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Observation of a strange nonchaotic attractor in a multistable potential ýesion For
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Department of Physics, University of Missouri at St. Louis. St. Louis, Missouri 63121 IC TAB 2l-dilootinced 8
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Attractors which are not chaotic but nevertheless display "strange" geometric properties have been t' bution I
the subject of a number of studies since they were studied in certain quasiperiodically forced maps, by Avaiability Codes'
Grebogi et al. [Physica 13D, 26 (1984)]. The attractors, as defined by these authors, are nonchaotic, since i C
they are characterized by Lyapunov exponents which are smaller than zero; but are, however, strange I Avail tndj Lo;
since they display geometric properties unlike either limit cycles or quasiperiodic attractors. The attrac- Splcial
tors are produced by dissipative, nonlinear systems which are driven by two periodic external forces v-\. jf)I
whose frequences are incommensurate. Strange nonchaotic attractors have been observed in numerical
experiments with a variety of bistable and monostable nonlinear oscillators as well as in one ingenious
experiment, designed by Ditto et al. [Phys. R-": Lett. 65, 533 (1990)], using a forced, free standing beam
whose mechanical properties could be externally controlled by magnetic fields. We study here a non-
linear oscillator with a multistable potential both numerically and with an analog simulator. The dy-
namics mimics that of the internal magnetic flux through an underdamped, multistable, superconducting
quantum interference device which is quasiperiodically forced. We report measurements and numerical
computations of the power spectra, invariant density, and Poincari sections. Precision numerical com-
putations were used to study the Lyapunov expor ; and to observe the destruction of a chaotic attrac-
tor and its replacement by a strange nonchaotic o0

PACS number(s): 05.45. + b, 74.40. + k DtriC QAIXr•1 .

I. INTRODUCTION existence of a SNCA in a quasiperiodically forced, free-
standing beam of magnetic material whose mechanical

Recently there has been much interest in the properties properties can be externally controlled has been recently
of quasiperiodically driven nonlinear oscillators of vari- accomplished [7,8]. In addition, extensive numerical
ous types. In addition to the more well known dynamical studies on a model of the magnetic beam apparatus based
behaviors which result in two-frequency quasiperiodic, on the parametrically driven Duffing oscillator have been
three-frequency quasiperiodic, and chaotic attractors, carried out [8].
such oscillators have been shown to exhibit a new type of The emphasis of much of the numerical work has been
dynamical behavior leading to what are termed strange, on the development of criteria by which SNCA's could
nonchaotic attractors (SNCA's). This behavior was unambiguously be characterized and on studies of the
demonstrated analytically and shown to be structurally route to chaos in two-frequency quasiperiodically forced
stable [I], and subsequently verified in numerical itera- systems. SNCA's show a largest Lyapunov exponent
tions of maps, representing dissipative nonlinear systems which is nonpositive, hence the term nonchaotic. Beyond
with periodic or bistable potentials, driven by two period- that, the two most useful characterizations which have
ic forces with incommensurate frequencies, that is, quasi- emerged are based on the power spectrum and on the in-
periodic forcing [1-6]. Moreover, a SNCA has been ob- formation dimension Di extracted from a Poincar6 sec-
served also in the map representation of an infinitely tion. The Poincari section itself also displays differences
damped system [2,3] which shows no chaos or three- from those of chaotic, quasiperiodic, or periodic attrac-
frequency quasiperiodicity. Though some early doubts tors: in theory, its structure is everywhere single valued
existed [2], the SNCA's observed in these systems were but everywhere discontinuous, hence the term strange. In
later shown to exist on a subset of parameter space of a typical system, for example, the quasiperiodically drive0

measure greater than zero (2-5]. Since the SNCA's were pendulum, the two Lyapunov exponents (of the reducedA

numerically demonstrated in the resistively shunted map, created by sampling the two variables in phase with
Josephson model [2-4] and in an oscillator with the stan- one of the driving ftmnctions) are found to be zero and
dard quartic potential (Duffing oscillator), which serves smaller than zero, respectively [4]. Following the
as a generic representation of a variety of realizable bist- Kaplan-Yorke conjucture [9], the information dimension
able nonlinear systems, and since they exist on a of suich an attractor shotld therefore be unity [6]. The
positive-measure subset of parameter space, it seemed one expeimn'ent which has been accomplished [7] mina-
reasonable that they could be discovered in an actual ex- sured it otnewwhat larger value 1)D 1- 1.3. The numerical
pertinent. Indeed, the experimental demonstration of the t'xpeiirit' iit' of Ding, ( rcbohi, anidI ()t 1(il1 yelcded value'



of D, Ia 1.2 for the reduced map of the pendulum and L.7

D, -0.9 for a quasiperiodically forced circle map. We
show here in Sec. III that careful measurements /
(• 100000 points in the Poincare section) on an analog .
simulator result in a value in quite good agreement with:
these. D, m 1.2, which can be compared to our value of
D 1.6 in a very close region of parameter space whicl .65
is chaotic. The following additional characterization has i
been developed. From the power spectrum, the number!
of peaks NV(a) exceeding a threshold amplitude a obeys a-
simple power-law scaling .,nlike those for two-frequency! -2.0 -L.0 t0 2.0
q.asiperiodicity or for chaos [2,3]. Specifically, X

i -.40
N(oicr 0-a with l<a<2 (la)

for Cie SNCA, FIG. I. A Plot of Eq. (4) with 1=2, which was the potential'
used in this work.

. 1work was to demonstrate the existence of SNCA's in this
particular potential by experimenta! measurements on a*

for two-frequency quasiperiodicity, and real physical system, the analog simulator, and thereby to

IaI 1 l2 demonstrate the practicality of an experiment on a sys-
NO (lc) tem with a similar potential, perhaps a r.f SQUID. Our

a I results further illustrate the robust properties of this dy-
namics and the case with which it can be observed in real

for three-frequency quasiperiodicity. All of these charac-
terizations have now been investigated numerically in the physical systems.

In Sec. II, we describe the simulator together with as-
actual experiment and in the analog simulation described isociated apparatus and the method of obtaining expert-
here. Some of them have been used in numerical studies mental data from it. The results from the analog simaula-
on SNCA's in the Van der Pol and other oscillators tor are backed up by numerical experiments, the methods
[10-13]. Studies of the quasiperiodically forced Duffing for which are also described in this section. In Sec. III,
oscillator were accomplished by Wiggins [14] and, in ansci we display characteristic results, in particular those for
interesting -ixperiment with a mechanical oscillator the information dimension, Lyapunov exponent, and in-,
which can be represented by the generic Duffing systera variant density for both chaotic and strange nonchaotic
[141, by Moon and Holmes [15]. In neither Ref. [14) nor attractors. Measurements of representative power spec-
Ref. [15], however, was strange nonchaotic dynamics re- tra are displayed and analyzed according to Eqs. (I).

ported.
In this paper, we investigate the existence of SNCA's Moreover, we demonstrate that a SNCA can destroy. aad

replace a chaotic attractor under the action of a single
andulathe tansitdn to caormns bh by dtal anuealo control parameter. We display this result in the style of a'
simulation and by measurements made on an analog, phase transition, using the Lyapunov exponent as the or-
simulator of a version of the pendulum equation which der parameter. In Sec. IV, we summaze our results and
has been used to represent the radio-frequency-driven su-
perconducting quantum interference device (SQUID) suggest future experiments.
with inertia and finite damping: II. SIMULATION TECHNIQUES

_dU(x)

x +ki dx +qlsilnwt +q 2sincaw , (2) Analog simulators for various applications have been

described before [15] in both antique [16] and modern
where the ratio of the two frequencies is the golden mean [17] versions. Our simulator of the dynamics of Eqs. (2)

_ l+V'-5 and (4) is shown in Fig. 2. It operates over a dynamic
(3) range of ± 10 V with a resolution (nearly an order of mag-

2 nitude above the inherent circuit noise) of • 10 inV. The

The potential used in this work was voltages x(t) and i(t) were digitized in pairs at 12-bit
resolution by a Data Translation Model DT2828 analog-

- 2  1 0 I to-digital converter (ADC), which had a throughput ofUtx)-= -2- ... •- cos~r x . 130 kHz, and input to a Model AT personal computer

(PC-AT). The PC was then used to compute and suitably
afndl for all the results reported here we took 13-- 2, which average the power spectrum of x it) or the Poincal e map
re',ulhs in the tristable potential shown m Fig. I. This of x and x. For the Poincare map. the AD)C was ti',,

,a,• ilth the single premou,, experiments [7,aJ gered by a pulse from the highier-freqltnCy tuc ,4 t,
l " h 'used a MiOM or les syntirictrr histable potential, Coinstrom frcquentm). utiii'.ic . The p,\ ,i,

* i .,;'J •;C 'ih prev 'ou. nunflericAl Airk lhich im wcd either wrefet oibialmi d ftro. I.tit-c- tLI 3 i n: t i fltt l le .ic , . w
•*>,-::,. t): , t' l~l•S~i•lt Nt~f /lt,,ii s.,ta ,l t•f r Iloi% X% •h .'Na vi a1)'r i , , file' Vii . . ...



ed in a bandwidth of 20 kHz, but the largest frequency in
our data never exceeded 5 kHz. In order to take advan-
tage of the "small-signal" linearity of our operational

s~i qýsiýI Xamplifiers, the simulator was operated over an output'
S -7range of ± 2 V instead of the maximum usable range of ±

S10 V. In effect, the dynamics sampled frequently only the
k t ,-Ltwo potential wells at ± 0.9 V, as shown in Fig. 1, and,

-- k x qsinrw, t only much less frequently visited the higher-order local
minima. A Poincarl& map of 10000 pairs of points could

SXal be obtained in a few seconds. Speed is one advantage of
fdt fdtanalog simulation.

The digital simulations were accomplished using stan-
dard techniques. Specifically, the method used to calcu-

x°= - k1 -x -A s-irt.1fx late the Lyapunov spectrum is that due to Shimada and

Nagashima and Benettin et al. (18]. The actual comput-
+ q, si"w, t + q. sirw, t I er code used was that due to Wolf et al. [19] with some

modifications. The Lyapunov exponent was computedFIG. 2. Schematic diagram of the analog simulator. The cir- from trajectories and averaged until convergence to less
cles marked (X) are analog devices AD534 voltage-multiplier than 10-4 was achieved. For the q2 =0.38 (chaotic) at-
chips; the sine chip is an AD639; the integrators are operational I I
amplifiers with feedback capacitors; and summation is accom- twhile the q2=0.88 (strange nonchaotic) attractor re-
plished by an operational amplifier with multiple input resistors. while t000. (stran doncnson attacre-
The approximately irrational forcing is accomplished with two quired 7000. The information dimension was obtained

omstron frequency synthesizers operated at fl =3.58 10 kHz from the complete three-dimensional phase space using
and f2 =2.2131 kHz which have a resolution of 0.1 Hz-and a typically 30000 trajectories. These numerical determina-
short-term stability of a few parts in 109. The time constant of tions of D, were in good agreement with those obtained
the integrators was 10' s. The voltages x(t) and fl(t) were from the two-dimensional Poincar6 sections in the analog
sampled and digitized in pairs upon arrival of a transistor- simulations with DIJ I =D1d.
transistor-logic trigger pulse from the higher-frequency syn-
thesizer. 0.6r

(a)1(
the synthesizer. \.;

It is important that the simulator be driven by signal 0 -- I

generators of higher resolution and better frequency sta- ,
bility than is normally obtainable from ordinary equip-
ment. Frequency synthesizers are therefore necessary in, .. - -

order that relative frequency drift not wash out the spe- -06 -,

cial dynamical effects being sought. Even so, the ratio of; -, " -

the synthesized frequencies could only approximate thei
number showit in Eq. (3) to the fourth decimal place. As! -1 0
shown below, by the agreement of our measurementsi X
with digital numerical simulations, this precision was evi-:
dently sufficient. The simulator was operated with a: (b)
voltage-scale factor of unity, which meant that voltage-:
measurements taken from it were numerically equivalent. ,
to digital solutions of Eq. (2). The simulator does, how-; 0
ever, scale time by a factor equal to the integrator time. /.
constant -r,, so that for the digital simulations, the fre-'
quencies must be interpreted as dimensionless quantities -

d-or,. Since thli integrator time constant was always; o 8 i
10 4 s, the dimensionless frequencies for use in the digital i _ ,
siniulations of Eq. '2) were w'1.2=2.2500 andt l - I I .

. 3905 '-0.001, respectively. It is also to be noted that X 1
the stabihty of a few parts in 109 is much greater titan the
fourth-decimal-place precision achieved. FIG. A SNCA br I, 1 2 .illt q1 2.76•, ,hich ,l"

"I lit- steady-state accuracy of ufie analog simulator was FeicJfiG h Idcuticl a, the "Nixcd co Aliu mi ' 1,27t8 with ai olc~io
etimattedi to be approximately 1%, and was determined prarcier q t Xt. iioill lit dvIIaiiii&, ol |q'. (2) .. ).
by tle precision of tile reslstors used. The accuracy of Me 1 1 tiii |- trtjtl, with I(iXE lhlt l\ •itl'

ii•," A l51)' 4J. chip is 0.25 •. 'he ti le scali' ng accuracy o• " '11t1 i1) (OblaIlleltd Ii, d~ l 'ig itaciiiI cH lthe simiic l(VIl Olwl,';'
g '; was ,Icicrilliu cd by the pmCcl'4.1till of the Iccdblack w I lli,|1 tOl() itt .. et,.lil~i•.tl I lit- I \.pii,)v I ~li ilt .

r l fi l t e It c t| l lt • .cr ( O i s ili lt l l a t ; \ , i ., w, ., l l t' l I I I l i lt, tii ! l- i%. I, , 1 1) I S Oli t o it i l l, • ta l ,k t



A typical Poincare map of a SNCA for this system is t0 .

shown in Fig. 3. The attractor measured with the analog
simulator is shown in Fig. 3(a) and can be compared to
one obtained for the same conditions by digital simula- 10'
Zion shown in Fig. 3(b). The attractors are quite similar,
though the digital simulation has fewer points, and the
fine scale of the analog attractor is somewhat obscured by to i
noise. Nevertheless, the agreement is quite convincing.
Below, we discuss these and additional data in more de-
tail. 10 ..

o 1 . :3 4 51

I1. RESULTS Freq (kilz)

Figure 3 shows a SNCA measured for q2 =0.88 and
other conditions fixed as indicated in the figure captions, t (b)o -
Throughout, we regard q2 as a control parameter. We,
show, in Fig. 4, a chaotic attractor, again obtained from, *. '1
analog (a) and digital (b) simulations. This attractor was.
obtained for q2 =0.38, and the digitally obtained, 10 -
Lyapunov exponent was k=0.156. At this point, thew
only criterion wh;ch we have used for identifying the at-"
tractor type, apart from the obvious difference in appear-,:
ance (with the attractor in Fig. 3 appearing more like the! 1 0 _
description [1,31 "everywhere discontinuous but single,: 003 3 0 300 x 16'
valued") is the sign of the Lyapunov exponent. We shall o
now apply the other criteria outlined in Sec. I.

Two power spectra, measured on the analog simulator FIG. 5. (a) A power spectrum obtained from the analog
for the fixed conditions, are shown in Fig. 5(a) with. simulator for the fixed conditions and q2 =0.88 (SNCA), and (b)
q2 =0.88 and Fig. 6(a) with q2 =0.38, that is, for condi- the threshold dependence of the number of peaks N(O) with

amplitudes greater than the threshold a.

0.8a

L~~~t --- --0------- ---............... ..'" '" (a) i

10

1 CM

-0.8 ; -

2 1 0

0 1 2 3 4 5

0 8 Freq (kHz)

1 ~~(b) __

j7 -1

.L..

/ ', ... '-

-2 1 0
X 1003 30 300 x10

FIG. 4. A chaotic attractor for the fixed conditiorls with
qrý 0.38. (a) Measured on tha anadog simulator (10' points), FIG. 6, (a) A powrCr SPed rum obtained by 3t13l0g %sTtniilsitj4To

and (b) by digital simulation (3 X 104~ potints froin which for the fixed conditions and qý t0 AA chaiotic). and 00 file
0,1 156 was obtained, t l hold dependence of the tminbe' ot peaks



tionas identical to those of the attractors shown in Figs- 3
and 4. The most striking difference is that the multitude
of peaks evident in Fig. 5(a) are broadened in Fig. Out)
with only a few dominant ones remaining. lhe latter
clearly results from a chaotic system, while the former
might well be supposed to result from a very complex
quasiperiodic attractor. We have attempted to app)y the
criterion given by Eqs. (1) to these two power ,,...ctra,
that is, we have counted the number of peaks N((? w with
amplitudes greater than a threshold aY. The results, plot- .
ted on a log-log scale, are shown below their respective
power spectra in Figs. 5(b) and 6(b). While it is not quite
possible to match the results shown in Fig. 5(b) to a pure.
power law as indicated by Eq. 1(a), that seems closer to!
an appropriate description than that of the results shown
in Fig. 6(b). It is possible that the washing out of the very
fine structure by the inherent noise in the analog system
and/or the smearing of some of the finer peaks in the fre- .--.

quency spectra by phase noise in the synthesizers may
have obscured the power-law dependence of N(or) on o,.

VWe now turn our attention to the information dimen-
sion, defined in the usual way (6,201:

0
Dt = lim l~ )(5): 4• • . ... .. . .

t--0 Ilog, 0(I/e) ',-4 3 2 -,t

where e is the box size in phase space and I (e) is the in-! FIG. 7. The information vs the logarlthm of the reciprocal
formation box size obtained from analog mC3SUrements (a) The crosses

Vie) are for q, =0.88 (SNCA) and the asterisks are for q: -0,38
Ire)=- j PAlnP, (6) (chaotic). The straight lines hae slopes D, 1. 19 ( +.) and

I.Dt l.58(, ). The size of the data sets were I0ý points. (b) A
test of the dependence of D, on the data.-et size from analog

with Pi the frequency at which box i is visited by the dy- measurements . 10' " 2 ", 1)' 4 x l0" and lo 10;
namics. We have measured this dimension on data pro- points, respectively. Pie logarithms are base 10.
vided by the analog simulator from the reduced, two-
dimensional (Poincare) section. In Fig. 7(a) we have plot- above, we determined the value of q. ... at which X passed
ted I(e) versus log!0 ( I /e) for the two attractors shown in through zero. Treating ! as an order parameter, we
Figs. 3 and 4. Over the range in e above a lower limit set then made the plot shown in Fig. 8. Least-squares fits to
by the inherent noise, we find a good linear behavior of obtain the straight lines shown indicate that the results
1(e) on log, 0( l/e) as shown by the straight lines, the
slopes of which give D,. We find that D, 1. 19 for the
attractor of Fig. 3 to be contrasted with D, 1.58 for the C,
attractor of Fig. 4. The former result is in good agree-
ment with both the predictions and the numerical results
of Ding, Grebogi, and Ott f6j for a SNCA. Since the ,.i
measurement of dimension on real physical systems, -

which are always to some degree contaminated by noise, < s

is often open to criticism, we have tested our algorithm , '?
on measured sets of data of various sizes for the SNCA of
Fig. 3. These results are shown in Fig. 7(b), where it is
evident that data sets varying in size from 10" to 105

points yield substantially the same fitted slope if rounding
at the high and low ends of the log1 o( I/e) scale is neglect-
ed. At the high end there is more rounding for the small- -
er data sets, as expected. -6 -5.5 -5 -45 -4

We consider now the destruction of the chaotic attrac- Initq
tor which existed at q, 0.38 and its replacement by a FIG l' lie I yalloý Vxponcli Jý 1 "1r1(r paraeter I tile

SNCA at a critical value q,,,, - 01.612. These results destructon of chaos IN si ,N('ee | 'it1 r.,ldt• ffr ete r -halic tl

were obtained by digital simulation, and the only cri- tractor are sho%%ni hv the dash-dotltcd lno and for 1he 0SN(A b,
teflon used to determine the type of dynamics was the tie sohld linrk lthe \.tiiiht Ile. Irc hi ,t 1qw,irc fitl to il'" d.11.

Lyapunov exponent, ily measuring ý. for each attractor aird hai.e dope IHt .l I .11id 0 1 th 11,10i1t ,ltd T01,4 lrhlotl(
obtained from stepping q2 betwevii the two liitlis given at)r:ictors, re-pt'iS



. . . .. measured the two-dimensional densities tI x ) using the
log simulator, with the results ihown in Fig ) (a) Jot200r the chaotic attractor and 9(b) for the SNCA. We note

- L ,that P(oi,x) is much more sharply defined for the SNCA

°' "than for the chaotic attractor. This *s indicated by the
"X • amplitudes of the peaks, both densities having been ob-a. 10 0 1 

5tamed from the same number of digitized points ( 10'Ix
The chaotic attractor displays a considerably smaller am-
plitude and shows less fine detail as expected from a

o,. higher-dimensional object. It may be possible to develop
-1 2 an additional criterion based on the differences in these

X densities.

IV. SUMMARY AND CONCLUDING REMARKS
600[

(b) We have demonstrated, with measurements on an ana-
log simulator-a real physical system-for a particular

multistable potential not previously studied, that the dy-
I namics [1-6] observed in bistable magnetic beam experi-

ments [7.8] is robust to the small inherent noise encoun-
tered in experimental systems, exists over a region of pa-
rameter space of nonzero measure, and is easily observ-

0 Ai r , able using criteria based on the Lyapunov exponent, in-
-1 0 2 formation dimension, and characteristics of the power

X spectra. Moreover, we have shown that a SNCA can des-
troy and replace a chaotic attractor. We have displayedFIG. 9. The invariant densities for the attractors shown in this phenomenon as a classical phase transition using the

Figs. 3 and 4, measured on the analog simulator using data sets Lysphnovexon as a order parameter, whereupon

of I0W points each: (a) for the chaotic attractor with the fixed Lyapunov exponent as an order parameter, whereupon

conditions and q2 =0.38, and (b) for the SNCA with fixed condi- we obtained substantially different power-law exponents

tions and q, =0.88. The velocity xi is plotted on the isometric for the SNCA compared to the chaotic attractor. Final-

axis vs the coordinate x on the horizontal axis, ly, we suggest that our simulations can be viewed as a
prelude to further experimentation on SNCA's with irra-
tionally forced r.f SQUID's, whose potential, with regard

behave according to a power law, to the magnetic flux internal to the SQUID loop, is simi-
lar to the one used here.
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ic attractor. We note also the much greater variability of
A for the SNCA, an effect, noted in Ref. [71, which possi- We are grateful to Edward Ott and Mingzhou Ding
bly contributes to the difficulty encountered in attempts who originally encouraged us to search for SNCA's with
to measureexperimentallirom Poincare sections. an analog simulation. Thanks are due also to William

Finally, we present also without analysis another mea- Ditto for many stimulating discussions. This work was
sure, the invariant density, which shows differences be- supported by the Office of Naval Research Grant Nos.
tween the two attractors shown in Figs. 3 and 4. We N00014-90-J-1327 and N00014-90-AF-001.

[II C. Grebogi, E. Ott, S. Pelikan. and J. A. Yorke, Physica [9] J. Kaplan and J. A. Yorke, Functional Differential Ftua-
13D. 261 (1984). tions and the Approximation of Fixed Points (Springer-

[2] A. Bondeson, E. Ott, and T. Antonsen, Phys. Rev. Lett. Verlag, Berlin, 1978), p. 288.
55, 2103 (1985). [10]T. Kapitaniak, E. Ponce, and J. Wojewoda, J. Phys. A 23,

[3] F. Romeiras, A. Bondeson, E. Ott, -. Antonsen. and C. L383 (1990),
Grebogi. Physica 26D, 277 (1987). ft I] T. Kapitaniak and J. Wojewoda, J. Sound Vib. 138, 162

[4] F. Romeiras and E. Ott, Phys. Re',. A 35, 4404 (1937). (1990)
N5 M4 Ding, C. Grebogi, and E. Ott, Phs. Rev. A 39, 2593 (12] T. Kapitaniak and M. S. Fl Naschie. Phys. leitt A 154.

1198• v 249 (1991).
161 M Ding, C. Grebogi, and E_ Ott, Phys. Lett. A 137, 107 113] S Wiggins. Phvs. Leit. A 124, 1.38 (1987).

11989) [141 F. C. Moon anid W. T. Hlolmes, Phys ] ,L- It IiA, IS"
17] M t)ito, IM. Spano. H, Savage. S. Rausco, J. Ileagy. arid 1!985)

r Ott. Phys- Rev. l.eti. 65, 533f1990), [15] P. V Y Mc'hiniock and F Mos%, in Nonse in Nonhnwar
(18 1 1cieoyv and W Ditto, . Nonlin. S ý tie 1 ....... [)vOwuw/ Nr'wrrn. edited cr y 1" I Mosý and P N I

-ScCi I - ( h I)



McClintock (Cambridge University Press, Cambridge, (1811 Shimada arid 1. Nagashima. Prog. Vheor- Phfh 61,
1989), Vol. 3, p. 243. t¢O5 (1979); G. Benetmn, L6 (ial.an, A (iorgilh. and J,

(161 Computing Before Computers, edited by W. Aspray (Iowa Strelyn, C. R. Acad. Sci. Paris 286. A-431 19781
State University Press, Ames, IA, 1990). [19] A Wolf, J. Swift, li. L. Swit,.ie. anld 1. A Vastano, Physi-

(17) J. Smythe, F. Moss, and P. V. E. McClintock, Phys. Rev. ca D 16, 285 (1985)1
Lett. 51, 1062 (1983); L. Gammaitoni, F. Marchesoni, E. [20J See, for example, T, S. Park-r aind L 0 Chua, Practical
Menichella-Saetta, and S. Santucci, ibid. 62, 349 (1989); T. Numerical Algorithms for (Choair .'ivstems iSpringer-
Zhou and F. Moss, Phys. Rev. A 41, 4255 (1990). Verlag, Berlin, 1989), Chap 7


