User’s Manual
for BRNSIM/BURNSIM: A Burn Hazard Assessment Model

By
F. S. Knox, III
Dena Bonetti
Chris Perry

Escape and Impact Branch
Biodynamics and Biocommunications Division

February 1993

Approved for public release; distribution unlimited.
Notice

Qualified requesters

Qualified requesters may obtain copies from the Defense Technical Information Center (DTIC), Cameron Station, Alexandria, Virginia 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from DTIC.

Change of address

Organizations receiving reports from the U.S. Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Animal use

In conducting the research described in this report, the investigators adhered to the Guide for Laboratory Animal Facilities and Care, as promulgated by the Committee on the Guide for Laboratory Animal Resources, National Academy of Sciences-National Research Council.

Disposition

Destroy this document when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Reviewed:

Charles A. Salter
CHARLES A. SALTER
LTC, MC
Director, Biomedical Applications
Research Division

Released for publication:

Roger W. Wiley, O. D., Ph.D.
Chairman, Scientific Review Committee

David H. Karney
Colonel, MC, SPS
Commanding
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1993 February</td>
<td>Interim - 1980-1992</td>
</tr>
</tbody>
</table>

4. TITLE AND SUBTITLE

User's Manual for BRNSIM/BURNSIM: A Burn Hazard Assessment Model

5. FUNDING NUMBERS

PE - 62202A
PR - 7231
TA - 723124
WU - 72312403

6. AUTHOR(S)

- F.S. Knox III
- Dena Bonetti
- Chris Perry

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

- Crew Systems Directorate, U.S. Army Aeromedical Research Laboratory, Human Systems Center, Wright-Patterson AFB OH 45433-6573 Fort Rucker AL 36362-0577

8. PERFORMING ORGANIZATION REPORT NUMBER

USAARL Report No. 93-13

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Medical Research & Development Command, Fort Detrick MD 27514-5000

Human Systems Center, Defense Nuclear Agency RAAP, Brooks AFB TX 78235-5000

Wright-Patterson AFB OH 45433-6573 Fort Rucker AL 36362-0577

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

This report is a product of a program supported by both the U.S. Army Medical Research & Development Command through its U.S. Army Aeromedical Research Laboratory at Fort Rucker and the U.S. Air Force (Materiel Laboratory, Life Support SPO, and Armstrong Laboratory) from 1970-1992. The senior author has been the principal investigator throughout.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

BURNSIM is an interactive computer model which runs on DEC minicomputers (PDP 11 and VAX), Macintosh and IBM compatible PCs. The model is based on the work of Moritz and Henriquez at Harvard, the Surgery Department at University of Rochester; Alice Stoll at Naval Air Development Center and Knox et al. at the U.S. Army Aeromedical Research Laboratory. Its development has been funded by the U.S. Army, U.S. Air Force, and Dr. Knox. The model predicts time to pain and burn depth when bare skin is exposed to any arbitrary time history of heat flux. It predicts burn depth with reasonable accuracy for pig and human skin. A software module to include clothing between the thermal source and the skin has been developed but not integrated with BURNSIM and has not been validated. By using sensors to measure heat flux behind fabric it has been possible to use BURNSIM to evaluate the insulating effect of clothing. BURNSIM has been used in the last several years to assess the burn hazard associated with rocket plumes in side-by-side ejection seats, shoulder launched weapons, nuclear flash and live fire. This manual provides information on model development, its installation and use on a PC.

14. SUBJECT TERMS

- Burns
- Computer model
- Burn hazard prediction
- Thermal protection

15. NUMBER OF PAGES

70

16. PRICE CODE

Unlimited

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89) Prescribed by DA/DOD 54-16 Reproduced by U.S. GPO 2/89-127
Acknowledgments

The senior author wishes to express his gratitude to the many colleagues who have contributed to the development of BURNSIM. Drs. Stanley C. Knapp, Thomas L. Wachtel, and Chap McCahan have worked on the project from the beginning in 1970 when we were all stationed at the U.S. Army Aeromedical Research Laboratory. Dr. Knapp had started the project to study postcrash fires with funding from various sources including the U.S. Army Medical Research and Development Command and the USAF Life Support Systems Program Office at Wright-Patterson Air Force Base. Dr. Cal Lum helped during the data collection phase in 1972. Dr. Daniel D. Reneau and his graduate student, Nelson O'Young, contributed the basic section of code to calculate the conductive heat transfer. Randy Nockton and Chet Ellis contributed additional software development including tape reading routines, statistical analysis programs and a database to manage the data. Dr. Charles Yuell, a pathologist at the Rochester School of Medicine, helped clarify the burn depth grading scheme and even found some of the original porcine skin samples from earlier burn studies at Rochester. Mr. Chris Perry and CPT Dena Bonetti have worked with BURNSIM for the past 3 years at the Armstrong Laboratory and have contributed to the current effort supported by the Defense Nuclear Agency. Part of this effort is the PC version of BURNSIM for which CPT Dena Bonetti is largely responsible. Funding for this effort has come from the U.S. Army Medical R&D Command, Defense Nuclear Agency, and the U.S. Air Force without which BURNSIM would not have been developed.
Table of contents

Background ... 1
Model description .. 3
 Getting started ... 3
 Helpful hints ... 19
References ... 21
Bibliography ... 23
Appendix A .. 33
Appendix B .. 46
Appendix C .. 66

List of illustrations

Figure 1. Tissue damage integral indicative of the blister endpoint . 2
Figure 2. Skin representation .. 4
Figure 3. Skin temperatures at first six nodes calculated
 with Burnsim for Stoll’s data .. 19
Background

BRNSIM (or BURNSIM as it is now called) is a computer model which allows the user to convert heat flux incident to bare skin to a predicted burn depth. The requirement for such a model arose when there was a need to quantify the thermal protective properties of new flight suits. Techniques employed in the 1960s and very early 1970s did not predict the full range of burns from no burn to full thickness and failed to take into account both initial conditions of the skin and its adaptive behavior when heated.

Since the late 1960s, the U.S. Army Aeromedical Research Laboratory (USAARL) at Fort Rucker, Alabama, has been involved in quantifying the burn hazard associated with post crash fires and the protective capability of flight clothing. USAARL staff (including the author) conducted a number of field studies using burning helicopters to establish the severity and time course of post crash fires (Knapp and Knox, 1982). They also 1) built and used two fire simulators to study the effect of simulated postcrash fires on pigs as an analog for man (Knox et al., 1978b), 2) placed fabrics between the fire and the pigs to study their protective capability (Knox et al., 1980), 3) assembled a large porcine (pig) burn database using this bioassay method (Knox, 1979a), and 4) developed the model, BRNSIM, to decrease the workload associated with using the bioassay method to assess fabric protective capabilities (Knox, 1979b).

The starting point for building BRNSIM (short for burn simulation) was the work of Alice Stoll who based her model on Moritz and Henriques' damage integral (Henriques, 1947). She had collected data from human volunteers on the time/heat flux relationships resulting in threshold transepidermal necrosis. This burn is represented by minor blister formation. To explain her results she added a consideration of damage occurring during cooling as well as during the heating phase (Figure 1). Stoll chose the constants (Stoll and Greene, 1959) in her model to fit her human data on threshold burns; more severe burns were not at first considered. Later Weaver and Stoll (1969) proposed an extension of Stoll's first model to include more severe burns without experimental basis.

The first model to come out of the USAARL program was that of Art Takata of IITRI (Takata, 1974) who worked for USAARL as a contractor. He started with Stoll's approach and added water boiling as a way of handling blister formation. He then adjusted the constants (P,AE) (see equation (7) in Appendix A) to more accurately predict USAARL's data on more severe porcine burns.

\[\text{The development of this model and the work upon which it is based has been funded by U.S. Army Medical Research \\
& Development Command, Fort Detrick; U.S. Air Force Life Support Systems Program Office and \\
& Armstrong Laboratory, Wright-Patterson Air Force Base, Ohio; Defense \\
& Nuclear Agency, Washington D.C., and as a personal project by the primary author.}\]
Figure 1. Tissue damage integral indicative of the blister endpoint (Stoll and Chianta, 1971)
The current BURNSIM model builds on these earlier efforts (Henriques, 1947; Weaver and Stoll, 1969; Mehta and Wong, 1973; Morse et al., 1973; and Takata, 1974). It is an interactive model written in both FORTRAN and ZBASIC and runs on PDP 11/40, 11/03, 11/24, VAX 11/780, Macintosh, and IBM compatible PCs.

Model description

BURNSIM considers the skin to be represented as 12 chunks or nodes (See Figure 2). Seven additional nodes can be inserted between the first and second nodes when exposures are mild and burn damage is likely to be shallow (Figure 2). BURNSIM solves the Fourier heat conduction equation to find temperature as a function of time at each node. Then total damage at each node is found by computing the damage integral at each depth. The transition between normal and damaged skin is defined as that depth where the damage integral is equal to one. For a more detailed description of the mathematics of BURNSIM consult Appendix A. BURNSIM source code (FORTRAN version) can be found in Appendix B.

Getting started

BURNSIM has been supplied to you in either source or compiled form. The following instructions are intended to help you use the model. The instructions and comments are based, in part, on feedback received from several users who have attempted to get started without the benefit of this manual. If you have problems using BURNSIM please do not hesitate to call the author at DSN 785-3931 or (513) 255-3931. Future versions of this manual will incorporate your comments and suggestions so that we may continue to improve BURNSIM and to distribute updated versions to the users.

The first step is to load the code for the model into your computer from the medium provided. This step has many versions. Only one example is given because it is assumed that if you are using this model you are sufficiently computer literate to load and compile the source code on your system.

PC Example: BURNSIM.FOR, REN12.DAT on floppy disk.
To run off hard disk:
Set default disk drive to a:
Put diskette in a:
Type DIR (rtn)
BURNSIM.FOR REN12.DAT FLUX.DAT BURNSIM.EXE
A>CD C:
C>MD C:\BURNSIM
C>CD C:\BURNSIM
C>COPY a:*.* c:
C:\BURNSIM>DIR
BURNSIM.FOR REN12.DAT FLUX.DAT BURNSIM.EXE
C:\BURNSIM>
At this point you have made a directory on your hard disk for BURNSIM and copied the files from the floppy to the new directory. The file REN12.DAT contains the initial values of all the variables which are changeable within BURNSIM. Some of these values such as the conductivity and heat capacity for each node can only be changed by creating a new REN12.DAT with an editor or word processing program (see Appendix C for the layout of REN12.DAT). The model expects a flat ASCII file, so if you use a word processor, save the file as an ASCII text file and not a document. Other values such as exposure time (ETIME) can be changed interactively as described below.

To run BURNSIM invoke the command for your system, e.g. RUN BURNSIM or BURNSIM. You will next see the following on the screen:

BURNSIM <CR>

The first screen that you see is shown below:

WELCOME TO BURNSIM. TO BEGIN RUNNING THE PROGRAM, BURNSIM FIRST NEEDS TO KNOW THE NAME OF THE FILE THAT YOU WANT TO STORE THE OUTPUT DATA IN. THIS FILE WILL CONTAIN ALL OF THE INPUT PARAMETERS AS WELL AS THE OUTPUT FOR EACH ITERATION THE MODEL PERFORMS. THIS FILE CAN BE CALLED ANYTHING UP TO EIGHT CHARACTERS LONG.

PLEASE ENTER A NAME FOR THE OUTPUT FILE: OUTFILE <CR>

The next screen is shown below:

NEXT BURNSIM WILL SHOW YOU THE PRESENT INPUT PARAMETERS. UNDER THE LIST OF PARAMETERS YOU WILL SEE A QUESTION ASKING IF YOU WISH TO CONTINUE. IF YOU WANT TO EXIT THE PROGRAM AT THAT POINT, TYPE N. OTHERWISE TYPE Y.

TO CONTINUE ON TO THE LIST OF PARAMETERS TYPE A <CR>.

The following screen will appear:

SKIN DIFFUSION DATA
INPUT PARAMETER LIST

TEMPIO = 32.5000 DENS = 1.000000 Q1 = 3.540000
BL = 0.22000 AK = 0.01000 JINC = 12
TEMPB = 4.50000 ABSORB = 0.61300 BOIL = 100.15000
PL1 = 1.460000 PLN1 = 147.37000 DE1 = 50000.0
PL2 = 2.240000 PLN2 = 239.47000 DE2 = 80000.0
ETIME = 3.020000 ITIME = 80.00000 NXTRA = 0
BLOOD = 0.00100

APL1 = 0.78000 APLN1 = 285.520000 ADE1 = 93534.9
APL2 = 0.60000 APLN2 = 117.430000 ADE2 = 39109.8
Answer yes (Y) to continue and you will be presented with the following choices:

TYPE THE NUMBER OF THE FUNCTION BELOW THAT YOU WISH TO PERFORM.

CHOOSE A FUNCTION NUMBER:
1 - CHANGE SELECTED INITIAL VALUES
2 - NO CHANGES--CONTINUE RUNNING THE PROGRAM
3 - EXIT

PLEASE ENTER THE FUNCTION NUMBER: 1 <CR>

Choose #1 to change the set up values. This will give you the following screen:

SKIN DIFFUSION DATA
INPUT PARAMETER LIST

<table>
<thead>
<tr>
<th>TEMPO</th>
<th>32.5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>.22000</td>
</tr>
<tr>
<td>TEMPB</td>
<td>4.5000</td>
</tr>
<tr>
<td>PL1</td>
<td>1.46000</td>
</tr>
<tr>
<td>PL2</td>
<td>2.24000</td>
</tr>
<tr>
<td>ETIME</td>
<td>3.02000</td>
</tr>
<tr>
<td>BLOOD</td>
<td>.00100</td>
</tr>
<tr>
<td>APL1</td>
<td>.78000</td>
</tr>
<tr>
<td>APL2</td>
<td>.60000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DENS</th>
<th>1.00000</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>.01000</td>
</tr>
<tr>
<td>ABSORB</td>
<td>.61300</td>
</tr>
<tr>
<td>PLN1</td>
<td>147.3700</td>
</tr>
<tr>
<td>PLN2</td>
<td>239.4700</td>
</tr>
<tr>
<td>ITIME</td>
<td>80.00000</td>
</tr>
<tr>
<td>PL1</td>
<td>147.3700</td>
</tr>
<tr>
<td>PL2</td>
<td>239.4700</td>
</tr>
<tr>
<td>ETIME</td>
<td>3.02000</td>
</tr>
<tr>
<td>BLOOD</td>
<td>.00100</td>
</tr>
<tr>
<td>APL1</td>
<td>285.5200</td>
</tr>
<tr>
<td>APL2</td>
<td>117.4300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q1</th>
<th>3.54000</th>
</tr>
</thead>
<tbody>
<tr>
<td>JINC</td>
<td>12</td>
</tr>
<tr>
<td>BOIL</td>
<td>100.1500</td>
</tr>
<tr>
<td>DE1</td>
<td>50000.0</td>
</tr>
<tr>
<td>DE2</td>
<td>80000.0</td>
</tr>
<tr>
<td>NXTRA</td>
<td>7</td>
</tr>
<tr>
<td>ADE1</td>
<td>93534.9</td>
</tr>
<tr>
<td>ADE2</td>
<td>39109.8</td>
</tr>
</tbody>
</table>

DO YOU WANT TO MAKE ANY CHANGES? Y OR N

Answer yes (Y) here to change the input values using the following screen:

PICK A NUMBER

1=TEMPO 8=ETIME
2=DENS 9=PL1
3=Q1 10=PLN1
4=BL 11=PL2
5=AK 12=PLN2
6=JINC 13=DE1
7=TEMPB 14=DE2
Choose the number representing the parameter you wish to change. The
definition of these parameters is in Table I. For example, set up one of
Stoll's published cases (Weaver and Stoll, 1969). In this case, the
human skin was exposed for 5.6 seconds at 0.4 cal/cm2-sec. The skin was
blackened with India ink to set the absorbtivity at 94 percent. Start by
choosing #3 to set the incident flux level, Q_I. The model responds with:

ENTER THE FLUX FILE NAME (TYPE A <CR> IF NO FILE
IS TO BE USED): <CR>

Since Stoll's case has a constant flux value, type a (CR) and the
following will appear on the screen:

CONSTANT Q-VALUE = 3.5400000 INPUT NEW VALUE: 0.4 <CR>

The old value was 3.54000 and the new value entered was 0.4 cal/cm2-sec.

If you do later simulations where you wish to read in a file of
varying flux values instead of using a constant flux value, type
the name of the flux file in response to the following statement:

ENTER THE FLUX FILE NAME (TYPE A <CR> IF NO FILE
IS TO BE USED): FLUX.DAT

The file FLUX.DAT is the example flux file given on the disk. When
creating flux files to be read into BURNSIM, remember that the file name
can be no more than eight characters in length including the .DAT ending.
Also the file must contain only one column of data, the flux data, in
units of cal/cm2-sec. The number of points in the flux file and the
sample interval between points must be known, too.

Continue to input responses to the following statements concerning
the flux file as they appear on the screen:

ENTER FLUX ID (UP TO 8 CHARACTERS): IDFLUX (CR)

The FLUX ID can be any combination of 8 characters.

ENTER THE NUMBER OF POINTS IN THE FLUX PROFILE: 100 (CR)
The maximum number of points that can be read in is 600.

ENTER THE SAMPLE INTERVAL IN SECONDS: 0.1 (CR)

*** Note: When using a flux file for the incident flux, the exposure time (ETIME) variable must be set equal to the number of points in the flux file minus one times the sample interval in seconds. For this example, ETIME = (100 - 1) x (0.1) = 9.9 seconds.

The next screen is shown below:

SKIN DIFFUSION DATA
INPUT PARAMETER LIST

<table>
<thead>
<tr>
<th>TEMPl0</th>
<th>DENS</th>
<th>Ql</th>
<th>BL</th>
<th>AK</th>
<th>JINC</th>
<th>DE1</th>
<th>TEMPB</th>
<th>ABSORB</th>
<th>BOIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.5000</td>
<td>1.00000</td>
<td>.40000</td>
<td>.22000</td>
<td>.01000</td>
<td>12</td>
<td>147.37000</td>
<td>4.5000</td>
<td>.61300</td>
<td>100.15000</td>
</tr>
<tr>
<td>PL1 = 1.46000</td>
<td>PLN1 = 147.37000</td>
<td>DE1 = 50000.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL2 = 2.24000</td>
<td>PLN2 = 239.47000</td>
<td>DE2 = 80000.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETIME = 3.02000</td>
<td>ITIME = 80.00000</td>
<td>NUTRA = 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOOD = .00100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DO YOU WANT TO MAKE ANY CHANGES? Y OR N

Answer yes (Y) here to change the next input value using the following screen:

PICK A NUMBER

1=TEMPl0 8=ETIME
2=DENS 9=PL1
3=Ql 10=PLN1
4=BL 11=PL2
5=AK 12=PLN2
6=JINC 13=DE1
7=TEMPB 14=DE2
8=ITIME 16=ABSORBTIVITY
9=PL1 17=BOIL
10=PLN1 18=EXTRA NODES
11=PL2 19=BLOOD
12=PLN2 20=APL1
13=DE1 21=APLN1
14=DE2 22=APL2
20=APL1
21=APLN1
22=APL2
THE NUMBER OF EXTRA NODES IS: 0
INPUT NEW VALUE: 7

ENTER NEW VALUES SEPARATED BY A COMMAS, OR A <CR>
IF THE PROGRAM IS TO CALCULATE VALUES. 25.,50.,75.,100.,125.,150.,175.

The next screen is shown below:

SKIN DIFFUSION DATA
INPUT PARAMETER LIST

TEMPIO = 32.5000
BL = .22000
TEMPB = 4.5000
PL1 = 1.46000
PL2 = 2.24000
ETIME = 3.02000
BLOOD = .00100

DENS = 1.00000
AK = .01000
JINC = 12
PLN1 = 147.37000
ITIME = 80.00000
PLN2 = 239.47000
NXTRA = 7

Q1 = .40000
JINC = 12
PLN2 = 239.47000
NXTRA = 7

DE1 = 50000.0
DE2 = 80000.0

THE EXTRA NODES ARE: 25.0 50.0 75.0 100.0 125.0 150.0 175.0

DO YOU WANT TO MAKE ANY CHANGES? Y OR N

Answer yes (Y) here to change the next input value using the following screen:

PICK A NUMBER

1=TEMPIO
2=DENS
3=Q1
4=BL
5=AK
6=JINC
7=TEMPB
8=ETIME
9=PL1
10=PLN1
11=PL2
12=PLN2
13=DE1
14=DE2
15=ITIME
16=ABSORBTIVITY
17=BOIL
18=EXTRA NODES
19=BLOOD
20=APLI
21=APLN1
22=APL2
THE VALUE FOR BLOOD IS: .00100 INPUT NEW VALUE: 0.0007 <CR>

The next screen is shown below:

```
SKIN DIFFUSION DATA
INPUT PARAMETER LIST

TEMPIO = 32.5000
BL = .22000
TEMPB = 4.50000

PL1 = 1.46000
PL2 = 2.24000
ETIME = 3.02000
BLOOD = .00070

APL1 = .78000
APL2 = .60000

APL1 = 285.52000
APL2 = 117.43000

DE1 = 50000.0
DE2 = 80000.0

ITIME = 80.00000
NXTRA = 7

THE EXTRA NODES ARE: 25.0 50.0 75.0 100.0 125.0 150.0 175.0

DO YOU WANT TO MAKE ANY CHANGES? Y OR N

Answer yes (Y) here to change the next input value using the following screen:

PICK A NUMBER

1=TEMPIO 8=ETIME
2=DENS 9=PL1
3=Q1 10=PLN1
4=BL 11=PL2
5=AK 12=PLN2
6=JINC 13=DE1
7=TEMPB 14=DE2
15=ITIME 16=ABSORBTIVITY
17=BOIL 18=EXTRA NODES
19=BLOOD 20=APL1
21=APL1 22=APL2
23=APLN2 24=ADE1
25=ADE2

8 <CR>
```
THE VALUE FOR ETIME IS: 3.02000 INPUT NEW VALUE: 5.6 <CR>

The next screen is shown below:

SKIN DIFFUSION DATA
INPUT PARAMETER LIST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPIO</td>
<td>32.5000</td>
</tr>
<tr>
<td>DENS</td>
<td>1.00000</td>
</tr>
<tr>
<td>Q1</td>
<td>0.40000</td>
</tr>
<tr>
<td>AK</td>
<td>0.01000</td>
</tr>
<tr>
<td>JINC</td>
<td>12</td>
</tr>
<tr>
<td>BL</td>
<td>0.22000</td>
</tr>
<tr>
<td>TEMPB</td>
<td>4.50000</td>
</tr>
<tr>
<td>ABSORB</td>
<td>0.61300</td>
</tr>
<tr>
<td>BOIL</td>
<td>100.15000</td>
</tr>
<tr>
<td>PL1</td>
<td>1.46000</td>
</tr>
<tr>
<td>PLN1</td>
<td>147.37000</td>
</tr>
<tr>
<td>DE1</td>
<td>50000.0</td>
</tr>
<tr>
<td>PL2</td>
<td>2.24000</td>
</tr>
<tr>
<td>PLN2</td>
<td>239.47000</td>
</tr>
<tr>
<td>DE2</td>
<td>80000.0</td>
</tr>
<tr>
<td>ETIME</td>
<td>5.60000</td>
</tr>
<tr>
<td>ITIME</td>
<td>80.00000</td>
</tr>
<tr>
<td>NXTRA</td>
<td>7</td>
</tr>
<tr>
<td>BLOOD</td>
<td>0.00070</td>
</tr>
<tr>
<td>APL1</td>
<td>0.78000</td>
</tr>
<tr>
<td>APLN1</td>
<td>285.52000</td>
</tr>
<tr>
<td>ADE1</td>
<td>93534.9</td>
</tr>
<tr>
<td>APL2</td>
<td>0.60000</td>
</tr>
<tr>
<td>APLN2</td>
<td>117.43000</td>
</tr>
<tr>
<td>ADE2</td>
<td>39109.8</td>
</tr>
</tbody>
</table>

THE EXTRA NODES ARE: 25.0 50.0 75.0 100.0 125.0 150.0 175.0

DO YOU WANT TO MAKE ANY CHANGES? Y OR N Y

Answer yes (Y) here to change the next input value using the following screen:

PICK A NUMBER

1=TEMPIO 8=ETIME
2=DENS 9=PL1
3=Q1 10=PLN1
4=BL 11=PL2
5=AK 12=PLN2
6=JINC 13=DE1
7=TEMPB 14=DE2
15=ITIME 16=ABSORBTIVITY
17=BOIL 18=EXTRA NODES
19=BLOOD 20=APL1
21=APL1N 22=APL2
23=APL2N 24=ADE1 25=ADE2

16 <CR>

THE VALUE FOR ABSORB IS: 0.61300 INPUT NEW VALUE: 0.94 <CR>

The next screen is shown below:
SKIN DIFFUSION DATA
INPUT PARAMETER LIST

TEMPIO = 32.5000
BL = .22000
TEMPB = 4.50000
PL1 = 1.46000
PL2 = 2.24000
ETIME = 5.60000
BLOOD = .00070

DE1 = 50000.0
DE2 = 80000.0
JINC = 12

DENS = 1.00000
AK = .01000
ABSORB = .94000

Q1 = .40000
BOIL = 100.15000

PLN1 = 147.37000
PLN2 = 239.47000
itim = 80.00000

DE1 = 93534.9
DE2 = 39109.8

PLN1 = 285.52000
PLN2 = 117.43000

APLI = .78000
APL1 = 147.37000
APL2 = .60000
APL2 = 239.47000

APL1 = .78000
APLN1 = 285.52000
APLN2 = 117.43000

THE EXTRA NODES ARE: 25.0 50.0 75.0 100.0 125.0 150.0 175.0

DO YOU WANT TO MAKE ANY CHANGES? Y OR N

At this point all of the input values for Stoll's example case have been set, so the answer here is no (N).

**

NOTE: If you inadvertently answer yes (Y) to make changes, and then decide not to make any, type a <CR> to exit the "PICK A NUMBER" menu, and the following question will appear:

DO YOU WISH TO CONTINUE? TYPE Y OR N

Type yes (Y) to continue on with the present run.

**

Now that the correct parameters are set up, select #2 to proceed:

TYPE THE NUMBER OF THE FUNCTION BELOW THAT YOU WISH TO PERFORM.

CHOOSE A FUNCTION NUMBER:
1 - CHANGE SELECTED INITIAL VALUES
2 - NO CHANGES--CONTINUE RUNNING THE PROGRAM
3 - EXIT

PLEASE ENTER THE FUNCTION NUMBER: 2 <CR>

You are now ready to run the program. BURNSIM will ask you for some file names in which to store the data and summaries.

ENTER THE MODEL NAME OR DESCRIPTION (UP TO 80 CHARACTERS). THIS INFORMATION WILL BE USED AS A TITLE ON THE SUMMARY PAGE.

12
The following screen appears:

NOW ENTER THE SUMMARY FILENAME (UP TO 8 CHARACTERS). THIS FILE WILL CONTAIN A SUMMARY OF THE SIMULATION. SUM1 (CR)

Any name up to 8 characters can be used.

The next screen then appears:

NOW ENTER THE TEMPERATURE FILE (UP TO 8 CHARACTERS). THIS FILE WILL CONTAIN A LIST OF THE TEMPERATURES AT THE VARIOUS NODES DURING THE SIMULATION. TFILE1 (CR)

Any name up to 8 characters can be used.

While calculating, the model prints the following on the screen:

<table>
<thead>
<tr>
<th>T</th>
<th>XTIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.50</td>
<td>0.0000E+00</td>
<td>0.000000</td>
</tr>
<tr>
<td>32.91</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>33.32</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>33.73</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>34.14</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>34.55</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>34.95</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>35.36</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>35.77</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>36.18</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>36.59</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>37.00</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>BLUD = 0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>XTIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.96</td>
<td>0.0000E+00</td>
<td>0.010000</td>
</tr>
<tr>
<td>32.92</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>33.32</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>33.73</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>34.14</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>34.54</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>34.95</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>35.36</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>35.77</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>36.18</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>36.59</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>36.99</td>
<td>0.0000E+00</td>
<td></td>
</tr>
<tr>
<td>BLUD = 0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>XTIME</td>
<td>TIME</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>44.40</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>40.02</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>37.25</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>35.71</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>35.03</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>34.89</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>35.04</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>35.33</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>35.67</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>36.01</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>36.32</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>36.64</td>
<td>0.0000E+00</td>
<td>1.000000</td>
</tr>
<tr>
<td>BLUD = 0.0003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>XTIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.19</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>44.62</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>41.24</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>38.86</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>37.29</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>36.36</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>35.90</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>35.76</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>35.83</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>36.02</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>36.27</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>36.60</td>
<td>0.0000E+00</td>
<td>2.000000</td>
</tr>
<tr>
<td>BLUD = 0.0007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...part of the sequence omitted to save space...

<table>
<thead>
<tr>
<th>T</th>
<th>XTIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.50</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>44.44</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>44.32</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>44.13</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>43.81</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>43.37</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>42.81</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>42.13</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>41.36</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>40.50</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>39.59</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>38.43</td>
<td>0.0000E+00</td>
<td>13.000000</td>
</tr>
<tr>
<td>BLUD = 0.00045</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>XTIME</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.02</td>
<td>0.0000E+00</td>
<td>14.000000</td>
</tr>
<tr>
<td>43.97</td>
<td>0.0000E+00</td>
<td>14.000000</td>
</tr>
<tr>
<td>43.86</td>
<td>0.0000E+00</td>
<td>14.000000</td>
</tr>
</tbody>
</table>
At the conclusion of the calculations, the following information appears on the screen:

W=1 LIES ABOVE NODE 2. INTERCOLLATING VALUES OF D AND W COMPUTED FROM INTERPOLATED VALUES OF D AND TEMPERATURE.

MAXIMUM TEMPERATURE = 60.056

THRESHOLD DEPTH = 104.6

FINAL TIME = 14.04

TIME TO PAIN = 1.59

TYPE A <CR> TO CONTINUE. <CR>

The next screen asks if you want to reformat the file so that it can be brought into the HARVARD GRAPHICS shell to make a plot.

DO YOU WANT TO PLOT THE TEMPERATURE VS. TIME IN HARVARD GRAPHICS? Y OR N Y (CR)

If you answer yes (Y) then you must type in a new file name for the HARVARD GRAPHICS temperature file.
THE TEMPERATURE DATA IS STORED IN FILE: TFILE1

ENTER THE FILE TO STORE THE HARVARD GRAPHICS TEMPERATURES USING UP TO 12 CHARACTERS INCLUDING THE ENDING .DAT HGTFILE1.DAT

The following will then appear on the next screen:

THE MODEL OUTPUT IS IN FILE: OUTFILE
USE "PRINT" OR "TYPE " AFTER YOU EXIT THE PROGRAM TO SEE IT.

THE TEMPERATURES AT EACH NODE ARE IN FILE: TFILE1
USE "PRINT" OR "TYPE " AFTER YOU EXIT THE PROGRAM TO SEE IT.

THE TEMPERATURES FOR THE HARVARD GRAPHICS PLOTS ARE IN FILE: HGTFILE1.DAT USE "PRINT" OR "TYPE" AFTER YOU EXIT THE PROGRAM TO SEE IT.

THE SUMMARY PRINTOUT IS IN FILE: SUM1
USE "PRINT" OR "TYPE " AFTER YOU EXIT THE PROGRAM TO SEE IT.

TYPE A <CR> TO CONTINUE. <CR>

The following question will appear next on the screen:

DO YOU WANT TO CONTINUE? Y OR N

At this point choosing yes (Y) takes you back to the following screen:

TYPE THE NUMBER OF THE FUNCTION BELOW THAT YOU WISH TO PERFORM.

CHOOSE A FUNCTION NUMBER:
 1 - CHANGE SELECTED INITIAL VALUES
 2 - NO CHANGES--CONTINUE RUNNING THE PROGRAM
 3 - EXIT

PLEASE ENTER THE FUNCTION NUMBER:

If you choose no (N) at the "DO YOU WANT TO CONTINUE?" you will see the following question:

DO YOU WANT TO DO ANOTHER RUN? Y OR N

If you answer yes (Y) you will be taken back to the following screen to change any desired input parameters:
SKIN DIFFUSION DATA
INPUT PARAMETER LIST

TEMPIO = 32.5000 DENS = 1.00000 Q1 = 0.40000
BL = 0.22000 AK = 0.01000 JINC = 12
TEMPB = 4.50000 ABSORB = 0.94000 BOIL = 100.15000

PL1 = 1.46000 PLN1 = 147.37000 DE1 = 50000.0
PL2 = 2.24000 PLN2 = 239.47000 DE2 = 80000.0
ETIME = 5.60000 ITIME = 80.00000 NXTRA = 7
BLOOD = 0.00070

APL1 = 0.78000 APLN1 = 285.52000 ADE1 = 93534.9
APL2 = 0.60000 APLN2 = 117.43000 ADE2 = 39109.8

THE EXTRA NODES ARE: 25.0 50.0 75.0 100.0 125.0 150.0 175.0

DO YOU WANT TO MAKE ANY CHANGES? Y OR N

If you answer no (N) to "DO YOU WANT TO DO ANOTHER RUN?", you will exit the BURNSIM program.

If you type the file SUM1 the following appears on the screen:

MODEL NAME OR DESCRIPTION: TEST OF A. STOLL .4CAL 5.6SEC CASE

SKIN DIFFUSION DATA
INPUT PARAMETER LIST

TEMPIO = 32.5000 DENS = 1.00000 Q1 = 0.40000
BL = 0.22000 AK = 0.01000 JINC = 12
TEMPB = 4.50000 ABSORB = 0.94000 BOIL = 100.15000

PL1 = 1.46000 PLN1 = 147.37000 DE1 = 50000.0
PL2 = 2.24000 PLN2 = 239.47000 DE2 = 80000.0
ETIME = 5.60000 ITIME = 80.00000 NXTRA = 7
BLOOD = 0.00070

APL1 = 0.78000 APLN1 = 285.52000 ADE1 = 93534.9
APL2 = 0.60000 APLN2 = 117.43000 ADE2 = 39109.8

THE EXTRA NODES ARE: 25.0 50.0 75.0 100.0 125.0 150.0 175.0

FLUX FILE I.D.: .00 2

FLUX(I) =
 1 .400 2 .400

W = .21973E+01
W = .12061E+00
W = .14088E-01
D = -.16000E+02
W = 1 LIES ABOVE NODE 2. INTERCOLLATING VALUES OF D AND W COMPUTED FROM INTERPOLATED VALUES OF D AND TEMPERATURE.

W = .10360E+01
W = .86923E+00
W = .73320E+00

D = .46052E+01
D = .48283E+01
D = .50106E+01

W = .21973E+01 AT DEPTH (IN MICRONS) = .112535E-06
W = .18217E+01 AT DEPTH (IN MICRONS) = 25.0000
W = .14992E+01 AT DEPTH (IN MICRONS) = 50.0000
W = .12423E+01 AT DEPTH (IN MICRONS) = 75.0000
W = .10360E+01 AT DEPTH (IN MICRONS) = 100.000
W = .86923E+00 AT DEPTH (IN MICRONS) = 125.000
W = .73320E+00 AT DEPTH (IN MICRONS) = 150.000
W = .62140E+00 AT DEPTH (IN MICRONS) = 175.000
W = .12061E+00 AT DEPTH (IN MICRONS) = 200.000
W = .14088E-01 AT DEPTH (IN MICRONS) = 400.000
W = .47704E-02 AT DEPTH (IN MICRONS) = 600.000
W = .21844E-02 AT DEPTH (IN MICRONS) = 800.000

MAXIMUM TEMPERATURE = 60.056

THRESHOLD DEPTH = 104.6

FINAL TIME = 14.04

TIME TO PAIN IS 1.59 SECONDS.
If you plot the data saved in TFILE1 and overlay Stoll’s measured data, we get the following:

![Graph showing skin temperature over time with various skin depths indicated.]

Skin depth
- Surface
- 200 microns
- 400 microns
- 600 microns
- 800 microns
- 1000 microns
- 1200 microns
- Actual data

Figure 3. Skin temperatures at first six nodes calculated with Burns for Stoll’s Data

Notice that there is reasonable fit between the computed temperature profiles and the recorded temperature. The predicted depth is 104.9 microns. Stoll observed a threshold blister, hence the damage should be between 80µm and 120µm.

Helpful hints

This section is devoted to explaining the inputs to the model and some hints about how to set up the model for special cases. The inputs are summarized in Table A-1.

There are nine special cases which have been found by previous users. First, for short exposures of less than 1 second, change the calculation interval (AK) from its normal value of .01 second to some value which is at least 100 times less than the duration. Thus, for an
exposure of 0.1 sec use AK = 0.001 second. Second, if the skin has been
blackened, e.g., with india ink, use an absorptivity of about 0.92 to
0.94. Third, the default value of 0.613 for absorptivity assumes that
100 percent of the convective energy is absorbed, only 60 percent of the
radiative energy is absorbed, and 5 percent of incident radiation is
intercepted by hair. Thus, assuming

1) Q incident = 0.1 qi (convective) + 0.9 qi (radiative)
2) 5 percent radiative is not absorbed because of hair stubble,

then Q = 0.1 qi + 0.6(.9)(.95)qi = 0.613 qi

Fourth, use NXTRA 7 especially for mild exposures so that shallow
burn depths are calculated more accurately. Fifth, a value of 0.0007 for
Blood works best for shallow human burns.

Sixth, new values for DE1, DE2, PL1, PLN1, PL2, and PLN2 can be
calculated if you wish to try rate constants published by other authors
(see model derivation in Appendix A).

Seventh, it is possible to calculate new thermal properties based
on humidity changes. Read the paper on thermal properties published in
the journal Burns (Knox et al. 1986).

Eighth, the model currently assumes that ambient temperature is
23.9°C. Thus, during cool down the surface loses heat to a 23.9°C
environment. This number can be changed only in the source code in the
following line:

If (TIME.GE.ETIME)Q1 = -5.E-4*(t(1)-23.9)

Nine, for very severe exposures, where water boils in more than the
first node, the thermal property recalculations routine causes an
instability in the cool down phase. This can be seen if the data are
plotted and can be avoided by setting the boil temperature to a much
higher value. A permanent fix for this bug will appear in the next
version of BURNSIM.
References

Bibliography

Bustad, L. K; 1966, Pigs in the laboratory. Scientific American. 214:94.

Hardy, J. D. 1962. Physiological effects of high intensity infrared heating. American society heating and refrigeration engineers journal.

-----. 1972b. Realistic evaluation of fabrics for thermal protective clothing. Presented to the Survival and Flight Equipment Association 10th Annual Symposium; October 2-5; Phoenix, AZ.

Knox, F. S., III, McCahan, G. R., Jr., and Wachtel, T. L. 1972. The use of the pig as a bioassay substrate for evaluation of thermal protective clothing and physical sensor calibration. Presented at the Eighth Scientific Session of the Joint Committee on Aviation Pathology; October 8-12; Colorado Springs, CO. Also presented at the American Burn Association 5th Annual Meeting; 1973 April 6; Dallas, TX (16mm color, sound film, 20 min.). Published in Journal of aerospace medicine. 45:933, 1974.

Knox, F. S., III. 1979b. Predictability of burn depth: Data analysis and mathematical modeling based on USAARL's experimental porcine burn data. Shreveport, LA: Louisiana State University School of Medicine, Department of Physiology and Biophysics. Contract DAMD17-77-7004.

McClellan, P. O. 1968. Application of swine in biomedical research. Laboratory animal care. 18:120.

Appendix A

Analytical Model

Several years ago Weaver and Stoll (1969) proposed an extension of Stoll's earlier model (Stoll and Greene, 1959) to heat fluxes higher than those used in obtaining the experimental data upon which the earlier model had been based. They also found that the effective conductivity changed during the exposure and subsequent cooldown period. Takata (1974), using preliminary data from USAARL's Thermal Project (the uncorrected version of the current data base), formulated a model which not only predicted threshold burns but deep burns and tissue water boiling as well. Building on the work of Henriques (1947), Stoll and Greene (1959), Weaver and Stoll (1969), Mehta and Wong (1973) and Takata (1974), an analytical model was formulated as follows:

For the thermal exposure of interest, skin is essentially opaque to thermal radiation and can be considered to transfer energy internally by conduction only, since exposure durations are no longer than the minimum response times reported for increased thermoregulatory system activity (1954). Consequently, thermal energy transfer in skin can be described by the heat conduction or Fourier equation be written as follows:

\[\rho C_p \frac{dT}{dt} = \frac{\partial}{\partial x} \left(K \frac{dT}{dx} \right) + q \]

(1)

where,

- \(\rho \) = density, gm/cm\(^3\)
- \(C_p \) = heat capacity, cal/gm-°C
- \(K \) = thermal conductivity, cal/cm·sec·°C
- \(T \) = temperature, °C
- \(x \) = distance, cm
- \(q \) = energy source, for the first nodal volume, cal/cm\(^3\)·sec

\(^1\)Simplifying assumption base on the predominance of the radiate mode of heating. May be less valid with fabrics. In actuality a correction is made to \(q \) to account for convective heating, surface absorptivity, and attenuation of radiant heating by hair.
Since skin is considered to be opaque to radiant energy from a post crash fire, and since the source term is due only to radiant energy, equation (1) applies only to the surface of the skin. For all conditions in which \(x > 0 \), equation (1) reduces to the following:

\[
\rho \ C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) \quad (2)
\]

Solution of equation (1) and (2) requires two boundary conditions for \(x \), preferably at \(x = 0 \) and \(x = L \), and initial conditions at \(t = 0 \) for all positions \(0 < x < L \). If one assumes that there is no backward flux of thermal energy at \(x = 0 \) (all conduction is into the skin), then the energy flux at \(x = 0 \) is zero and, consequently, \(\partial T / \partial x = 0 \). Similarly, if the problem assumes that an adiabatic backwell condition prevails at \(x = L \), the fatty tissue, then the net flux out of the system at \(x = L \) is 0, or \(\partial T / \partial x = 0 \). These two boundary conditions indicate that the system is closed and that all thermal energy added to the system, \(0 \leq x \leq L \), is distributed within the system and cannot escape.

Initial conditions are established by specifying a uniform temperature for all locations, \(0 \leq x \leq L \) at time \(t = 0 \).

Consequently, the system may be defined by the following mathematical model:

\[
\rho \ C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + q \quad \bullet \ x = 0 : \text{surface} \quad (3a)
\]

\[
\rho \ C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) \quad \bullet \ 0 \leq x \leq L \quad (3b)
\]

\[
T_c = \text{CORE TEMPERATURE} = \text{TEMPIO + TEMPB}
\]

\[
T = T_0, \ 0 \leq x \leq L, \ t = 0 \quad \text{Initial Conditions} \quad (4)
\]

\[
\frac{\partial T}{\partial x} = 0, \ x = 0, \ 0 \leq t \leq t_x \quad \text{Boundary Conditions 1} \quad (5)
\]

\[
\frac{\partial T}{\partial x} = 0, \ x = L, \ 0 \leq t \leq t_x \quad \text{Boundary Conditions 2} \quad (6)
\]
Solution of mathematical model (Reneau and O'Young, 1976, 1977, 1978)

An analytical solution to equation set (3) was not considered feasible due to the variable nature of \(q, C_p \) and \(K \), so explicit differencing methods of numerical analysis were employed to solve the equations. Several investigators working with linear systems have found that the Crank-Nicholson six point implicit differencing method provided an excellent numerical solution (Crank and Nicholson, 1947). For the solution of equation set (3) of the mathematical model, it was decided to apply the Crank-Nicholson method to the second order partial derivatives and corresponding explicit methods to the first order partials.

The grid work in Figure A-1 is a representative of the differenced system from \(x = 0 \) to \(x = L \) (\(j \)'s) and \(t = 0 \) to \(t = \tau \) (\(i \)'s).

The Crank-Nicholson technique involves averaging the value of the dependent variable over the \(i \) and \(i + 1 \) row at a constant \(j \) position. The second order derivative is then evaluated at the \((j, i + 1/2)\) position. A forward difference formulation is applied to the term to match the same position.

The above described implicit differencing method is noted for the characteristics of stability and convergence. Correct increment sizes yield reliable convergence. The model was implemented in FORTRAN IV using solution techniques of Thomas as described by Bruce et al. (1953).
This initial model was revised to allow energy flux across the surface, \(x = 0 \), during heating, convective heat loss at the skin surface during cooling and heat transfer into deep tissues including conduction into fat, convective cooling via the blood, tissue water boiling, a temperature gradient from surface to fat and a gradient of thermal properties based on measured tissue water. The model, BURNSIM, is a run interactively with the following variables changeable for each run:

Table A-1
Model parameters changeable interactively

INPUTS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPIO</td>
<td>Initial surface temperature, °C; nominally 32.5 °C for man</td>
</tr>
<tr>
<td>DENS</td>
<td>Density of skin, 1.0 gm/cm³</td>
</tr>
<tr>
<td>Q1</td>
<td>Incident heat flux either constant or as a file of fluxes, cal/cm²·sec</td>
</tr>
<tr>
<td>BL</td>
<td>Skin thickness, 2200μm (The last 200μm is considered to be fat)</td>
</tr>
<tr>
<td>AK</td>
<td>Calculation interval, nominally .01 sec. For short exposures, the calculation interval must be at least one hundred times less than the exposure duration.</td>
</tr>
<tr>
<td>JINC</td>
<td>Number of nodes, nominally 12</td>
</tr>
<tr>
<td>TEMPB</td>
<td>Differences between TEMPIO and backwall (fat/core) temperature, °C. Note: TEMPIO + TEMPB = core temperature</td>
</tr>
<tr>
<td>Absorb</td>
<td>Absorptivity usually 0.613 assuming 10 percent convective, 90 percent radiative heating, and 5 percent of radiation intercepted by hair</td>
</tr>
<tr>
<td>Boil</td>
<td>Temperature when water boiling occurs, 100.15 °C</td>
</tr>
<tr>
<td>ETIME</td>
<td>Exposure time, seconds</td>
</tr>
<tr>
<td>ITIME</td>
<td>Maximum calculation time, usually 80-100 seconds</td>
</tr>
<tr>
<td>Nxtra</td>
<td>Number of extra nodes between the surface and node #2 at 200μm, initially set at seven, used for superficial burns. Note: The seventh node must be at 175μm for an accurate time to pain prediction.</td>
</tr>
<tr>
<td>Blood</td>
<td>Factor to adjust amount of convective cooling by blood usually set at 0.001</td>
</tr>
</tbody>
</table>
DE1 & DE2 = ΔE/R from Arrhenius relationship for tissue temperatures from 44°C to 50°C, or over 50°C, respectively

PL1, PLN1, or PL2 and PLN2 => log P = logN + ylog10 = PL + PLN for tissue temperatures from 44°C to 50°C, or over 50°C, respectively

Damage Rate Constants: PL1, PLN1, PL2, PLN2, DE1, DE2 (for Nodes 2-12)
APL1, APLN1, APL2, APLN2, ADE1, ADE2 (for Nodes 1 and Xtra Nodes)

Cp(J) = Heat capacity as a function of depth, (J)
BK(J) = Thermal conductivity as a function of depth, (J)
PCWATER = Percent water at a skin depth of 10μm at 60 percent relative humidity
WATER(J) = Percent water at each node based on 60 percent relative humidity

OUTPUTS

Flux (I) - tabulated heat flux as a function of time
DAMAGE, W, at each depth (Node)
Maximum temperature
Threshold depth in μm (microns)
Final time - total calculation time
Time to pain

File of calculated temperatures for later plotting by HARVARD GRAPHICS

File summarizing simulation

File of temperature as printed each second on the terminal

From the relationship for first order kinetics assumed to apply in damaging tissue protein we have:

damage rate = \frac{dQ}{dt} = Pe^{-\frac{AE}{RT}};
\[
\text{total damage} = \int_0^{\text{ETIME}} \frac{dn}{dt} \, \text{dETIME} + \int_{\text{ETIME}}^{\infty} \frac{dn}{dt} \, \text{dt} \tag{8}\]

if \(P = N \times 10^0 \) and \(\Delta E/R = \Delta E \)

then:

\[
\ln\frac{dn}{dt} = \ln N + y\ln10 - \frac{\Delta E}{R} \cdot \frac{1}{T} = PL + PLN - \Delta E \cdot \frac{1}{(T+273)} \tag{9}\]

Thus for damage calculations the following constants are entered:

- \(PL_1 \) (44°C - 50°C) = 1.46
- \(PL_2 \) (50°C - 100°C) = 2.24
- \(PLN_1 \) (44°C - 50°C) = 147.37
- \(PLN_2 \) (50°C - 100°C) = 239.47
- \(DE_1 \) (44°C - 50°C) = 50,000
- \(DE_2 \) (50°C - 100°C) = 80,000

The program outputs \(\frac{dn}{dt} \), for each node at each time step, total damage for each node and a threshold depth, where \(\Omega = 1 \). This depth, found using inverse interpolation on two or three Ns nearest 1 using either y or log(y).

Since the first presentations (Knox, Wachtel, and Knapp, 1978a, 1978c) BURNSIM has under gone further development.

Thermal properties of skin

Measurements of the water content of pig skin as a function of thickness were made on split thickness skin samples from several pigs.

Give a table of measured values of water content as a function of skin thickness, a least-square cubic polynomial was fit to the data and water content as a function of depth was computed from the formula:

\[
W(T-d) = \frac{T}{d} (W_T - W_{T-d}) + W_{T-d} \tag{10}\]

where \(T \) is the total thickness of a slab, \(W_T \) is the fraction of water computed from the cubic equation, \(d \) is the thickness of a thin slab at depth \(T-d \), and \(W_{T-d} \) is the fraction of water above the thin slab.

Thermal properties of the tissue were computed from the equations (Cooper and Trezek, 1971):

1) density: \(\gamma = \left[\frac{W_W}{\gamma_W} + \frac{W_T}{\gamma_T} + \frac{W_P}{\gamma_P} \right]^{-1} \tag{11} \)
2) heat capacity: $C_p = W_w C_{p_w} + W_f C_{p_f} + W_p C_{p_p}$ \hspace{1cm} (12)

3) thermal conductivity: $K = \gamma \left[\frac{k_w W_w}{\gamma_w} + \frac{k_f W_f}{\gamma_f} + \frac{k_p W_p}{\gamma_p} \right]$ \hspace{1cm} (13)

where the subscripts w, f, and p refer to water, fat, and protein, respectively. W_w is the mass fraction, γ the density, C_p the heat capacity, and k the thermal conductivity of the respective components. Values of the various terms used were:

\begin{align*}
\gamma_w &= 1 \text{ gm/cm}^3 \\
C_{p_w} &= 1 \text{ cal/gm}^{-1}{}^\circ\text{C} \\
k_w &= 1.5 \times 10^{-3} \text{ cal/cm-sec}^{-1}{}^\circ\text{C} \\
\gamma_f &= 0.815 \text{ gm/cm}^3 \\
C_{p_f} &= 0.55 \text{ cal/gm}^{-1}{}^\circ\text{C} \\
k_f &= 4.5 \times 10^4 \text{ cal/cm-sec}^{-1}{}^\circ\text{C} \\
\gamma_p &= 1.54 \text{ gm/cm}^3 \\
C_{p_p} &= 0.26 \text{ cal/gm}^{-1}{}^\circ\text{C} \\
k_p &= 4.3 \times 10^4 \text{ cal/cm-sec}^{-1}{}^\circ\text{C}
\end{align*}

Fat and protein were assumed to be present in equal amounts so that:

$$W_f = W_p = (1-W_w)/2,$$ \hspace{1cm} (14)

and the resultant equations were:

\begin{align*}
\gamma &= (6.18277 \times 10^{-2} W_w + 0.938172)^{-1} \hspace{1cm} (15) \\
K &= \gamma (1.08432 \times 10^{03} W_w + 4.15684 \times 10^{04}) \hspace{1cm} (16) \\
C_p &= 0.595 W_w + 0.405 \hspace{1cm} (17)
\end{align*}

Using the equations above, the profile of thermal properties was calculated for skin depths of from 80 to 2000µm. A linear extrapolation of tissue water content from a depth of 80µm to the skin surface was made using a stratum corneum water content calculated from Rushmer et al. (1966) and the ambient percent humidity during the experimental phase of the project. This calculated water profile was used to complete the calculation of thermal properties profile from 80µm to the skin surface. The thermal properties of the skin at 2200µm were assumed to be those of fat. These new thermal properties replaced those chosen by Morse et al. (1973) and used during previously reported simulations (Knox, Wachtel, and Knapp, 1978a, 1978c). See the paper entitled "Thermal properties calculated from measured water content as a function of depth in porcine skin" (Knox et al., 1986).

Intraskin temperatures

In earlier simulations (Knox et al, 1978a, 1978c) it became apparent that unless the temperature calculations reasonably represented what actually occurred in the skin, adjustment of the values for PL, PLN and DE in the damage equation to match a few data points would not be likely to result in a model which works well for all cases. Fortunately
11 intraskin temperature profiles were recorded on FM magnetic tape. These voltage records were digitized and converted to tables of temperatures at 100 samples per second. Figure A-2 presents the one page summary report from a simulation of the exposure of Pig 294RF to a 3.47 cal/cm²·sec fire for 3.02 seconds. Note that boiling occurred (confirmed by blister formation, Figure A-3) and that the surface reached a maximum of 128.72°C. Predicted threshold depth was 1520μm. Three observed temperature profiles are overlayed on the calculated temperature profiles (for nodal depths of 0, 200, 400, 2200μm) in Figures A-4, A-5, and A-6. The oscillations in the observed temperature profile are most probably due to a "hunting" in the autoregulation of tissue perfusion by blood. The frequency, for example, is similar to that seen in studies of microcirculation.
MODEL NAME OR DESCRIPTION: PIG 294RF ABS 0.613

SKIN DIFFUSION DATA

INPUT PARAMETER LIST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPIO</td>
<td>34.9700</td>
</tr>
<tr>
<td>DENS</td>
<td>1.00000</td>
</tr>
<tr>
<td>Q1</td>
<td>3.47000</td>
</tr>
<tr>
<td>BL</td>
<td>0.220000</td>
</tr>
<tr>
<td>AK</td>
<td>0.100000E-01</td>
</tr>
<tr>
<td>JINC</td>
<td>12</td>
</tr>
<tr>
<td>TEMPB</td>
<td>3.36000</td>
</tr>
<tr>
<td>ABSORB</td>
<td>0.613000</td>
</tr>
<tr>
<td>BOIL</td>
<td>100.150</td>
</tr>
<tr>
<td>APL1</td>
<td>0.780000</td>
</tr>
<tr>
<td>APLN1</td>
<td>285.520</td>
</tr>
<tr>
<td>ADE1</td>
<td>93534.9</td>
</tr>
<tr>
<td>PL1</td>
<td>1.46</td>
</tr>
<tr>
<td>PLN1</td>
<td>147.37</td>
</tr>
<tr>
<td>DE1</td>
<td>50000.00</td>
</tr>
<tr>
<td>APL2</td>
<td>0.600000</td>
</tr>
<tr>
<td>APLN2</td>
<td>117.430</td>
</tr>
<tr>
<td>ADE2</td>
<td>39109.8</td>
</tr>
<tr>
<td>PL2</td>
<td>2.24</td>
</tr>
<tr>
<td>PLN2</td>
<td>239.47</td>
</tr>
<tr>
<td>DE2</td>
<td>80000.00</td>
</tr>
<tr>
<td>ETIME</td>
<td>3.02</td>
</tr>
<tr>
<td>ITIME</td>
<td>80.00</td>
</tr>
<tr>
<td>NXTRA</td>
<td>8</td>
</tr>
<tr>
<td>BLOOD</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

EXTRA NODES: 22.2 44.4 66.7 88.9 111.1 133.3 155.6 177.8

FLUX FILE I.D.: .00 2

FLUX(I)=

1 3.470 2 3.470

W	3.9950E+01
W	4.0733E+00
W	4.5290E-01
D	7.2442E+01
D	7.3778E+01
D	7.4955E+01

W	1.9755E+19
W	8.2482E+12
W	2.6532E+09
W	5.7713E+06
W	8.4775E+04
W	4.4473E+03
W	3.9319E+02
W	3.9950E+01
W	4.0733E+00
W	4.5290E-01
W	8.9902E-02
W	0.0000E+00

AT DEPTH (IN MICRONS)=	1.12535E-06
AT DEPTH (IN MICRONS)=	200.000
AT DEPTH (IN MICRONS)=	400.000
AT DEPTH (IN MICRONS)=	600.000
AT DEPTH (IN MICRONS)=	800.000
AT DEPTH (IN MICRONS)=	1000.00
AT DEPTH (IN MICRONS)=	1200.00
AT DEPTH (IN MICRONS)=	1400.00
AT DEPTH (IN MICRONS)=	1600.00
AT DEPTH (IN MICRONS)=	1800.00
AT DEPTH (IN MICRONS)=	2000.00
AT DEPTH (IN MICRONS)=	2200.00

MAXIMUM TEMPERATURE = 128.724

THRESHOLD DEPTH = 1528.

FINAL TIME = 80.00

Figure A-2. Summary report for simulation of Pig 294RF to a 3.47 cal/cm²-sec fire for 3.02 seconds.
Figure A-3. Intraskin thermocouple (0.003", "located superficially") shown prior to burn (left) and subsequent to exposure to 3.47 cal·cm²·sec⁻¹ for 3.02 seconds (right).

Gross grade = 13
New micro grade = 8
Threshold depth = 1465μm
Figure A-4. Predicted skin temperature at each node (solid lines) and measured intraskin temperature in pig 284 location #27 when exposed to 3.47 cal.cm\(^{-2}\).sec\(^{-1}\) for 3.02 seconds
Figure A-5. Predicated skin temperature at each node (solid lines) and measured intraskin temperature in pig 284 location #28 when exposed to 3.47 cal.cm\(^{-2}\).sec\(^{-1}\) for 3.02 seconds.
Figure A-6. Predicated skin temperature at each node (solid lines) and measured intraskin temperature in pig 284 location #29 when exposed to 3.47 cal·cm⁻²·sec⁻¹ for 3.02 seconds.
APPENDIX B

Last Edited March 5, 1992

*************** 12-POINT BURN PREDICTION MODEL***************

PROGRAM BURNSIM

I BURN PREDICTION MODEL WITH WATER BOILING
I AND USE OF EITHER CONSTANT OR TABULATED FLUX
I AND VARIABLE COOLING BY BLOOD FROM NODES 2
I AND 3 BEGINNING AT .01 SEC AND LINEARLY
I INCREASING TO 20 SEC AND THEN REMAINING
I CONSTANT......

I CHANGED TO DO INTEGRATION OF DAMAGE W & XW
I WITHIN PROGRAM AND NOT OUT TO DISK AND BACK

I CHANGED TO INCORPORATE THE CHANGES IN MODEL
I 7 NAMELY DIFFERENT RATE CONSTANTS ETC FOR
I SUPERFICIAL NODES AND VARIABLE AK IN BLUD

THIS MODEL WAS DEVELOPED UNDER CONTRACT FOR THE U.S. ARMY
MEDICAL RESEARCH AND DEVELOPMENT COMMAND, AND THE U.S. ARMY
AEROMEDICAL RESEARCH LABORATORY, FORT RUCKER AL. 36362,
STANLEY C. KNAPP, COL, MC, COMMANDING, BY FRANCIS S. KNOX, III,
PH.D. WITH THE ASSISTANCE OF DANIEL D. RENEAU, PH.D., NELSON
O’YOUNG, AND CHET ELLIS, M.S.

ADDITIONAL DEVELOPMENT CONDUCTED UNDER ILIR FUNDING AT USAARL
AND ON OWN TIME BY FRANCIS S. KNOX, III, PH.D.

QUESTIONS AND COMMENTS SHOULD BE ADDRESSED TO:

FRANCIS S. KNOX, III, PH.D
CHIEF, ESCAPE AND IMPACT PROTECTION BRANCH
BIODYNAMICS AND BIOCOMMUNICATIONS DIVISION
ARMSTRONG LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
COM. 513-255-3931 AV 785-3931

This copy current working copy of Dr. Knox. Other copies
are not to be further distributed without permission from
Dr. Knox.

....

INCLUDE 'FGGRAPH.FI'
INCLUDE 'FGGRAPH.FD'
REAL*4 ITIME,NOFIL,TP,SUM(13),DW(13)
INTEGER CHANGE,PTS,AGAIN,PROCED
INTEGER*4 DUMMY4
INTEGER*2 DUMMY2
DIMENSION T(12),F(12),G(12),H(12),W(12),Z(12),SV(12),U(12)
DIMENSION CP(12,2),BK(12,2),D(12),DSCRPT(20)
DIMENSION ID(4),FLUX(600),Q(12)
C LOGICAL UNIT 1 INPUT : 'REN12.DAT'; INITIAL VALUES OF PARAMETERS
C LOGICAL UNIT 2 SCRATCH: VALUES OF XW (IF COMPUTED)
C LOGICAL UNIT 3 SCRATCH: VALUES OF W (COMPUTED)
C LOGICAL UNIT 4 OUTPUT : PROFILE; TEMPERATURE PROFILES
C LOGICAL UNIT 4 INPUT : FILNAM; NAME OF FLUX FILE
C LOGICAL UNIT 4 OUTPUT : TFILE; DATA FOR PLOTTING TEMPERATURE
C LOGICAL UNIT 7 OUTPUT : SUMMARY PRINTOUT

C*******Introduction to BURNSIM
CALL COLORS
DUMMY4=SETBKCOLOR($BLUE)
CALL WELCOME(PROFILE)

C*******Read REN12.DAT input file
CALL READDATA(TEMPIO,DENS,QO,BL,AK,BLOOD,Absorb,JINC,TEMPB,
+ ITIME,ETIME,PCWATR,BLOOD,CP,BK,PL2,PLN2,PL1,PLN1,DE2,DE1,
+ APL1,APLN1,APL2,APLN2,ADEI,ADE2,WATER)
OPEN(UNIT=1,FORM='UNFORMATTED',STATUS='SCRATCH')
OPEN(UNIT=2,FORM='UNFORMATTED',STATUS='SCRATCH')
OPEN(UNIT=3,FILE=PROFILE,FORM='FORMATTED',STATUS='UNKNOWN')
FLUX(1) = QO
FLUX(2) = QO
NFLX = 2
FILNAM = NOFIL
PPL1 = PL1
PPLN1 = PLN1
DDE1 = DE1
APPL1 = APL1
APPLN1 = APLN1
ADDE1 = ADE1
NXTRA = 0
NXTRAO = NXTRA

C*******Display input values on screen
CALL SHOWVALUE(TEMPIO,DENS,FLUX,BL,AK,BLOOD,Absorb,JINC,TEMPB,
+ Absorb,BLOOD,PL1,PLN1,DE1,PL2,PLN2,DE2,ITIME,ETIME,NXTRA,
+ BLOOD,APL1,APLN1,ADE1,APL2,APLN2,ADE2,K,NXTRA)
DO WHILE (AGAIN .EQ. 0)
 CALL PROCEED(RESP,PROCED,AGAIN)
 IF(PROCED.EQ.0) THEN
 PTS=1
 TIME=0.
CHANGE=0
MN=0
CALL clearscreen($GCLEARSCREEN)
WRITE(*,10)
10 FORMAT(///,15X,'TYPE THE NUMBER OF THE FUNCTION BELOW THAT YOU',/ + ,15X,'WISH TO PERFORM.',///,20X,'CHOOSE A FUNCTION NUMBER: ',/ + 25X,'1 - CHANGE SELECTED INITIAL VALUES',/25X,'2 - NO CHANGES', + ' -CONTINUE RUNNING THE PROGRAM',/25X,'3 - EXIT',///,20X,'PLEASE' + ENTER THE FUNCTION NUMBER: ')
READ(*,20)IANSR
20 FORMAT(I2)
CALL clearscreen($GCLEARSCREEN)
IF(IANSR.EQ.1) THEN
DOWHILE(CHANGE.EQ.0)
CALL SHOWVALUE(TEMPIO,DENS,FLUX,BL,AK,JINC,TEMPB,+ ABSORB,BOIL,PL1,PLN1,DE1,PL2,PLN2,DE2,ETIME,ITIME,NXTRA, + BLOOD,APL1,APLN1,ADE1,APL2,APLN2,ADE2,K,XTRA)
WRITE(*,30)
30 FORMAT(///,15X,'DO YOU WANT TO MAKE ANY CHANGES? TYPE Y/N ')READ(*,40)RESP
40 FORMAT(A1)
IF(RESP.EQ.'Y'.OR.RESP.EQ.'y') THEN
CALL CLEARSCREEN($GCLEARSCREEN)
WRITE(*,50)
50 FORMAT(/T5,'PICK A NUMBER',/TIO,'1=TEMPIO',T30,'8=ETIME',// + TIO,'2=DENS',T30,'9=PL1',/TIO,'3=Q1',T30,'10=PLN1',// + TIO,'4=BL',T30,'11=PL2',/TIO,'5=AK',T30,'12=PLN2',// + TIO,'6=JINC',T30,'13=DE1',/TIO,'7=TEMPB',T30,'14=DE2',// + TIO,'15=ITIME',T30,'16=ABSORBTIVITY'// + TIO,'17=BOIL',T30,'18=EXTRA NODES'// + TIO,'19=BLOOD',T30,'20=APL1'// + TIO,'21=APLN1',T30,'22=APL2'// + TIO,'23=APLN2',T30,'24=ADE1',T55,'25=ADE2',//,9X,$)
READ(*,20)INUM
IF(INUM.EQ.1) THEN
WRITE(*,60)TEMPIO
60 FORMAT(///,9X,'THE VALUE FOR TEMPIO IS: ',F10.5,' INPUT NEW VALU' + 'E: ')READ(*,70)TEMPIO
70 FORMAT(G10.5)
ELSEIF(INUM.EQ.2) THEN
WRITE(*,80)DENS
80 FORMAT(///,9X,'THE VALUE FOR DENS IS: ',F10.5,' INPUT NEW VALUE: ' + $)
READ(*,70)DENS
ELSEIF(INUM.EQ.3) THEN
WRITE(*,90)
90 FORMAT(///,9X,'ENTER THE FLUX FILE NAME (TYPE A <CR> IF NO FILE ' + '+ ,/9X,IS TO BE USED): ')READ(*,100)FILNAM
100 FORMAT(A8)
C*****Read in flux file
IF (FILNAM.NE.NOFL) THEN
 WRITE(*,110)
 110 FORMAT(/,9X,'ENTER FLUX ID (UP TO 8 CHARACTERS): ',$)
 READ(*,120)
 120 FORMAT(4A2)
 WRITE(*,130)
 130 FORMAT(/,9X,'ENTER THE NUMBER OF POINTS IN FLUX FILE: ',$)
 READ(*,*) NFLX
 DO WHILE (NFLX.GT.600)
 WRITE(*,140)
 140 FORMAT(/,9X,'THE FLUX FILE MUST CONTAIN NO MORE THAN 600 DATA'
 +',/9X,'POINTS. REENTER A NUMBER LESS THAN OR EQUAL TO 600. ',$)
 READ(*,*) NFLX
 END DO
 WRITE(*,150)
 150 FORMAT(/,9X,'ENTER THE SAMPLE INTERVAL IN SECONDS: ',$)
 READ(*,*) TDELT
 OPEN(UNIT=4,FILE=FILNAM,FORM='FORMATTED',STATUS='OLD')
 READ(4,*) (FLUX(I),I=1,NFLX)
 CLOSE (4)
 IF(NFLX.LE.0) STOP 'ERROR ---- TOO FEW FLUX POINTS.'
 ELSE
 WRITE(*,160)FLUX(1)
 160 FORMAT(/,9X,'CONSTANT Q-VALUE = ',F10.5,' INPUT NEW VALUE: '
 +'$)
 READ(*,70)FLUX(1)
 FLUX(2)=FLUX(1)
 NFLX = 2
 DO I=1,4
 ID(I) = IBLNK
 END DO
 END IF
 ELSEIF(INUM.EQ.4) THEN
 WRITE(*,170)BL
 170 FORMAT(/,9X,'THE VALUE FOR BL IS: ',F10.5,' INPUT NEW VALUE: '
 +'$)
 READ(*,70)BL
 ELSEIF(INUM.EQ.5) THEN
 WRITE(*,180)AK
 180 FORMAT(/,9X,'THE VALUE FOR AK IS: ',F10.5,' INPUT NEW VALUE: '
 +'$)
 READ(*,70)AK
 ELSEIF(INUM.EQ.6) THEN
 WRITE(*,190)JINC
 190 FORMAT(/,9X,'THE VALUE FOR JINC IS: ',I30,' INPUT NEW VALUE: '
 +'$)
 READ(*,20)JINC
 IF (JINC.GT.MAXDIM) JINC=MAXDIM
 ELSEIF(INUM.EQ.7) THEN
 WRITE(*,200)TEMPB
200 FORMAT (//,9X,'THE VALUE FOR TEMPB IS: ',F10.5,' INPUT NEW VA' + 'LUE: '$) READ(*,70)TEM PB ELSEIF(INUM.EQ.8) THEN WRITE(*,210)ETIME 210 FORMAT (//,9X,'THE VALUE FOR ETIME IS: ',F10.5,' INPUT NEW VALU' + 'E: '$) READ(*,70)ETIME ELSEIF(INUM.EQ.9) THEN WRITE(*,220)PL1 220 FORMAT (//,9X,'THE VALUE FOR PL1 IS: ',F10.5,' INPUT NEW VALUE' + ': '$) READ(*,70)PL1 PPL1=PL1 ELSEIF(INUM.EQ.10) THEN WRITE(*,230)PLN1 230 FORMAT (//,9X,'THE VALUE FOR PLN1 IS: ',F10.5,' INPUT NEW VALU' + 'E: '$) READ(*,70)PLN1 PPLN1=PLN1 ELSEIF(INUM.EQ.11) THEN WRITE(*,240)PL2 240 FORMAT (//,9X,'THE VALUE FOR PL2 IS: ',F10.5,' INPUT NEW VALUE' + ': '$) READ(*,70)PL2 ELSEIF(INUM.EQ.12) THEN WRITE(*,250)PLN2 250 FORMAT (//,9X,'THE VALUE FOR PLN2 IS: ',F10.5,' INPUT NEW VALU' + 'E: '$) READ(*,70)PLN2 ELSEIF(INUM.EQ.13) THEN WRITE(*,260)DE1 260 FORMAT (//,9X,'THE VALUE FOR DE1 IS: ',F10.1,' INPUT NEW VALUE' + ': '$) READ(*,70)DE1 DDE1=DE1 ELSEIF(INUM.EQ.14) THEN WRITE(*,270)DE2 270 FORMAT (//,9X,'THE VALUE FOR DE2 IS: ',F10.1,' INPUT NEW VALUE' + ': '$) READ(*,70)DE2 ELSEIF(INUM.EQ.15) THEN WRITE(*,280)ITIME 280 FORMAT (//,9X,'THE VALUE FOR ITIME IS: ',F10.5,' INPUT NEW VALU' + 'E: '$) READ(*,70)ITIME ELSEIF(INUM.EQ.16) THEN WRITE(*,290)ABSORB 290 FORMAT (//,9X,'THE VALUE FOR ABSORB IS: ',F10.5,' INPUT NEW VALU' + 'E: '$) READ(*,70)ABSORB ELSEIF(INUM.EQ.17) THEN
WRITE(*,300) BOIL
300 FORMAT(//,9X,'THE VALUE FOR BOIL IS: ',F10.5,' INPUT NEW VALUE' + ': '$)
 READ(*,70) BOIL
 ELSEIF(INUM.EQ.18) THEN
 NXTRA0 = NXTRA
 WRITE(*,310) NXTRA
310 FORMAT(//,9X,'THE NUMBER OF EXTRA NODES IS: ',I4,' INPUT NEW VALUE: ' + ' VALUE: '$)
 READ(*,20) NXTRA
 IF (NXTRA.NE.0) THEN
 IF (NXTRA.GT.8) NXTRA=8
 IF (NXTRA0.NE.0) WRITE(*,320) (XTRA(I),I=1,NXTRA0)
51
 ELSEIF(INUM.EQ.19) THEN
 WRITE(*,350) BLOOD
350 FORMAT(//,9X,'THE VALUE FOR BLOOD IS: ',F10.5,' INPUT NEW VALUE: '$)
 READ(*,70) BLOOD
 ELSEIF(INUM.EQ.20) THEN
 WRITE(*,360) APL1
360 FORMAT(//,9X,'THE VALUE FOR APL1 IS: ',F10.5,' INPUT NEW VALUE: '$)
 READ(*,70) APL1
 ELSEIF(INUM.EQ.21) THEN
 WRITE(*,370) APLN1
370 FORMAT(//,9X,'THE VALUE FOR APLN1 IS: ',F10.5,' INPUT NEW VALUE: '$)
 READ(*,70) APLN1
 ELSEIF(INUM.EQ.22) THEN
 WRITE(*,380) APL2
380 FORMAT(//,9X,'THE VALUE FOR APL2 IS: ',F10.5,' INPUT NEW VALUE: '$)
 READ(*,70) APL2
 ELSEIF(INUM.EQ.23) THEN

WRITE(*,390)APLN2
390 FORMAT(//,9X,'THE VALUE FOR APLN2 IS: ','F10.5,', 'INPUT NEW VALUE'
+ 'E: '$)
READ(*,70)APLN2
ELSEIF(INUM.EQ.24) THEN
WRITE(*,400)ADE1
400 FORMAT(//,9X,'THE VALUE FOR ADE1 IS: ','F10.1,', 'INPUT NEW VALUE'
+ 'E: '$)
READ(*,70)ADE1
ELSEIF(INUM.EQ.25) THEN
WRITE(*,410)ADE2
410 FORMAT(//,9X,'THE VALUE FOR ADE2 IS: ','F10.1,', 'INPUT NEW VALUE'
+ 'E: '$)
READ(*,70)ADE2
ELSE
CHANGE=1
ENDIF
ELSE
CHANGE=1
ENDIF
END IF
END DO
REWIND 1
ELSEIF(IANSR.EQ.2) THEN
CALL CLEARSCREEN($GCLEARSCREEN)
CALL DESCRIPT(DSCRPT,SUMFILE,TFILE)
TP=999.
AJ=JINC
Q1 = FLUX(1)
H1=BL/(AJ-1.0)
C********Initialize depth nodes D(J)
D(1) = -16.
DO I=2,JINC
D(I) = H1*(I-1)*1.E4
D(I) = ALOG(D(I))
END DO
DTJ = TEMPB/(JINC-1)
DO J=1,JINC
WATER(J,1) = WATER(J,2)
CP(J,1) = CP(J,2)
BK(J,1) = BK(J,2)
XTIME(J) =0.
ZTIME(J) =0.
IFLAG(J) =0.
JFLAG(J) =0.
T(J) = DTJ*(J-1)+TEMPI0
END DO
WRITE(4,420)TIME,T(1),T(2),T(3),T(4),T(5),T(6),T(7),T(8)
+ ,T(9),T(10),T(11),T(12)
420 FORMAT(13(F9.5,2X))
K=1
CALL SHOWVALUE(TEMPI0,DENS,FLUX,BL,AK,JINC,TEMPB,ABSORB,
+ BOIL,PL1,PLN1,DE1,PL2,PLN2,DE2,ETIME,ITIME,NXTRA,BLOOD,APL1,
APLN1, ADE1, APL2, APLN2, ADE2, K, XTRA)

```
WRITE(3,430)ID,TDELT,NFLX,(I,FLUX(I),I=1,NFLX)
WRITE(7,430)ID,TDELT,NFLX,(I,FLUX(I),I=1,NFLX)
430 FORMAT(/,9X,'FLUX FILE I.D.: ',4A2,F7.2,14://' FLUX(I)='
+ '/' ,10(I5,F8.3))
JJJJ=0
F(1)=-BK(2,1)/(2.0*HI*HI)-BK(1,1)/(2.0*HI*HI)
G(1) = (BK(1,1)+BK(2,1))/(2.0*HI*HI)+DENS*CP(1,1)/AK
H(1)=0.0
ITTR = 0
IFLX = 1
EITIM1 = ITIME+1.
IF (FILNAM.EQ.NOFIL) TDELT=AK
FFDG = TDELT/AK
KFDG = FFDG+.0001
TMPMAX = 0.
QCONST = ABSORB*60.892
BLUD = 0.
M = -1
ITFLG = 0
CALL SUB12(TIME,T,XTIME,JINC,BLUD,CP,BK,NXTRA,XTMP,M,EM)
DOWHILE(TIME.LT.ITIME.AND.ITFLG.EQ.0.OR.TIME.LT.ETIME)
C*******The next program statement automatically chooses the proper
C interval in the flux table for the computation of QT and Q1 for
C either constant or variable flux.
C KFDG (=FFDG) = 1 for constant flux
C = integer ratio of the tabular time step to
C to model the time step for the tabulated flux
IF (MOD(ITTR,KFDG).EQ.0.AND.IFLX.LT.NFLX) IFLX=IFLX+1
ITTR = ITTR+1
P = (ITTR-KFDG*(IFLX-2))/FFDG
QT = (1.-P)*FLUX(IFLX-1)+P*FLUX(IFLX)
Q1 = QT*QCONST
JJJJ = JJJJ+1
TIME=JJJJ*AK
IF (TIME.GE.01.AND.TIME.LE.20.) BLUD=(TIME-AK)/(20.-AK)*
BLOOD
```

```
IF(TIME.GE.ETIME) Q1=-5.E-4*(T(1)-23.9)
Z(1)=-F(1)*T(2)-((BK(1,1)+BK(2,1))/(2.0*HI*HI)-(DENS*
+CP(1,1)))/AK)*T(1)+Q1
N=JINC-1
DO J=2,N
F(J)=-BK(J+1,1)/(2.0*HI*HI)
G(J)=(BK(J,1)+BK(J+1,1))/(2.0*HI*HI)+DENS*CP(J,1)/AK
H(J)=-BK(J,1)/(2.0*HI*HI)
Z(J)=-F(J)*T(J-1)-((BK(J,1)+BK(J+1,1))/(2.*HI*HI)-DENS
+*CP(J,1)/AK)*T(J-1)+Q1
IF (J.LE.3) Z(J) = Z(J)-1.675*HI/BK(J,1)*BLUD*(T(J)
+*TEMPIO+TEMPB)
END DO
F(JINC)=0.0
53
```
\[G(JINC) = \frac{(BK(JINC,1) + BK(JINC-1,1))}{2.0 \times H1} + DENS \times CP(JINC,1) / AK \]

\[H(JINC) = -(BK(JINC,1) + BK(JINC-1,1)) / (2.0 \times H1) \]

\[DT = T(JINC-1) - (\text{TEMPIO} + \text{TEMPB}) \]

\[Z(JINC) = (H(JINC) + (DENS \times CP(JINC,1) / AK)) \times T(JINC) - H(JINC) \times \]

\[W(1) = G(1) \]

\[U(1) = Z(1) / W(1) \]

DO J = 2, JINC

\[\text{JMI} = J - I \]

\[SV(JM1) = F(JMI) / W(JM1) \]

\[W(J) = G(J) - H(J) \times SV(JM1) \]

\[U(J) = (Z(J) - H(J) \times U(JM1)) / W(J) \]

END DO

T(JINC) = U(JINC)

KK = JINC - 1

DO J = 1, KK

\[\text{KMJ} = JINC - J \]

IF (IFLAG(KMJ).NE.1) THEN

\[T(KMJ) = U(KMJ) - SV(KMJ) \times T(KMJ+1) \]

IF (JFLAG(KMJ).NE.1) THEN

IF (T(KMJ).GE.BOIL) THEN

\[T(KMJ) = \text{BOIL} \]

ELSEIF (KMJ.EQ.1) THEN

\[T(KMJ) = \text{QT} \]

ENDIF

ENDIF

ELSEIF (IFLAG(KMJ).EQ.1) THEN

IF (TIME.GE.ZTIME(KMJ)) THEN

\[\text{WATER}(KMJ,1) = \text{PCWATR} \]

\[\text{CP}(KMJ,1) = (\text{CPCON}(1) \times \text{WATER}(KMJ,1) + \text{CPCON}(2)) / (\text{ROCON}(1) \times \]

\[\text{WATER}(KMJ,1) + \text{ROCON}(2)) \]

\[BK(KMJ,1) = (\text{THCON}(1) \times \text{WATER}(KMJ,1) + \text{THCON}(2)) / (\text{ROCON}(1) \times \]

\[\text{WATER}(KMJ,1) + \text{ROCON}(2)) \]

\[IFLAG(KMJ) = 0 \]

\[\text{XTIME}(KMJ) = 0. \]

\[\text{JFLAG}(KMJ) = 1 \]

ENDIF

ENDIF

C*******Interpolate extra temperatures between the surface and second node

IF (NXTRA.NE.0) THEN

IF (T(2).EQ.T(1)) THEN

C*******For constant temperature

DO I = 1, NXTRA

\[\text{XTMP}(I) = T(2) \]

ENDIF

ENDIF

54
ELSEIF (T(2).EQ.T(3)) THEN

C******Linear interpolation
DO I=1,NXTRA
 P = XTRA(I)/D2
 ID(I) = 0.
 XTMP(I) = (1.-P)*T(1)+P*T(2)
END DO
ELSE

C******3-point Lagrange interpolation for equally spaced abscissae
DO I=1,NXTRA
 P = (XTRA(I)-D2)/D2
 ID(I) = 0. (SURFACE)
 XTMP(I) = .5*P*(P-1.)*T(1)+(1.-P**2)*T(2)+.5*P*(P+1.)
 + *T(3)
END DO
END IF
END IF
IF (ABS(ETIME-TIME) .LE. 0.5*AK) THEN
DO I=1,JINC
 IF (IFLAG(I).NE.0) THEN
 WATER(I,1) = (ZTIME(I)-TIME)/XTIME(I)*(WATER(I,1)-
 + PCWATR)+PCWATR
 CP(I,1) = (CPCON(1)*WATER(I,1)+CPCON(2))/(ROCON(1)*
 + WATER(I,1)+ROCON(2))
 BK(I,1) = (THCON(1)*WATER(I,1)+THCON(2))/(ROCON(1)*
 + WATER(I,1)+ROCON(2))
 END IF
END DO
DO I=1,JINC
 XTIME(I) = 0.
 IFLAG(I) = 0.
 JFLAG(I) = 1
END DO
ENDIF
IF (T(1).GT.TMPMAX) TMPMAX=T(1)
ITFLG = -1 !ITFLG SET TO 0 IF ANY TEMPERATURE .GE. 44 DEGREES
DO J=1,JINC
 IF (T(J).LT.44.) THEN
 DW(J) = 0.
 ELSE
 ITFLG = 0
 IF(T(J).LT.50.) THEN
 PL1 = PPL1
 PLN1 = PPLN1
 DE1 = DDE1
 APL1 = APPL1
 APLN1 = APPLN1
 ADE1 = ADDE1
 DWLN=PL1+PLN1-DE1/(T(J)+273.)
 IF(DWLN.GE.87.0) DWLN = 87.0
 DW(J) = EXP(DWLN)
 ELSE
 PL1=PL2
 END IF
END DO
PLN1 = PLN2
DE1 = DE2
APL1 = APL2
APLN1 = APLN2
ADE1 = ADE2
IF (J.LT.1) THEN
 DWLN = APL1 + APLN1 - ADE1 / (T(1) + 273.)
 IF (DWLN.GE.87.0) DWLN = 87.0
 DW(1) = EXP(DWLN)
ELSE
 DWLN = PL1 + PLN1 - DE1 / (T(J) + 273.)
 IF (DWLN.GE.87.0) DWLN = 87.0
 DW(J) = EXP(DWLN)
END IF
END IF
END IF
END DO
IF (J.JJ].LT.2) THEN
 DO I = 1, JINC
 SUM(I) = .5 * DW(I)
 END DO
ELSE
 DO I = 1, JINC
 IF (SUM(I).LT.(1.0E38)) SUM(I) = SUM(I) + DW(I)
 END DO
END IF
IF (NXTRA.NE.0) THEN
 DO J = 1, NXTRA
 IF (XTMP(J).LT.44.) THEN
 XDW(J) = 0.
 ELSE
 IF (XTMP(J).LT.50.) THEN
 APL1 = APPL1
 APLN1 = APPLN1
 ADE1 = ADDE1
 ELSE
 APL1 = APL2
 APLN1 = APLN2
 ADE1 = ADE2
 END IF
 IF (TP.EQ.999. AND. XTMP(4).GE.45.)
 DWLN = APL1 + APLN1 - ADE1 / (XTMP(J) + 273.)
 IF (DWLN.GE.87.0) DWLN = 87.0
 XDW(J) = EXP(DWLN)
 END IF
 END IF
 END DO
 IF (J.JJ].LT.2) THEN
 DO J = I, NXTRA
 XSUM(J) = 0.5 * XDW(J)
 END DO
 ELSE
 56
DO J=1,NXTRA
 IF (XSUM(J).LT.1.0E38) XSUM(J)=XSUM(J)+XDW(J)
END DO
END IF
END IF
EMTIME = AINT(1000.*(TIME+.00001))/100.
IF((TIME.LT.10..AND.AMOD(EMTIME,1.).EQ.0..OR.TIME.GE.10.
+ .AND.AMOD(EMTIME,10.).EQ.0.) THEN
 WRITE(4,420)TIME,T(1),T(2),T(3),T(4),T(5),T(6),T(7),
+ T(8),T(9),T(10),T(11),T(12)
ENDIF
IF (ITFLG.NE.0.AND.TIME.GE.ETIME.OR.JJjjj.EQ.M*100.OR.JJjjj
+ .EQ.1) CALL SUB12(TIME,T,XTIME,JINC,BLUD,CP,BK,NXTRA,XTMP,M,EM)
END DO
REWIND(4)
CLOSE(4)
DO I=I,JINC
 W(I) = (SUM(I)-.5*DW(I))*AK
END DO
IF (NXTRA.NE.0) THEN
 DO J=1,NXTRA
 XW(J) = (XSUM(J)-.5*XDW(J))*AK
 END DO
END IF
C*****Select W(J) and D(J) near W(J) =1
470 NN = 3
J=1
DOWHILE(J.LE.JINC)
 JLT1 = J
 IF(W(J).GT.1.) THEN
 IF(J.EQ.JINC) THEN
 NN=2
 WRITE(3,440)(W(K),K=JLT1-1,JLT1+1)
 WRITE(7,440)(W(K),K=JLT1-1,JLT1+1)
440 FORMAT(/(IX,'W=',E20.5))
 WRITE(3,450)(D(K),K=JLT1-1,JLT1+1)
 WRITE(7,450)(D(K),K=JLT1-1,JLT1+1)
450 FORMAT(/(IX,'D=',E20.5))
 END IF
 J=J+1
 ELSEIF(W(J).EQ.1.) THEN
 MN=1
 J=JINC+1
 ELSEIF(W(J).LT.1.) THEN
 IF (J.EQ.1) JLT1=2
 IF (J.EQ.JINC) JLT1=JINC-1
 WRITE(3,440)(W(K),K=JLT1-1,JLT1+1)
 WRITE(7,440)(W(K),K=JLT1-1,JLT1+1)
 WRITE(3,450)(D(K),K=JLT1-1,JLT1+1)
 WRITE(7,450)(D(K),K=JLT1-1,JLT1+1)
 IF (NXTRAO.NE.0.AND.JLT1.LE.2) THEN

WRITE(*,460)
460 FORMAT(/,9X,'W=1 LIES ABOVE NODE 2. INTERCOLLATING VALUES OF D'/
+ ,9X,'AND W COMPUTED FROM INTERPOLATED VALUES OF D AND',/,9X,
+ 'TEMPERATURE. ',/)
WRITE(3,460)
WRITE(7,460)
WRITE(1)D(1)
WRITE(2)W(1)
DO J=1,NXTRA
 WRITE(1)XTRALG(J)
 WRITE(2)XW(J)
END DO
DO J=2,JINC
 WRITE(1)D(J)
 WRITE(2)W(J)
END DO
REWIND 1
REWIND 2
DO J=1,JINC
 READ(1)D(J)
 READ(2)W(J)
END DO
REWIND 1
REWIND 2
NXTRA0 = 0
GO TO 470
END IF
J=JINC+1
END IF
END DO
IF(MN.EQ.0) THEN
 NXTRA0 = NXTRA
 IF (W(JLT1+1).EQ.0. .AND.NN.EQ.3) NN=2
 IF(W(JLT1-1).LT.1.0)THEN
 TD=0.0
 IERR=0
 ELSE
 CALL DEPTH(D(JLT1-1),W(JLT1-1),NN,TD,IERR)
 C*******If Lagrangian interpolation didn't work, use linear interpolation
 IF(NN.EQ.3) THEN
 IF(W(JLT1-1).GE.1.0.AND.W(JLT1).LE.1.0.AND.(D(JLT1-1).
 + GT.TD.OR.D(JLT1).LT.TD)) THEN
 NN=2
 CALL DEPTH(D(JLT1-1),W(JLT1-1),NN,TD,IERR)
 ELSEIF (W(JLT1).GE.1.0.AND.W(JLT1+1).LE.1.0.AND.
 + (D(JLT1).GT.TD.OR.D(JLT1+1).LT.TD)) THEN
 JLT1=JLT1+1
 NN=2
 CALL DEPTH(D(JLT1-1),W(JLT1-1),NN,TD,IERR)
 ENDIF
 ENDIF
 ENDIF
 ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
IF (IERR.NE.0) THEN
 WRITE(*,480)
 WRITE(3,480)
 WRITE(7,480)
480 FORMAT(9X,'ERROR IN SUBROUTINE "DEPTH". EXITING./)
 CALL ANOTHER(AGAIN)
ENDIF

IF (NN.EQ.2.AND.JLT1.EQ.JINC) THEN
 WRITE(3,490)MAXDIM
 WRITE(7,490)MAXDIM
490 FORMAT(/1X,'THE MODEL BLEW UP: DAMAGE > 1 AT NODE ',12/)
 CALL SUB1020(W,JINC,D,TMPMAX,TD,TIME,TP)
ELSE
 CALL SUB1020(W,JINC,D,TMPMAX,TD,TIME,TP)
ENDIF

ELSE
 TD=EXP(D(J))
 CALL SUB1020(W,JINC,D,TMPMAX,TD,TIME,TP)
ENDIF

CALL HARVARD(PROFILE,TFILE,SUMFILE,PTS)

ELSEIF(PROCED.EQ.1) THEN
 IF(AGAIN.EQ.0) THEN
 CALL SHOWVALUE(TEMPIO,DENS,FLUX,BL,AK,JINC,TEMPB, + ABSORB,BOIL,PL1,PLN1,DE1,PL2,PLN2,DE2,ETIME,ITIME,NXTRA, + BLOOD,APL1,APLN1,ADE1,APL2,APLN2,ADE2,K,XTRA)
 ENDIF
ENDIF

END DO
CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)
CLOSE(7)
CALL COLORS
DUMMY2=SETVIDEOMODE($DEFAULTMODE)
STOP
END

SUBROUTINE COLORS
 INCLUDE 'FGRAPH.FD'
 INTEGER*2 LOOP,LOOPI,DUMMY2
 REAL RND1,RND2
 DUMMY2=SETVIDEOMODE($MRES256COLOR)
 DO LOOP1=1,10
 WRITE(*,10)
10 FORMAT(///,10X,'BURNSIM',///,15X,'BURNSIM',///,20X,'BURNSIM')
 DUMMY2=SETCOLOR(MOD(getcolor()+1, 16)) ! Set next color
 DO loop=1,3200
 CALL RANDOM(RND1)
C*******Set a random pixel, normalized to be on the screen
CALL RANDOM(RND2)
DUMMY2=SETPIXEL(INT2(RND1*320),INT2(RND2*200))
END DO
END DO
DUMMY2=SETVIDEOMODE($MAXRESMODE)
END

SUBROUTINE WELCOME(PROFILE)
CHARACTER PROFILE*8
CALL CLEARSCREEN($GCLEARSCREEN)
WRITE(*,10)
10 FORMAT(///,9X,'WELCOME TO BURNSIM. TO BEGIN RUNNING THE PROGRAM,','+ ' BURNSIM',9X,'FIRST NEEDS TO KNOW THE NAME OF THE FILE THAT','+ ' YOU WANT TO',9X,'STORE THE OUTPUT DATA IN. THIS FILE WILL','+ ' CONTAIN ALL OF THE',9X,'INPUT PARAMETERS AS WELL AS THE','+ ' OUTPUT FOR EACH ITERATION THE',9X,'MODEL PERFORMS. THIS','+ ' FILE CAN BE CALLED ANYTHING UP TO EIGHT',9X,'CHARACTERS','+ ' LONG.',15X,'PLEASE ENTER A NAME FOR THE OUTPUT FILE: '$)
READ(*,20)PROFILE
20 FORMAT(A8)
C*******Set up parameters for this run
CALL CLEARSCREEN($GCLEARSCREEN)
WRITE(*,30)
30 FORMAT(///,9X,'NEXT BURNSIM WILL SHOW YOU THE PRESENT INPUT','+ ',' PARAMETERS.',9X,'UNDER THE LIST OF PARAMETERS YOU WILL SEE A','+ ',' QUESTION ASKING',9X,'IF YOU WISH TO CONTINUE. IF YOU WANT','+ ',' TO EXIT THE PROGRAM AT ',9X,'THAT POINT, TYPE N. OTHERWISE','+ ',' TYPE Y.',15X,'TO CONTINUE ON TO THE LIST OF INPUT','+ ',' PARAMETERS TYPE A <CR>.')
READ(*,*)
END

SUBROUTINE READDATA(TEMPIO,DENS,Q0,BL,AK,BOIL,ABSORB,JINC,
+ TEMPB,ITIME,ETIME,PCWATR,BLOOD,CP,BK,PL2,PLN2,PL1,PLN1,DE2,
+ DE1,APL1,APLN1,APL2,APLN2,ADE1,ADE2,WATER)
REAL ITIME
DIMENSION CP(12,2),BK(12,2),WATER(12,2)
OPEN(UNIT=I,FILE='REN12.DAT',FORM='FORMATTED',STATUS='OLD')
READ(1,10)TEMPIO,DENS,Q0,BL,AK,BOIL,ABSORB
10 FORMAT(7FI0.5)
READ(1,20)JINC,TEMPB,ITIME,ETIME,PCWATR,BLOOD
20 FORMAT(1I10,5F10.5)
READ(1,30)(CP(J,2),J=1,JINC)
30 FORMAT(6F10.5)
READ(1,30)(BK(J,2),J=1,JINC)
READ(1,30)PL2,PLN2,PL1,PLN1,DE2,DE1
READ(1,30)APL1,APLN1,APL2,APLN2,ADE1,ADE2
READ(1,30,END=40)(WATER(I,2),I=1,JINC)
40 CLOSE(1)
CALL CLEARSCREEN($GCLEARSCREEN)
END
SUBROUTINE SHOWVALUE(TEMPIO, DENS, FLUX, BL, AK, JINC, TEMPB, + ABSORB, BOIL, PL1, PLN1, DE1, PL2, PLN2, DE2, ETIME, ITIME, + NXTRA, BLOOD, APL1, APLN1, ADE1, APL2, APLN2, ADE2, K, XTRA)

REAL ITIME
DIMENSION FLUX(600), XTRA(8)
CALL CLEARSCREEN($GCLEARSCREEN)
IF(K.NE.1) THEN
 WRITE (*)
 FORMAT(/,30X,'SKIN DIFFUSION DATA'/,30X,'INPUT PARAMETER LIST')
 WRITE(*,20) TEMPIO, DENS, FLUX(1), BL, AK, JINC, TEMPB, ABSORB, BOIL
 + F10.5, 4X, 'BL = ', F10.5, 10X, 'AK = ', F10.5, 9X, 'JINC = ', I2, 4X,
 + 'TEMPB = ', F10.5, 7X, 'ABSORB = ', F10.5, 5X, 'BOIL = ', F10.5, /
WRITE(*,30) PL1, PLN1, DE1, PL2, PLN2, DE2, ETIME, ITIME, NXTRA, BLOOD
 FORMAT(4X, 'PL1 = ', F10.5, 9X, 'PLN1 = ', F10.5, 7X, 'DE1 = ', F10.1, /
 + 'PL2 = ', F10.5, 9X, 'PLN2 = ', F10.5, 7X, 'DE2 = ', F10.1, 4X,
 + 'ETIME = ', F10.5, 7X, 'ETIME = ', F10.5, 6X, 'NXTRA = ', I2, 4X,
 + 'BLOOD = ', F10.5, /
WRITE(*,40) APL1, APLN1, ADE1, APL2, APLN2, ADE2
 FORMAT(4X, 'APL1 = ', F10.5, 8X, 'APL1 = ', F10.5, 6X, 'ADE1 = ', F10.1,
 + 'APL2 = ', F10.5, 'APL2 = ', F10.5, 6X, 'ADE2 = ', F10.1, /
IF (NXTRA.GT.0) WRITE(*,50) (XTRA(I),I=1,NXTRA)
 FORMAT(5X,'THE EXTRA NODES ARE: ',8F6.1)
ELSE
 WRITE(3,10)
 WRITE(7,10)
WRITE(3,20) TEMPIO, DENS, FLUX(1), BL, AK, JINC, TEMPB, ABSORB, BOIL
WRITE(7,20) TEMPIO, DENS, FLUX(1), BL, AK, JINC, TEMPB, ABSORB
WRITE (3,30) PL1, PLN1, DE1, PL2, PLN2, DE2, ETIME, ITIME, NXTRA, BLOOD
WRITE (7,30) PL1, PLN1, DE1, PL2, PLN2, DE2, ETIME, ITIME, NXTRA, BLOOD
WRITE(3,40) APL1, APLN1, ADE1, APL2, APLN2, ADE2
WRITE(7,40) APL1, APLN1, ADE1, APL2, APLN2, ADE2
IF (NXTRA.GT.0) WRITE(3,50) (XTRA(I),I=1,NXTRA)
IF (NXTRA.GT.0) WRITE(7,50) (XTRA(I),I=1,NXTRA)
K=0
ENDIF
END

SUBROUTINE PROCEED(RESP, PROCED, AGAIN)
 CHARACTER RESP*1
 INTEGER PROCED, AGAIN
 WRITE(*,10)
 10 FORMAT(/,15X,'DO YOU WISH TO CONTINUE? TYPE Y OR N $')
 READ(*,20) RESP
 20 FORMAT(A1)
 IF (RESP.EQ. 'Y'.OR.RESP.EQ. 'y') THEN
 PROCED=0
 ELSE
 PROCED=1
 CALL ANOTHER(AGAIN)
ENDIF
END

61
SUBROUTINE ANOTHER(AGAIN)
 CHARACTER RESP*1
 INTEGER AGAIN
 WRITE(*,10)
 10 FORMAT(/,15X,'DO YOU WANT TO DO ANOTHER RUN? TYPE Y OR N ')
 READ(*,20)RESP
 20 FORMAT(A1)
 IF(RESP.EQ.'Y'.OR.RESP.EQ.'y') THEN
 AGAIN=0
 ELSE
 AGAIN=1
 END IF
END

SUBROUTINE DESCRIPT(DSCRPT,SUMFILE,TFILE)
 CHARACTER SUMFILE*8,TFILE*8
 DIMENSION DSCRPT(20)
 WRITE(*,10)
 10 FORMAT(///,9X,'ENTER THE MODEL NAME OR DESCRIPTION (UP TO 80', + /,9X,'CHARACTERS). THIS INFORMATION WILL BE USED',/,9X,'AS A TITLE ON THE SUMMARY PAGE. ')
 READ(*,20)DSCRPT
 20 FORMAT(20A4)
 WRITE(3,30)DSCRPT
 30 FORMAT(//,10X,'MODEL NAME OR DESCRIPTION: ',20A4)
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE(*,40)
 40 FORMAT(///,9X,'NOW ENTER THE SUMMARY FILENAME (UP TO 8', + /,9X,'CHARACTERS). THIS FILE WILL CONTAIN A SUMMARY' + ' OF THE SIMULATION. ')
 READ(*,50)SUMFILE
 50 FORMAT(A8)
 OPEN(UNIT=7,FILE=SUMFILE,FORM='FORMATTED',STATUS='UNKNOWN')
 WRITE(7,30)DSCRPT
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE(*,60)
 60 FORMAT(///,9X,'NOW ENTER THE TEMPERATURE FILE (UP TO 8', + ' CHARACTERS). THIS FILE WILL CONTAIN A LIST OF THE TEMPERATURES', + ' AT THE VARIOUS NODES DURING THE SIMULATION' + ')
 READ(*,70)TFILE
 70 FORMAT(A8)
 OPEN(UNIT=4,FILE=TFILE,FORM='FORMATTED',STATUS='UNKNOWN')
END

SUBROUTINE SUB12(TIME,T,XTIME,JINC,BLUD,CP,BK,NXTRA,XTMP,M,EM)
 DIMENSION T(12),XTIME(12),CP(12,2),BK(12,2),XTMP(8)
 WRITE(3,10)TIME
 WRITE(*,10)TIME,(T(I),XTIME(I),I=1,JINC)
 10 FORMAT(/,45X,5HTIME=,F10.6:,T4,'T= ',6X,'XTIME='/('',2GI2.4))
 WRITE(*,20)BLUD
 20 FORMAT(1X,'BLUD =',F6.5)
WRITE(3,30)(XTIME(I),I=1,JINC)

30 FORMAT(2X,'XTIME=',F10.5)
WRITE(3,40)(T(1),CP(1,1),BK(1,1))

40 FORMAT(2X,'T=',G16.5,2X,'CP=',G16.5,2X,'BK=',G16.5)
IF (NXTRA.NE.0) THEN
 DO J=1,NXTRA
 WRITE(3,40)XTMP(J)
 END DO
END IF
WRITE(3,40)(T(J),CP(J,1),BK(J,1),J=2,JINC)
M=M+1
EM = M
END

SUBROUTINE DEPTH(X,Y,N,TD,IERR)
C*******Inverse interpolation on two or three points to determine
C threshold depth (predicted burn depth) using either Y or LOG(Y)
DIMENSION X(1),Y(1),Z(3)
IERR = 0
IF (N.LT.2) IERR=-1
IF(IERR.NE.-1) THEN
 DO 100 I=1,N
 100 Z(I) = Y(I)
 ZO = 1.
 IF (Z(1).NE.0..AND.Z(2).NE.0.) THEN !USE LOGARITHMS?
 IF (N.EQ.3.AND.Z(3).EQ.0.) N=2
 ZO = 0. !USE LOGARITHMS
 DO 120 I=1,N
 120 Z(I) = ALOG(Z(I))
 END IF
 140 HO = Z(2)-Z(1)
 IF (HO.EQ.0.) IERR=-1
 IF (N.NE.2.AND.IERR.NE.-1) THEN
 H1 = Z(3)-Z(2)
 IF (H1.EQ.0.) IERR=-1
 IF(IERR.NE.-1) H2 = Z(3)-Z(1)
 IF (H2.EQ.0.) IERR=-1
 IF(IERR.NE.-1) DZ3 = ZO-Z(3)
 END IF
 IF(IERR.NE.-1) THEN
 160 DZ2 = ZO-Z(2)
 DZ1 = ZO-Z(1)
 IF (N.NE.2) THEN
 TD = DZ1*DZ2*X(3)/(H1*H2)-DZ1*X(2)*DZ3/(HO*H1)+X(1)*DZ2*DZ3
 +/(HO*H2)
 ELSEIF(N.EQ.2) THEN
 TD = (DZ1*X(2)-X(1)*DZ2)/HO
 END IF
 180 TD = EXP(TD)
 END IF
END
SUBROUTINE SUB1020(W,JINC,D,TMPMAX,TD,TIME,TP)
 DIMENSION W(12),D(12)
 WRITE(3,10)(W(I),I=1,JINC)
 10 FORMAT(/(1X,'W=',E20.5))
 WRITE(7,20)(W(I),EXP(D(I)),I=1,JINC)
 20 FORMAT(/(1X,'W =',E20.5,5X,'AT DEPTH (IN MICRONS) =',G20.6))
 WRITE(3,30)TMPMAX
 WRITE(7,30)TMPMAX
 WRITE(*,30)TMPMAX
 30 FORMAT(/,1X,'MAXIMUM TEMPERATURE = ',F8.3)
 WRITE(*,40)TD
 WRITE(3,40)TD
 WRITE(7,40)TD
 40 FORMAT(/,1X,'THRESHOLD DEPTH = ',G20.4)
 WRITE(3,50)TIME
 WRITE(7,50)TIME
 WRITE(*,50)TIME
 50 FORMAT(/,1X,'FINAL TIME = ',F7.2)
 IF(TP.NE.999.) THEN
 WRITE(3,60)TP
 WRITE(7,60)TP
 WRITE(*,60)TP
 60 FORMAT(/,IX,'TIME TO PAIN IS ',F7.2,' SECONDS. ')
 END IF
END

SUBROUTINE HARVARD(PROFILE,TFILE,SUMFILE,PTS)
 CHARACTER PROFILE*8,SUMFILE*8,TFILE*8,HGPLOT*1,HG*12
 INTEGER PTS
 WRITE(*,10)
 10 FORMAT(///,9X,'TYPE A <CR> TO CONTINUE.')
 READ(*,*)
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE(*,20)
 20 FORMAT(///,9X,'DO YOU WANT TO PLOT THE TEMPERATURES VS. TIME?',/,
 + 9X,'TIME IN HARVARD GRAPHICS? TYPE Y/N $')
 READ(*,30) HGPLOT
 30 FORMAT(A1)
 IF(HGPLOT .EQ. 'Y' .OR. HGPLOT .EQ. 'y') THEN
 CALL PLOTHG(PTS,TFILE,HG)
 ENDIF
 CALL CLEARSCREEN($GCLEARSCREEN)
 WRITE(*,40)PROFILE,TFILE
 40 FORMAT(//,9X,'THE MODEL OUTPUT IS FOUND IN FILE: ',A10,/,9X,
 + 'USE "PRINT" OR "TYPE" AFTER YOU EXIT THE PROGRAM TO SEE IT. ',
 + 'IF(Y .OR. HGPLOT .EQ. 'y') THEN
 CALL PLOTHG(PTS,TFILE,HG)
 40 FORMAT(///,9X,'THE TEMPERATURES FOR THE HARVARD GRAPHICS PLOT',
 + 'ARE IN FILE: ',/9X,A12,' USE "PRINT" OR "TYPE" AFTER YOU',
 + ' EXIT THE PROGRAM',/9X,'TO SEE IT.')
 END IF
SUBROUTINE PLOTHG(PTS,TPFILE,HG)
REAL TIME(800), T1(800), T2(800), T3(800), T4(800), T5(800),
+ T6(800), T7(800), T8(800), T9(800), T10(800), T11(800), T12(800)
INTEGER PTS
CHARACTER HG*12, TPFILE*8
OPEN(UNIT=4, FILE=TPFILE, FORM='FORMATTED', STATUS='UNKNOWN')
DO I=1, PTS
 READ(4,40) TIME(I), T1(I), T2(I), T3(I), T4(I), T5(I)
+ , T6(I), T7(I), T8(I), T9(I), T10(I), T11(I), T12(I)
40 FORMAT(13(F9.5,2X))
END DO
WRITE(*,10) TPFILE
CLOSE(4)
10 FORMAT(/,9X,'THE TEMPERATURE DATA IS STORED IN FILE: ', A8)
WRITE(*,20)
20 FORMAT(/,9X,'ENTER THE FILE TO STORE HARVARD GRAPHICS
+ TEMPERATURES USING UP TO 12 CHARACTERS',/ ,9X,'INCLUDING
+ THE ENDING .DAT ',$)
READ(*,30) HG
30 FORMAT(A12)
IF(PTS.LE.60) THEN
 OPEN(UNIT=5, FILE=HG, FORM='FORMATTED', STATUS='UNKNOWN')
 DO J=1, PTS
 WRITE(5,60) TIME(J), T1(J), T2(J), T3(J), T4(J), T5(J),
+ T6(J), T7(J), T8(J), T9(J), T10(J), T11(J), T12(J)
60 FORMAT(13(F9.5,2X))
 END DO
 CLOSE(5)
ELSE
 INTERVAL=INT(PTS/60)
 OPEN(UNIT=5, FILE=HG, FORM='FORMATTED', STATUS='UNKNOWN')
 DO J=1, PTS, INTERVAL
 WRITE(5,80) TIME(J), T1(J), T2(J), T3(J), T4(J), T5(J),
+ T6(J), T7(J), T8(J), T9(J), T10(J), T11(J), T12(J)
80 FORMAT(13(F9.5,2X))
 END DO
 CLOSE(5)
END IF
APPENDIX C

This next file contains the initial values of the variables and constants required by BURNSIM. The file is REN12.DAT.

<table>
<thead>
<tr>
<th>ROW 1</th>
<th>ROW 2</th>
<th>ROW 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEMPIO = 32.5</td>
<td>JINC = 12</td>
<td>Cp(1) = .5139</td>
</tr>
<tr>
<td>DENS = 1.</td>
<td>TEMPB = 4.5</td>
<td>Cp(2) = .8513</td>
</tr>
<tr>
<td>QO = 3.54</td>
<td>ITIME = 80.</td>
<td>Cp(3) = .8678</td>
</tr>
<tr>
<td>BL = 0.22</td>
<td>ETIME = 3.02</td>
<td>Cp(4) = .8561</td>
</tr>
<tr>
<td>AK = 0.01</td>
<td>PCWATER = 0.137</td>
<td>Cp(5) = .8561</td>
</tr>
<tr>
<td>BOIL = 100.15</td>
<td>BLOOD = 0.001</td>
<td>Cp(6) = .8349</td>
</tr>
<tr>
<td>ASORB = 0.613</td>
<td></td>
<td>Cp(7) = .8086</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROW 4</th>
<th>ROW 5</th>
<th>ROW 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cp(8) = .7802</td>
<td>BK(1) = .00059604</td>
<td>BK(8) = .0010912</td>
</tr>
<tr>
<td>Cp(9) = .7537</td>
<td>BK(2) = .0012236</td>
<td>BK(9) = .0010419</td>
</tr>
<tr>
<td>Cp(10) = .7326</td>
<td>BK(3) = .0012541</td>
<td>BK(10) = .0010028</td>
</tr>
<tr>
<td>Cp(11) = .7209</td>
<td>BK(4) = .0012547</td>
<td>BK(11) = .0009810</td>
</tr>
<tr>
<td>Cp(12) = .7209</td>
<td>BK(5) = .0012322</td>
<td>BK(12) = .0008</td>
</tr>
<tr>
<td></td>
<td>BK(6) = .0011931</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BK(7) = .0011439</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ROW 7</th>
<th>ROW 8</th>
<th>ROW 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL2 = 2.24</td>
<td>APL1 = .78</td>
<td>WATER(1) = .137</td>
</tr>
<tr>
<td>PLN2 = 239.47</td>
<td>APLN1 = 285.52</td>
<td>WATER(2) = .72596</td>
</tr>
<tr>
<td>PL1 = 1.46</td>
<td>APL2 = .60</td>
<td>WATER(3) = .75574</td>
</tr>
<tr>
<td>PLN1 = 147.37</td>
<td>APLN2 = 117.43</td>
<td>WATER(4) = .75638</td>
</tr>
<tr>
<td>DE2 = 80000.</td>
<td>ADE1 = 93534.9</td>
<td>WATER(5) = .73439</td>
</tr>
<tr>
<td>DE1 = 50000.</td>
<td>ADE2 = 39109.8</td>
<td>WATER(6) = .69632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WATER(7) = .64869</td>
</tr>
</tbody>
</table>

See the users manual for definitions of these abbreviations (eg. TEMPIO).
Initial distribution

Commander, U.S. Army Natick Research, Development and Engineering Center
ATTN: SATNC-MIL (Documents Librarian)
Natick, MA 01760-5040

U.S. Army Communications-Electronics Command
ATTN: AMSEL-RD-ESA-D
Fort Monmouth, NJ 07703

Commander/Director
U.S. Army Combat Surveillance and Target Acquisition Lab
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commanding Officer, Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, MD 20814-5044

Deputy Director, Defense Research and Engineering
ATTN: Military Assistant for Medical and Life Sciences
Washington, DC 20301-3080

Commander, U.S. Army Research Institute of Environmental Medicine
Natick, MA 01760

Library
Naval Submarine Medical Research Lab
Box 900, Naval Sub Base
Groton, CT 06349-5900

Director, U.S. Army Human Engineering Laboratory
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005

Commander
Man-Machine Integration System
Code 602
Naval Air Development Center
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 602-B (Mr. Brindle)
Warminster, PA 18974

Commanding Officer
Armstrong Laboratory
Wright-Patterson
Air Force Base, OH 45433-6573

Director
Army Audiology and Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

Commander, U.S. Army Institute of Dental Research
ATTN: Jean A. Setterstrom, Ph. D.
Walter Reed Army Medical Center
Washington, DC 20307-5300

Commander, U.S. Army Test and Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005
Commander, U.S. Army Foreign Science and Technology Center
AIFRTA (Davis)
220 7th Street, NE
Charlottesville, VA 22901-5396

Dr. Eugene S. Channing
7985 Schooner Court
Frederick, MD 21701-3273

LTC Gaylord Lindsey (5)
USAMRDC Liaison at Academy of Health Sciences
ATTN: HSHA-ZAC-F
Fort Sam Houston, TX 78234

Aviation Medicine Clinic
TMC #22, SAAF
Fort Bragg, NC 28305

Commander, U.S. Air Force Development Test Center
101 West D Avenue, Suite 117
Eglin Air Force Base, FL 32542-5495

Dr. A. Kornfield, President
Biosearch Company
3016 Revere Road
Drexel Hill, PA 29026

Commander, U.S. Army Missile Command
Redstone Scientific Information Center
ATTN: AMSMI-RD-CS-R
/ILL Documents
Redstone Arsenal, AL 35898

NVEOD
AMSEL-RD-ASID
(Attn: Trang Bui)
Fort Belvoir, VA 22060

Dr. H. Dix Christensen
Bio-Medical Science Building, Room 753
Post Office Box 26901
Oklahoma City, OK 73190

CA Av Med
HQ DAAC
Middle Wallop
Stockbridge Hants S020 8DY UK

Director
Army Personnel Research Establishment
Farnborough, Hants GU14 6SZ UK

U.S. Army Research and Technology Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

Col. Otto Schramm Filho
c/o Brazilian Army Commission
Office-CEBW
4632 Wisconsin Avenue NW
Washington, DC 20016

Mr. Peter Seib
Human Engineering Crew Station
Box 266
Westland Helicopters Limited
Yeovil, Somerset BA202YB UK

U.S. Army Research and Technology

Dr. Christine Schlichting
Behavioral Sciences Department
Box 900, NAVUBASE NLON
Groton, CT 06349-5900