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ABSTRACT

This thesis details the experimental analysis cf an active

damping control technique applied to the Naval Postgraduate

School's Flexible Spacecraft Simulator using piezoceramic sen-

sors and actuators. The mass property of the flexible arm is

varied to study the frequency effects on the Positive Position

Feedback (PPF) algorith-m. Multi-modal dynamic response 4s

analytically studied using a finite-element model of a canti-

levered beam while under the influence of three i f ferent

control laws: a basic law derived from the Lyapunov Stability

Theorem, PPF and Strain Rate Feedback (SRF) . The advantages

and disadvantages of using PPF and SRF for active damping

control are discussed.
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I. INTRODUCTION

A. BACKGROUND

The evolution of spacecraft into larger and more complex

structures, such as Space Station Freedom, has greatly expand-

ed the problem of structural dynamics. The need to limit

launch costs drives the engineer to a low mass design which

results in these large structures being extremely flexible

with very low frequency fundamental vibrational modes. These

structural characteristics pose some difficult control prob-

lems which are the focus of the emerging Control-Structures

Interaction (CSI) field.

There are a variety of scenarios, such as slewing and

pointing maneuvers, docking with other spacecraft and inter-

actions with environmental forces that will produce unwanted

structural vibrations. There may be requirements for sensor or

antenna pointing or attitude control which can not be met with

only the inherent structural damping in effect. This describes

the need to devise techniques which actively control the dy-

namic response of flexible structures. Any technique, in sim-

plistic terms, is composed of two separate, but interrelated

operations. First, the motion of the structure must be accur-

ately measured by some type of sensor. Then, this information



must be fed back via an effective control algorithm to an ac-

tuator on the structure that will counteract the vibrations.

When trying to measure the dynamics of a structure, two

possible quantities that can be measured are the acceleration

of a point or points on the structural member and the strain

within the member. However, with the low frequency vibrations

characteristic of the structures we are interested in, precise

acceleration measurements are difficult. This leaves strain as

the quantity best suited for defining low frequency vibra-

tions.

There are a variety of sensors available for this applica-

tion such as fiber optic sensors, strain gages and piezoelec-

tric ceramics. Fiber optic sensors can be used to make

measurements with a variety of methods, but are not yet prac-

tical for complexity and technology problems. Strain gages are

limited by a relatively low sensitivity and are highly subject

to noise. The one type that has received much study and is

seeing increased usage is the piezoelectric ceramic. Reference

1 highlights its advantages as having:

"* high strain sensitivity

"* low noise

"* low to moderate temperature sensitivity

"* easy implementation

The desired characteristics of a vibration suppression ac-

tuator are low mass, infinite bandwidth, electrically powered

and an internal force producer [Ref. 23. A low mass
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requirement is necessary so as not to significantly alter the

physical characteristics of the structure as well as the

overall launch mass. An ideal infinite bandwidth would thecr-

etically allow control of all vibrational modes of the struc-

ture. Electric power reduces the complexity and mass inherent

in a mechanical system. An actuator that produces internal

forces only would greatly simplify the control algorithnm for

the entire structure.

A number of materials have been developed for this Durpose

such as piezoelectric ceramic wafers (PZT), electrorestrictive

ceramic wafers (PMIN), piezoelectric polymer film (PVF2) and

shape memory metal (nitinol) wires. PZT and PYIN can produce

similar strain levels, but PMN is non-linear and very temper-

ature dependent. Although nitinol can produce strains 300

times greater than PZT, it is difficult to incorporate and not

practical for most applications. When considering these trade-

offs, PZT becomes the best choice for an actuator. Its suita-

bility is summarized in the following characteristics [Ref.l]

"* high stiffness

"• sufficient stress to control vibrations

"• good linearity

"* temperature insensitivity

"• easy to implement

"* low power consumption



To further investigate active damping control techniqes,

this technology has been incorporated into the Naval Postgrad-

uate School's Flexible Spacecraft Simulator (FSS).

B. FOCUS OF THESIS

The effectiveness and utility of using piezoelectric sen-

sors and actuators to control vibrations will be analytically

demonstrated via computer simulations. A model will be devel-

oped for a simple cantilevered beam using the finite element

method. The dynamic response of this system will be analyzed

while under the influence of three different control laws:

"* a basic Lyapunov stability-derived control law

"* Positive Position Feedback (PPF)

"* Strain Rate Feedback (SRF)

The Positive Position Feedback algorithm will also be in-

vestigated experimentally. This is the particular control law

which has been built into the Flexible Spacecraft Simulator.

The mass property of the flexible arm can be adjusted to vary

the natural frequency of the first vibrational mode. As will

be shown, the effect of the piezoelectric actuator on the dy-

namic response of the beam will change as the natural frequen-

cy varies from a particular optimum value. This will highlight

the advantages and disadvatages of this technique.
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II. THEORETICAL ANALYSIS

A. PIEZOELECTRIC THEORY

Piezoelectric ceramics and crystals derive their utility

in vibration control from the ability to convert electrical

energy into mechanical energy and vice versa. When a force is

applied to the material, the crystalline structure creates a

voltage proportional to the force. Likewise, an electric no

tential applied across the material will alter its shape

dimensionally.

Man-made ceramics have an advantage over natural crystals

in that they ca.i be customized for each application. These

ceramics can be manufactured in almost any size and shape and

have their piezoelectric properties oriented in any specified

direction. These properties are induced into the material dur-

ing a process called "poling". While heated to a temperature

above its Curie point, an electric field is applied across the

material. This has the effect of realigning the crystalline

structure such that it is elongated in a direction parallel to

the electric field, the "poling" axis, and foreshortened in a

direction perpendicular to the "poling" axis. Henceforth, as

shown in Figure 1, any applied voltage of the same polarity as

the "poling" voltage will elongate the ceramic along the

"poling" axis and a voltage of opposite polarity will elongate

5
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zri; re 2 .) (Re f. 3]

The vol1t agýe iiV,) produced by a sensor Is cz ven by the

relationship:

V, E3t l+ e2) 1

where E is the modulu s of eia stici-ty of th cramic, d,, is the
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Polarit/
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!'!!Before Force Applied After Fr,•e Applied

Figure 2 Piezoelectric sensor mode

lateral strain coefficient, D is the dielectric constant, t is

the thickness and c• and c: are the lateral strains [Ref.4].

This lays the groundwork for measuring the vibration of a

structural member by converting the strain on the ceramic pro-

duced by the flexural vibrations into a voltage which can be

much more easily manipulated and processed.

The effect of an actuator is described by the equation for

the bending moment (mh(x,t)) at a cross-section of the struc-

tural member:

-------- --- l



mb(X, t) = EIy"(x, t) - kdvd(t) (2)

where EI is the flexural rigidity of the member, y"(x,t) is

the second order partial derivative of the transverse dis-

placement with respect to x (the longitudinal coordinate), kd

is a constant dependent on the ceramic piezoelectric constant,

dielectric constant, width and the member thickness and vd(t)

is the voltage applied to the ceramic [Ref. 5]. This shows how

an applied voltage can produce a strain which, in effect,

places concentrated moments (a couple) at the endpoints of the

element on which the piezoceramic material is located. The

direction of the moment needed to counteract a vibration is

changed by changing the polarity of the applied voltage.

B. FINITE ELEMENT MODEL

In order to effectively analyze the dynamic response of a

system and the effect of an applied control law, an accurate

and workable model of the system must be developed. The finite

element method is used to discretize the equations of motion

from unwieldy partial differential equations into second-order

differential equations of generalized coordinates.

1. Equations of Motion

This analysis will consider a cantilevered beam as the

system. From Bernoulli-Euler beam theory, the kinetic energy

(T), potential energy (U), and work (W) done by an applied

8



moment from a piezoceramic actuator (M(x)) on each element

are:

T frbV dx (3)2 x,•

U = El9- (-2!Y2 dx (4)

V= fZ Mf(x) dx (5)

where x is the coordinate in the longitudinal direction, y is

the coordinate in the transverse direction, V, is the trans-

verse velocity, E is the modulus of elasticity, I is the mo-

ment of inertia about the bending axis, p is the mass per unit

length, -; is the coordinate of the left end of the element and

h is the length of the element. A typical finite element is

shown in Figure 3 with the associated moment (M) and shear (V)

forces.

From the Extended Hamilton's Principle, the following

relationship is used to formulate the equations of motion:

f e (T-U+W) dt = 0 (6)

Taking a variation of each term and assuming a constant moment

9



over the length of the element yields:

fti [f ,.h pj'(6) - El-!- (6.Y dxc+ MJ (&tŽ*) dx, d 0

(7)

Y
A

M(xi It) M(xt+ht)I I
V(lx,t) V(xi+ht)/

SXX

Figure 3 Finite Element Schematic

Integrating the first term by parts gives the following varia-

tional equation:

[fi -fa - E_(- & ) - +x dxJ dt = 0

(8)
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At this point, substitutions are made to discretize the motion

into the form:

4y (Z't) IV EN(x) qit0 (9)
-i-i

The Ni terms are third-order polynomials, chosen to satisfy the

boundary conditions at both ends of the element, which e

the mode shapes and are functions of x only [Ref. 6]:

- i +2 3-x
N1 I 1-3 h( x) + 2( 

ix )

N2  (X - Xi) 2 x h + x -h x0

M3  3( x Xh ) -2( r

. - x) x -x•;

The cL terms are the system generalized coodinates which are

functions of time only. The quantities they represent are:

q. = Transverse Deflection at Left End of Element
q2 = Rotation at Left End of Element (11)
q 3 = Transverse Deflection at Right End of Element
q4 = Rotation at Right End of Element

Taking the appropriate derivatives of Equation (9) and substi-

tuting back into Equation (8) and taking a summation of the

ith terms yields:

11



f t2 [ xlth (p., (x) ~tN(x) 6qj(t) + ErN1"(x) q,(t) N'(x) 6q,(t)) dx

I xI

- M N" (x) 6qj(t) dx dt = 0
4

(12)

Since this relationship must hold true over any time period

and for any arbitrary variation 6%, the integrand must equal

zero. Now, the familiar second-order equation of a vibratory

system becomes evident in the fc=:

(t) + Kjjq 1 (t) = XYI (x) , j = I.n (13)

The mass (M) and stiffness (K) matrices are computed from:

÷h=, E p N, (x) N' (x) x(

Performing the integrations results in a system of four equa-

tions for each element:

156 22h 54 -132i' r 12 6h -3.2 6bh -:

pb2212 4W 1312 -3b2 '1 + Rl 612 4b2 -611 2b2 q2  _
420 54 13h2 156 -22h 143 h3 -12 -6.b 12 -612 q3  0

-13h2 -3h2 -2212 412 .14, 612 2h2 -6h2 4h2.q4, 1

(15)
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The complete mass and stiffness matrices for the entire system

are obtained from a simple combination of the elemental matri-

ces. Since the q3 and q4 coordinates of one element are the

same as the q, and q, coordinates of the next element, the glo-

bal matrix is formed by overlapping (adding) the upper left

2x2 submatrix of an element with the lower right 2x2 submatrix

of the previous element. Therefore, a n-element system has ma-

trices with dimensions of (nx2)+2 by (nx2)+2. However, for a

cantilevered beam, the q, and q2 coordinates of the first ele-

ment are always zero reducing the matrices to nx2 by nx2.

2. Actuator Moment

The control moment produced by an actuator on an ele-

ment is derived using the Lyapunov Stability Theorem. The to-

tal energy of the beam:

1= h 1(&)2p +c A.. (16)

is chosen as the Lyapunov function. This function meets the

requirements of being positive definite, continuously

differentiable and equal to zero at the equilibrium state. The

only remaining condition needed to ensure stability is that

the time derivative of U must be less than or equal to zero.

[Ref. 7]
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The time derivative of the energy function is:

&=f h [p" + EI~xy Ax at Y ldr (17)

JXX a 2 at' ax2)j

Integrating this equation using the following relationships

for a vibrating beam, bending moment (M) and shear (V):

p + EIa'y -o (18)ax"

M = EI C12y (19)
ax2

V EI 3y (20)
dx ax3

while assuming no shear in the beam yields:

ly = M -Jx +11 X) (21)

The quantity in parentheses can be measured by a specially

designed electric circuit which amplifies the current devel-

oped over the sensor. To ensure that the derivative of the

Lyapunov function is always less than zero, M must be of the

form:

14



H=-k -(22)

M is directly proportional to the applied voltage to the actu-

ator such that k is a positive constant resulting in:

&=-k (i i) • (23)

In terms of the generalized coordinates, the moment is ex-

pressed as:

S- -k (, - q2) (24)

The system of equations for an element with an actuator at-

tached now becomes:

+0 -kO0 k 42  (25)o 0 0 0 qY3
k o -kjL¢J

3. Modal Coordinate Form

The equations of motion can be decoupled and more eas-

ily analyzed by transforming the generalized coordinates into

modal coordinates. This transformation is of the form:

q = O (26)

15



where 0 is the weighted modal matrix and Z is a vector of

modal coordinates.

First, the eigenvalues and eigenvectors must be calcu-

lated from the freely vibrating undamped system:

MI + Kq = 0 (27)

For a n-dimensional system, there are n eigenvalues (X,, i=

1.. .n) and n eigenvectors (4)j, i=1... n) which satisfy the

equation:

4= K4 (28)

The eigenvectors, also known as the normal modes, are orthog-

onal with respect to the mass and stiffness matrices. This

property allows the matrices to be diagonalized using the re-

lationships:

S= M(29)

4 =K. Ki

where the diagonal elements K. and Ki, (i=l.. .n), are known as

the generalized mass and stiffness elements for each mode.

The weighted modal matrix (4) is obtained by dividing

the ith column of the modal matrix by the square root of the

ith generalized mass:

16



-__n , J=_.. (30)

Substituting the weighted modal matrix into Equation (29) pro-

duces the diagonalizations:

0TM4 =I (31)
=K*

where I is the identity matrix and the diagonal elements of K'

are the eigenvalues and squares of the modal frequencies.

If the system is assumed to have viscous damping and

excited by an arbitrary function Fu, the equations of motion

take the form: -

M4 + Cd + Kq = Fu (32)

If the damping matrix is proportional to either M or K, it is

also diagonalized by the weighted modal matrix. Applying the

transformation of Equation (26) to Equation (32) and premul-

tiplying by 4 results in n-uncoupled equations of the form:

2 + 2 17(33)

17



C. COMPUTER SIMULATIONS

To demonstrate the utility and stability of the specified

control laws, the finite element model has been programmed

using MATLAB. The basic approach is to put the modal equations

into a state-space form and use MATLAB's linear simulator

function to produce a time response. The code for the PPF

simulation is in the Appendix. The code for the other control

laws is of a similar form except for the specific control law

formulation.

The following values for the physical parameters of the

cantilevered beam were selected:

"* number of elements: n = 8

"* element length: h = .1 m

"* element density: p = .5 kg/mr3

"* product of modulus of elasticity and EI = .9 Nm2

moment of inertia

Using these values, the system mass and stiffness matrices

were formulated and used to solve the eigenvalue problem. That

solution provided the modal frequencies of the beam. The first

three are:

" w, = 7.37 rad/s = 1.17 Hz

" w2 = 46.19 rad/s = 7.35 Hz

"* W3 = 129.42 rad/s = 20.6 Hz

The inherent structural damping was introduced by arbitrarily

damping ratios (ri) such that the damping increased from the

lowest value for the first mode to the highest value for the

18



nth mode. In general, the high frequency modes are dc-ced cut

more quickly then the lower frequency modes due to

ent natural frequencies.

For all the simulations, the beam was deflected and re-

leased from rest such that zhe first three modes were excited.

Simple geometric calculations were performed to determin the

required initial values for each of the generalized coordi-

nates. The open-loop response of the vibrating beam Is shown

in Figure 4.

From this point on, the simulations are customized to the

specific control law utilized. The simulation development -and

results are detailed in the following sections for each of the

three chosen control laws.

1. Lyapunov Stability-Derived Control Law

As shown in Chapter II.B.2, the equations of motion

for each element are of the form:

-+ = Fk' 4  (34)

where k" is a 1 x 4 vector containing the proportionality

factor k:

k= 0 k 0 -k] (35)

F is a 4 x 1 vector dependent on actuator placement. If an

actuator is located on an element,

19
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F [0 -1 o 1 ] r (36)

Otherwise, it is a --r-:--_en-ire system of n

elements, the 4 x 4 Fk" matrices are combined to

form *he n x n matrix F*. :n modal form,, the system is

represented by:

w+ (D- + Ke 0 (37)

where:



2C1c 1  0 (A) 0

2

0 2

The system is further manipulated into state space form:

X= AX + Bu Y = CX + Du (38)

where:

X0 A 
1

C is the identity matrix and B and D are null matrices.

Four different simulations were run with varying actu-

ator locations as follows:

"* Case 1. Actuator at base (element 1)

"* Case 2. Actuator in middle (element 5)

"* Case 3. Actuator at tip (element 8)

"* Case 4. Combination of Cases 1-3 (elements 1,5 and 8)

The results are shown in Figures 5-8. As expected, the actu-

ator at the base has the most significant effect on damping

vibrations since it can apply the largest moment. Although

actuators in the middle and at the tip do provide significant

damping when compared to the open-loop response, their contri-

bution is minimal in the combined system. A comparison of Case

21



1 and Case 4 shows how much the base actuator dominates. This

fact highlights the advantage of using a single actuator when

considering cost and implementation issues.

TIP DISPLACEMENT - rEN k1= eri

-2.5

82 
4 6 8 1

TIME, see

Figure 5 Lyapunov / Actuator at base

The proportionality factor k is a function of the

physical constants of the piezoelectric which relate the ap-

plied voltage to the moment created and a gain factor applied

to the feedback circuit. For simplicity, it is assumed to be

unity for these simulations.

Varying k has a significant effect on the response.

Theoretically, the system is stable for any positive value.

However, larger values are, in effect, placing a moment with

a magnitude larger than required which tends to "overcontro!"
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Figure 6 Lyapunov /Actuator in middle

TIP DISPLACERMET -FEll k=z ezg

10.5

1 18

TIME, __e_

Figure 7 Lyapuncv / Actuator at tip
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1.5

hii

J - .5

- -1 *1

-2 -

-2.5

-31
8 Ze

TIME, +

Figure 8 Lyapunov / All three actuators

the beam. This is seen in the response as the actuators, al-

though stabilizing, drive the beam to excessive amplitudes.

Small values of k equate to moments of insufficient magnitude

which decrease the damping ratio. Optimizing the system re-

quires a tradeoff between the desired settling time and a max-

imum allowable amplitude. A trial and error procedure is

required to select the best value and customize the control to

the application.

2. Positive Position Feedback (PPF)

This control algorithm is defined strictly in the

modal form. For a scalar case, the equations of motion are

represented by:

24



+ 2(,)1 + w•t = Gwan (39a)

S+ 2 ~ 2 + (39b)

where Z is the structure modal coordinate, n1 is the compensa-

tor modal coordinate, r and r, are the structure and compensa-

tor damping ratios, w and w, are the structure and compensator

natural frequencies and G is a gain factor. As seen in Equa-

tion (39), PPF means positively feeding the structure coordi-

nate back to the compensator and positively feeding back the

compensator coordinate times a gain to the structure.

The system response characteristics of this algorithm

are shown in Figure 9. Assuming that the structure motion at

steady state is of the form:

(t) = - ex' (40)

the compensator will respond as:

.q(t) e(41)

where the phase angle, 0, is defined by:

O -tan-2 ( (42)
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When the structure vibrates at a frequency much lower than the

compensator natural frequency, the phase angle approaches

zero. Substituting Equation (41) with 4 = 0 back into Equation

(39a) gives:

S+ 2Cwt + (C - Gow2 )• = 0 (43)

resulting in a decrease in the stiffness term. When the struc-

ture and compensator have the same natural frequency, the

phase angle is 7T/2. In this case, the structural equation is

modified to:

+ (2Cw + Gpa) t + (,2• = 0 (43)
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showing an increase in damping. When the structure is vibra-

ting a frequency much greater than the compensator natural

frequency, the phase angle approaches g. Making the same sub-

stitution yields:

S ++ (w+ Gpco)t 0 (45)

causing an increase in the stiffness term. These equations

clearly show that, in order to maximize damping, w must be as

closely matched to w as possible.

This analysis will go beyond the simple scalar case

and investigate a multi-modal vibration suppression system.

Specifically, the first three modes will be controlled using

two different schemes. First, three collocated sensor/actuator

pairs connected to three compensators tuned to the first three

modal frequencies will be analyzed. The second system will

utilize only one collocated sensor/actuator pair connected to

the same compensators. Figures 10 and 11 illustrate these two

configurations with simple block diagrams.

In a multi-modal case, the system equations take the

form:

E +D1 +K = CTGKq (46a)

S+ Di + K. = KaCt (46b)

For a system with n structural modes and m compensators, t is
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Figure 11 Single Actuator/Three Compensator Control Scheme
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a [n x 11 vector and n is a Em x 1] vector. D and D. are

En x n) and [m x m] diagonal matrices containing the damping

terms 2riwi and 2•i. K and K, are [n x n] and [m x ml diag-

onal matrices containing the squares of the natural frequen-

cies Ji and w2,. G is a [m x ml diagonal matrix of compensator

gains. C is a fully populated Em x n] participation matrix

which determines the influence of each sensor/actuator pair on

each compensator and vice versa.

The formulation of these matrices is straightforward

except for the participation matrix. Equating the right hand

sides of Equations (33) and (46a):

STFU = C 7GK, (45)

and assuming the control vector u is equal to the vector GKV,

C is equal to (pTF)T. u is a [p x 1] vector, where p is the

number of actuators, which forces the dimensions of eTF to be

En x p] . A modification must be made in the case of the single

actuator (u = 1). In order to keep the G and K matrices in the

same form and ensure dimensional compatibility, a [E x m]

vector A whose elements are unity must be included such that:

OrFu = C7AGK-1 (48)
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Now the entire system can be put into the matrix form:

[] + D 2Jý] + K -TC 2(A)GKflFt 0 (49)

As was done in Chapter II.C.1 with Equation (38), a

state-space transformation is made to perform the simulations.

The same initial conditio: are used to excite the tri-modal

vibration previously shown in Figure 4. The compensator natur-

al frequencies were chosen to exactly match the structural

frequencies in order to maximize the damping effect. In this

case, the com-pensator damping ratio, ýc, should be as small

as possible. As shown in Figure 12, this creates a resonance

peak near the compensator frequency allowing the largest gain

possible to act on the affected mode in the active damping re-

gion. This will also diminish the effects of active flexibil-

ity on lower modes. For these simulations, it was assumed that

each compensator could be designed to have a damping ratio

equal to .1. In actuality, it will be very unlikely that the

compensators can be designed as precisely as they have been

here and a decrease in system performance is expected. To

prevent a significant decrease, the compensator damping ratio

should be increased so that the active damping region is wid-

ened as much as possible.

Figure 13 shows the response of the beam under the in-

fluence of three actuators at the base, in the middle and at
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the tip. The effectiveness of this system is seen in how

quickly all three modes are suppressed. A single actuator at

the base also provides a sufficient degree of control as seen

in Figure 14. The effect of actuator placement is evident in

a comparison with Figures 15 and 16 which correspond to a

single actuator in the middle and at the tip, respectively,

feeding the same compensators with the same gains. However,

the performance of these last two configurations can be im-

proved by increasing the gains. Due to the fact that a larger

moment can be placed at the tip than at the base without dri-

ving the beam unstable, the allowable gains are two orders of

magnitude greater for Case 3 than Case 1. The individual modal
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responses can also be tailored by varying the gains stuch thati

the damping of one mode is maximized in relation to the

others.

TIP NOTION - FEM PPF U=3 C1=.2838 C2=G3=.0i

B .82 ..

SS.Bis

00

L9-

4 8ie

TIME, sec

Figure 13 PPF Three Actuators

In the scalar case, system stability is clearly de-

fined. A simple manipulation of the equations of motion and

application of the Routh-Hurwitz criterion results in the

condition:

0 < G < 1 (50)

This method is not applicable to the much more complex multi-

modal case. Fanson and Caughey have developed the following

stability condition:
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K CTGKC > 0 (51)

for emc "• •e-- "],This

a 'yg 1F -. a mfti-moca system 4 S con-

dition is jjm~ted- n that this sinale criterion is a function

m variables which are the cains of the individual

ccmpensators. .. . r.oedure used , or these simulations was to

fix two gains while varying the third to determine the range

where the eigenvaiues of the assembled matrix were all

positive.

3. Strain Rate Feedback (SRF)

The final alaorithhm investicated is also defined in

modal form as:
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+ 2 + w t = -G(a2rI (52a)

+ + (oll==Wi (52b)

where the variables are the same as those previously defined

for PPF. In this case, the structural velocity ccordinate is

fed back to the compensator and the compensator position

coordinate is fed back times a negative gain to the structure.

The gain must be negative, as will be shown in the following

analysis, so that the system performance will be optimized

over the most useful frequency range. Figure 17 graphically

summarizes the performance characteristics of SRF.

If we again assume that the structural modal coordi-

nate is of the form:

-(t) = (53)

the compensator response will be:

¶ (t) = Pei(-wt ) (54)

where g is now defined by:
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When w << w, the phase angle, 0, approaches -7/2. Substitu-

ting Equation (54) with q = -7r/2 back into Equation (52a)

gives:

+ (2Cw + Gpw)t + ,alt = 0 (56)

resulting in an increase in damping. When w = w, 0 and a

similar substitution yields:

S+ 2ý.t + ( W 2 + GPo=)• = 0 (57)

increasing the stiffness of the structure. Finally, when w >>

w4, n= 7/2 and the structure response is:
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+ (2CW - GPCO +62 -Ot=0 (57)

showing a decrease in damping. The obvious conclusion is to

design the compensator such that the structural frequencies of

the modes to be damped fall well below the compensator natural

frequency.

The SRF simulations were done using the same format as

the PPF simulations. The first three structural modes were

controlled using three compensators and the same four sensor/

actuator configurations. Additionally, the possibility of con-

trolling the first three modes using only one compensator and

one actuator is investigated. The participation matrix formu-

lation is identical to the PPF case. The state-space transfor-

mation is applied to the system defined by:

+ D o + [ C" A)GK1{C]= 0 (59)

Selecting a precise compensator frequency is not as

clearly defined as it is with PPF. Additionally, the stability

condition is not as clearly as defined as in the PPF case due

to the fact that the closed-loop damping and st'ffness matri-

ces can not be symmetrized. However, the wider active damping

region gives the designer a lot more flexibility in the cir-

cuit design. As long as the compensator frequency is greater

than the structural frequency, a certain amount of active
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damping will be provided. Although the stabilizing feedback

gain matrix is heavily dependent upon the structure and com-

pensator frequencies, some numerical analyses predict that

higher compensator frequencies produce larger damping ratios.

A drawback to frequencies in this range is that, as shown in

Figure 18, the magnitude of the compensator transfer function

approaches zero limiting the amount of control. Further study

is required on this point. Again, the compensators were assum-

ed to have damping ratios equal to .1. To highlight the ef-

fects of varying compensator frequencies, simulations were run

for the three actuator/three compensator configuration with

two different sets of w at the two extremes. First, the com-

pensators were assigned frequencies ten per cent higher than

each of the structural modes. This response is seen in Figure

19. Although the higher modes are controlled, the first mode

is not significantly damped. The system is operating too far

in the active stiffness region. The dominance of the active

stiffness can be seen in the higher frequency of the first

mode. The second set of compensator frequencies were 50 times

higher than each of the structural modes. This has the effect

of placing all three structural modes in the active damping

region of all three compensators. This response is shown in

Figure 20. In this case, the transfer function magnitudes are

so small that gains four orders of magnitude larger than the

previous case are needed. With these large gains, the higher
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modes are almost immediately suppressed. The first mode, hav-

ing the lowest relative gain, is not controlled as efficient-

ly. A significant improvement in performance occurs as w,

moves farther away from w. The same variation in the system

response when the single actuator moves from the base to the

tip is seen as in the PPF simulations.

The control system can be simplified by only using one

compensator and one actuator at the base as shown in Figure

21. The motivation for this approach comes from the results of

the three compensator case where all three structural frequen-

cies were below the smallest compensator frequency. Theoreti-

cally, a compensator will provide active damping to all modes

with a lesser frequency. For this simulation, the compensator
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frequency was set at ten times the third modal frequency. The

system matrices must be modified because the compensator equa-

tion is now in a scalar form. As shown in Figure 22, this

configuration effectively controls all three modes with maxi-

mum effect on the higher modes. However, this method will only

work for a few densely spaced modes. If the frequency range is

expanded too far, the lower modes will not receive a strong

enough control input.

This approach was also taken using an alternative

method. The sign of the gain applied to the compensator ouput

is changed such that the structural modal equation is now:

Z + 2Cwt + wl -Gw 21) (60)

This has the effect of swapping the regions of active positive

damping and active negative damping and making the region cen-

tered around w active flexibility. Now, the objective is to

set the compensator frequency below the first mode placing all

the modes in the active positive damping region. In this simu-

lation, the compensator frequency was set at 80% of the first

modal frequency. A first attempt was made using the same com-

pensator damping ratio (• = .1). This was an unstable system

due to the resonance peak of the compensator transfer function

occuring in the active flexibility region. To improve the re-

sponse, the damping ratio of the compensator had to be in-

creased such that there was no resonance and the flexibility

effect was diminished with respect to the damping effect. A
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Figure 21 Single Actuator/Single Compensator Control Scheme

value for • of .95 produced the response in Figure 23. As ex-

pected, the higher modes are not damped out as quickly as in

the previous case. To prevent the first mode from being driven

unstable, the gain must be held relatively low which reduces

the impact at higher frequencies. In practice, the effective

bandwidth of the actual compensator must be considered. The

compensator will damp only those modes densely packed within

the range of control.

Deriving a stability condition for SRF similar to

Equation (51) for PPF proved difficult. A transformation to

symmetrize the modal equations could not be found. In their

unsymmetric form, the equations could not be manipulated to
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form a simple stability condition. The alternate method used

was to ensure all the eigenvalues of the system matrix of the

state-space equation were negative. Again, two gains were held

fixed while varying the third to determine the stable region.

4. Comparison of PPF and SRF

A strict side-by-side comparison of these two methods

is not feasible due to the fact that the compensators are not

performing the same functions in both methods. Also, since the

stable gain regions were so varied, a uniform set of operating

parameters that provided sufficient control in both systems

could not be defined.

Positive Position Feedback is preferable for applica-

tions where a single mode needs to be quickly damped. Control

can be maximized by taking advantage of the compensator reso-

nance occurring in the active damping region. PPF also has the

advantage of using the sensors to measure the structural dis-

placement rather than the more difficult measurement of struc-

tural velocity as is needed with SRF. For multi-modal control,

the frequency requirements are too restrictive. One compensa-

tor per mode is required in this case. Unless the structural

characteristics are uniform and precisely known and unless the

compensator is closely matched with the modal frequency, PPF

will be operating at less than optimum.

Strain Rate Feedback has the advantage of controlling

modes over a wider range of frequencies. As was demonstrated,
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a single compensator feeding a single actuator can control

three modes. This is important in terms of reducing circuit

complexity and manufacture and implementation costs. However,

the active damping occurs in a region where the compensator

gain is not at a maximum. This has the effect of limiting the

amount of control on modes far from the compensator frequency.

The robustness of these two control schemes is demon-

strated in Figures 24 and 25. The scenario simulated here is

that the actual structural frequencies experienced on-orbit

are 10% less than the predicted values around which the com-

pensators were designed. All other parameters are kept con-

stant. This new response of the "modified structure" is shown

with the dashed line and is compared to the response of the

"original structure" shown with the solid line.

PPF produces almost an identical response for both

systems with only miniscule differences. Initial expectations

were that this frequency variation would produce a much more

significant difference. Further study revealed that the ro-

bustness of the system is very dependent on the compensator

damping ratio. Small values produce a phase angle curve that

approaces a square wave which were seen to emphasize the ad-

verse effects of a frequency change. Likewise, large values

stretch out the phase angle curve allowing a less significant

change in the system response. For this particular model, the

chosen value is large enough to prevent PPF's frequency depen-

dency from degrading the system response. The key to providing
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sufficient robustness is to have a moderate compensator dam-

ping ratio. Small values will limit the bandwidth <,f the com-

pensator and large values, while still being robust, will

decrease the magnitude of the damping provided.

A variation of only the first mode is seen when using

SRF. The "modified" first modal frequency has moved closer to

the edge of the bandwidth of the compensators such that the

amount of damping able to be provided has decreased slightly.

The structure is also more flexible as seen in the lower fre-

quency. SRF is much less dependent on the compensator damping

ratio in terms of robustness. The system is operating in a

region where the slope of the phase angle curve is not sicnif-

icantly altered by variations of the damping ratio. Simula-

tions showed that the system was equally robust with damping

ratios different by two orders of magnitude.
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III. EXPERIMENTAL ANALYSIS

a, -r'_ S'I

A. PHYSICAL SET-UP

".-hemecani-{ilay•" •=theexperim.entý is shown in Fg

ure ee - s -he circuit desiJgn and the choice

and c -. en.::fte :.z.cera..c sensors and actuators which

cc..rfse :he act.-e dm:ping control system. A detailed view of

the sensor and al-uatsr =ocations is shown in Figure 27. The

cera-ics are =-:onted cn both sides of the flexible arm with

-OcsiZe Doar::.es s"-h that the sensor voltages and actuator

strains are consistent. The damping circuit consists of three

sections: a char'ze az.ifie-r, a low-nass filter and a power

.rmzlifie_. The components of the filter were chosen such that

the comoensatc- values are w = .15 Hz and = .1

For this analysis, the main body of the simulator is held

fixed and the flexible arm is the only component affected by

external forces. The flexible arm is supported by air pads

which allow two-dimensional motion in an approximately fric-

tionless environment.
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B. PROCEDURE

The objective cf the experiment was to investigate the

effectiveness of the PPF algorithm over a range of structural

frequencies and compare the results with theory.

To achieve a variety of frequencies, the configuration of

the flexible arm was changed by attaching and detaching the

concentrated masses. The natural frequency, w, for a simple

spring-mass system is defined by the relationship:

F= ( )(61)

where m is the mass and k is the stiffness. The masses are

attached to the aim such that the stiffness remains constant.

Therefore, adding mass will lower the frequency from the ini-

tial value and vice versa. The selection of where to make mass

adjustments was a trial and error procedure until frequencies

of sufficient range and separation were found.

Data was obtained in the following manner. The signal from

the sensors was sent via a Gould 5900 Signal Conditioner to a

Gould RS3800 Stripchart Recorder. This allowed obtaining a

time history of sufficient length needed to calculate damping

ratios. Phase angle measurements were made using a Hewlett-

Packard 54601A Oscilloscope which displayed both the signal

from the sensors and the signal to the actuators. Frequency

50



measurements were made using both sets of equipment. The data

was averaged over several run for each configuration.

With only a single compensator in the feedback circuit,

the system will only be effective on the mode for which it is

designed. Therefore, in this experiment, only the first mode

of the flexible arm was excited so that the cleanest and

smoothest signal could be recorded.

The damping ratio, •, was calculated using the log decre-

ment method:

= in(Ajl (62)

where A, is the initial amplitude, Af is the final amplitude

and n is the number of cycles between those two amplitudes.

The natural frequency is computed using the damping ratio and

the damped period, Td:

21r
•= = d (63)

However, the damping ratios are small enough with respect to

the frequency measurement accuracy that we can assume the nat-

ural frequency to be the same as the damped frequency. The

phase angle was calculated from the relationship:

S= At (360 0 /cycle) (64)
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where w is the structural frequency in Hz and At is the time

difference between the sensor and actuator signals as seen on

the oscilloscope. The theoretical value for the phase angle at

each structural frequency is calculated using Equation 42.

C. RESULTS

As shown in the plot in Figure 28, data was obtained in

all three regions of active flexibility, damping and stiff-

ness. (Refer to Figure 9). Although the experimental values

PHASE NNGLE VS STUC-MRL MrQE-TEN-Y

U
11.1

-Theoretical

X Experimental

Figure 28 FSS Flexible Arm Phase Angles

for phase angle vary from theory (see Table I) as much as

seven degrees in the worst case and considering the +/- 2
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degree measurement accuracy, the data clearly follows the

trend we expect and we can assume the circuit is functioning

properly.

Table I

FLEXIBLE SPACECRAFT SIMULATOR - PPF

CASE PHASE ANGLE (Degrees)

Theoretical Experimental

1 19 15

2 29 29

3 32 36

4 55 59

5 90 84

6 i11 107

7 139 146

8 150 156

The parameters describing the dynamic response of the

flexible arm are listed in Table II. Examining the change in

frequency from the freely vibrating (open-loop) to the active-

ly damped (closed-loop) cases, the expected effect on the

stiffness term is evident. At the lower frequencies, a de-

crease is observed indicating the arm has become more flexi-

ble. At and near the compensator frequency, there is little or

no change. The higher frequencies exhibit an increase meaning

the arm has become stiffer.
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Table II

FLEXIBLE SPACECRAFT SIMULATOR - PPF

CASE FREQUENCY (Hz) DAMPING RATIO

Free Damped Free Damped ___ _ _

1 .116 .113 .0095 .0070 -27

2 .128 .125 .0104 .0114 10

3 .133 .128 .0077 .0243 215

4 .141 .140 .0059 .0325 450

5 .150 .0050 .0221 345

6 .154 .156 .0040 .0158 299

7 .165 .168 .0056 .0145 161

8 .177 .180 .0035 .0093 165

A very pronounced variation is seen in the change in the

damping ratio when the feedback system is activated. At the

lowest observed frequency, the arm has become so flexible that

the damping worsens by 27 per cent. There is a steady improve-

ment as the structure moves into the active damping region.

The maximum effect is observed with Case 4 showing a 450 per

cent improvement. The magnitude of the control provided is

best appreciated visually as seen in Figure 29. Even at the

higher frequencies, while not in the active damping region, an

improvement in the damping ratio is produced by the increased

stiffness of the arm.

54



One discrepancy evident in this data i_- -,hat the greatest

improvement in the damping provided by the compensator does

not occur at a structural frequency equal to the compensator

frequency. The cause of this variation has been difficult to

pin-point. In order for the transfer function resonance peak

to occur at .141 Hz, where the maximum increase was observed,

the compensator damping ratio would have to increase to .34 or

the compensator frequency would have to decrease to .142 Hz.

However, this is not consistent with the phase angle data pre-

viously mentioned. This rules out any small variations in the

feedback circuit as possible sources of error. There are some

physical factors which may have caused inconsistencies between

the eight configurations. Other experiments were being conduc-

ted while this one was in progress which did not allow a

uniform orientation of the flexible arm for all of the config-

urations. Varying frictional or gravitational effects may have

adversely affected the consistency of the results. Further de-

tailed experimental work is needed to precisely determine

where the maximum effect actually occurs.

This data highlights the advantages and disadvantages of

the Positive Position Feedback algorithm. When the compensator

is precisely tuned to the structural frequency, the system is

operating near the maximum gain of the compensator transfer

function. This enables the active damping control to have its

greatest effect. However, any deviation from this optimum re-

gion reduces the impact of the control system. As seen in this
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experiment, only a 25 per cent reduction in the structural

frequency results in the compensator degrading the dynamic re-

sponse of the system. If the frequencies can not be matched

precisely, it is better to err into the active stiffness re-

gion where the structural characteristics are not adversely

affected. The efficiency of the control law with a bounded

gain space, O<G<l, is heavily dependent upon the compensator

parameters w, and ,. It is recommended that moderately higher

compensator damping ratios be used so that a relatively large

amount of damping is provided while still maintaining suffi-

cient robustness.
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IV. CONCLUSIONS

Piezoceramic sensors and actuators have been shown to pro-

vide an effective means of contr.lling structural vibrations.

An increase of 450 per cent in the damping ratio of the flexi-

ble arm of the Flexible Spacecraft Simulator was demonstrated

using the Positive Position Feedback algorithm. This system

provides the greatest degree of control when the compensator

is precisely tuned to the modal frequency. Its main limitation

is that only a single mode can be controlled per compensator.

Positive Position Feedback and Strain Rate Feedback have

significantly different control characteristics which were

analytically demonstrated for a cantilevered beam. SRF is more

advantageous than PPF in the multi-modal environment. With a

wider active damping region, it has the ability to stabilize

more than one mode given a sufficient bandwidth.

Recommendations for further study include a number of

topics. First, the dynamic response of the FSS flexible arm

could be improved by incorporating additional compensators

into the current configuration. The first mode is very rarely

the only mode excited during slew maneuvers and the higher

modes should be considered. This problem may be more easily

solved by building a Strain Rate Feedback circuit and integra-

ting it with the sensors and actuators currently mounted on

the arm. Also, the effect of multiple sensors and actuators on
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the arm can be investigated with an optimization study of sen-

sor/actuator placement. There are a variety of control laws

which caii be used in this application. As an example, a combi-

nation of PPF and SRF could be developed which may incorporate

the strengths of each and cancel out the weaknesses.

The Flexible Spacecraft Simulator is an excellent tool for

studying, not only active damping control techniques, but

other spacecraft attitude control and dynamics problems. Cur-

rent research endeavors include designing an improved thruster

for attitude control and incorporating a robotic arm onto the

main body.
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APPENDIX

% Simulation of Beam Vibration using Finite Element Method
t Transformation into modal form using PPF with three control
laws
% utilizing three actuators on elements 1,5,8.

% Define physical constants:

n=8; % number of elements
h--.l; % element length
d=.5; % element density
EI=.9; % modulus of elasticity times moment of
inertia

% Element mass matrix:

Mul=(d*h/420)*[156 22*h; 22*h 4*hA2];
Mur=(d*h/420)*[54 -13*h; 13*h -3*hA2];
Mll=Mur';
Mlr=(d*h/420)*[156 -22*h; -22*h 4*hA2];

% Element stiffness matrix:a

Kul=(EI/hA3)*[12 6*h; 6*h 4*hA2];
Kur=(EI/hA3)*[-12 6*h; -6*h 2*hA2];
Kll=Kur';
Klr=(EI/hA3)*[12 -6*h; -6*h 4*.,ah2];
%

t Combine matrices for n element system. Disregard first two
rows
k and columns for clamped end.

for i=l:n-1,
M(2*i- 1:2"i, 2"i- 1: 2"i)=Mul+Mlr;
K (2-i-1: 2"i, 2.i- 1 : 2i)=Kul+Klr;

M(2*i-1:2*i,2*i+1:2*i+2) =Mur;
K (2*i-l:2*i, 2*i+1:2*i+2) =Kur;

M(2*i+ : 2"i+2,2"i- 1 :2"i) =MII;
K (2-i+i: 2.i+2,2.i- 1: 2-i)=KII ;

end

M(2*n-1:2*n,2*n-1:2*n)=Mlr;
K(2*n-1:2*n,2*n-1:2*n)=Klr;

Mi=inv(M); % Inverse of mass matrix.
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t Obtain eigenvalues and eigenvectors:

[phi,lambdail=eig(K,M);

*t Extract natural freqencies:

w=diaq(lambcda);

%Sort from low to high frequency:

(wl, num'.=sort (w);
w=w(num);
for j=l:2*n

lambda(j,j)=w(j);
end

% oteg-vcos
01

Ii Calculate generalized masses:

Mg=phi' *M*phi;

!k Calculate weighted modal matrix:

for i=1:2*n
phiw(:,i)=phi(:,i)/sqrt(Mg(i,i));

end
Mw=phiw' *M*phiw;
Kw=phiw' *K*phiw;
96
tj Actuator location matrix (actuators on elements 1,5,8):

F=zeros (16, 3);
F (2, 1) =1;F (8, 2) =-1; F(10, 2) =1;F (14, 3) =-1; F(16, 3) =1;
Ft=phiw' *F;

*Assign structural modal damping values:

z(1)=.0001;z(2)=.0004;z(3)=.0009;z(4)=.0015;z(5)=.0037;z(6)=
.0089;
z (7) =. 01; z(8) =. 025; z(9) =. 042;z (10) =. 067;z (11)=.098; z(12)=.11;
z(13)=.35;z(14)=.86;z(15)=1.21;z(16)=1.77;
k

t Assemble structural damping matrix:

D~zeros (2*n);
for i=1:2*n

D(i,i)=2*z(i)*sqrt(Kw(i,i));
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Asin r e- sarv

G .. -- 2 . . 3

2K- : * 2 *; wc *w! 2;02 z2; 0w 0; 0c~1 02*z; w
Q 3 02C; 0 3.-CG-C.3

~:ze~rucureand compensator equat ions into matrix

:Ds=2:- , :ercs i3; zercs ý3) DC;
Ks=.Kwl -_="z*G-*Kw1l; - Xc*.Ftl' Kcij

P--oc~sed-locrp system in state space form:

A= zeros& eye,(6); -Ks -!Ds];
B3=zercs,'.2,l);
C-eye (12);
LI=zercsf(12,1);
T= 0: 0119 .9)

XO=zercs i(2*n, 1);

% hta displacements to excite 3 modes

XO('L,1)=.0C8,;X0('2,l)=.05;X0(3,l)=.01;X0(4,1)=0;X0(5,1)=.004;

0,1) =0;
X0(11,l)=- .015;XO (12,l)=.0l;XO(13,l)=- .01;XO(14,l)=.173;
XO (15,1) =.02 ;X0(16,1)=.173;
ZO=iriv(phiw)*XO; Is Initial displacement in modal
coordinates

MO=[Z01' 0 0 0 0 0 0 0 0 oi';
[Y,XJ>=sim,(A,B,C,D,U,T,M0);
S9-

k Put open-loop system in state-space form:

Aol=[zeros(3) eye(3); -Kwl -D11;
Bol=zeros (6,1);
Col~=eye E);
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Dol=zeros(6,l);
M~ol=LZol' 0 0 01;
(Yol,XQJJ=lSim(Aol,Bol,Col,Dol,U,T,MOol);

k Convert back to tip physical coordinate:

phiq~phiw(1: 16, 1:3);
for i=1:1000

trn=[Y(i,1) Y(i,2) Y(i,3)1';
q=phiq*tm;
tip (i) =q (15)
tmol=[Yo3-(i,l) Yoi(i,2) Yol(i,3)1';
qol=phiq*trnol;
tipol (i) =qol (15)

end

%Plot data

plot (T,tip(:))
xlabel ('TIME, sec')
ylabel ('TIP DISPLACEMENT')
title ('TIP MOTION - FEM PPF U=3 G1=.2038 G2=G3=.O1')
pause
plot (T,tipol(:))
xlabel ('TIME, sec')
ylabe. ('TIP DISPLACEMENT')
title ('TIP MOTION - FEM OPEN LOOP')
pause
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