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INTRODUCTION

In this report the pixel responses from an indium antiomide (lnSb) staring array are
analyzed for their 1/f characteristics. The InSb array has a spectral band of 3 to 5.5
micrometers (pum). Examples of the test data, the tabulated values, and the camera
parameters are presented later in the Amber Camera Test Results section.

The basic hypothesis presented in this report is that fractional Brownian motion (fBm)
is the proper model for spatial noise. The emphasis in this report is on fBm, wavelets, and
statistics. The interested reader can consult the reports of Scribner and others (References 1
through 4) and the references therein to find further discussion of detector physics and
supporting periodograw spectral plots that clearly exhibit a 1/f-type characteristic on the
arrays studied. Although the definitive work on the physics of 1/f noise has apparently not
been written, a body of literature exists that offers physical theory for the presence of 1/f
noise in detectors (Reference 5).

The noise on infrared arrays has both a temporal and a spatial component (Reference
6). Spatial noise (pixel-to-pixel variation) manifests itself across the array as a nonuniform
response by the individual detectors to a uniform illumination. Temporal noise is observed
by sampling the time series response from a single pixel. According to Silverman and
others, temporal noise results from the "randomness inherent in the arrival and detection of
infrared photons." "The magnitude of temporal noise increases as the square root of the
measurement time, whereas the magnitude of the signal increases linearly" (Reference 6).

Scribner and others in a series of papers have investigated the 1/f character of fixed
pattern noise in staring arrays (References 1 through 4). According to these investigators,
"Two sources of spatial noise after nonuniformity correction are 1/f noise and pixel
nonlinearities" (Reference 2). For example, the report exhibits spectral plots for mercury
cadmium telluride (HgCdTe) starring arrays that show a spectrum with a l/f-type noise
characteristic in the lower frequency band and with a white-noise spectrum in the remaining
frequency band. The plots also show that platinum silicide (PtSi) arrays have a spectrum
that is mostly white. The HgCdTe had a frame rate of 60 Hertz with a spectral band of 4.33
to 4.9 jim, and the rate for the PtSi 3.6- to 4.3-p m array was 30 Hertz. This report is not
the place for a detailed review; the reader interested in the details is referred to References 1
through 4.

Noise having a power spectrum that is inversely proportional to the inverse of the
frequency (i.e., f- 1 ) is classic 1/f-type noise and is sometimes called pink noise. It has
equal power in octave frequency bands. Flicker noise or I/f-type noise is often identified
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by a -1 decade per decade asymptotic slope, which it produces on a log-log plot of the
power spectrum-specifically, the periodogram. Pink noise is encountered in a wide
variety of physical systems, including semiconductor devices. The papers by West and
Shlesinger (Reference 7) and Montroll and Shlesinger (Reference 8) present highly
readable introductions to the classic 1/f noise. Noise having a power spectrum that is
inversely proportional to the inverse square of the frequency (i.e., f- 2 ) is called brown
noise in an allusion to Brownian motion. Black noise has a power spectrum that is
inversely proportional to some power-for example, a of the frequency-where the
power law exponent is greater than two. Black noise is beyond brown noise. All these
different colored noises whose power spectrums are inversely proportional to some inverse
power a of the frequency (i.e., f -a for 1 < a < 3) are examples of 1/f-type noise
processes. White noise has a flat spectrum over some finite range of frequencies. For a
lively and intriguing discussion of these colored noises, see the book Fractals, Chaos,
Power Laws (Reference 9).

Implicit in the discussion of 1/f processes is the fact that they have a well-defined
spectrum. The theory of flicker noise is delicate and far from trivial, because the frequency
spectrumf-1 is not integrable on the semi-infinite interval (0, -), which suggests infinite
variance and therefore that the spectrum of the process apparently cannot exist. Normally
these characterizations come from stochastic process theory. Stochastic process theory
provides a dynamic mathematical theory of random events that occur in time or space.
Recently Solo has addressed the nonintegrability issue of the 1/f spectrum; namely, he has
rigorously established "An explicit definition of the spectrum... that is compatible with
accepted definitions, yet allows nonintegrable spectra" (Reference 10). His succinct
statement of the problem clearly implies that standard spectral theories, however useful, do
not address the nonintegrable case. Fortunately, his new results include fBm with a
spectrum obeying f-a for I < za • 2, which is the interval of interest for staring focal
plane arrays (FPAs). Fractional Brownian motion noise can model all of these different
colored noises. The critical step in determining a model for the array noise is to estimate the
parameter a, something that is hard to obtain from measured data. However, we do have a
set of candidate statistics that we will use to estimate a. It should be noted that Scribner
and others do not postulate a fractional Brownian motion model (Reference 1). However,
they do report a mean pixel value for a of 1.2 for a midwave infrared FPA.

Published reports clearly recapitulate the existence of some type of 1/f noise in FPAs,
and recent important theoretical progress clarifies the link between fractional Brownian
motion, wavelets, and periodograms. If a strong case can be made for fBm as a reasonable
model for staring array spatial noise, then a paradigm for point target detection in fBm can
be formulated. In fact, recent studies by Wornell (References II and 12) and Barton and
Poor (Reference 13) address the problem of signal detection in fractional Brownian noise.
Their approach is similar to that already used with respect to radar, in which a target-
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detection-strategy paradigm is defined by a maximum likelihood algorithm. The algorithm
defines an optimum target-detection strategy with a false-alarm rate that must discriminate
between fluctuating targets embedded in white noise and random clutter. Although such
methods are not perfect, they are useful for design and do define detection algorithms.
Thus, a determination of the array noise is an important basic step in establishing a similar
detection agenda in staring FPAs. Another outgrowth of having a model for array noise is
that novel array nonuniformity-compensation algorithms that incorporate fBm might be
developed. Nonuniformity-compensation algorithms are necessary to correct for pixel
nonuniformities, but 1/f noise and system instabilities foil many algorithms; thus,
continuing recalibration is required.

In the next section of this report, FBm, Wavelets, and ARIMA Models, some important
properties of fBm and wavelet transforms are reviewed. A key parameter in fBm is then
identified with the exponent (x in the 1/f-type spectra. Some concepts and operations from
stochastic theory that are relevant to the definition of fBm are defined. Next, some
statistical algorithms are introduced that can be used to directly measure the parameters in
fBm. Autoregressive moving average models with fractional differencing first introduced
by Hosking (Reference 14) are reviewed. Hosking's model provides simple and
fundamental insight about the kind of discrete stochastic processes that obeyf-a behavior
in a neighborhood of the origin. This discussion explains why fractional differencing and
fractional sums are fundamental operations that are necessary to properly model mBm.

In the FBm Simulation and Examples section of this report, concepts and statistics
introduced in the FBm, Wavelets, and ARIMA section are illustrated by using a Hosking
algorithm to synthesize fBm. After the algorithm is introduced, sample paths and
increments of fBm are presented along with their periodograms, autocorrelations, wavelet
transforms, and marginal distributions. Some small sample studies of the statistics that
have been proposed to estimate the fBm parameters are also presented.

Some details about the Amber camera experimental test conditions, some processed
examples, and some measured parameters from the test are presented in the Amber Camera
Test Results section. Some time samples from selected individual pixels and their
increments are presented in a multipanel format along with their periodograms,
autocorrelations, wavelet transforms, and marginal distributions. Thus, the analysis in this
section is exclusively concerned with spatial noise. After the multipanel graphs, a table of
key fBm parameters is presented that summarizes the results of 60 selected pixels that are
sampled across the array.
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FBm, WAVELETS, AND ARIMA MODELS

A flicker noise (FN) or 1/f-type process is a time series with a low-frequency spectmr
F (a)) of the form w -a a > 0 in a neighborhood of the origin. When a•=_ I then the time
series exhibits a long-term temporal dependency. The study of such processes is somewhat
paradoxical, because for a = 1 the spectrum is not integrable on the semi-infinite interval
(0,-o). This suggests that the model implies infinite variance and therefore that the
spectrum of the process apparently cannot exist. Recently, Solo has shown that fractional
Brownian motion is a mathematical model for FN that has a mathematically correct
nonintegrable spectrum of the form o -a with I <• a < 2 (Reference 10).

Fractional Brownian motion is an example of a stochastic process. Stochastic process
theory belongs to the "dynamic" part of probability theory and provides a mathematical
theory of random events that occur in time or space. Stochastic processes include models
for the random behavior of stock-market indexes, for the path of a particle in Brownian
motion, for the number of particles emitted by a radioactive source, for ocean clutter fields,
and for the behavior of queues, to name a few common examples. In this report the
fractional Brownian model is proposed as a stochastic process that models the detector
noise field present on infrared staring FPAs. Moreover, if one subscribes to the theory that
1/f noise is the ubiquitous spectrum for detector and semiconductor noise, then fBm may
be expected to be a relevant model for many other devices.

Because the mathematical details are complex and are available to the interested reader
in References 15 and 16, only the highlights of the necessary stochastic concepts are
presented here. In general a stochastic process is a function X (. ,. ) of at least two
variables. One variable describes the observation point t, and the other variable represents
the random event space Q. The space of random variables Q describes a set of random
events that coincide with the observation point. Generally the dependency of the stochastic
process X (,. ) on the space of random variables Q is suppressed, and only the
dependency on the time variable is explicit. The observed time series X(t) represents a
"realization" or "sample path" of the stochastic process X (. ,. ); thus, the value X(t) at
each time value is a random variable that depends on fQ. Generally the dependency on Q is
suppressed.

The average or expected value operation is of course useful in describing the properties
of the stochastic process X(t). Some of the common operations are denoted as follows:
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mean E(X(t)), autocovariance CXX(t)=E(X*(t)X(t)) - E(X(t))E(X(t)), where *

denotes complex conjugate and autocorrelation function Cxx (0/•Cxx (1)* CXX (t

Given a set of discrete samples of a stochastic process, the autocorrelation becomes the
surm for M _• N (Reference 17):

1 N-Imaql
c N x(n)x(n+m), 0<_m<M -1

n=0

If the sample mean is first subtracted from x(n), then Cxx(m) is an estimate of the
autocovariance, and the autocovariance divided by the square root of cu(o) (standard
deviation) is the correlation. Sometimes the term "auto" is omitted when the operational
variables are unambiguous.

The concept of stationary for a time series is analogous to the concept of steady-state
analysis for time-invariant systems. Roughly speaking, a stochastic process is called
stationary if some major property is invariant with respect to a time translation of the time
axis. A stochastic process defined on some space Q and over some time interval T is
stationary if the statistics are not affected by a shift in the time origin. This means that the
statistics of X (t) and X ( t + r ) are the same for all r Ž 0.

A stochastic process defined on some space 0 and over some time interval T is weakly
stationary or covariance stationary if the mean and variance are the same for all time and if
its covariance cov(X(t), X(s)) depends only on the absolute difference I s - t I for every s

and t in T.

If a process is stationary then it is weakly stationary; however, the converse is not true,
because covariance stationary involves only the first two moments. A stochastic process
X(t) defined on some space 0 and over some time interval T has stationary increments if
the probability properties of the process

VXW) = Xt) - X(t - Tr)

depends only on the lag variable T.

Mandelbrot and Van Ness (Reference 18) introduced the class of stochastic processes
called fractional Brownian motion (fBm), which includes ordinary Brownian motion as a
special case. The process is denoted as BH(t) and is a zero-mean nonstationary stochastic
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process that is indexed by a single scale parameter H. Here we assume that B H (0) = 0 for
convenience. The fBm covariance has the following form for 0 < H < 1:

(BH (t ,s)) E[BH (t)BH (s)] = 2-- (1sf21- + jtj21' It-si21 )

When the index H = 1/2, the fBm is ordinary Brownian motion. Wich the covariance
equation, the following inequalities for the covariance equation can be deduced for t > 0
and 0 < H < 1 using the simple chain of inequalities (for H < 1/2 a similar chain can be
deduced).

2 2 2 2H 2 log 2 2_2 2H-og2 2 I
12

> 0 ifH > 1
2
1

COV(BH (t)BH (-t)) = E[-BH (t)BH (-)] = = 0 ffH =

2<0 ,H<

When for H = 1/2 the past and future increments are not correlated, otherwise fBm
exhibits persistence or antipersistence as a function of the index H. For H > 1/2 persistence
rules, which means past increasing or decreasing trends are on the average replicated in the
future. Antipersistence occurs when H < 1/2; in this case past increasing or decreasing
trends are anticyclical in the future. Persistence is the presence of significant dependence
between observations that are a long span apart, whereas a common model for time series
is that observations separated by a long time span are nearly independent. For this reason
fBm is useful for modeling the time series of phenomena that exhibit persistence over a
wide range of time sc-ales. These concepts and an exact expression for the covariance are
found in Reference 19.

It follows from the covariance equation that the variance of fBm satisfies

var(BH (t )) - E[BH (t)BH (t)] = 2 it]2H

and diverges with increasing time.
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Although fBm is not weakly stationary, VBH (t) has stationary increments. Moreover,

this increment process is self-similar for any a > 0 where equality means equality in
distribution (i.e., the statistics of fBm are invariant to time scaling).

H
BH (at) = a BH M

This self-similarity means that a realization of such a process is a fractal curve, and its
fractal dimension D is D = 2 - H (Reference 20).

A specialized definition of fBm Xo(t) is given by the expression found in Ramanthan
and Zxeitouni (Reference 21). For the index H 0 < H < I and the zero-mean, stationary
white Gaussian noise random process w(t) with unit spectral density, the density is

X,(r)- 0~-+5 t ~ w(t drl

where F represents the Gamma function. The proper mathematical definition of the
spectrum of fBm is a delicate matter. To justify fBm as a model for l/f-type processes or
FN means that at low frequencies its spectrum approximates to-a Recently, some
important new results by Flandrin (References 22 and 23), Hosking (Reference 14), Solo
(Reference 10), and Wornell (References 11 and 12) have all made significant progress in
refining the mathematical connections between fBm and its 1/f-type spectrum. Hosking
shows that a family of autoregressive integrated moving average (ARIMA) processes with
fractional differencing has a w -, spectrum. Fiandrin uses a wavelet transform to show how
the spectrum of fBm can be estimated and defined, and Womell uses a wavelet transform to
produce models that approximate a I/f-type spectrum. Solo justifies the estimation of a in
fBm spectra o)a from n discrete time data samples by the slope, of a log-log plot. The plot
is the log of the periodogram versus the log of w. The periodogram is the squared
modulus of the discrete Fourier transform of the data.

To demonstrate that the spectrum of fBm behaves as w Flandrin starts with the
wavelet of fBm, which is defined as

17 t-b
W(b, a) - - B (t)g( dt

9
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Here g is any wavelet with scale parameter a whose Fourier transform 3 satisfies the
admissible condition

tp (g (wo))1 2  d w <00 
(1)

where 3 (g(.)) is the Fourier transform of g(t). If 3 (g(a))) is differentiable, then it

suffices that g be zero mean, i.e., jg (t) dt =0 . for Equation 2 to be satisfied
-00

(References 24 through 26).

As shown by Flandrin, the covariance of W(b,a) is a function only of t s and thus
a

W(t,a) is a weakly stationary stochastic process. In other words, when the nonstationary
process BH (t) is analyzed at a fixed scale, it is weakly stationary! Thus, the Fourier
transform of coy (W (t,a)W(sa)) is well defined. So taking the average of the Fourier
transform 3 of cov (W (t,a)W(t,a)) and integrating over all scales using the normalizing
measure yields

"" I
J 3(cov (W (ta)W(ta))-T = 2H + 1 (2)
0 a

Thus, Flandrin has established a direct connection between the wavelet approach and the
1/f-type process. Another remarkable result about the wavelet transform and fractional
Brownian motion has been established by Flandrin. To explain his result some additional
facts about wavelet transforms are now introduced.

Wavelets are not arbitrary functions, and as a minimum they satisfy the Fourier
condition defined by Equation 1. The wavelets VyQ(t) introduced by Daubechies (Reference,
24) are obtained from the scaling function 0(t), which is the solution of the two scale
difference equation (a dilation equation):

0(t) = I cko(2t - k)

If the coefficient sequence {ck} is finite in length, the wavelet VI(t) has compact support.
The sequence {ck} satisfies the following conditions, which are respectively a normalizing
condition, an orthogonality condition (8,,. is the discrete Dirac delta function), and a
regularity or vanishing moment condition.

10
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C-,=.,/2, YCkCA-2.,= 2 86ou, X(-1)kkwck=O,m=O,1,...,p-I

The wavelet equation is constructed from the sequence {cA} by the quadrature mirror

condition

Wt E(-I)' Cl-* 0(2t -- 1)

The Haar wavelet has compact support is quite simple and is defined as follows:

+1 0< t < V/2

= -1 1/2 < t < 1

0 otherwise

The scaling function is

(+1 0<5t<l
0 t 0otherwise

Although Haar wavelets are simple and compact in the time domain, they are not well

localized in Fourier space where they decay very slowly as w -1. Wavelets that are well

localized in both time and Fourier space have been discovered only recently by Daubechies

(Reference 24). Wavelets that decay as rapidly as o -4 in Fourier space and exponentially in

the time domain are discussed by Mallat (Reference 27). Wavelets that are well localized in
both time and space provide a reasonably sharp decomposition of the signal in both

domains. The localization is limited to bands of nonzero thickness in both t and W space

because of the Fourier or Heisenberg uncertainty principle.

The Hilbert space of measurable square integrable functions is denoted by L2 (R), i.e.,

the space of signals f(t) with finite energy, satisfying

fIf(r)12dt <
-90

The compactly supported Daubechies wavelet forms an orthonormal basis for L2(R),
which means that any function that is a member of L2(R) can be expanded into a wavelet

series instead of a Fourier series. A function that is a member of L2 (R) has "finite power"

and can be expanded into a series using the sequence of wavelets {I-27V/(21t - m)} as the

11
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basis functions. Moreover, for some wavelets all translates and dilates of •/(t) are
mutually orthogonal using the inner product (*).

(,r2"V-,(2, t- 1),42-i V(2jt- m)) = bi, 8.d

The discrete wavelet coefficients that represent the expansion in the scaling functions
are called the approximation coefficients aj (n)

a(n) = (- n)) = 4FJrf:>(t (2jt-n)dt

wheref(t) is any function in L2 (R). The wavelet expansion coefficients are called the detail
coefficients dj(n), because they represent the difference between two successive

approximations and are computed as follows (Reference 25).

di(n) = (f (>,i/-• (2 't- n)) = 2j .. f (OtV(2Jt-n)dt

For any finite integer J, 142" V(2.t - m)U, V2"r(2jt - m)} is an orthonormal basis for

L 2(R). Thus, any functionf(t) in L 2(R) can be written as the infinite series

f(t)= -- ma(mM(2Jt-m)+ m0 r=o

A0X 4 -,/-dj(m),(2Jt-m)
m=-00 j=Jm=-**

This series expansion is called a multiresolution decomposition off(t). The decomposition
is multiresolution, because the approximation coefficients and the detail coefficients are
computed at successively different scales indexed by j. Note the different role played by the
approximation coefficients and the detail coefficients in the expansion. Of course, for any
discrete sequence {xo,'"*,x,-i} the discrete wavelet transform is actually computed. A
detailed and insightful discussion of the discrete wavelet transform is found in the report by
Shensa (Reference 28).

The diagram in Figure 1 illustrates the standard orthonormal fast wavelet transform.
The solid vertical line represents the division between the analysis (decomposition) and
synthesis (reconstruction) parts of the transform. The input vector x represents a discrete
data sequence that is convolved on the parallel branches via the two discrete filters g and h.
The coefficients for the two filters are obtained from the wavelet and scaling function,

12
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respectively. The arrow $ 2 means drop every second sample. The 2 is the dilation factor
for use with wavelets with one octave bandwidth. The output from the top branch
represents the detail coefficients dj(n), and the output from the bottom branch represents the
approximation coefficients aj(n). If the wavelet transform uses orthogonal wavelets, then

either or both sets of output coefficients may be used as the new input vector x. When both
dj(n) and a/n) are used as separate and parallel inputs for the analysis stage, then a wavelet
packet hierarchical or tree-structured signal decomposition is produced. The synthesis is

also hierarchical in nature and reconstructs a final signal x by using the detail coefficients
dj(n) on the top branch and the approximation coefficients aj(n) on the bottom branch. TheA A

T 2 arrow means insert one zero between samples. Generally the filters g and h are related
to g and h, but as long as they represent a valid orthogonal wavelet scaling function pair the
synthesis branch can use a different wavelet. The diagram in Figure 1 represents a fast
dyadic (or two-band) wavelet transform for doing multiresolution processing as introduced
by Mallat (Reference 28) and Daubechies (Reference 24). Recently, Zou and Tewfik
(Reference 29) have constructed M-band generalizations that have a similar block diagram
with multiple parallel branches for the additional M-l wavelet filters, and the 4-2 block is
replaced with 1,. M. Cohen and Daubechies (Reference 30) have shown how to construct
rational band orthogonal wavelet bases with 1/2-octave or even smaller bandwidth
wavelets.

xA

ANALYSIS SYNTHESIS

FIGURE 1. Fast Wavelet Transform Block Diagram.

Flandrin has shown that the detail coefficients have stationary properties after a wavelet
transform is applied to fBm (Reference 23)! Tewfik and Kim have shown that the
vanishing moment property of the Daubechies wavelets controls the correlation at a given
scale and between scales (Reference 31). In integral terms the wavelet V(t) has M
vanishing moments if

13
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t'"Vf(t)dt =0 m=0,1,-..,M-l forM >0

Not all wavelets have compact support, nor are they all orthonormal functions. In fact,
Mallat and Zhong have shown that multiresolution edge detection wavelets are not
orthogonal (Reference 32). All of these topics and formulas for many other interesting
wavelets can be found in the excellent monograph by Daubechies (Reference 25).

Hosking models 1/f-type processes by starting with an ARIMA(0,d,0) process with1 c2d
Idl < - for the w'o spectrum and then extending it to a ARIMA(p,d,q) process

2
(Reference 33). When d is an integer, then ARIMA(p,d,q) denotes the usual ARIMA
process with p coMfficients for the autoregressive process, dth integral differences, and q
coefficients for the moving average process. To summarize the important properties of the
ARIMA(O,d,O) process model for fBm, let us define the differencing operator V, which,
when applied to a discrete sequence (discrete time signal) x(n), yields the derived sequence

Vx(n) = (1- B)x(n) = x(n) - x(n- 1)

where B is the backward shift operator Bx(n) = x(n-1). Fractional differencing is obtained
by repeated applications of B d times, where d is a real number. The operation is formally
defined by the binomial expansion of the operator V':

V'x(n)-(1- B)dx(n)= kJI)(-B)kx(n)
k 1 (3)

1 1
=x(n) - dx(n -1) - - d(1- d)x(n - 2) - 6 d(l- d)(2- d)x(n - 3) .

1

For Idl < - the infinite series converges in mean square and so the operation V' is well
2

defined. The ARIMA(O,d,0) is the discrete time sequence x(n) that is represented by the
following equation:

Vdx(n) = e(n)

where the operator V1 is defined in Equation 3 and the white-noise Gaussian input e(n) is a
sequence of independent and identically distributed random zero-mean variables satisfying
the equations

E(e(n)) = 0

14
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E(e(n)e(j)) = for n=j

10 for nej

The Hosking ARIMA(0,d,0) model is discrete fractional Gaussian noise (fGn). Discrete
fBm is then generated by adding up the increments. The ARIMA(0, - ,0) process is fGn

2with a 1/f spectrum, while the ARIMA(0,0,0) process is fGn with constant spectral
density. It has some very interesting properties that qualify it as a candidate for fBm. If

Ix(n) is an ARIMA(0,d,0) process for M < -, then x(n) is stationary with 1/f-type

spectral density:

S(O)) a spectrum(o)) = (2sinI0))- 2 d 0 < 0o)! <f S(CO) ,- -2d as ) -4 0
2

The correlation function of x(n) is as k -4

pk d(1 +d)...(k -1 +d) F(l-d)ku1 (4)
(1 -d)(2 -d).**(k -d) F(d)

where r represents the Gamma function. The partial correlations of x(n) are

CA = Yk -d) k = 1,2,3,...

For the d < 0 ARIMA(0,d,0) process, the correlation decays hyperbolically as the lag
increases, as opposed to exponential decay of short-term memory processes that are typical
of autoregressive moving average (ARMA) (p,q) processes, which are now defined.

In the digital signal processing literature, ARMA processes are simply time-invariant
constant coefficient difference equations. An autoregressive process (AR(p)) is a linear
difference equation with constant coefficients driven by white noise. The autoregressive
process is defined as a real random sequence X(n) with real coefficients Vpj and input
e(n):

X(n) = VpX(n - i) + e(n) VPP * 0
i-Il

The AR(1) model is the first-order difference equation
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X(n)= V/,jX(n- 1) + e(n)

which is stationary and has a finite variance when < 1. Moreover, the difference

equation is stable and has an autocorrelation function that decays exponentially:

pm cXx(m)PM = = X (,1

A comparison of the two autocorrelation functions for the AR(1) and the
ARIMA(O,d,O) processes clearly reveals the difference between persistence and short
memory processes. The autocorrelation coefficients for the AR(l) decay exponentially and
are positive or oscillate in sign as m -+ -*, whereas the coefficients in Equation 4 for the
ARIMA(O,d,O) process decay hyperbolically as k - *o.

A moving average process (MA(q)) is a linear difference equation with constant
coefficients driven by white noise. It is defined as a real random sequence X(n) with real
coefficients 0q.j and white-noise input e(n):

X(n) = tOq,ie(n-i)+ e(n) where tOq,q * 0

The ARIMA(Od,O) process has three free parameters: the fractional difference d, the
mean, and the variance of the process. The ARIMA(p,0,q) processes have the p + q
coefficients as free parameters. Thus, the Hosking ARIMA(p,d,q) process, with p
coefficients for the autoregressive process, fractional differences d, and q coefficients for
the moving average process, is a combination of the above models. The model has the
ARIMA(p,O,q) process to account for the short-term properties and the ARIMA(0,d,0)
process to account for the long-term persistent behavior of the observed time series. An
algorithm for simulating both the ARIMA(p,d,q) and ARIMA(0,d,0) processes is defined
by Hosking (Reference 33) and is used in this report to model these processes.

The ARIMA(p,d,q) processes satisfy the following equation with mean 'i and fractional
difference operator Vd of order d. In this equation, e(n) is the white-noise sequence
defined for the ARIMA(0,d0) process polynomial operators defined for the operator B.

*(B)Vd(y(n) -p) = 0 (B)e(n)

O(B)--OB .... 1OpBq
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In order to explain the connection between the range of the parameter H in Equation 2 and
the d in the fGn ARIMA(0,d,0) model, we need to know the relationship between the
spectrum S,(.)(w) of the image sequence x(n) and the spectrum S,(•)(0) of the image

sequence y(n)

y(n)=Vdx(n)

that is obtained by applying the fractional differencing operator Vd to x(n) d times. Based
on filtering considerations (Reference 34), the relationship between the two spectrums can
be formally written as

Sy(n)(to)=llzV2 dVdx(n)() W *0

where z=e-'. This transfer function relationship follows when we note that the z-
transform for (1-V) is 1-z. When the sequence is differenced once (i.e., d= 1), the

spectrum is multiplied by II-zj2 = 2(1 - cos w). Next we note that (1- cos o) = 2 (sin )2,

and we have in a neighborhood of the origin

Sy(n)(o)=(-1)S 1 (0) w) *
0) Vlx(n)

The equation H = d + 1 combined with Equation 5 implies that the fGn ARIMA(O,d,0)
2

model with power spectrum of the form in a neighborhood of the origin produces a

power spectrum for the fBm x(n) of the form 2H+1-. Thus, d in the interval 0 < d < I
1 1 2

yields -1 < H < 1, while the interval -2 S d < 0 yields 0 < H < 1. This relationship
2 2 2

implies that in the Brownian increment process with persistent behavior, as discussed in
1

Reference 19, 0 < d < -1 produces a spectrum for the fBm sample path of the form w-,-1 1
2 1

in a neighborhood of the origin 2 < 2H + 1 < 3, while antipersistent behavior -. I < d <0
2

yields 1 < 2H + 1 < 2. Thus, the Hosking model provides a general approach to the discrete
1/f-type processes with a simple and logical relation between the parameters. For
antipersistent behavior, Solo develops the connection between FN and fBm by providing a
firmn theoretical foundation for the proper interpretation of the power spectrum (Reference
10). A paper by Haslett and Raftery (Reference 35) is a comprehensive study of time series
with persistent behavior.
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One of the fascinating historical aspects of fBm is the Hurst rescaled range statistic. In
fact, it is the reason that Mandelbrot used H for the exponent in the power spectrum of the
sample path of BH(t) (Reference 20). The Hurst coefficient and the d in Hosking's

ARIMA(0,d,0) process are related by the equation H= d + 1/2. However, the power
1

spectrum I-- for the fGn ARIMA(0,d,0) process applies to the increments

VBH(t) = BH(t ) - BH(t- 1). The distinction between estimates that is applied to the

sample path of a time series (e.g.,BH(t)) or to the increments of the time series

(e.g.,VBH(t)) is important, and one must be alert to these alternatives when consulting the

literature in this field.

To compute the Hurst coefficient, a statistic for the range R of a discrete data sequence
is defined. An explicit expression for R is

R(r) = max X(t, t) - min X(t, r)

where t is a sampled value of the time series X(t) and r is the time span considered. To
devise a statistic that could discriminate between long- and short-term time scales, Hurst
uses the dimensionless ratio R/S where S is the estimated standard deviation defined as
follows for the time series x(t):

= ) S 2rt -
W - -- ~ t - ,x,,.

Finally the coefficient H is found using a log-log plot from the empirical relation:

R H

Schroeder reports that the Hurst coefficient for the Nile river level minima taken
between the years 622 B.C. and 1409 B.C. has H = 0.9, or a spectrum of &)-2-.

(Reference 9). The equation H = d + 0.5 yields d = 0.4 for the corresponding Hosking
ARIMA(O,d,0 ) process. The Hurst coefficient thus quantifies the legendary cycles of the
Nile's annual floods.
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FBm SIMULATION AND EXAMPLES

In this section the ARIMA(0,d,0) algorithm of Hosking is used to simulate fBm with
I Ispectrum z--7 and fGn with spectrum W-2. A number of different statistics for

estimating the parameters of fBm are illustrated. These statistics include the Hurst
coefficient, the wavelet transform, the periodogram, and some new iterative algorithms by
Deriche and Tewftk (Reference 36). The new iterative algorithms are used to estimate the
parameters in the ARIMA(0,d,O) models. Throughout this section the distinction between
the sample path BH(t)of fBm and the increments VBH(t) will be observed.

An algorithm to simulate ARIMA(pd,q) models (p and q non-negative integers,1
Idl < ) is derived by Hosking (Reference 14). When p = q = 0, the algorithm simulates

the sample increments {X o,.'.,X,-' of VBH(t) of size n with a normal marginal

distribution and correlation function pA. The sample path BH(r) is the sum over VBH(t).

For completeness the algorithm for the general ARIMA(0,d,0) model is reproduced here
and defined as follows:

1. Generate the starting value X0 from a normal or Gaussian distribution N(0, CFo)

with mean zero hnd variance ao ( ao=var({Xo-1 ,._1})).

2. For t=l, ... ,n-l, define the recursive equations for , j=l,...,t

09=diYt-d

0#= z,-.j- t, J = 1,a j ,t - 1

Calculate m,= YA#x,-j and v,=(1- 02)v,-,. Generate the next x, fromN(m,,v,).
j=I

The muitipanel graphics in this report were generated using S-PLUS®1, which was
also a valuable source for many of the basic statistical algorithms utilized in the preparation
of this report.

I S.PLUSO is a registered trademark of Statistical Sciences, Inc., Seattle, Washington.
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All if the sample paths BH(t) or realizations plotted in Figures 2 and 3 for fBMn start

with n = 3,000 sampie increments {Xo,"-,,X.-1 for VBH(t). The sample paths BH( ) or

realizations are generated by the Hosking ARIMA(0,d,0) model (Reference 33). In Figure
2 three examples of simulated fBm are illustrated. The sample paths are illustrated in panels
a, c, and e with corresponding d values of 0.4, 0, and -0.4. Each fBm realization has a
Gaussian marginal distribution with zero mean and unit variance. In Figure 14 the
Gaussian shape of the marginal distibutions will be examined by the use of quantile-
quantile (Q-Q) plots (Reference 37), and in Figure 15 the shape of the marginal
distributions will be estimated by histograms and by empirical density approximation.
Panels b, d, and f are the corresponding periodograms, which are log-log plots of the
periodogram X( co) versus the log of the frequency variable a. The periodogram X( w) is

the modulus of the Fourier transform 3(x(n)) of the discrete sequence {X0,' , XNV-11

X(1w) =(1)3(x(n)).1(x(n))"

where N is the total number of samples and ( )* is the complex conjugate. The index H can

be estimated from the slope of the dotted line. It is the least squares fit to the lower
frequencies on the log-log plot of the periodogram.

Tables 1 and 2 compare the performance of all of the statistics that have been defined in

this report. These include the log-log plots whose slopes are used to estimate H . The one

new estimate for i is by Raftery (Reference 35) and it is obtained by using his Fortran
program called fracdiff2.

These tabulated results are based on a limited sample and are meant to suggest only the
comparative variability among the different statistics. All of the statistics in the first four
rows of Table 1 are based on samples that used the same value of d, namely, d = 0.4 or
equivalently H = 0.9. The statistics in the last row of Table 1 are based on samples that
used d = -0.4 or equivalently H = 0.1. The column headings Hurst, Wavelet, Spectrum,
and Variance are defined by matching them with Table 2. All of the former statistics are

based on sample paths BH, and fracdiff, which estimates d is based on the increments
V BH. The Daubechies wavelet Di0 was used exclusively in the wavelet estimates. When
two estimates are given in the table, it is because the statistics are based on linear fits
obtained by the S-PLUS routines least squares fit, (Ism) and least median sq. .r r

regression (Ims).

2 fracdiff is a function in StatLib obtainable via an anonymous FTP.
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TABLE 1. Comparative Statistics for the Estimation of the Index H.

No. of fracdiff Hurst Wavelet Spectrum Variance
samples d (d=0.4) if (H--0.9) fi (H-=0.9) i (11=--0.9) if (H1_0.9)

1000 0.412429 0.81981 0. 8 5 0106(ls) 0.897877 0.6638(ls)
0.86927(1m) 0.7184(0m)

2000 0.422846 0.8529 0.849(ls) 0.9078(1s) 0.7723(ls)
0.939(lm) 0.7881 (Im)

3000 0.40855 0.82313 0.8354(Is) 0.83944 0.71232(0s)
0.8981 (im) 0.79531 (0m)

5000 0.423665 0.92279 0.7964(ls) 0.84638 0.8550(ls)
0.8985(lm) 0.8883(Im)

if (H=0.1) if (H--0.1) H (H=0.1) Hi (H=0.1)

5000 --- 0.2652(ls) 0.07068(ls) 0.0811(ls) 0.1347(ls)
_.... 0.2749(lm) 0.07212(lm) 0.0794(lm) 0.1919(lm)

As expected, the estimates for H obtained by fracdiff are the most accurate, because
the program is based on more comprehensive statistical theories. Unfortunately, the version
used for this study could only be used estimate d for the persistent case (i.e., 0 < d < 1/2).
None of the other statistics did an outstanding ob. They all give rough estimates, however,
after rounding to one significant figure. H is bounded in the interval defined by the
maximum and minimum among the three statistics, Huist, wavelet, and spectrum.

Table 2 represents a small sample study of the effects of white noise on the various
statistics. These are all estimated from the sample path of an ARIMA(0,d,0) model plus
additive white Gaussian noise N(0,4).

Table 2 clearly demonstrates that the statistics are sensitive to the white noise; however,
this is to be expected, because their robustness has not been assessed. Based on this small
sample study, it appears that Spectrum is the most reliable estimator. This is partially based
on the fact that an inspection of the periodogram can be made before a frequency band for
the least squares fit is selected. The inspection procedure avoids the white-noise knee in the
periodogram that is clearly evident by comparing Figures 2 and 13. Clearly, a more
accurate estimator like fracdiff is needed. The method of Wornell (Reference 12), which
uses the maximum likelihood algorithm, will undoubtedly provide better estimates for the
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fBm parameters H and er2 and for the corrupting white-noise variance oiý than the
statistics used in this exploratory study.

TABLE 2. Comparative Statistics for the Estimation of the Index H.

No. of Hurst Wavelet Spectrum Variance
samples H (-1=0.9) H. (H--0.9) h (H=0.9) if (H=0.9)

3000 0.72244(ls) 0.6878534 0.92753(is) 5925(ls)
0.65170(lm) 0. i7685(1m) 0.63523(lm)

5000 0.67198(ls) 0.75177(ls) 0.91378(ls) 0.62605(ls)
0.72429(lm) 0.82517(lm) 0.66926(lm) 0.67901 (lm)
Hl (H--10.1) /H (H1=0.1) Hl (H=0.1) H (H=0.1)

3000 0.13528(ls) 0.28619(ls) 0.03339(ls) 0.05932(ls)
0.194905(lm) 0.25856(lm) 0.03987(lm) 0.048578 am)

5000 0.1745(lm) 0.55200(ls) 0.0967(Is) 0.04815(ls)
_..............0.1730(ls) 0.7107(lm) 0.0568(lm) 0.5684(lm)

In Figure 3 the identical BH (t) realizations from Figure 2 are plotted in panels a, c, and

e. Panels b, d, and f in Figure 3 are the corresponding correlation. Note how panels b, d,
and f all clearly exhibit slow decay with hyperbolic shape and positive correlation
coefficients that distinguish persistent (d > 0) and antipersistent (d < 0) long-term behavior.
The mathematical details can be found in Reference 33 and in Equation 4. These
correlations indicate a significant dependence between observations well separated in time.
This behavior is in contrast with observations that are nearly independent over long time
spans.

In Figure 4 panels b, d, and f are the corresponding correlation, for the
increments VBH (t) that are plotted in panels a, c, and e. Even in the increments the

hyperbolic shape of the correlation function is evident in panel b. As expected, a significant
change in correlation has occurred for the fGn ARIMA(0,d,0) model for d = 0 and for d =
-0.4, and it suggests a significant decorr',lation.

Bnth W-mir's and Daubechies' scaling functions and wavelets are plotted in Figure 5.

Panels a, c, and e contain the scaling functions; the wavelets are shown in the other panels.
Panels a and b are the Haar wavelets, and the other panels contain the Daubechies wavelets.
They are denoted D4 and Dio, and their values are tabulated in Daubechies' seminal paper
(Reference 24). The subscripts denote the number of vanishing moments; two times it is
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the minimal number of coefficients that are necessary to implement the respective
Daubechies wavelets via the discrete wavelet transform. Incidentally, Dý is the Haar
wavelet.

Figures 6, 7, 8, and 9 illustrate the different values of the wavelet transform operating
on the BH(r) realizations. The parameter d in the ARIMA(0,d,O) model equals 0.4 in

Figures 6 and 8 and -0.4 in Figures 7 and 9. Panels b, d, and f in each of these figures are
plots of the detail coefficients d,(n) j = 1,2,3 for the corresponding wavelet transform. In

each figure panel c is the correlation evaluated using the third scale detail coefficients
d 3(n). Panel c in each of these figures indicates that the wavelet transform does very well
in decorrelating or whitening the fBm process, but it is clearly dependent on the sign of the
parameter d. The ability of wavelets to favorably transform the IBm is the basis for the
filtering theory presented by Chou (Reference 38). The reason for this fortuitous
transformation is given by Flandrin (Reference 23) and Tewfik and Kim (Reference 31).

The decay of the correlation coefficients is directly controlled by the vanishing moment
properties of the wavelet.

"Jt'aV(t)dt=O m =0,1,-.-,M- 1 forM >0

Panel e in each figure is a plot of the approximation coefficients a,(n) at the scale j = 3.

The number of vanishing moments for D4 and Dio are 4 and 10.

As a proposed model for the detector noise on staring arrays, IBm has three parameters
(the mean p, the variance or, and the Hurst coefficient H) that must be estimated directly
from measurements. Of the three parameters, the index H is the most difficult to estimate

and is clearly the most important. In Figures 10 and 11 the index or Hurst coefficient H is

estimated using the rescaled range and the wavelet transform. In panels a, c, and e, 1H is
estimated from the slope on the log-log plot. In all panels a, c, and e, the solid line connects
the values of the variance at the respective scales ranging from I to 6 or 7, and the dotted
lines are the least squares fit. The vertical axis is the variance computed from wavelet detail
coefficients and the horizontal axis is the scale. The estimate depends on the equation
presented by Mallat (Reference 27).

Iog 2(var(dj(n)) = (2H)j + constant

This procedure is derived by Flandrin (Reference 22) and is based on the power law
behavior for the wavelet coefficients of fBm, namely,
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var(dj(n)) = (2Y 2 ) Vp(H)(2 i)2 H+I

where V,(H) is a constant that depends on the wavelet and the index H.

The simulated value of d is 0.4, which yields H = 0.8 based on the
equation H = d + 1/2.

In Figures 10 and 11, panels b, d, and f are the log-log plot containing the rescaled

range statistic V versus the log of the block size parameter r. H is obtained by

estimating the slope. In the previous section the justification for the use of the rescaled

range R/S as a statistic is given (i.e., RY ,- [a). Although a careful asymptotic analysis of

these two statistics for R is apparently unavailable in the literature, the variability of these
estimates as a function of sample size is clearly evident. Based on these studies a sample
size of 3,000 or more points is clearly desirable to help stabilize the estimates. The sample
size requirement is not an inordinate burden for infrared cameras that sample at a 30 (60)
Hertz rate, because 3,000 samples can be obtained in 100 (50) seconds-a reasonable
amount of time for many applications! However, more efficient statistical estimates with
confidence intervals are clearly needed.

The wavelet estimates for the index k in Figures 10 and 11 should be compared with
the wavelet estimates in Figure 12. In all panels, the solid line connects the values of the
variance at the respective scales ranging from 1 to 7, and the dotted lines are the least
squares fit. Panels c, d, e, and f use the single wavelet Dxc at all scales. The inflection
point located at scale 2 in panels c, d, e, and f is also observed in the plots presented by
Flandrin (Reference 22). He also discusses the rationale for this bend; the interested reader
is referred to his paper. Panels b, d, and f use each member of the Daubechies wavelet
family, Dio, D4, and D2 in sequential order for two scales. The reduction in variability
over the D1 0 only transforms is clearly evident. Again, the rational for the reduction in
variability is discussed by Tewfik and Kim (Reference 31). As the scales progress from
fine to coarse the support of the wavelets needs to be adjusted to match the decrease in
sample size at each scale.

Because any measurement obtained from an infrared camera detector will include both
the I/f-type noise depending on the detector material properties and other measurement-
induced noise (e.g., analog-to-digital conversion, quantizing effects), it is reasonable to
expect the periodogram to be corrupted with these noises. If the a priori knowledge of the
spectral density of the measurement noise is unknown, then the problem becomes one of
jointly measuring signal and noise. Wornell does address the problem by postulating an
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additive model of a 1/f signal corrupted by stationary white Gaussian noise (Reference 12).
In Figure 13, the simulated additive model sample paths are illustrated in panels a and c
with corresponding d values of 0.4 and -0.4. The noise variance is equal to 4 in panel a and
0.0036 in panel c. Panels a, b, c, and d in Figure 12 should be compared with the panels a,
b, e, and f in Figure 2. The main effect of the noise is to alter the rolloff rate in the high-
frequency interval in the periodograam. The accumulated variance obtained from the sample
paths BH(t) in panels a and c is plotted in panels e and f. The increase in the variance is

another characteristic of persistent and antipersistent behavior.

Besides the index H, the other two parameters in the fractional Brownian model are the
mean u and the variance a. These parameters will completely characterize fBm provided
the marginal distributions of the increments VBH (t) are Gaussian.

While the marginal distributions of the measured Amber camera data will probably
never exactly match this standard, any respectable model idt.,tification procedure should
define the degree of approximation.

Fortunately some graphical techniques exist to examine the marginal distributions.
Figures 14 and 15 exhibit three methods found in S-PLUS. In Figure 14 the first four
panels contain Q-Q plots. A Q-Q plot can be used to compare the degree of agreement
between two empirical distributions or can be used to compare the empirical quantiles with
the quantiles from an ideal distribution. A Q-Q plot is a plot of the ordered data y, from the
sample {xo,**',XN-} versus the normal quantiles yp,=O-1(p,), where

p, = Ui- )/2 )/N, i = 1,2,- .. ,N, and D-1 is the inverse of the standard normal distribution
(Reference 37). If the shape of the marginal distributions for the increments VBH(t) is

approximately normal, even in the tails, then the empirical quantile sample values will
approximate the normal line. The Q-Q plots for the increments in panels a and c are linear
even in the tails, so the Gaussian hypothesis for the marginal distribution as simulated by
the Hosking ARIMA(0,d,0) model is reasonable. Clearly, the Q-Q plots for the sample
paths are quite different with the persistent model exhibiting a radical departure from
normality.

Panels e and f illustrate how the variance influences the range or excursion of the
sample path:

R(r) = max X(t, r) - min X(t, T)
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The Hosking fGn ARIMA(0,d0) model does not constrain the variance to any particular
value in the Gaussian generator, and for modeling purposes it is useful to have the variance
as an extra degree of freedom.

Figure 15 shows the histograms and density estimates for the increments and sample
paths. The agreement among the three estimates of distribution shape is quite good. Of
course, any of these exploratory tools that are used to measure the shape are not a substitute
for other tests for normality.

Figures 16 and 17, respectively, exhibit correlation functions between two different
realizations of fBm and their associated increments. In Figure 16 panels c and f are the
autocorrelations for the corresponding fBm sample paths in panels a and b. The positive
coefficients and slow decay of the autocorrelation functions is one of the distinctive
characteristics of processes with a spectral density like ARIMA(0,d,0) d < 0. Most
traditional time-series analysis has been concerned with the property that observations
separated by a Ion.; time span are nearly independent. These types of processes have
correlation functioris that are typically like those in Figure 17, panels c and d. Panels d and
e are th' coc-osponding cross correlations (with negative and positive lags) between the
fBn in panels a and b. Panels d and e basically illustrate a small but persistent degree of
long-term negative correlation, which is consistent with the apparent degree of cyclical
behavior in the two sample pathE. By contrast the cross-correlation plots for the increments
indicate a total lack of correlation between the increments.

Figure 18 illustrates the analysis and synthesis processing versatility of the wavelet
transform (see Figure 1). Panel a is the original signal fBm sample derived from a Hosking
ARIMA(O,-0.4,O) model; panels b, d, and fare the detail coefficients di (n) j = 1,2,3; and
panels c and e are the approximation coefficients d,(n) j = 2,3. Panels g and h represent

the resulting signal after wavelet synthesis, except that only selected scales from either the
approximation coefficients a,(n) or the detail coefficients di(n) are used. Panel g is the
signal that results from reconstructing from scale e; i.e., only the coefficients dj(n) j = 3

are used for synthesis. Note how the density of noise in panel g is reduced from that in
panel a. Panel h is the signal that results from reconstructing from scales b, d, and f; i.e.,
only the coefficients d,(n) j = 1,2,3, are used for synthesis. As expected, now the

reconstructed signal h only has noise-the low-frequency drift has been filtered out of the
signal.
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AMBER CAMERA TEST RESULTS

In this section some pixel data taken from an Amber 3 AE 4128 imaging system are
tested to determine whether the fBm hypothesis is reasonable. The Amber camera is a 128
by 128 indium antiomide (InSb) staring array that operates at midwave infrared
wavelengths of 3 to 5.5/pm. The imaging system includes an FPA, a transimpedance
amplifier (TIA), a pour-filled dewar, an 0 lens, and an electronics unit for camera control.

Before the test the vacuum was pumped down to 10' torr. The camera lens was
located about 1 inch from the blackbody, which was set at a constant temperature of 20'C
during the measurements. The blackbody has a 4- by 4-inch surface area and is int/ rfaced
to an EO Industries blackbody temperature controller. The blackbody and temperature
controller are accurate to _+0.01°C. Two sets of measurements were conducted. Each
distinct set was quantized to 12 bits of sampled data from the array. The first measurements
consisted of two different sets of image sequences, namely, a burst set that contained
1,024 images with a sampling period of 1.4649 seconds, and long-term measurement set
that contained 800 images with a sampling period of 60.6 seconds. The burst data was
taken prior to each extended measurement. The dewar was filled with liquid nitrogen at the
beginning of each test and was not refilled during the 13.5 hours of each test. This
extended period without any refill is within the Amber guidelines for camera operation;
however, saturation was clearly evident well beyond the 800 images retained in the long-
term measurements database.

The second set of measurements required modifying the digital memory buffers so that
the transfer rate from the array elements to the storage memory was commensurate with the
maximum sampling rate of the array, which is 54 Hertz. Because the original memory
buffers that were used for the data transfer from the array were designed for another task,
to achieve the 54 Hertz rate a compromise solution was designed by Douglas Lamb of the
Advanced Signal Processing Branch at NAWCWPNS China Lake. He was able to sample
a 16- by 16-element subarray at the maximum rate. This data set, called the 54 Hertz set, is
discussed in the final paragraphs of this section.

Table 3 lists the key camera parameter settings that were used during all of the tests.

In both Figures 19 and 20, the panels labeled "camera data" are the time-sampled output
from an individual pixel on the Amber camera array. In each of these plots, the horizontal
axis represents the number of samples, and the vertical axis is a gray scale.

3 AMBER Engineering, Inc., 5756 Thomwood Drive, Goleta, California, 93117-3802.
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TABLE 3. Camera Parameter Settings.

Camera parameters Setting
TIA gain 3
TIA offset 0
Integration time 32
Frame rate 54
Global gain 1
Global offset 0

The purpose of the panel plots in Figure 19 is to illustrate that the estimate of the Hurst
index H can be extremely sensitive to the number of samples. Panel a is a fBm with a
Hosking ARIMA(0,0.3,0) model, and panel b is the periodogram with the dotted line
representing least squares fit for the estimate of H. The estimate is in good agreement with
the proper value. Panel c is a segment of the fBm in panel a that is selected for its bow,
which is a good approximation to the burst data. Panels d and f are the associated
periodograms, both of which give a value for the index H that differs from the value in
panel b. Of course, the estimate for H in panel d is clearly wrong! By way of comparison
the fracdiff program with the panel c sample was able to estimate H correctly. Three
lessons are illustrated in Figure 19. First, sample size is important. Second, the
periodogram may not always be a reliable estimator of the index h, especially if the
sampled data set is too small. Third, the noise does influence the high-frequency values of
the periodogram in a manner similar to that predicted in Figure 13. Unfortunately, no clear
guidelines exist about these matters, other than basic Fourier estimates for the maximum
and minimum frequency band that must be measured to obtain the best estimate of the index
Hi. Obviously, the lowest frequencyfmin is determined by l/T where T is the total sample
time, so a larger value of T means a lower frequency. The frst two entries in Table 4 are
the parameters for the sampled data sets, and the last two entries are the minimum and
maximum frequencies in the measured frequency band. Here At is the sampling interval.
The first two rows represent the burst and long-term data sets, respectively, while the last
three rows are the parametric values. A 60-Hertz sampling rate is assumed.

TABLE 4. Fourier Sampling Parameters.

Number of samples At, seconds fmin , Hertz fmax, Hertz
1024 1.4649 0.00066664 0.68264
800 60.6 0.00002062706 0.0165

3,600 0.016667 0.016667 60
7,200 0.016667 0.008333 60

360,0000 0.016667 0.000167 60
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In Figure 20, the variability of the statistic H due to data smoothing is illustrated. These
changes can be anticipated by consulting Figure 2.

In Figure 21 panels a, c, and e are plots of 640 time-sampled values from pixels (10,9),
(10,10), and (10,11), respectively, taken from the long-term measurements. Panels b, d,

and f are the periodograms, and the index Hi is the slope of the dotted line obtained by a
least squares fit. The agreement among the indices is consistent with the hypothesis that the

spatial noise on the Amber camera is fBm with a mean power law of /1.72 . Table 5

includes estimates of the index i taken over a larger sample of pixels.

In Figure 22 panels a, c, and e am plots of 640 time-sampled values from pixels (10,9),
(10,10), and (10,11), respectively, taken from the long-term measurements.

Panels b, d, and f are the Q-Q plots for the increments. The spacing of the bars on in
the Q-Q plots is caused partially by the coarseness of the quantization for the measured
interval (i.e., the 12-bit quantization is spread over a larger range). Clearly the increments
are well approximated by the Gaussian shape. The corresponding histograms and density
estimates are shown in Figure 23 and clearly confirm the quantile plots prediction.

Panels a and c in Figure 24 are plots of 640 time-sampled values from pixel (10,10)
taken from the long-term measurements. The other panels show the reasonable agreement

among the Hurst, wavelet, and periodogram estimates for the index Hi. The new addition
is panel f, which is a plot of the correlation function for the increments. The Hosking fGn
ARIMA(0,0.d,0) model predicts that the correlation coefficients will all be positive for d >
0 and for d < 0, and the coefficient will be negative and the follow the positive axis as a
function of the lag. The Amber camera correlation is consistent with the antipersistent case,
namely (d < 0) and should be compared with Figure 17, panels e and f. The agreement
between the simulated fBm and the Amber camera in this case is excellent.

Figures 25 and 26 exhibit, respectively, the correlation functions between pixels
(10,10) and (10,11) and their associated increments. In Figure 25 panels a and f are the
autocorrelations for the spatial noise in panels c and b. The positive coefficients and slow
decay of the autocorrelation functions is one of the distinctive characteristics of processes
that the fBm simulation clearly exhibited in Figures 3 and 16. Thus, the observations
separated by a long time span are more persistent and are clearly not negligible. Time series
with the slow decay exhibit cycles and changes of level of all orders of magnitude-a
description that matches both the Amber camera data and the fBm. Panels d and e, the
corresponding cross correlations between panels a and b, illustrate a persistent degree of
long-term positive correlation, which is consistent with the apparent degree of cyclical
behavior in the two sample paths.
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TABLE 5. Amber Camera Statistics.
Pixel sample path statistics Increments statistics

Min Max Mean Var Mtn Max Var 11
(9,9) 983 1017 998 44-43 -9 a 8.02 0 3556

(9.10) 823 163 843 71.44 -13 14 24.65 0.3324
(9,11) 942 978 959 52.45 -8 10 1.12 0 3711
(10,9) 959 992 973 47.32 .9 8 8 .06 0.3594

(10,10) 144 178 859 45.99 .10 I 1 9.9a 0 3579
(10.11) 806 841 819 51-18 .9 9 8.31 0 4035
(11,9) 1104 1141 1119 52.12 -9 7 8a59 0.3723
(11,10) 356 190 869 47.11 . 8 10 9.94 0.3791
(11.11) 948 983 965 50.36 -10 10 9.62 0.3612
(20.21) 889 922 904 46.23 -9 10 7,94 0.3779
(21,20) 733 775 730 52.68 -13 18 17 02 0 2975
(21,21) 913 843 827 44.88 .9 9 9.17 0 332
(21,22) 117 153 131 48155 -10 9 8.96 0.4241
(22,21) 910 943 924 49.33 -9 9 8.42 04252
(32.32) 912 946 923 50.01 -1 1 I I 9.52 0 3994

(20.64) 899 935 915 50.35 . 8 9 8.23 0 371
(21,63) 817 910 893 45.05 .9 10 10.56 0 3749
(21.64) 931 973 954 55.45 -10 t0 9 34 0.3535
(21,65) 1049 1015 1064 54.38 -10 10 11.03 0.3555
(22.64) 850 890 868 51.12 -10 8 9.33 0.3722
(32,64) 909 950 928 56.93 -13 1 3 16.38 0.3477

(10,110) 496 536 511 51.33 -9 1 I 11.17 0,3897
(20.105) 657 693 671 43.01 -11 9 10.12 0.3478
(21,104) 577 610 593 42.93 -11 1 1 10.91 0.3432
(21,105) 602 637 615 39.07 .9 9 8.29 0.3263
(21,106) 419 456 436 4".35 -10 9 9.32 03355
(22,105) 673 708 686 47.03 -8 7 7.8 0.3355
(32.95) 944 979 959 50.13 -i1 12 11.75 0.3437

(63,21) 1301 1346 1318 80.42 -II 12 14.52 0.3472
(64,20) 991 1028 1007 55-25 -13 1 1 9.93 0.3573
(64,22) 1025 1059 1040 50.31 -10 10 9.25 0.3521
(64,32) 1105 1143 1122 48.96 .9 10 10.41 0.3907
(65,21) 1213 1249 1229 52.78 .8 13 1.22 0.3827

(63,64) 1110 1150 1125 49.16 .9 10 8.4 0.3766(64,64) 1222 1256 1237 48.49 -10 10 9.82 0.389
(64,63) 1289 1330 1306 57.88 -17 14 .2.91 0.3175
(64,65) 1316 1353 1333 51.59 .9 9 10.95 0.3994
(65.64) 1239 1275 1255 52.31 -9 10 10.21 0.4079

(64,95) 1191 1234 1209 53.26 -1I 11 12.54 0.3747
(64.104) 945 981 960 49.31 .9 a 8.17 0.3781
(64,105) 1208 1244 1223 52.17 -9 9 1.67 0.4117
(64.106) 970 1003 986 47.03 -10 3 9.64 0.3134
(65,105) 1313 1349 1329 51.63 -10 1 I 10.52 0.3724

(95,25) 1351 1387 1367 56.48 -1I 9 9.18 0.4293
(95,32) 1092 1126 1107 53.11 .9 8 9.74 0.3624

(104,21) 1204 1239 1219 48.57 -10 8 8.13 0.3756
(105.20) 1016 1052 1032 50.73 -1 12 8.57 0.3646
(105,21) 1145 111 1161 48.38 -10 9 9.47 0.3158
(105.22) 1065 1102 1082 48.19 -9 9 9.16 0.3178
(106,21) 1220 1256 1238 48.28 -i5 12 14.05 0.3812
(110.10) 1177 1219 1197 59.54 -16 16 20.98 0.32

(95.64) 1121 1158 1139 53.91 -10 10 10.58 0.3575
(104,64) 1146 t1i1 1164 53.67 -10 9 t0 0.3602
(105,63) 1258 1294 1275 53.21 .9 1 1 9.54 0.4362
(105,64) 1170 1206 1187 56.02 -10 a 944 0.3832
(105.65) 1319 1353 1334 52.16 -10 12 10.66 0.3521
(106.64) 1043 100 1051 45.57 -. 10 9.75 0.3602

(95.95) 1329 1367 1347 53.95 .9 10 13.12 0.3664
(104,105) 1274 1311 1239 48.3 -11 10 1.93 0.3603
(105,104) 917 1026 1002 54.33 -11 9 9.12 0.3558
(105,105) 1158 1190 1172 47.6 -9 9 7.39 0.3516
(105,106) 966 1000 982 47.29 -10 10 9.32 0.3459
(106,105) 1192 1229 1210 50.82 -10 1 1 975 03166
(110.110) 1023 1060 1042 5005 -1 9 1004 03765
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Correlation functions that are typically like those in Figures 26 panels c and d mean that
observations separated by a long time span are nearly independent. The cross correlation
plots for the increments indicate a total lack of correlation between the increments. These
panels again show a remarkable agreement with the correlation functions increments for
fBm plotted in Figure 17 in the same panels.

Table 5 contains the summary statistics from 63 Amber camera pixels from the 128 x
128 array. Each pixel sample is a discrete time sequence with 640 samples. The first
column in the table represents the pixel coordinates with indices

[a.i] i= 0,..... 127, j = 0,..... 127

The statistics are obtained for each pixel with its discrete time sequence of 640 samples.
The statistics for the columns labeled "sample path" are for these sequences, and the
increments statistics are obtained after differencing the time sequences by applying the
difference operator defined in the FBm, Wavelets, and ARIMA Models section. The
columns labeled min, max, mean, and var are the minimuin values, the maximum values,
the sample mean, and the sample variance for each discrete pixel time sequence and the
corresponding increments. The column labeled H is the fBm index H estimate discrete time
sequence.

Table 6 presents the statistics for each of the columns in Table 5. As is evident the
index H has a mean value of 0.3660, yielding a exponent of 1.732 for the fBm spectrum.
The mean value of the variance for the fBm process is 10.52. It is more variable because
some of the pixels have some outliers, as an examination of the maximum and minimum
values suggests. Of course the outliers' presence should be checked by computing the Q-Q
plots. Recall that the variance for fBm governs the marginal distribution for the increments.

TABLE 6. Amber Camera Global _ atistics.

Pixel sample path statistics Increments statistics
Min Max Mean Var Min Max Var H

Mean 1014.5 1050.8 1030.38 51.19 -10.1 10.13 10.52 0.366
Variance 46005.6 46140 46206.7 36.98 3.23 3.89 11.11 0.0009
Std Dev 214.49 214.8 214.96 6.08 1.8 1.97 3.33 0.0293
Min 419 456 436 39.07 -17 7 7.39 0.2975
Max 1351 1387 1367 80.42 -8 18 24.65 0.4362

In Figure 27 the panels a, c, and e are the time-sampled output from an individual pixel
on the Amber camera array. In each of these plots the horizontal axis represents the number

31



NAWCWPNS TP 8103

of samples, and the vertical axis is a gray scale. All of the data in Figures 27, 28, 29, 30,
and 31 were sampled at 54 Hertz.

In Figure 27 panels a, c, and e are time samples from the Amber camera data from three

adjacent pixels on the same row. Panels b, d, and f are the periodograms, and the index H
is the slope of the dotted line obtained by a least squares fit. The agreement among the
indices is consistent with the hypothesis that the spatial noise on the Amber camera is fBm.
The estimates for if are 0.385304, 0.158828, and 0.356435, respectively, for pixels

(8,7), (8,8) and (8,9). Using the formula a = 2 H + I yields a power spectrum inversely

proportional to the frequency f-a with values 1.7706, 1.3176, and 1.7128, respectively,
for pixels (8,7), (8,8) and (8,9). Note that pixel (8,8) exhibits some degree of flicker
noise.

Panels b, d, and f in Figure 28 are the Q-Q plots for the increments. The spacing of the
bars on in the Q-Q plots is partially due to the coarseness of the quantization for the
measured interval (i.e., the 12-bit quantization is spread over a larger range). Clearly the
increments are well approximated by the Gaussian shape. The corresponding histograms
and density estimates, shown in Figure 29, clearly confirm the quantile plots prediction.

As a confirmation of the predicted behavior of wavelet processing on fBm, Figures 30
and 31 illustrate the wavelet transform ability to" decorrelate or whiten" fBm as predicted
by Flandrin (Reference 22). Panels b, d, and f in each of these figures are plots of the detail
coefficients d,(n) j = 1,2,3 for the corresponding wavelet transform. In each figure panel c
is the correlation evaluated using the third scale detail coefficients d3 (n). Panel c in each of
these figures compares very favorably with the simulated counterparts in Figures 6 and 8.
These results clearly support the Flandrin's claim.

CONCLUSIONS

The most important contribution of this report is the demonstration that Daubechies
wavelets do filter the fixed pattern noise in a predictable fashion. This claim is based on the
results obtained by applying her wavelet transform to the temporal fixed pattern noise
measurements taken by an InSb Amber FPA. The 1/f character of fixed pattern temporal
noise measured in the 3- to 5.5-pm region by a 128 by 128 lnSb staring array has been
identified as fractional Brownian motion. Wavelet processing successfully decorrelated the
fixed pattern noise. The results of this report can also serve as basis for fixed pattern noise
models that can be used in missile simulations to test various detection and nonuniformity
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compensation algorithms. All three sets of data were measured during this study, and each
exhibits the presence of long-term correlation, which is a necessary condition, but not
sufficient for having a l/f-type spectrum. The correlation of the three data sets is also
predictably changed after the sets are wavelet-transformed. Again, the change in correlation
is a necessary condition and is another confirmation of the fBm model.

An important implication of the wavelet characterization of fixed pattern noise is that it
suggests an optimum detection strategy in imaging arrays. Presently, the optimum detection
strategy in the presence of fixed pattern noise and clutter is a key unresolved problem.
Although conventional detection algorithms will suffice for the white noise and shot noise
present on these arrays, the fixed pat".rn noise requires novel techniques for optimum
detection. The rationale for the detectior )f a point target in clutter proceeds as follows and
is suggested by the radar methodology tor this problem, which is well known and which,
by analogy, suggests the following steps for infrared arrays. First, solve the detection
problem when only fixed pattern noise is present by characterizing the noise on the array.
Next, define an optimum detection algorithm. This paradigm is exactly parallel to standard
processing that has been successfully used in radar-detector design. Next, formulate an
adaptive detection algorithm recognizing the array noise limits. Then maximize the detection
signal-to-clutter ratio.

This report provides a unified review of fractional Brownian motion, wavelets, and a

low-frequency spectrum 1/f-type noise of the form ao-a 1 5 a 5 2. By comparison, most
traditional noise processes are characterized by short-term correlation with rapid decay,
whereas a noise sequence with a I/f-type spectrum has a correlation function that decays
very slowly and has nonzero values at long distances. It is our contention that the 1/f-type
noise is a major contributor to array nonuniformity. Moreover, the long-term correlation
structure of I/f-type noise precludes the direct application of conventional point target
detection algorithms.

The report characterizes the 1/f-type noise as fractional Brownian motion. Both the
theory and the examples presented in the report show that wavelet transforms can transform
a low-frequency, 1/f-type noise spectrum of the form o)-a 1 _ a _ 2 into a flat white-
noise-type spectrum. In other words, the 1/f-type noise has been decorrelated.
Decorrelation is important because it means that the wavelet transform acts as a simple 1/f
filter. The demonstration that the wavelet transform decorrelates the fixed pattern noise
means that the array nonuniformity has been reduced and standard detection algorithms for
decorrelated white noise can be applied after the wavelet transform. The implications for
point target detection in fixed pattern noise means that the noise on all conventional staring
arrays, whether they be InSb, HgCdTe, or PtSi, can be decorrelated. Thus, the apparent
lack of 1/f-type noise in the PtSi arrays would not be such an obvious major advantage,
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because the 1/f-type noise on InSb and HgCdTe can be converted to white noise by wavelet

processing.

The fractional Brownian motion model links the covariance of the sample path or time

history as it evolves in time with its power spectrum. It is a parasimonious model (it

depends on two parameters) for I/f noise. In fact, one important feature of fBm is that it

provides a model of how long-range correlation is directly related to the parameters of the

spectrum. By comparison, most traditional noise processes are characterized by short-term

correlation with rapid decay, whereas a noise sequence with a 1/f-type spectrum has a

correlation function that decays very slowly and has nonzero values for long lags. While

noise can be classified according to its power spectrum, it is important to consider the

relation between the time domain and the frequency domain. An important implication of

the fBm model is that the power spectrum (representing the frequency domain) is linked via

the Fourier transform with the covariance (representing the time domain). This linkage

predicts a time-dependent envelope for the maximum excursion of the sample path of each

pixel as measured by the variance. This variance formula provides a link between spatial

noise on the array and the time-varying noise associated with an individual pixel, because

the model predicts that the measured responses of the individual pixels, which are observed

by viewing a constant source, will eventually drift randomly away from their original

nominal value. In fact, the power spectrum as measured by the periodogram of the

individual pixels provides an excellent indicator of the type of spatial noise that will be

present on the array, especially if the spatial noise is measured by the ratio of the sampled

variance across the array divided by the sampled mean across the array. For example, if the

spectrum is white, then this ratio for the spatial noise will be statistically constant, but if the

spectrum is of the form (a-& with 1 _ a _ 2, then the ratio will increase at a rate that is

directly related to the exponent cc. In this sense temporal noise and spatial noise are not

independent!
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FIGURE 10. Estimation of H of fBm With d = 0.4 (H = 0.9) by Hurst Rescaled
Range and Daubechies 10 Wavelet.
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FIGURE 11. Estimation of H of fBm With d 0.4 (H = 0.9) by Hurst Rescaled
Range and Daubechies 10 Wavelet.
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FIGURE 12. Estimation of H of fBm With d = -0.4 (H = 0.1) by Daubechies 10 and
Mixed Daubechies Wavelets.
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FIGURE 13. Sensitivity of fBm to Noise.
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(a) Normal 0.0 plot of Increments of f~m with d --0.4 (b) Norma-"plot of f~m w td -0.4
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1c) Normai 0-0 plot of hxwnwft of On with~ d OA0. (M Normal 0-0 plot of Urn wfith d =0.4
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FIGURE 15. Histogras and Estimated Probability Density Functions of fBms
and Their Increments.
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FIGURE 16. Correlation Functions Between fBms With d = -0.3.
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FIGURE 17. Correlation Functions Between Increments of f"mn With d = -0.3.
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FIGURE 18. Decomposition and Reconstruction of fBm Using Daubechies 10 Wavelet,
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FIGURE 19. Comparison of the Estimated H for a Short-Term and a Long-Term fBm.
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(a)Long term Cameradt a, pixel at (10,10) (b) Smoolig SpOOne 61 to (a)
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(0) Smooth spline fit to (a) in Pig" : (f) Periodogram of Estimaid H is 0.500936

FIGURE 20. Power Spectrums for Amber Camera Data and Their Spline Fits.
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FIGURE 21. Long-Term Amber Camera Data and Their Periodograms.
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FIGURE 22. Amber Camera Data and Their Normal Q-Q Plots.
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FIGURE 23. Histograms and Estimated Probability Density Functions of Long-Term

Amber Camera Data.
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FIGURE 24. Comparison of the Estimated H for Long-Term Amber Camera Data.
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FIGURE 25. Correlation Functions Between Long-Term Amber Camera Data
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FIGURE 26. Correlation Functions Between Long-Term Amber Camera Data
Pixel (10,10) and Pixel (10,11).
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FIGURE 27. 54-Hertz Amber Camera Dama and Their Periodograrns.
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FIGURE 28. 54-Hert7 Amber Camera Data and Their Normal Q-Q Plots.
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FIGURE 29. Histograms and Estimated Probability Density Functions of
54-Hertz Amber Camera Data.

62



NAWCWPNS TP 8103

-10000

0 2000 4000 6000 0 1000 20 300C

(a) AMBER camera data, pixel (8,8) (b) Haar wavelet d scale I of (a)C~tl
0 10 20 30 40 0 500 i000 ,00

Lao

(c) Correlation function of (f) (d) Haa, wavelet d scale 2 of (a

(a) Ham wavelet a scale 3 of (a) (f) Haar wavelet d scale 3 ot (a)

FIGUR 30. 54-Hertz Amber Camera Data and Haar Wavelet.
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FIGURE 31.54-Hertz Amber Camera Data and Daubechies 10 WaveleL
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