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Observation of a strange nonchaotic attractor in a multistable potential .esion fFor '
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Attractors which are not chaotic but nevertheless display “strange” geometric properties have been fibution] |

the subject of a number of studies since they were studied in certain quasiperiodically forced maps, by
Grebogi et al. [Physica 13D, 26 (1984)]. The attractors, as defined by these authors, are nonchaotic, since
they are characterized by Lyapunov exponents which are smaller than zero; but are, however, strange
since they display geometric properties unlike cither limit cycles or quasiperiodic attractors. The attrac-
tors are produced by dissipative, nonlinear systems which are driven by two periodic external forccs
whose frequences are incommensurate. Strange nonchaotic attractors have been observed in numerical
experiments with a variety of bistable and monostable honlinear oscillators as well ac in one ingenious
experiment, designed by Ditto ef al. [Phys. Rev Lett, 65, 533 (1990)}, using a forced, free standing beam
whose mechanical properties could be externally controlled by magnetic fields. We study here a non-
linear oscillator with a multistable potential both numerically and with an analog simulator. The dy-
namics mimics that of the internal magnetic flux through an underdamped, multistable, superconducting
quantum interference device which is quasiperiodically forced. We report measurements and numerical
computations of the power spectra, invariant density, and Poincaré sections. Precision numerical com-
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putations were used to study the Lyapunov expor
tor and its replacement by a strange nonchaotic ot

PACS number(s): 05.45.+b, 74.40.+k

I. INTRODUCTION

Recently there has been much interest in the properties
of quasiperiodically driven nonlinear oscillators of vari-
ous tvpes. In addition to the more well known dynamical
behaviors which result in two-frequency quasiperiodic,
three-frequency quasiperiodic, and chaotic attractors,
such oscillators have been shown to exhibit a new type of
dynamical behavior leading to what are termed strange,
nonchaotic attractors (SNCA’s). This behavior was
demonstrated analytically and shown to be structurally
stable {1], and subsequently verified in numerical itera-
tions of maps, representing dissipative nonlinear systems
with periodic or bistable potentials, driven by two period-
ic forces with incommensurate frequencies, that is, quasi-
periodic forcing [1-6]. Moreover, a SNCA has been ob-
served also in the map representation of an infinitely
damped system [2,3] which shows no chaos or three-
frequency quasiperiodicity. Though some early doubts
existed (2], the SNCA'’s observed in these systems were
later shown to exist on a subset of parameter space of
measure greater than zero [2-5]. Since the SNCA's were
numerically demonstrated in the resistively shunted
Josephson model [2-4] and in an oscillator with the stan-
dard quartic potential {Duffing oscillator), which serves
as a generic representation of a variety of realizable bist.
able nonlincar systems, and since they exist on a
positive-measure subset of paruameter space, it seemed
reasonable that they could be discovered in an actual ex-
pertment. Indeed, the experimental demonstration of the

3 and to observe the destruction of a chaotic attrac-
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existence of a SNCA in a quasiperiodically forced, free-
standing beam of magnetic material whose mechanical
properties can be externally controlled has been recently
accomplished [7,8]. In addition, extensive numerical
studies on a model of the magnetic beam apparatus based
on the parametrically driven Duffing oscillator have been
carried out [8].

The emphasis of much of the numerical work has been
on the development of criteria by which SNCA’s could
unambiguously be characterized and on studies of the
route to chaos in two-frequency quasiperiodically forced
systems. SNCA's show a largest Lyapunov exponent
which is nonpositive, hence the term nonchaotic. Beyond
that, the two most useful characterizations which have
emerged are based on the power spectrum and on the in-
formation dimension D, extracted from a Poincaré sec-
tion. The Poincaré section itself also displays differences
from those of chaotic, quasiperiodie, or periodic attrac-
tors: in theory, its structure is everywhere single valued
but everywhere discontinuous, hence the term strange. In
a typical system, for example, the quasiperiodically drive
pendulum, the two Lyapunov exponents (of the reduced
map, created by sampling the two variables in phase with
one of the driving functions) are found to be zero and
smaller than zero, respectively [4]. Following the
Kaplan-Yorke conjucture (9], the information dimension
of such an attractor should therefore be unity [6]. The
one experiment which has been accomplished [7] mea-
sured @ somewhat larger value D, > 1.1 The numencal
expeinments of Ding, Grebopi, and O {6] vielded values
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of D,=1.2 for the reduced map of the pendulum and
D,=0.9 for a quasiperiodically forced circle map. We
show here 1 Sec. III that careful measurements :
{ = 100000 points in the Poincaré¢ section) on an analog
simulator result in a value in quite good agreement with :
these, D, =1.2, which can be compared to our value of
D,=1.61in a very close region of parameter space which !
is chaotic. The following additional characterization has |
been developed. From the power spectrum, the number:

-+ of peaks V(o) exceeding a threshold amplitude o obeys aj

simple power-law scaling unlike those for two-frequency |
quasiperiodicity or for chaos [2,3). Specifically, i

Mo xo™® with 1<a<2 (1a)’|
for tae SNCA, :
N(o)z!n |— {1b)
for two-frequency quasiperiodicity, and
2 :
Nio)= lln l—l- ] I (Ic) :
g

for three-frequency quasiperiodicity. All of these charac-
terizations have now been investigated numerically in the
actual experiment and in the analog simulation described
here. Some of them have been used in numerical studies

on SNCA’s in the Van der Pol and other oscillators °

[10-13]. Studies of the quasiperiodically forced Duffing
oscillator were accomplished by Wiggins (14] and, in an :
interesting —¢xperiment with a mechanical oscillator *
which can be represented by the generic Duffing system
[14], by Moon and Holmes [15]. In neither Ref. [14] nor
Ref. {15], however, was strange nonchaotic dynamics re-
ported.

In this paper, we investigate the existence of SNCA's
and the transition to chaos both by digital numerical
simulation and by measurements made on an analog .
simulator of a version of the pendulum equation which
has been used to represent the radio-frequency-driven su- |
perconducting  quantum nterference device (SQUID)
with inertia and finite damping:

_dU(x)
X

X+hx= +g,sinw,l +g,sinw,t , 2y

where the ratio of the two frequencies is the golden mean

&y

_1+V5

I 2

(3)

The potential used in this work was

2

cos2wx .
2

Uix)—= =

3 (4)

and for all the results reported here we took [#+- 2, which
results an the tristable potential shown i Fig. 1. This
cirsets with the single previous experiments {7,8)
~hsch used a mose or less symunctie histable potential,
st otd oY the previgus numerical work wineh used esther
cernsdr e tistahle potemisile g mots ataen for this

Uix)

2.0

FIG. 1. A Plot of Eq. (4) with =2, which was the potential ’
used in this work.

work was to demonstrate the existence of SNCA's in this
particular potential by experimenta! measurements on a-
recal physical system, the analog simulator, and thereby to
demonstrate the practicality of an experiment on a sys-
tem with a similar potential, perhaps a r. f SQUID. Our-
results further illustrate the robust properties of this dy-
namics and the case with which it can be observed in real
physical systems.

In Sec. II, we describe the simulator together with as-
sociated apparatus and the method of obtaining experi-
mental data from it. The results from the analog simula-
tor are backed up by numerical experiments, the methods |
for which are also described in this section. In Sec. III,.
we display characteristic results, in particular those for
the information dimension, Lyapunov exponent, and in-;
variant density for both chaotic and strange nonchaotic
attractors. Measurements of representative power spec-,
tra are displayed and analyzed according to Egs. (1).’
Moreover, we demonstrate that a SNCA can destroy aad
replace a chaotic attractor under the action of a single|
control parameter. We display this result in the styleof a*
phase transition, using the Lyapunov exponent as the or-.
der parameter. In Sec. IV, we summarize our results and
suggest future experiments.

II. SIMULATION TECHNIQUES

Analog simulators for various applications have been
described before [15] in both antique [16] and modern
{17} versions. Our simulator of the dynamics of Egs. (2)
and (4) is shown in Fig. 2. It operates over a dynamic
range of 310 V with a resolution (nearly an order of mag-
nitude above the inherent circuit noise) of = 10 mV. The
voltages x{r) and x(t) were digitized in pairs at 12-bit
resolution by a Data Translation Model DT2828 analog-
to-digital converter (ADC), which had a throughput of
130 kHz, and input to a Model AT personal computer
(PC-AT). The PC was then used to compute and suitably
average the power spectrum of x 1) or the Poincare nm;-»
of x and x. For the Pomncare map, the ADC was toy.
gered by a pulse from the higher-frequency one of 1w
Comstron frequency  svathesizers. The POwCr spugira
were obtamed from trecaunmmng De series, : func
sertes whreh were bt warthons the trveoer oot v,
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FIG. 2. Schematic diagram of the analog simulator. The cir- |
cles marked (X} are analog devices ADS534 voltage-multiplier
chips; the sine chip is an AD639; the integrators are operational !
amplifiers with feedback capacitors; and summation is accom- !
plished by an operational amplifier with multiple input resistors.
The approximately irrational forcing is accomplished with two
Comstron frequency synthesizers operated at f;=3.5810 kHz
and f;=2.2131 kHz which have a resolution of 0.1 Hz-and a
short-term stability of a few parts in 10°. The time constant of
the integrators was 107* s. The voltages x(¢) and x(¢) were
sampled and digitized in pairs upon arrival of a “transistor-
transistor-logic trigger pulse from the higher-frequency syn-
thesizer.

the synthesizer.

It is important that the simulator be driven by signal
generators of higher resolution and better frequency sta-
bility than i1s normally obtainable from ordinary equip-:
ment. Frequency synthesizers are therefore necessary in»
order that relative frequency drift not wash out the spe-
cial dynamical effects being sought. Even so, the ratio of)
the synthesized frequencies could only approximate the;
number shown in Eq. (3) to the fourth decimal place. As;
shown below, by the agreement of our measurcments!
with digital numerical simulations, this precision was evi-:
dently sufficient. The simulator was operated with a:
voltage-scale factor of unity, which meant that voltage:
measurements taken from it were numerically equivalent.
to digital solutions of Eq. (2). The simulator does, how-:
ever, scale time by a factor equal to the integrator time.
constant 7,, so that for the digital simulations, the fre-'
quencies must be interpreted as dimensionless quantities
@'~ wr,. Since the integrator time constant was always:
10 *s, the dimensionless frequencies for use in the digimlé
simulations  of Eq. 12} were ],;=2.2500 and|
b 3905 «G.0001, respectively. It is also to be noted that’
the stabihity of a few parts in 10% is much greater than the
fourth-dectmal-place precision achieved.

The steady-state accuracy of the analog simulator was
cosumated 1o be approxumately 195, and was determined
hy the preciston of the resistors used. The accuracy of
tie ADSISL chip s 0.25%%. The e scabing sccuracy of

S0 was determnned by the precimion of the feedback
capraatads i the mtegrators. Our sumulato; was aperit-

!
i
!

ed in a bandwidth of 20 kHz, but the largest frequency in

our data never exceeded 5 kHz. In order to take advan-

tage of the “small-signal™ linearity of our operational.
amplifiers, the simulator was operated over an output’
range of & 2 V instead of the maximum usable range of +

10 V. In effect, the dynamics sampled frequently only the

two potential wells at =+ 0.9 V, as shown in Fig. 1, and
only much less frequently visited the higher-order local ;
minima. A Poincaré map of 10000 pairs of points could

be obtained in a few seconds. Speed is one advantage of
analog simulation.

The digital simulations were accomplished using stan-
dard techniques. Specifically, the method used to calcu-
late the Lyapunov spectrum is that due to Shimada and °
Nagashima and Benettin et al. [18). The actual comput-
er code used was that due to Wolf et al. [19] with some
modifications. The Lyapunov exponent was computed
from trajectories and averaged until convergence to less .
than 10™* was achieved. For the g, =0.38 (chaotic) at- i
tractor 3731 trajectories were required for convergence, .
while the ¢,=0.88 {strange nonchaotic) attractor re-
quired 7000. The information dimension was obtained :
from the complete three-dimensional phase space using |
typically 30000 trajectorics. These numerical determina- |
tions of D; were in good agreement with those obtained :
from the two-dimensional Poincaré sections in the analog |
simulations with D}9—1=D}. '
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A typical Poincaré map of a SNCA for this system 18
showh in Fig. 3. The attractor measured with the analog -
simulator is shown in Fig. 3{(a) and can be compared to
one obtained for the same conditions by digital simula-
rion shown in Fig. 3{b). The attractors are quie similar,
though the digital simulation has fewer points, and the
fine scale of the analog attractor is somewhat obscured by
noise. Nevertheless, the agreement is quite convincing.
Below, we discuss these and additional data in more de-
tail.

">

3
1

Vi

Power Spec

i e

e A A
I1I. RESULTS : Freq (kHz}

Figure 3 shows a SNCA measured for g, =0.88 and s
.. . . - . 100+

other conditions fixed as indicated in the figure caption. . (b)
Throughout, we regard ¢, as a control parameter. We: e
show, in Fig. 4, a chaotic attractor, again obtained from. L
analog (a) and digital (b) simulations. This attractor was
obtained for ¢,=0.38, and the digitally obtained:
Lyapunov exponent was A=0.156. At this point, the “
only criterion which we have used for identifying the at-; .
tractor type, apart from the obvious difference in appear-: - ©
" ance (with the attractor in Fig. 3 appearing more like the! o TN+ ) SN TN TN S SN SO T R
description [1,3] “everywhere discontinuous but single: 003 30 300 x 107"
valued”) is the sign of the Lyapunov exponent. We shall: g
- now apply the other criteria outlined in Sec. I. :

Two power spectra, measured on the analog simulator FIG. 5. {a) A power spectrum obtained from the analog
for the fixed conditions, are shown in Fig. 5(a) with: simulator for the fixed conditions and g, ==0.88 (SNCA), and (b}
q,=0.88 and Fig. 6(a) with g,=0.38, that is, for condi-: the threshold dependence of the number of peaks N{v) with

amplitudes greater than the threshold o.
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FIG. 4. A chaotic attractor for the fixed conditions with
g, =0.38. (a) Measured on tha analog simulator (10° pomnts), FIG. 6. (@) A power spectrum obtaned by analog simulation
and (b) by digital simulation (3X 10" points) from which for the fixed condiions and g, 0 3% tchaone), and v the

A 70,156 was obtained. threshold dependence of the number of peaks.




tions identical to those of the attractors shown in Figs. 3
and 4. The most striking difference is that the multtude
of peaks evident 1n Fig. 5(a) are broadened in Fig. 6(a)
with only a few dominant ones remaining. The latter
clearly results from a chaotic system, while the former
might well be supposed to result from a very complex
quastperiodic attractor. We have attempted to apply the
criterion given by Egs. (1) to these two power s;octra,
that is, we have counted the number of peaks N(v : with

amplitudes greater than a threshold o. The results, plot--

ted on a log-log scale, are shown below their respective
power specira in Figs. 5(b) and 6(b). While it is not quite

possible to match the results shown in Fig. 5(b) to a pure.

power law as indicated by Eq. 1{a), that seems closer to.

an appropriate description than that of the results shown
in Fig. 6(b). It is possible that the washing out of the very
fine structure by the inherent noise in the analog system
and/or the smearing of some of the tfiner peaks in the fre-

quency spectra by phase noise in the synthesizers may .

have obscured the power-law dependence of N(o)on 0.

We now turn our attention to the information dimen-

sion, defined in the usual way {6,20]:

I{e)

D,=h ——rt
17 | logol 1/€)

¢ —0

(5):

where e is the box size in phase space and I(e) is the in-!

formation
Vie)

Ite)=— S PInP,
i1

6)

with P; the frequency at which box i is visited by the dy-

namics. We have measured this dimension on data pro-
vided by the analog simulator from the reduced, two-
dimensional (Poincare) section. In Fig. 7(a) we have plot-
ted I(e) versus log.y(1/¢) for the two attractors shown in

Figs. 3 and 4. Over the range in e above a lower limit set -
by the inherent noise, we find a good linear behavior of -
I(e) on log,,(1/e) as shown by the straight lines, the-
slopes of which give D;. We find that D;=1.19 for the.

attractor of Fig. 3 to be contrasted with D; = 1.58 for the

attractor of Fig. 4. The former result is in good agree-:

ment with both the predictions and the numerical results
of Ding, Grebogi, and Ott {6] for a SNCA. Since the
measurement of dimensior on real physical systems,
which are always to some degree contaminated by noise,
is often open to criticism, we have tested our algorithm
on measured sets of data of various sizes for the SNCA of
Fig. 3. These results are shown in Fig. 7(b), where it is
evident that data sets varying in size from 10° to 10°
points yield substantially the same fitted slope if rounding
at the high and low ends of the log (1 /e) scale is neglect-
ed. At the migh end there is more rounding for the small-
er data sets, as expected.

We consider now the destruction of the chaotic attrac-
tor which existed at ¢, 7038 and its replacement by a
SNCA at a critical value g, 0.612. These results
were obtained by digital simulation, and the only cri-
terion used to determine the type of dynamics was the
Lyapunov exponent. By measuring £ for cach attractor
obtamed from steppiag ¢, between the two limits given

-

{
re

3 Ly
Iu;.{”"E{I Sl

FIG. 7. The information vs the loganihm of the reciprocal
box size obtained from analog measurements: (a) The crosses
are for g, =088 (SNCA} and the astensks arc for g, =0.38
(chaoticl. The straight lines have slopes D, 1.19 {(+ 1} and
D, =1.38(,). The size of the data sets were 10* points. (b) A
test of the dependence of D, on the data-set size from analog
measurements () 100 1) 2x10° €45 410, and (a1 10°
points, respectively. The logurithms ace base 10,

above, we determined the value of ¢.,,, at which A passed
through zero. Treaung Al as an order parameter, we
then made the plot shown in Fig. 8. Least-squares fits to
obtain the straight lines shown indicate that the results
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FIG & The Lyvapunov exponent as an order parameter in the
destruction of chaos by 2 SNCA . The resalis for the chaotic at
tractor are shown by the dash-dotted lime. and for the SNCA by
the sohd hne
and have slopes 06713 and 0363 tor the chaotic and nonchaotic

Fhe straght Bnes are leastaqguares fits 1o the data
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FIG. 9. The invarniant densities for the attractors shown in

Figs. 3 and 4, measured on the analog simulator using data sets .
of 10° points each: (a) for the chaotic attractor with the fixed .
conditions and g,=0.38, and (b} for the SNCA with fixed condi- .
tions and g, =0.88. The velocity x is plotied on the isometric.

axis vs the coordinate x on the horizontal axis,

e

behave according to a power law,

‘}“{aasqlmqknt[ ' {(7)

with a=0.463 for the SNCA and a=0.613 for the chaot-

ic attracior. We note also the much greater variability of
A for the SNCA, an effect, noted in Ref. {7}, which possi-
bly contributes to the difficulty encountered in attempts
to measurg experimentaliyAt ¥rom Poincaré sections.
Finally, we present also without analysis another mea-

sure, the invariant density, which shows differences be-

tween the two attractors shown in Figs. 3 and 4. We

measured the two-dimensional densities Pix x ) using the
anslog simulator, with the results shown in Fip. 9ta} for
the chaotic attractor and Yib) for the SNCA. We note
that P(x,x)1s much more sharply defined for the SNCA
than for the chaotic attractor. This is indicated by the
amphitudes of the peaks, both densities having been ob-
tained from the same number of digitized points {10°}.
The chactic attractor displays a considerably smaller am.
plitude and shows less fine detail as expected from a
higher-dimensional object. [t may be possible 1o develop
an additional criterion based on the differences in these
densities,

IV, SUMMARY AND CONCLUDING REMARKS

We have demonstrated, with measurements on an ana-
log simulator—a real physical system-—{for a particular
multistable potential not previously studied, that the dy-.
namics {1-6] observed in bistable magnetic beam experi-
ments [7,8] is robust to the small inherent noise encoun-
tered in experimental systems, exists over a region of pa-
rameter space of nonzero measure, and is easily observ-
able using criteria based on the Lyapunov exponent, in-:
formation dimension, and characteristics of the power
spectra. Moreover, we have shown that a SNCA can des-
troy and replace a chaotic attractor. We have displayed
this phenomenon as a classical phase transition using the
Lyapunov exponent as an order parameter, whercupon
we obtained substantially different power-law exponents
for the SNCA compared to the chaotic attractor. Final-
ly, we suggest that our simulations can be viewed as a
prelude 1o further experimentation on SNCA's with irra-
tionally forced r.f SQUID’s, whose potential, with regard
to the magnetic flux internal to the SQUID loop, is simi-
lar to the one used here.
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