hierarchical approach to representing intra-utterance statistical dependencies. These

techniques, which are more costly than traditional approaches because of the large search space

associated with higher order models, are made feasible through rescoring a set of 11MM-generated

N-best sentence hypotheses. We expect these different acoustic modeling methods to result in

improved recognition performance over that achieved by current systems, which handle only frame-

based observations and assume that these observations are independent given an underlying state

sequence.

In the third quarter of the project, in coordination with a related DARPA-NSF grant (NSF

no. IRI-8902124), we have: further investigated techniques for improving the baseline stochastic

segment model (SSM) system, including exploration of several alternatives for tied mixture model-

ing and development of new faster training techniques, as well as further development of multiple

pronunciation word models; and started porting our recognition system to the new WaOI Street

Journal task, a standard task in the ARPA community.

Though much or our effort has gone towards moving to the new task, we have also achieved a
9% reduction in error on the Resource Management corpus in the last three months for the SSM

system. We currently report 3.6% word error on the October 1989 Resource Management test for

the SSM alone, and 3.1% word error for the combined SSM-IMM system.
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1 Productivity Measures

* Refereed papers submitted but not yet published: 1

* ReFereed papers published: 0

* Unrefereed reports and articles: 2

* Books or parts thereof submitted but not yet published: 0

* Books or parts thereof published: 0

a Patents filed but not yet granted: 0

* Patents granted (include software copyrights): 0

* Invited presentations: 0

o Contributed presentations: 0

* Honors received:

M. Ostendorf chosen to chair the 1996 ARPA Workshop on Human Language Technology

M. Ostendorf invited to participate in the DoD workshop on Robust Speech Analysis

* Prizes or awards received: 0

* Promotions obtained: 0

* Graduate students supported > 25% of full time: 2

* Post-docs supported > 25% of full time: 0

* Minorities supported: 0
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2 Summary of Technical Progress

Introduction and Background

In this work, we are interested in the problem of large vocabulary, speaker-independent continu-
ous speech recognition, and specifically in the acoustic modeling component of this problem. In

developing acoustic models for speech recognition, we have conflicting goals. On one hand, the

models should be robust to inter- and intra-speaker variability, to the use of a different vocabulary
in recognition than in training, and to the effects of moderately noisy environments. In order to
accomplish this, we need to model gross features and global trends. On the other hand, the models

must be sensitive and detailed enough to detect fine acoustic differences between similar words in

a large vocabulary task. To answer these opposing demands requires improvements in acoustic
modeling at several levels. New signal processing or feature extraction techniques can provide more

robust features as well as capture more acoustic detail. Advances in segment-based modeling can be
used to take advantage of spectral dynamics and segment-based features in classification. Finally,

a new structural context is needed to model the intra-utterance dependence across phonemes.

This project addresses some of these modeling problems, specifically advances in segment-based

modeling and development of a new formalism for representing inter-model dependencies. The
research strategy includes three thrusts. First, speech recognition is implemented under the N-

best rescoring paradigm 11], in which the BBN Byblos system is used to constrain the segment

model search space by providing the top N sentence hypotheses. This paradigm facilitates research
on the segment model through reducing development costs, and provides a modular framework for
technology transfer that has already enabled us to advance state-of-the-art recognition performance

through collaboration with BBN. Second, we are working on improved segment modeling at the

phoneme level 12, 3, 4] by developing new techniques for robust context modeling with Gaussian
distributions, and a new stochastic formalism - classification and explicit segmentation scoring -
that more effectively uses segmental features. Lastly, we plan to investigate hierarchical structures

for representing the intra-utterance dependency of phonetic models in order to capture speaker-
dependent and session-dependent effects within the context of a speaker-independent model.
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Summary of Recent Technical Results

In the first half of Year 1, we focused on improving the performance of the basic segment word recog-

nition system. In brief, the accomplishments of that period included: improvments to the N-Best

rescoring technique by introducing score normalization; development of a method for clustering

contexts to provide robust context-dependent model parameter estimates; extensions to the classi-

fication and segmentation scoring formalism to handle context-dependent models with long-range

acoustic features; and extension of the two level segment/microsegment formalism and assessment

of trade-offs in mixture vs. trajectory modeling. In addition, we began investigating algorithms for

the automatic generation of multiple-pronunciation word networks and the use of tied mixtures in

the segment model.

The researchefforts during this quarter, again supported in part by a related DARPA-NSF grant

(NSF no. IRI-8902124), have focused on furthering the multiple-pronunciation and tied mixture

studies, writing up previous work (see attached papers), and mainly on porting our recognition

system to the Wall Street Journal (WSJ) domain. In particular, we have:

Investigated the use of different phone sets and multiple-.pronunciation networks: A facility for

generating multiple pronunciations, developed under NSF grant number IRI-8805680 for obtaining

high quality phonetic alignments of speech, was extended and reimplemented for recognition appli-

cations. Robust pronunciation probabilities were estimated by tying the probabilities of transitions

generated by the same rule. Although no improvements were obtained on the RM corpus, we

plan to further investigate the use of multiple pronunciations in the WSJ domain. In addition, we

investigated various phone sets, finding that it was useful to include separate models for fronted

and non-fronted schwa and syllable initial and final /r/ and /1/, but not useful to separately model

lexical stress. (The lexical stress result was unexpected, but has been confirmed by researchers at

other sites.)

Investigated the use of tied mixture distributions: Though many HMM recognition systems now

use tied mixture distributions, the trade-offs of various modeling assumptions (e.g. feature correla-

tion) and parameter estimation conditions had not been fully investigated. We therefore explored

several of these issues, experimenting in the context of an SSM with frame-level mixtures. We

found that full covariance component distributions outperform diagonal covariances, joint mod-

eling of cepstra and differenced cepstra gives slightly better results than treating these features

independently, parameter initialization using a sampling of context-dependent models gives better

results than K-means initialization, and re-estimation of all parameters gives improved peformance

over re-estimation of just the mixture weights and/or distribution means. In addition, we developed

two mechanisms for reducing training time: training only detailed context models and computing

other levels of context conditioning as marginals of these distributions, and a course-grain parallel

implementation of training that scales linearly with the number of workstations available. These

results are reported in [51, which is attached. Overall, we achieved a 20% reduction in word error
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over our baseline SSM results [4] on the Resource Management task. We also extended the tied

mixture formalism to handle segment and micro-segment component distributions and are currently

experimenting with micro-segment level tied mixtures.

Ported the SSM word recognition system to the Wall Street Journal task domain: The effort

to port our recognition system to the WSJ domain involved modifying functions to maintain com-

patibility with BBN, modifying I/O formats to handle the new dictionary for eventually evaluating

the multiple-pronunciation networks, and porting both the tied-mixture and non-mixture versions

of the SSM trainer and recognizer. The porting activity, which has in part served to train a new

student, is largely complete and we expect to have our first recognition results shortly.

Our current best result on the Resource Management task is based on the tied-mixture system,

which achieves 3.6% word error on the October 1989 test set (a slight improvement over our best

result in December) and 7.3% sord error on September 1992 test set. Our best combined 11MM-

SSM results on RM are the same as reported in December: 3.1% on the October 1989 test set and

6.1% word error on the September 1992 test set.

Future Goals

Based on the results of the past year and our original goals for the project, we have set the following

goals for the remainder of Year 1: (1) continue the effort to move to the 5000-word Wall Street

Journal task; (2) investigate the use of tied mixtures at the microsegment level; (3) investigate

unsupervised adaptation in the WSJ task domain; and (4) develop the hierarchical model formalism

together with methods for robust parameter estimation.
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3 Publications and Presentations

Papers written during the reporting paper include a site report and a conference paper, in associa-

tion with the March 1993 ARPA Workshop on Human Language Technology, and a correspondence

paper that has been recently submitted for publication, as listed below. Copies of these papers are

included with the report-

"* "Segment-Based Acoustic Models for Continuous Speech Recognition," M. Ostendorf and J.

R. Rohlicek, site report to appear in Proceedings of the ARPA Workshop on Human Language

Technology, 1993.

"* "On the Use of Tied-Mixture Distributions," 0. Kimball and M. Ostendorf, to appear in

Proceedings of the ARPA Workshop on Human Language Technology, 1993.

"* "Maximum Likelihood Clustering of Gaussians for Speech Recognition," A. Kannan, M. Os-

tendorf and J. R. Rohlicek, submitted to IEEE Transactions on Speech and Audio Processing.
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4 Transitions and DoD Interactions

This grant includes a subcontract to BBN, and the research results and software is available to

them. Thus far, we have collaborated with BBN by combining the Byblos system with the SSM

in N-Best sentence rescoring to obtain improved recognition performance, and we have provided

BBN with papers and technical reports to facilitate sharing of algorithmic improvements. On their

part, BBN has been very helpful to us in our WSJ porting efforts, providing us with WSJ data and

consulting on format changes.

The recognition system that has been developed under the support of this grant and of a joint

NSF-DARPA grant (NSF # IRI-8902124) is being used for automatically obtaining good quality

phonetic alignments for a corpus of radio news speech under development at Boston University in

collaboration with researchers at SRI International and MIT. We have requested support from the

Linguistic Data Consortium -,- nse this software to phoniticv1ly align the remainder of the corpus.
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5 Software and Hardware Prototypes

Our research has required the development and refinement of software systems for parameter es-

timation and recognition search, which are implemented in C or C++ and run on Sun Sparc

workstations. No commercialization is planned at this time.
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Segment-Based Acoustic Models
for Continuous Speech Recognition

Mari Ostendorf J. Robin Rohlicek

Boston University BBN Inc.
Boston, MA 02215 Cambridge, MA 02138

PROJECT GOALS improvements were obtained on the RM corpus,
The goal of this project is to develop improved ascoustic though there may be gains in another domain.
models for speaker-independent recognition of eontinu- Extended the two-level segment/micrasegment for-
ous speech, together with efficient search algorithms ap- malism to application in word recognition using
propriate for use with these models. The current work context-dependent models; evaluated the trade-onfs

on acoustic modeling is focussed on: stochastic, segment- associated with modeling trajectories vs. (non-tied)

based models that capture the time correlation of a se- microsegment mixtures, finding that mixtures ar'
quence of observations (feature vectors) that correspond more useful for context-independent modeling but
to a phoneme; hierarchical stochastic models that cap- representation of a trajectory is more useful for
ture higher level intra-utterance correlation; and multi- context-dependent modeling.
pass search algorithms for implementing these more com-
plex mode!s. TIbis research has been jointly sponsored by * Investigated the use of tied mixtures at the frame
DARPA and NSF under NSF grant IRI-8902124 and by level (as opposed to the microsegment level), evalh-
DARPA and ONR under ONR grant N00014-92-J-1778. ating different covariance assumptions and training

conditions; developed new, faster mixture training
RECENT RESULTS algoritlims; and achieved a 20% reduction in word

error over our previous best results on the Resource
* Implemented different auditory-based signal pro- Management task. Current SSM performance rates

cessing algorithms and evaluated their use in recog- are 3.6% word error on the Oct89 test set and 7.3%
nition on the TIMIT corpus, finding no performance word error on the Sep92 test set.
gains relative to cepstral parameters probably due
to the non-Gaussian nature of auditory features. PLANS FOR THE COMING YEAR

* Improved the score combination technique for N-
Best rescoring, through normalizing scores by sen- * Continue work in the classification and segmenta-
tence length to obtain more robust weights that al tion scoring paradigm; demonstrate improvements
leviate problem associated with test set mismatclL associated with novel models and/or features.

* Further investigated agglomerative and divisive * Investigate the use of tied mixtures at the microseg-
clustering methods for estimating robust context- ment level.
dependent models, and introduced a new clustering
criterion based on a likelihood ratio test; obtained * Port the BU recognition system to the Wall Street
a slight improvement in performance with an order Journal (WSJ) task, 5000 word vocabulary.
of magnitude reduction in storage cosat. o Develop a stochastic formalism for modeling intra-

* Extended the dasification and segmentation scot- utterance dependencies assuming a hierarchical
ing formalism to handle context-dependent models structure.
without requiring the assumption of independence
of features between phone segments (using maxi- * Investigate unsupervised adaptation in the WS.1
mum entropy methods); evaluated different segmen- task domain.
tation scores with results suggesting more work is * Investigate multi-pass search algorithms that use a
needed in this arm. lattice rather than N-Best representation of recog-

* Investigated the use of different phone sets and nition hypotheses.
probabilistic multiple-pronunciation networks; no



ON THE USE OF TIED-MIXTURE DISTRIBUTIONS
Owen Kimball, Mari Ostendorf

Electrical, Computer and Systems Engineering
Boston University, Boston, MA 02215

ABSTRACT ity or acoustic observations conditioned on the state in

Tied-mixture (or semi-continuous) distributions are an im- hidden-Markov models (11MM), or for the case of the
portant tool for acoustic modeling, used in many high- SSM, conditioned on a region of the model. Some of the
performance speech recognition systems today. This paper options that have been investigated include discrete dis-
piovides a survey of the work in this area, outlining the tributions based on vector quantization, as well as Gaus-
different options available for tied mixture modeling, intro- sian, Gaussian mixture and tied-Gaussian mixture dis-
ducing algorithms for reducing training time, and provid- tributions. In tied-mixture modeling, distributions are
ing experimental results assessing the trade-offs for speaker- modeled as a mixture of continuous densities, but unlike
independent recognition on the Resource Management task. ordinary, non-tied mixtures, rather than estimating the
Additionally, we describe an extension of tied mixtures to component Gaussian densities separately, each mixture
segment-level distributions, is constrained to share the same component densities

with only the weights differing. The probability density
1. INTRODUCTION of observation vector x conditioned on being in state i

Tied-rrixture (or semi-continuous) distributions have is thus
rapidly become an important tool for acoustic model- P(x s i) = 0 wikpk(x). (1)
ing in speech recognition since their introduction by k

Huang and Jack [1] and Bellegarda and Nahamoo 12], Note that the component Gaussian densities, pk(x)
finding widespread use in a number of high-performance N(pk,Ek), are not indexed by the state, i. In this light,
recognition systems. Tied mixtures have a number of tied mixtures can be seen as a particular example of the
advantageous properties that have contributed to their general technique of tying to reduce the number of model
success. Like discrete, "non-parametric" distributions, parameters that must be trained [3].
tied mixtures can model a wide range of distributions
including those with an "irregular shape," while retain- "Tied mixtures" and "semi-continuous HMMs" are used
ing the smoothed form characteristic of simpler par&- in the literature to refer to HMM distributions of the
metric models. Additionally, because the component form given in Equation (1). The term "semi-cctinuous
distributions of the mixtures are shared, the number of HMMs" was coined by Huang and Jack, who first pro-
free parameters is reduced, and tied-mixtures have been posed their use in continuous speech recognition [1]. The
found to produce robust estimates with relatively small "semi-continuous" terminology highlights the relation-
amounts of training data. Under the general heading ship of this method to discrete and continuous density
of tied mixtures, there are a number of possible choices HMMs, where the mixture component means ire analo-
of parameterization that lead to systems with different gous to the vector quantization codewords of a discrete
characteristics. This paper outlines these choices and HMM and the weights to the discrete observation prob-
provides a set of controlled experiments assessing trade- abilities, but, as in continuous density HMMs, actual
ofls in speaker-independent recognition on the Resource quantization with its attendant distortion is avoided
Management corpus in the context of the s&ochastic seg- Bellegarda and Nahamoo independently developed the
ment model (SSM). In addition, we introduce new vari- same technique which they termed "tied mixtures" [2].
ations on training algorithms that reduce computational For simplicity, we use only one name in this paper, and
requirements and generalize the tied mixture formalism choose the term tied mixtures, to highlight the relation-
to include segment-level mixtures. ship to other types of mixture distributions and because

our work is based on the SSM, not the I1MM.

2. PREVIOUS WORK Since its introduction, a number of variants of the tied

A central problem in the statistical approach to speech mixture model have been explored. 7irst, different as-
recognition is finding a good model for the probabil- sumptions can be made about feature correlation within



individual mixture components. Separate sets of tied ing data. In addition, it is likely that the amount of
mixtures have been used for various input features in- tying in a system can be adjusted across a continuum tu
eluding cepstra, derivatives of cepstra, and power and fit the particular task and amount of training data. How.
its derivative, where each of these feature sets have been ever, an assessment of modeling trade-offs for speaker-
treated as independent observation streams. Within an independent recognition is useful for providing insight
observation stream, different assumptions about feat.re into the various choices, and also because the various
correlation have been explored, with some researchers results in the literature are difficult to compare due to
currently favoring diagonal covariance matrices [4. 51 and differing experimental paradigms.
othe:s adopting full covariance matrices [6, 7].

Second, the issue of parameter initialization can be irm- 3. TRAINING ALGORITHMS
portant, since the training algorithm is an iterative hill-
climbing technique that guarantees convergence only to a In this section we first review properties of the SSM
local optimum. Many researchers initialize their systens and then describe the training algorithm used for tied
with parameters estimated from data subsets determined mixtures with the SSM. Next, we describe an efli-
by K-means clustering, e.g. [6], although Paul describes cient method for training context-dependent mod&',
a different, bootstrapping initialization [4]. Often a large and lastly we describe a parallel implementation of th,-
n-mber of mixture components are used and, since the trainer that greatly reduces experimentation time.
parameters can be overtrained, contradictory results are
reported on the benefits of parameter re-estimation. For 3.1. The SSM and "Viterbi" Training
example, while many researchers find it useful to reesti- with Tied Mixtures
mate all parameters of the mixture models in training,
BBN reports no benefit for updating means and covari- The SSM is characterized by two components: a fam-
ances after the initialization from clustered data [7]. ily of length-dependent distribution functions and a de-

terministic mapping function that determines the dis-
Another variation, embodied in the CMU senone mod- tribution for a variable-length observed segment. More
els [8], involves tying mixture weights over classes of specifically, in the work presented here, a linear time
context-dependent models. Their approach to finding re- warping function maps each ob-erved frame to one of
gions of mixture weight tying involves clustering discrete rn regions of the segment model. Each region is de-
observation distributions and mapping these clustered scribed by a tied Gaussian mixture distribution, and
distributions to the mixture weights for the associated the frames are assumed conditionally independent given
triphone contexts. the length-dependent warping. The conditional inde-

pendence assumption allows robust estimation of thelnadeditioetod thetworvedescribed abveh e reseah ccern- model's statistics and red,;ces the computation of deter-
late mehod tht hae ifored he rseach oncrn- mining a segment's probability, but the potential of the

ing tied mixtures. First, mixture modeling does not re- se
quire the use of Gaussian distributions. Good results segment model is not fully utilized. Under this formu-
have also been obtained using mixtures of Laplacian dis- lation, the SSM is similar to a tied-mixture BMM with
tributions [9, 10], and presumably other component den- a mhone-length-depenident, constrained state trajectory.
sities would perform well too. Ney [11] has found strong Thus, many of the experiments reported here translate
similarities between radial basis functions and mixture
densities using Gaussians with diagonal covariances. Re- The SSM training algorithm [16] iterates between seg-
cent work at BBN has explored the use of elliptical basis mentation and maximum likelihood parameter estima-
functions which share many properties with tied mix- tion, so that during the parameter estimation phase of
tures of full-covariance Gaussians [12]. Second, the posi- each iteration, the segmentation of that pass gives a set
tive results achieved by several researchers using non-tied of known phonetic boundaries. Additionally, for a given
mixture systems [131 raise the question of whether tied- phonetic segmentation, the assignment of observations
mixtures have significant performance advantages over to regions of the model is uniquely determined. SSM
untied mixtures when there is adequate training data. training is similar to HMM "Viterbi training", in which
It is possible to strike a compromise and use limited ty- training data is segmented using the most likely state
ing- for instance the context models of a phone can all sequence and model parameters are updated using this
use the same tied distributions (e~g. [14, 15]). segmentation. Although it is possible to define an SSM

Of course, the best choice of model depends on the na- training algorithm equivalent to the Baum-Welch algo-
tri- rithm for HMMs, the computation is prohibitive for theture of the observation vectors and the amount of train- he o f the lare efetive s pace.SSM because of the large effective state space.



The use or a constrained segmentation greatly simpli- at BU, we would like to mAke use of many inachifi
ties parameter estimation in the tied mixture case, since at once to speed training. At the highest level, ti--I
there is only one unobserved component, the mixture mixture training is inherently a sequential proces.s, s1v
mode. In this case, the parameter estimation step of the each pass requires the parameter estimates from thfe p•in
iterative segmentation/estimation algorithm involves the vious pass. Ilowever, the bulk of the training compu-
standard iterative expectation-maximization (EM) ap- tation involves estimating counts over a database, and
proach to estimating the parameters of a mixture distri- these counts are all independent of each other. We can
bution [171. In contrast, the full EM algorithm for tied therefore speed training by letting machines estimate th-,
mixtures in an HMM handles both the unobserved state counts ior different parts of the database in parallel and
in the Markov chain and the unobserved mixture mode combine and normalize their results at the end of each

[2]. pass.
3.2. Tied-Mixture Context Modeling To implement this approach we use a simple -bakery'" al-

gorithm to assign tasks: as each machine becomes free, it

We have investigated two methods for training context- reads and increments the value of a counter from a cons-

dependent models. In the first, weights are used to corn- mon location indicating the sentences in the databast,
bine the probability of different types of context. These it should work on next. This approach provides load
weights can be chosen by hand (181 or derived automat- balancing, allowing us to make efficient use of machines
ically using a deleted-interpolation algorithm [3]. Paul that may differ in speed. Because of the coarse grain of
evaluated both types of weighting for tied-mixture con- parallelism (one task typically consists of processing 1N
text modeling and reported no significant performance sentences), we can use the relatively simple mechanism
difference between the two [41. In our experiments, we of file locking for synchronization and mutual exclusion,
evaluated just the use of hand-picked weights. with no noticeable efficiency penalty. Finally, one pro-

cessor is distinguished as the "master" processor and is
In the second method, only models of the most de- assigned to perform the collation and normalization of
tailed context (in our case triphones) are estimated di- counts at the end of each pass. With this approach, we
rectly from the data and simpler context models (left, obtain a speedup in training linear with the number of
right, and context-independent models) are computed machines used, providing a much faster environment for
as marginals of the triphone distributions. The corn- experimentation.
putation of marginals is negligible since it involves just
the summing and normalization of mixture weights at 4. MODELING & ESTIMATION
the end of training. This method reduces the number of
model updates in training in proportion to the number TRADE-OFFS
of context types used, although the computation of ob- Within the framework of tied Gaussian mixtures, there
servation probabilities conditioned on the mixture comn- are a number of modeling and training variations that
ponent densities, remains the same. In recognition with have been proposed. In this section, we will describe sev-
marginal models, it is still necessary to combine the dif- eral experiments that investigate the performance impli-
ferent context types, and we use the same hand-picked cations of some of these choices.
weights as before for this purpose. We compared the
two training methods and found that performance on an 4.1. Experimental Paradigm
independent test set was essentially the same for both
methods (marginal training produced 2 fewer errors on The experiments described below were run on the
the Feb89 test set) and the marginal trainer required Resource Management (RM) corpus using speaker-
20 to 35% less time, depending on the model size and independent, gender-dependent models trained on the
machine memory. standard SI-109 data set. The feature vectors used a-s

input to the system are computed at 10 millisecond in-

3.3. Parallel Training tervals and consist of 14 cepstral parameters, their first
differences, and differenced energy (second cepstral dif-

To reduce computation, our system prunes low probabil- ferences are not currently used). In recognition, the SSM
ity observations, as in [4], and uses the marginal training uses an N-best rescoring formalism to reduce computa-
algorithm described above. However, even with these tion: the BBN BYBLOS system [7] is used to generate
savings, tied-mixture training involves a large computa- 20 hypotheses per sentence, which are rescored by the
tion, making experimentation potentially cumbersome. SSM and combined with the number of phones, num-
When the available computing resources consist of a net- ber of words, and (optionally) the BBN I1MM score, to
work of moderately powerful workstations, as is the case rerank the hypotheses. The weights for recombination



are estimated on one test set and held fixed for all other sians for the 300 component system and obtained an
test sets. Since our previous work has indicated prob- 8.0% error rate. The context-dependent performance ftr
lems in weight estimation due to test-set mismatch, we males using this configuration showed similar irnprove-
have recently introduced a simple time normalization of ment over the non-mixture SSM, with an error rate of
the scores that effectively reduces the variability of scores 3.8% for the mixture system compared with 4.7% for the
due to utterance length and leads to more robust pcefor- baseline. Returning to the females, we found that us-
mance across test sets. ing full-covariance densities gave the same performance

as diagonal. We have adopted the use of full-covariance
Although the weight estimation test set is strictly speak- models for both genders for uniformity, obtaining a com-
ing part of the training data, we find that for most ex- bined word error rate of 3.3% on the Feb89 test set.
periments, the bias in this type of testing is small enough In the RM SI-109 training corpus, the training data for
to allow us to make comparisons between systems when males is roughly 2.5 times that for females, so it is not
both are run on the weight-training set. Accordingly unexpected that the optimal parameter allocation for
some of the experiments reported below are only run on each may differ slightly.
the weight training test set. Of course, final evaluation
of a system must be on an independent test set. Unlike other reported systems which treat cepstral pa-

rameters and their derivatives as independent observa-
4.2. Experiments tion streams, the BU system models them jointly using
WVe conducted several series or experiments to explore a single output stream, which gives better performance

We cndutedsevral eris o e~eri~ent toexpore than independent streams with a single Gaussian dis-
issues associated with parameter allocation and train- ti tn (non tm xtreasyswem).aPresumablysthenresul

ing. The results are compared to a baseline, non-mixture would also hold for mixtures.

SSM that uses full covarianee Gaussian distributions.

The first set of experiments examined the number of Since the training is an iterative hill climbing tech-

component densities in the mixture, together with the nique, initialization can be important to avoid converg-

choice of full- or diaganal-covariance matrices for the ing to a poor solution. In our system, we choose ini-

mhixtue omponen- t densiiesnAlto ughi e matrihes fucovari- tial models, using one of the two methods described be-
mixture component densities. Although the fudcari low. These models are used as input to several iterations
ance assumption provides a more detailed description of context-independent training followed by context-
of the correlation between features, diagonal covariance dependent training. We add a small padding value to
models require substantially less computation and it may the weight estimates in the early training passes to de-
be possible to obtain very detailed models using a larger lay premature parameter convergence.
number of diagonal models.

We have investigated two methods for choosing the ini-
In initial experiments with just female spealkers, we used tial models. In the first, we cluster the training data

diagonal covariance Gaussians and compared 200- ver- using the K-means algorithm and then estimate a mean

sus 300-density mixture models, exploring the range and covariance from the data corresponding to each clus-

typically reported by other researchers. With context- ter These are then used as the parameters of the cumpo-

independent models, after several training passes, both
nent Gaussian densities of the initial mixture. In the sec-

systems got 6.5% word error on the Feb89 test set. For ond method, we initialize from models trained in a non-
context-dependent models, the 300-density system per- mixture version of the SSM. The initial densities are cho-
formed substantially better, with a 2.8% error rate, crm- sen as means of triphone models, with covariances chosen
pared with 4.2% for the 200 density system. These re- from the corresponding context-independent model. For
sults compare favorably with the baseline SSM which each phone in our phone alphabet we iteratively choose

has an error rate on the Feb89 female speakers of 7.7% the triphone model of that phone with the highest fre-

for context-independent models and 4.8% for contexth-
quency of occurrence in training. The object of this pro-

dependent models. cedure is to attempt to cover the space of phones while

For male speakers, we again tried systens of 200 and using robustly estimated models.

300 diagonal covariance density systems, obtaining error We found that the K-means initialized models converged
rates of 10.9% and 9.1% for each, respectively. Unlike slower and had significantly worse performance on inde-
the females, however, this was only slightly better than pendent test data than that of the second method. Al-
the result for the baseline SSM, which achieves 9.5%. teodht ts dataitha that ofth e sc d d. Al-We tieda sstemof 00 iagoal ovaianc desites, though it is possible that with a larger padding valueW~e tried a system of 500 diagonal covariance densities, added to the weighif estimates and more training passes,
which gave only a small improvement in performance to the K-me wns models might have "caught up" with the
8.8% error. Finally, we tried using full-covariance Gaus-



distinct trajectories of the observations across a complet,-
Test set segment. In practice, each such trajectory is a point 11 a

System Oct 89 Sep 92 very high-dimensional feature space, and it is necessary
Baseline SSM 4.8 8.5 to reduce the parameter dimension in order to train such

T.M. SSM 3.6 7.3 models. There are several ways to do this. First, we
T.M. SSM + HMM 3.2 6.1 can model the trajectories within smaller, subphonetic

units, as in the microsegment model described in [19, 20]Table 1: Word error rate on the Oct89 and Sep92 test Taking this approach and assuming microsegments are

sets for the baseline non-mixture SSM, the tied-mixture independent, the probability for a segment is

SSM alone and the SSM in combination with the BYB-

LOS HNMM systenL P(YI a) =E f w k P(Y, I aik), (2)
I &

where Ojk is the kPh mixture component of microseg-
other models, we did not investigate this further. ment j and Yj is the subset of frames in Y that map to

The various elements of the mixtures (means, covari- microsegment j. Given the SSM's deterministic warp-
The ariod weiemts) can eachbe eithere u aedins, train- ing and assuming the same number of distributions for
ances, and weights) can each be either updated in train- all mixture components of a given microsegment, the
ing, or assumed to have fixed values. in our experiments, extension of the EM algorithm for training mixtures of
we have consistently found better performance when all this type is straightforward. The tied-mixture SSM dis-
parameters of the models are updated, cussed in previous sections is a special case of this modl,

Table I gives the performance on the RM Oct89 and in which we restrict each microsegment to have just one
Sept92 test set for the baseline SSM, the tied-mixture stationary region and a corresponding mixture distribu-

SSM system, and the tied-mixture system combined in tion.

N-best rescoring with the BBN BYBLOS HMM system. A different way to reduce the parameter dimension is to
"The mixture SSM's performance is comparable to results continue to model the complete trajectory across a seg-
reported for many other systems on these sets. We note ment, but assume independence between subsets of the
that it may be possible to improve SSM performance by features of a frame. This case can be expressed in the
incorporating second difference cepstral parameters as general form of (2) if we reinterpret the Y, as vectors
most HAMM systems do. with the same number of frames as the complete seg-

ment, but for each frame, only a specific subset of the
5. SEGMENTAL MIXTURE original frame's features are used. We can of course corn-

MODELING bine these two approaches, and assume independence

In the version of the SSM described in this paper, in between observations representing feature subsets of dif-
which observations are assumed conditionally indepen- ferent microsegmental units. There are clearly a large
dent given model regions, the dependence of observations number of possible decompositions of the complete seg-
over time is modeled implicitly by the assumption of ment into time and feature subsets, and the correspond-
time-dependent stationary regions in combination with ing models for each may have different properties. In
the constrained warping of observations to regions. Be- general, because of constraints of model dimensionality
cause segmentation is explicit in this model, in principle and finite training data, we expect a trade-off between
it is straightforward to model distinct segmental trajec- the ability to model trajectories across time and to model
tories over time by using a mixture of such segment-level the correlation of features within a local time region.
models, and thus take better advantage of the segment Although no single model of this form may have all the
formalism. The probability of the complete segment of properties we desire, we do not necessarily have to choose
observations, Y, given phonetic unit e is then one to the exclusion of all others. All the models dis-

P(Y I .) E W& P(Y I &a) cussed here compute probabilities over the same obser-
= vation space, allowing for a straightforward combination

of different models, once again using the simple mecha-
where each of the densities p(Y I na) is an SSM. The nism of non-tied mixtures:
component models could use single Gaussians instead
of tied mixtures for the region dependent distributions p(Y I a) = f i p H I p(Y .).
and they would remain independent frame models, but i k k

in training all the observations for a phone would be In this case, each of the i components of the leftmost
updated jointly, so that the mixture components capture summation is some particular realization of the general



model expressed in Equation (2). Such a mixture can 7. Kubala, F., Austin, S., Barry, C., Makhoul, J. Place-
combine component models that individually have ben- way, P._ and Schwartz, R., "BYBLOS Speech Recogni-

eficial properties for modeling either time or frequency tion Benchmark Results," Proc. of the DARPA Work-
shop on Speech and Natural Language, Asilomar, CA,

correlation, and the combined model may be able to Feb. 1991, pp. 77-82.
model both aspects well. We note that, in principle, 8. Hwang, M.-Y., Huang, X. D., "Subphonetic Modeling
this model can also be extended to larger units, such as with Markov States - Senone," Proc. IEEE Int. Conf,
syllables or words. Acoust., Speech, Signal Processing, March 1992, pp. 1-

33-36.

6. SUMMARY 9. Ney, H., Haeb-Umbach, R., Tran, B.-H., Oerder, M.,
"Improvements in Beam Search for 10000-Word Con-

This paper provided an overview of work using tied- tinuous Speech Recognition,* Proc. IEEE Int. Conf.
mixture models for speech recognition. We described the AcousL, Speech, Signal Processing, April 199:, pp. '-9-

use of tied mixtures in the SSM as well as several innova- 12.

tions in the training algorithm. Experiments comparing 10. Baker, J. K., Baker, J. M.. Bamberg, P., Bishop, K.,
performance for different parameter allocation choices Gillick, L., Helman, V., Huang, Z., Ito, Y., Lowe, S.,

Peskin, B., Roth, R., Scattone, F., "Large Vocabulary
using tied-mixtures were presented. The performance Recognition of Wall Street Journal Sentences at Dragon
of the best tied-mixture SSM is comparable to HMM Systems," Proc. of the DARPA Workshop on Speech and
systems that use similar input features. Finally, we pre- Natural Language, February 1992, pp. 387-392.
sented a general method we are investigating for model- 11. H. Ney, "Speech Recognition in a Neural Network
ing segmental dependence with the SSM. Framework: Discriminative Training of Gaussian Mod-

els and Mixture Densities as Radial Basis Functions,"
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process-
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Abstract

This correspondence describes a method for clustering multivariate Gaussian distributions using

a Maximum Likelihood criterion. We point out possible applications of model clustering, and

then use the approach to determine classes of shared covariances for context modeling in speech

recognition, achieving an order of magnitude reduction in the number of covariance parameters,

with no loss in recognition performance.

1 Introduction

Distribution clustering is an important tool in statistical modeling. In speech recognition in particular,

distribution clustering can be used to reduce the number of context-dependent models (which enables

robust parameter estimates and reduces recognition computation and storage costs), to provide an

initial estimate of component distributions for mixture models, and to group similar models for building

an initial "fast-match" function in large vocabulary recognition. This work describes a new method

"This research was jointly funded by NSF and DARPA under NSF grant number IRI-8902124, and by DARPA and

ONR under ONR grant number N00014-92-J-1778.



of distribution clustering that handles continuous observations and is consisteut with a M aximuM,

Likelihood (ML) parameter estimation criterion.

Two important issues associated with clustering distributions include the general method (ag-

glomerative or divisive hierarchical methods vs. K-means clustering) and the clustering criterion or

objective function. Initial work in clustering models for speech recognition used variations on agglom-

erative clustering [1, 2]. Subsequent work explored divisive clustering methods, using linguistically

motivated questions (partitioning functions) about phonetic context for splitting the data [3, 4]. An

advantage of this divisive clustering approach, as Lee et al. point out [3], is that conditioning contexts

unseen in training can be easily mapped to a cluster that provides a robust but detailed model. For

this reason, our work uses divisive clustering, although the similarity criterion we propose could easily

be applied to agglomerative clustering as well.

The second issue in clustering is the choice ot a clustering criterion or objective function. One

possibility is to use a measure of distribution similarity, such as information divergence (see [5] for the

hidden Markov model (HMM)) or the chi-squared-like measure used in [1] for Gaussian distributions.

However, such similarity measures tend to be more useful for agglomerative clustering than for divisive

clustering, because agglomerative clustering does not require the computation of a cent roid associated

with the similarity measure and the centroid is difficult to define for these criteria. In addition, sim-

ilarity measures on distributions may not faithfully represent the similarity of the data from which

the distributions were estimated, particularly if distribution assumptions were inaccurate or parame-

ters were estimated from sparse data. Other objective functions proposed for distribution clustering

include entropy measures 131 and likelihood ratios ([4] for discrete observations and [6] for Gaussian

distributions). The likelihood ratio criterion represents the relative probability of a set of data using

one vs. two models, and its use in divisive clustering guarantees an increase in the likelihood of the

data. Thus the likelihood ratio criterion has the advantage that it is consistent with the objective

of maximum likelihood parameter estimation, that is if the clustered distributions and not just the

duster definition are used in the model (the distinction between our use of clustering in estimating

the model parameters and the use of clustering in 14] to determine regions of parameter tying).

This work investigates the use of a likelihood ratio criterion in divisive clustering for context-

dependent modeling in speech recognition, extending the work of Gish et al. [6) which looked at

agglomerative clustering for speaker segmentation and identification. We describe general methods for

dustering data to determine appropriate multivariate Gaussian models under different parameter tying
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conditions, and then present experiments in clustering covariances, specifically for estimating Gaussian

distributions that represent regions of a phoneme segment as used in the Stochastic Segment Model

(SSM). (The region-dependent distributions in the SSM axe analogous to state-dependent observation

distributions in an HMM.) Note that for the speech recognition application, the question of whether

to cluster on the phone level or sub-phone level arises. Like [7] but unlike most other reported work,

the experiments here focus on the sub-phone level, though the general method is also applicable to

phone-level clustering. The results show that the number of covariance parameters can be reduced by

more than a factor of ten with clustering, with no loss in recognition performance.

2 Clustering Paradigm

The clustering algorithm is a binary tree growing procedure, similar to decision tree design [8). that

successively partitions the observations (splits a node in the tree), at each step minimizing a splitting

criterion over a pre-determined set of allowable binary partitions. For each allowable binary partition

of the data, we evaluate a likelihood ratio to choose between one of two hypotheses:

"* H0 : the observations were generated from one distribution (that corresponds to the ML estimate

for the parent node).

"* HI: the observations were generated from two different distributions (that correspond to the

ML estimates for the child nodes), and

The likelihood ratio, A, is defined as the ratio of the likelihood of the observations being generated

from one distribution (H 0) to the likelihood of the observations in the partition being generated from

two different distributions (HI). For Gaussians, A can be expressed as a product of the quantities

Acov and AMEAN [6], which are expressed in terms of the sufficient statistics of the observation sets:

AMEAN + (1)jj-jA '- fi ,

=CO (2)

where nj and n,, are the number of observations in the left and right child nodes with n = n1 + n'.,

,41 and P, are the sample means of the left and right nodes, 21 and t, are the sample covariances
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associated with the left and right nodes, a = ., and W is the frequency weighted tied covariance,
viz., W = L j + nr

There axe different variations on clustering with the likelihood ratio criterion, corresponding to

different hypothesis tests on the candidate partition of a node. If the clustering is to determine

whether the observations in two sets share a common covariance only with unspecified means, then

the increase in log likelihood is given by -logAcov. Alternatively, if the hypothesis test is over the

complete distributions, then the increase in likelihood due to the partition is -(log cotov +log AMfAN).

Finally, if the distributions are assumed to share a common covariance and only distribution means

are to be clustered, then the likelihood ratio criterion is - log MEgAN. (Note that the mean clustering

case would require a hybrid divisive plus K-means clustering to guarantee increase in likelihood, since

the common covariance is defined as the sample covariance of the parent node.) The derivations for

these different cases can be found in 19].

Divisive clustering involves growing a binary tree using a greedy algorithm for maximizing the

likelihood of the data. For each terminal node in the tree, w'. evaluate the increase in likelihood for

all binary partitions allowed, and then split the terminal no4;e with the partition that results in the

largest increase in likelihood. The tree is grown until there are no more splits that result in valid child

nodes. Here, it is assumed that valid terminal nodes must have more than T, observations, where Tc

is an empirically determined threshold to indicate that a reliable covariance can be estimated for that

node (we use T. = 250, for vector dimension 29). The full tree can be used for the set of clustered

models as in the experiments described here, or alternatively, one could use tree pruning techniques

110] to determine the appropriate number of distributions.

This technique to duster Gaussians can be used for clustering context-dependent acoustic models

in speech recognition. In this work, we cluster triphones, where a triphone is a phone conditioned on

the phone label of its left and right neighbor, but the conditioning contexts could potentially include a

larger window of neighbors [41 or information such as lexical stress. More specifically, divisive clustering

is performed independently on the observations that correspond to each region of the center phone,

with the goal of finding classes of triphones that can share a common covariance. The partitions used

to test the likelihood ratio are found by asking linguistically motivated questions related to features

such as the place and manner of articulation of the immediate left and right neighboring phones of the

triphone. Only simple questions (i.e., questions about one variable) are used in this implementation;

a method for designing trees with compound questions is described in [3]. The triphone clustering
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framework is illustrated in Figure 1.

When the tree is grown, each terminal node has a set of observations associated with it that

map to a set of triphone distributions. The partition of observations directly implies a partition of

triphones, since the allowable questions refer to the left and right neighboring phone labels. Each node

is associated with a covariance, which is an unbiased estimate of the tied covariance for the constituent

distributions computed by taking a weighted average of the separate triphone-dependent covariances.

During recognition, all distributions associated with a terminal node share this covariance. Although

it would have been possible to duster means as well, we simply used the triphone-dependent means

and backed off to combined left- and right-context-dependent means when necessary due to insufficient

triphone training data.

3 Experiments

We conducted experiments to assess the proposed method of clustering triphones in continuous speech

recognition. In this section, we describe the recognition paradigm and then present results.

3.1 Paradigm

We evaluated the effects of clustering triphones for the Stochastic Model for representing variable-

duration phonemes, first introduced in 111]. In brief, the SSM assumes that each segment generates an

observation sequence Y = [.y,..., VL] of random length L using a model for each phone a consisting of

1) a family ofjoint density functions (one for every observation length), and 2) a collection of mappings

that specify the particular density function for a given observation length. Typically, the model

assumes that segments are described by a fixed-length sequence of locally time-invariant regions (or

regions of tied distribution parameters). A deterministic mapping specifies which region corresponds

to each observation vector.

The specific version used here [12] assumes that frames within a segment are conditionally inde-

pendent given the segment length. In this case, the probability of a segment given phone a is the

product of the probability of each observation yj and the probability of its (known) duration L:

L
P(Yla) = P(Y, Ljo) = P(Lia ) "P(Vila, TL(i)),
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where the distribution used corresponds to region TL(i). The distributions associated with a region

j, P(yto,j), are multivariate Gaussians. The phone length distribution p(Lla) is a smoothed relative

frequency estimate in this work. TL(i) determines the mapping of the L-long observation to the in

regions in the model. The function TL(i) in this work is linear in time for the entire segment.

To reduce the computational costs associated with a segment-based model, which has a much

higher effective search space than an HMM, we use the N-best rescoring formalism for continuous

word recognition 113]. In this formalism, one recognition system produces the top N hypotheses for an

utterance, the hypotheses rescored by other knowledge sources, and the different srcores are combined

to rerank the hypotheses. In addition to reducing computation for the SSM (by reducing the search

space), the N-best rescoring paradigm provides a mechanism for integrating very different types of

knowledge sources, though this aspect is not explored here. For these experiments, the initial list of

candidate sentences were generated using BBN's BYBLOS system and then rescored by the SSM. The

BYBLOS system is an HMM-based system that uses tied Gaussian mixtures and context-dependent

models including cross-word triphones [14]. Once the N-best list is rescored by the SSM, it is reordered

according to a linear combination of the SSM log acoustic score, the number of words in the sentence

(insertion penalty) and the number of phonemes in the sentence. We estimate the set of weights in

the linear combination that minimizes average word error in the top ranking hypotheses [151.

Results are reported on the speaker-independent Resource Management task (continuous speech,

991 word vocabulary). The SSM models are trained on the SI-109, 3990 utterance SI training set.

The training was partitioned to obtain gender-dependent models; the specific gender used by the

SSM in recognition was determined by the BBN system for detecting gender. The BU SSM system

uses frame-based observations of spectral features, including 14 mel-warped cepstra and their first

differences, plus the first difference of log energy. The segment model uses a sequence of m = 8

multivariate (full) Gaussian distributions, assuming frames are conditionally independent given the

segment length. In these experiments, we use N = 20 for the N-best list. The correct sentence is

included in this list about 98% of the time by the Byblos system, using the word-pair grammar.

3.2 Results

The February 89 speaker-independent (SI) test set was used to estimate gender-independent weights

that were then used to combine scores for the evaluation test set (October 89). Recognition perfor-
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mance was computed as the word error rate based on the top ranking hypotheses after rescoring. The

performance of our system on the October 89 test set was 5.0% for the tied covariance (base-line) sys-

tem, 4.9% for the system using clustering with the full likelihood criterion and 4.9% when clustering

with only the Acov likelihood criterion. The corresponding numbers for the February 89 development

test set were 4.6%, 4.2% and 4.1%, respectively. Although the performance differences on the October

89 test set are not significant, the performa.ce on the development test set provides some evidence

that clustering with the theoretically appropriate Acov criterion is also a good choice in terms of

recognition performance. The results are consistent with those reported by others, in that the main

benefit of clustering is a reduction in model complexity rather than an improvement in performance.

In these experiments, we reduced the number of covariance parameters required by more than a factor

of ten with no loss in recognition performance, and further reduction may be possible. Since the

covariance parameters are the dominating factor in computation and storage costs, this represents a

significant overall reduction.

4 Conclusions

In summary, we have described a divisive clustering paradigm for multivariate Gaussians based on a

likelihood ratio test. In the context of speech recognition, we use the clustering formalism to determine

classes of triphones over which to tie covariances in the SSM, finding that we can reduce the number of

covariances by more than a factor often without any loss in recognition performance. This method will

be useful for any pattern recognition problem where features are modeled using Gaussian distributions,

including HMMs. This approach to clustering may also be useful for providing initial estimates of

components in tied-mixtures, or determining classes of like models for designing fast initial search

procedures in large vocabulary recognition.
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Figure 1: Illustration of divisive clustering.
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