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ABSTRACT

This thesis details the experimental analysis of an active
damping control technique applied to the Naval Postgraduate
School’s Flexible Spacecraft Simulator using piezoceramic sen-
sors and actuators. The mass property of the flexible arm is
varied to study the frequency effects on the Pcsitive Positicn
Feedback (PPF) algorithm. Multi-modal dynamic respcnse is
analytically studied using a finite-element model of a canti-
levered beam while under the influence of three different
control laws: a basic law derived from the Lyapunov Stability
Theorem, PPF and Strain Rate Feedback (SRF). The advantages
and disadvantages of using PPF and SRF for active damping

control are discussed.
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I. INTRODUCTION

A. BACKGROUND

The evolution of spacecraft into larger and more complex
structures, such as Space Station Freedom, has greatly expand-
ed the problem of structural dynamics. The need to limit
launch costs drives the engineer to a low mass design which
results in these large structures being extremely flexible
with very low frequency fundamental vibrational modes. These
structural characteristics pose some difficult control prob-
lems which are the focus of the emerging Control-Structures
Interaction (CSI) field.

There are a variety of scenarios, such as slewing and
pointing maneuvers, docking with other spacecraft and inter-
actions with environmental forces that will produce unwanted
structural vibrations. There may be requirements for sensor or
antenna pointing or attitude control which can not be met with
only the inherent structural damping in effect. This describes
the need to devise techniques which actively control the dy-
namic response of flexible structures. Any technique, in sim-
plistic terms, is composed of two separate, but interrelated
operations. First, the motion of the structure must be accur-

ately measured by some type of sensor. Then, this information




must be fed back via an effective control algorithm to an ac-
tuator on the structure that will counteract the vibrations.

When trying to measure the dynamics of a structure, two
possible quantities that can be measured are the acceleratiocn
of a point or points on the structural member and the strain
within the member. However, with the low frequency vibrations
characteristic of the structures we are interested in, precise
acceleration measurements are difficult. This leaves strain as
the quantity best suited for defining low frequency vibra-
tions.

There are a variety of sensors available for this applica-
tion such as fiber optic sensors, strain gages and piezoelec-
tric ceramics. Fiber optic sensors can be used to make
measurements with a variety of methods, but are not yet prac-
tical for complexity and technology problems. Strain gages are
limited by a relatively low sensitivity and are highly subject
to noise. The one type that has received much study and is
seeing increased usage is the piezoelectric ceramic. Reference
1 highlights its advantages as having:

® high strain sensitivity

® low noise

® low to moderate temperature sensitivity
® easy implementation

The desired characteristics of a vibration suppression ac-
tuator are low mass, infinite bandwidth, electrically powered

and an internal force producer [Ref. 2]. A low mass




requirement is necessary so as not to significarntly alter the
physical characteristics of the structure as well as the
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ture. Electric power reduces the complexity and mass inhere:
in a mechanical system. An actuator that produces internal
forces only would greatly simplify the control algorithm for
the entire structure.

A number of materials have been developed for this purpose
such as pilezoelectric ceramic wafers (PZT), electrorestrictive
ceramic wafers (PMN), piezoelectric polymer film (PVFZ) and
shape memory metal {(nitinol) wires. PZT and PMN can produce
similar strain lévels, but PMN is non-linear and very temper-
ature dependent. Although nitinol can produce strains 300
times greater than PZT, it is difficult to incorporate and not
practical for most applications. When considering these trade-
offs, PZT becomes the best choice for an actuator. Its suita-
bility is summarized in the following characteristics {Ref.1]:

® high stiffness

® sufficient stress to control vibrations
® good linearity

® temperature insensitivity

® easy to implement

® low power consumption




To further investigate active damping control techniguss,

this technology has been incorporated into the Naval Postgraad-

in

uate School’s Flexible Spacecraft Simulator (FSS).

B. FOCUS OF THESIS

The effectiveness and utility of using piezoelectric sen-
sors and actuators to control vibrations will be analytically
demonstrated via computer simulations. A model will be devel-
oped for a simple cantilevered beam using the finite element
method. The dynamic response of this system will be analyzsd
while under the influence of three different control laws:

® 3 basic Lyapunov stability-derived control law
® Positive Position Feedback (PPF)
® Strain Rate Feedback (SRF)

The Positive Position Feedback algorithm will also be in-
vestigated experimentally. This is the particular control law
which has been built into the Flexible Spacecraft Simulator.
The mass property of the flexible arm can be adjusted to vary
the natural frequency of the first vibrational mode. As will
be shown, the effect of the piezoelectric actuator on the dy-
namic response of the beam will change as the natural frequen-
cy varies from a particular optimum value. This will highlight

the advantages and disadvatages of this technigque.




II. THEORETICAL ANALYSIS

A. PIEZOELECTRIC THEORY
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Piezoelectric ceramics and crystals derive their utili
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energy into mechanical energy and vice versa. When a fcrce is

applied to the material, the crystalline structure <Creates a
voltage proportional to the force. Likewise, an slectric pc-
tential applied across the material will alter its shape

dimensionally.

Man-made ceramics have an advantage over natural crystal

mn

in that they cas be customized for each application. These
ceramics can be manufactured in almcst any size and shape and
have their piezoelectric properties oriented in any specified
direction. These properties are induced intoc the material dur-
ing a process called "poling". While heated to a temperature
above its Curie point, an electric field is applied across the
material. This has the effect of realigning the crystailine
structure such that it is elongated in a direction parallel to
the electric field, the "pocling" axis, and foreshortened in a
direction perpendicular to the "poling" axis. Henceforth, as
shown in Figure 1, any applied voltage of the same polarity as
the "poling" voltage will elongate the ceramic along the

"poling" axis and a voltage of opposite polarity will elongate




V¢

H
A

e R T e T

Poling Voltage

Polarity

Oppusite

<

Apphed Voltage Ha

applicd Voltage Has Same
Polatty a5 Poling Yoltage

altage

3
)

Polanty ot Foling

h -]
R
=S
<o
-1
ar
o
-2
=
<
e
had
v
<
2
d
©

f

W MO

r
A PH

e

[

%

1N

-rd

3

“rf

i

~ed

o4

pm—

™

by the

.S given

produced b

voltage (V)

The

1p:

h
n

relations

(1)

et

0




[P ~ Poling Voltage
Polarity
:.prIied Foree Produces J'q;';,)lied Force Produces Voltage
Voltage of Opposite Polarity ot Same Polarity
Betore Force Applied : ! After Force Applied

[u——

SENSOR  MODE

Figure 2 Piezoelectiric sensor mogde

lateral strain coefficient, D is the dielectric constant, t is
the thickness and €, and €, are the lateral strains [Ref.4].
This lays the groundwork for measuring the vibration of a
structural member by converting the strain on the ceramic pro-
duced by the flexural vibrations into a voltage which can be
much more easily manipulated and processed.

The effect of an actuator is described by the equation for
the bending moment (m"(x,t)) at a cross-section cf the struc-

tural member:




m®(x,t) = EIy"(x, t) - kov,(t) (2)

where EI is the flexural rigidity of the member, y“(x,t) is
the second order partial derivative of the transverse dis-
placement with respect to x (the longitudinal coordinate), k,
is a constant dependent on the ceramic piezoelectric constant,
dielactric constant, width and the member thickness and v, (t)
is the voltage applied to the ceramic [Ref. 5]. This shows how
an applied voltage can produce a strain which, in effect,
places concentrated moments (a couple) at the endpoints of the
element on which the piezoceramic material is located. The
direction of the moment needed to counteract a vibration is

changed by changing the polarity of the applied voltage.

B. FINITE ELEMENT MODEL

In order to effectively analyze the dynamic response of a
system and the effect of an applied control law, an accurate
and workable model of the system must be developed. The finite
element method is used to discretize the equations of motion
from unwieldy partial differential equations into second-order
differential equations of gencralized coordinates.

1. Equations of Motion

This analysis will consider a cantilevered beam as the

system. From Bernoulli-Euler beam theory, the kinetic energy

(T), potential energy (U), and work (W) done by an applied




moment from a piezoceramic actuator (M{x)) on each element

are:

T = = pV2 dx (3)
2Jx,
2
U - if“"’ ET _‘i‘-’) dx (4)
2 Xy ax“
we [ mx) &Y ax (5)
x4 ax3

where x is the coordinate in the longitudinal direction, y is
the coordinate in the transverse direction, V, is the trans-
verse velocity, E is the modulus of elasticity, I is the mo-
ment of inertia about the bending axis, p is the mass per unit
length, x; is the coordinate of the left end of the element and
h is the length of the element. A typical finite element is
shown in Figure 3 with the associated moment (M) and shear (V)
forces.

From the Extended Hamilton'’s Principle, the following

relationship is used to formulate the equations of moticn:

f:’ 5 (T-U+W) dt = 0 (6)

Taking a variation of each term and assuming a constant moment




over the length of the element yields:

fg[f:f py(83) —Er‘?y( 635’) dx + M :‘b (a?ﬁ!) dx! dt - o

t x3\ Jx?

-

>

Mixi, t) M{x;+h, t)
V{z;, t) V{z;+h,t) /
A N %
N 1y

—X; h -

Figure 3 Finite Element Schematic

Integrating the first term by parts gives the following varia-

tional equation:

I

f“’h—yby er &y ‘?y)dx+u "'ha‘?ydx]dt=o
Xy 3x2 6x3 x4 ax’

10




At this point, substitutions are made to discreti

tJ
[t
[ 1

3
(0
2]
O
rt
‘ 4
(8]

into the form:

4
yix,t) =Y N(x) g(¢t) (9)
1=1

The N, terms are third-order polynomials, chosen to satisf

L‘<
(&4
> }-
{1

boundary conditions at both ends ¢f the element, which

{2
N
}lv
1Y)

the mode c¢hapes and are functions of x only [Ref. 6]:

N1 =1 —3(—-—-———x ;xx) (x?bxi)
\2
N2: (X-Xi) *Zl{xh ) x xi)
, (10)
N 3(5_5_] 2(_’5_{)
3 A h

X P 4 2 X X 3
AL x - x
Ve = “( A ) ”’( 2 )

The q; terms are the system generalized coodinates which are

functions of time only. The quantities they represent are:

d, = Transverse Deflection at Left End of Element

g, = Rotation at Left End of Element (11)
g, = Transverse Deflection at Right End of Element

g, = Rotation at Right End of Element

Taking the appropriate derivatives of Equation (9) and substi-
tuting back into Equation (8) and taking a summation of the

ith terms yields:

11




f:ﬁ fva (PN (x) @, (t) N, (x) 8g,(t) + EIN; (x) g, (&) N} (x) dg,(t)) dx

Xy

- M [ N(x)8q,(t) dx dt =0,

Xy
4
()1()132 ()1()1
1
(12)

Since this relationship must hold true over any time period
and for any arbitrary variation 6q, the integrand must equal
zero. Now, the familiar second-order eguation of a vibratory

system becomes evident in the fcrm:

x,+h

M, q,(t) + K,q, () =MN;(0) ] , F=1n (13)

The mass (M) and stiffness (K) matrices are computed from:

o [F" N (0N, (x) ax
= (14)

+h
Er [ N(x)N](x) dx

x4

Performing the integrations results in a system of four equa-

tions for each element:

156 22h 54 -13h[% 12 6h -12 6h|%: 0
_ph 22h 4h* 13hn ~3b2E&2 , EI 6h 4h? -6h 2h%|q; . -1
420| 54 13h 156 -22h|4, h*|-12 -6h 12 -6h|q, 0

-13h -3h% -22h 4h* |4, 6h 2h* -6h 4h%*|q, 1

(15)

12




The complete mass and stiffness matrices for the entire system
are obtained from a simple combination of the elemental matri-
ces. Since the q; and g, coordinates of one =lement are the
same as the g, and g, coordinates ¢f the next element, the glo-
bal matrix is formed by overlapping {(adding) the upper left
2x2 submatrix of an element with the lower right 2x2 submatrix
of the previous element. Therefore, a n-element system has ma-
trices with dimensions cof (nx2)+2 by (nx2)+2. However, for a
cantilevered beam, the g, and q. cocrdinates of the first ele-
ment are always zero reducing the matrices to nx2 by nx2.
2. Actuator Moment
The control moment produced by an actuator on an ele-
ment is derived using the Lyapunov Stability Theorem. The to-
tal energy of the beam:

. 2
U=%L:a[ (_gz) +m{§;{) (16)

is chosen as the Lyapunov function. This function meets the
requirements of being positive definite, continuously

differentiable and equal to zero at the equilibrium state. The
cnly remaining condition needed to ensure stability is that

the time derivative of U must be less than or equal to zero.

[Ref. 7]

13




The time derivative of the energy function is:

x;+h

U=

5 Py 9Py (17)
Yy t EIBx’ at( ax’) ) dx

x4

Integrating this equation using the following relationships

for a vibrating beam, bending moment (M) and shear (V):

'y

F + EI =0 (18)
Py ox*¢
- Fy :
M= EI—a-;; (19)
_ aM Py
V= e EIa::’ (20)

while assuming no shear in the beam yields:

ﬁ = M(j’lx‘.h - YL‘) (21)

The quantity in parentheses can be measured by a specially
designed electric circuit which amplifies the current devel-
oped over the sensor. To ensure that the derivative of the
Lyapunov function is always less than zero, M must be of the

form:

14




= -k (-yx‘oh - S/xx) (22)

M is directly proportional to the applied voltage to the actu-

ator such that k is a positive constant resulting in:

ﬁ = -k (}'indl - ﬂx)z < 0 (23)

In terms of the generalized coordinates, the moment is ex-

pressed as:

M= k(@ -4, (24)

The system of equaticns for an element with an actuator at-

tached now becomes:

000 0%

. 0 -k0 k|
Mijdi +Kijqi = 006 0 0 é (25)
3

0 kO —k‘Z

3. Modal Coordinate Form
The equations of motion can be decoupled and more eas-
ily analyzed by transforming the generalized coordinates into

medal coordinates. This transformation is of the form:

15




where @ is the weighted modal matrix and § is a vector of
modal coordinates.
First, the eigenvalues and eigenvectors must be calcu-

lated from the freely vibrating undamped system:

Mg + Kg =0 (27)

For a n-dimensional system, there are n eigenvalues (A, I=
1...n) and n eigenvectors (¢,, Ii=1...n) which satisfy the

equation:

The eigenvectors, also known as the normal modes, are orthog-
onal with respect to the mass and stiffness matrices. This
property allows the matrices to be diagonalized using the re-

lationships:

¢iMb, = M, (29)
$ikd, = K,

where the diagonal elements M, and K;,, (i=1...n), are known as

the generalized mass and stiffness elements for each mode.
The weighted modal matrix (@) is obtained by dividing

the ith column of the modal matrix by the square root of the

ith generalized mass:

16



@, - L2 i=1.n, f=1.n (30)

A

Substituting the weighted modal matrix into Equation (29) pro-

duces the diagonalizations:

OTMD
TP

LI
[ )

(31)

where I is the identity matrix and the diagonal elements of K
are the eigenvalues and sgquares of the modal frequencies.

If the system is assumed to have viscous damping and
excited by an arbitrary function Fu, the equations of motion

take the form: -

Mg + C§g + Kg = Fu (32)

If the damping matrix is proportional to either M or K, it is
also diagonalized by the weighted modal matrix. Applying the
transformation of Equation (26) to Equation (32) and premul-

tiplying by ® results in n-uncoupled equations of the form:

t+| 200 |E+]| w* [E=®TFu (33)

17




C. COMPUTER SIMULATIONS
To demonstrate the utility and stability of the specified
control laws, the finite element model has been programmed

using MATLAB. The basic approach is to put the modal equation

4]

into a state-space form and use MATLAB’'s linear simulator
function to produce a time response. The code for the PPF
simulation is in the Appendix. The code for the other conrrol
laws is of a similar form except for the specific control law
formulation.
The following values for the physical parameters of the

cantilevered beam were selected:

® number of elements: n=28

® element lengfh: h=.1m

® clement density: p = .5 kag/m’
® product of modulus of elasticity and EI = .9 Nm’

moment of inertia
Using these values, the system mass and stiffnese matrices
were formulated and used to solve the eigenvalue problem. That
solution provided the modal frequencies of the beam. The first

three are:

® w = 7.37 rad/s = 1.17 Hz
® w, = 46.19 rad/s = 7.35 Hz
® w, = 129.42 rad/s = 20.6 Hz

The inherent structural damping was introduced by arbitrarily
damping ratios ({;) such that the damping increased from the

lowest value for the first mode to the highest value for the

18



nth mode. In general, the high frequency modes are dzmpsd cut
more quickly then the lower frequency modes dus to the
ent natural frequencies.

For all the simulations, the beam was deflected and r=-
leased from rest such that che first three modes were excitzd.
Simple geometric calculations were performed to determine ths
required initial values for each of the generalized coordi-
nates. The cpen-loop response of the vibrating beam is srhcwn
in Figure 4.

From this point on, the simulations are customized to the
specific control law utilized. The simulation development and
results are detailed in the following sections for each of the
three chosen conﬁrol laws.

1. Lyapunov Stability-Derived Control Law

As shown in Chapter II.B.2, the equations of moticn

for each element are ¢f the form:

ij&j + Kq, = Fk'é‘i (34)

where k' is a 1 x 4 vector containing the proportiocnality

factor k:

k*=[0k0 -k] (35)

F is a 4 x 1 vector dependent on actuator placement. If an

actuator is located on an element,

19
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E+(D-PE+RE=0 (37)
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F=0"F'® K

it

The system is further manipulated into state space form:

X = AX + Bu Y = CX + Du (38)
where:
o r )
X =] T A= - !
¢& -K* F - D

C is the identity matrix and B and D are null matrices.
Four different simulations were run with varying actu-

ator locations as follcws:

® Case 1. Actuator at base {element 1)

® Case 2. Actuator in middle (element 5)

® Case 3. Actuator at tip (element 8)

® Case 4. Combination of Cases 1-3 (elements 1,5 and 8)

The results are shown in Figures 5-8. As expected, the actu-
ator at the base has the most significant effect on damping
vibrations since it can apply the largest moment. Although
actuators in the middle and at the tip do provide significant
damping when compared to the open-loop response, their contri-

bution is minimal in the combined system. A comparison of Case

21




1 and Case 4 shows how much the base actuator dominates. This
fact highlights the advantage of using a single actuatcr when

considering cost and implementation issues.

TI1P DISPLACEMENT - TEM k=1 e=i
1.5 T r T

TIP DISPLACEMENT

TINE, sec

Figure 5 Lyapunov / Actuator at base

The proportionality factor k is a function of the
physical constants of the piezoelectric which relate the ap-
plied voltage to the moment created and a gain factor applied
to the feedback circuit. For simplicity, it is assumed to be
unity for these simulations.

Varying k has a significant effect on the response.
Theoretically, the system is stable for any positive value.
However, larger values are, in effect, placing a moment with

a magnitude larger than required which tends to "overcontrol"

22
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Figure 6 Lyapunov / Actuator in middle

1 ex8

TIP DISPLACENENT ~ FEM k
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18
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TINE,

Figure 7 Lyapuncv / Actuator at tip
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TIP DISPLACEMENY - FEM k-1 e=1,5.8
1.5 T T r T

TIP DISPLACENENT

-
= L

a 2z 4 6 8

TIRE, sec

Figure 8 Lyapunov / All three actuators
the beam. This is seen in the response as the actuators, al-
though stabilizing, drive the beam to excessive amplitudes.
Small values of k equate to moments of insufficient magnitude
which decrease the damping ratio. Optimizing the system re-
quires a tfadeoff between the desired settling time and a max-
imum allowable amplitude. A trial and error procedure is
required to select the best value and customize the control to
the application.

2. Positive Position Feedback (PPF)

This control algorithm is defined strictly in the

modal form. For a scalar case, the equations of motion are

represented by:
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£+ 2{wt + @ = G’ (39a)

i + 20 w1 + mzn = mzﬁ (39Db)

where ¢ is the structure modal coordinate, % is the compensa-
tor modal coordinate, { and {, are the structure and compensa-
tor damping ratios, w and w, are the structure and compensator
natural frequencies and G is a gain factor. As seen in Egua-
tion (39), PPF means positively feeding the structure coordi-
nate back to the compensator and pcsitively feeding back the
compensator coordinate times a gain to the structure.

The system response characteristics of this algorithm
are shown in Figure 9. Assuming that the structure motion at

steady state is of the form:

E(t) = ael®t (40)

the compensator will respond as:

n(t) = peilet-¥ (41)

where the phase angle, ¢, is defined by:

(42)
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When the structure vibrates at a frequency much lower than the
compensator natural frequency, the phase angle approaches
zero. Substituting Equation (41) with ¢ = 0 back into Equation

(3%a) gives:

P +2lwt + (0 - GBWA)E =0 (43)

resulting in a decrease in the stiffness term. When the struc-
ture and compensator have the same natural frequericy, the
phase angle is w/2. In this case, the structural eguation is

modified to:

E+ (20w + GBw)t + w3 =0 (43)
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showing an increase in damping. When the structure is vibr

U
(=)

ting a fregquency much greater than the compensator natur
frequency, the phase angle approaches n. Making the same sub-

stitution yields:

o+ 2{wt + (0 + GBI E =0 (45)

causing an increase in the stiffness term. These equaticns

clearly show that, in order to maximize damping, w, must be as

closely matched to w as possible.

This analysis will go beyond the simple scalar case
and investigate a multi-modal vibraticn suppression system.
Specifically, the first three modes will be controlled using
two different schemes. First, three collocated sensor/actuator
pairs connected to three compensators tuned to the first three
modal frequencies will be analyzed. The second system will
utilize only one collocated sensor/actuator pair connected to
the same compensators. Figures 10 and 11 illustrate these two
configurations with simple block diagrams.

In a multi-modal case, the system equations take the

form:
t + Dt + Kt = CTGRy) (46a)

i +DM + Kn = K.CE (46b)

For a system with n structural modes and m compensators, ¢ is
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Figure 11 Single Actuator/Three Compensator Control Scheme
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a [n x 1] vector and  is a [m x 1] vector. D and D, are
[n x n] and [m x m] diagonal matrices containing the damping
terms 2{w; and 2{ w,;. K and K, are [n x n] and [m x m] diag-
onal matrices containing the squares of the natural fregquen-
cies o and ;. G is a [m x m] diagonal matrix of compensator
gains. C is a fully populated [m x n] participation matrix
which determines the influence of each sensor/actuator pair on
each compensator and vice versa.

The formulation of these matrices is straightforward
except for the participation matrix. Equating the right hand

sides of Eguations (33) and (46a):

®TFu = CTGKy) (45)

and assuming the control vector u is equal to the vector GKgy,
C is equal to (#"F)T. u is a [p x 1) vector, where p is the
number of actuators, which forces the dimensions of &'F to be
{n x p]. A modification must be made in the case of the single
actuator (u = 1). In order to keep the G and K matrices in the
same form and ensure dimensional compatibility, a [1 x m]

vector A whose elements are unity must be included such that:

®TFu = CTAGKN (48)
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Now the entire system can be put into the matrix form:
D O
z + +
L’\] [0 DJ{ }

As was done in Chapter II.C.1 with Eguation (38}, a

K -C7T(A) Gii{'g 6
i =
-K,(aT’ ¢ K, |m

(49)

4
3

state-space transformation is made to perform the simulations.
The same initial conditio ' are used to excite the tri-modal
vibration previously shown in Figure 4. The compensator natur-
al frequencies were chosen to exactly match the structural
frequencies in order to maximize the damping effect. In this
case, the com-pensator damping ratio, (., should be as small
as possible. As shown in Figure 12, this creates a resonance
peak near the compensator freguency allowing the largest gain
possible to act on the affected mode in the active damping re-
gion. This will also diminish the effects of active flexibil-
ity on lower modes. For these simulations, it was assumed that
each compensator could be designed to have a damping ratio
equal to .1. In actuality, it will be very unlikely that the
compensators can be designed as precisely as they have been
here and a decrease in system performance is expected. To
prevent a significant decrease, the compensator damping ratio
should be increased so that the active damping region is wid-
ened as much as possible.

Figure 13 shows the response of the beam under the in-

fluence of three actuators at the base, in the middle and at
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Figure 12 PPF Compensator Transfer Function Magnitude

the tip. The effectiveness of this system is seen in how
quickly all three modes are suppressed. A single actuator at
the base also provides a sufficient degree of control as seen
in Figure 14. The effect of actuator placement is evident in
a comparison with Figures 15 and 16 which correspond to a
gsingle actuator in the middle and at the tip, respectively,
feeding the same compensators with the same gains. However,
the performance of these last two configurations can be im-
proved by increasing the gains. Due tc the fact that a larger
moment can be placed at the tip than at the base without dri-
ving the beam unstable, the allowable gains are two orders of

magnitude greater for Case 3 than Case 1. The individual modal
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responses can also be tailored by varying the gains such that
the damping of one mode is maximized in relaticn to the

others.
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Figure 13 PPF Three Actuators

In the scalar case, system stability is clearly de-
fined. A simple manipulation of the equations of motion and
application of the Routh-Hurwitz criterion results in the

condition:

0<G<1 (50)

This method is not applicable to the much more complex multi-
modal case. Fanson and Caughey have developed the following

stability condition:
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he procedure used for these simulations was fo

1

fix two gains while varying the third to determine the range
where the eigenvalues of the assembled matrix were all
positive.

3. Strain Rate Feedback (SRF)

The final algorithm invesstigated 1s also defined in

14




t + 20wt + @¥F = -Gwin (52a)

i +2(00 +en=oi (52b)

where the variables are the same as those previously defined
for PPF. In this case, the structural velocity ccordinate is
fed back to the compensator and the compensator position
coordinate is fed back times a negative gain to the structure.
The gain must be negative, as will be shown in the following
analysis, so that the system performance will be optimized
over the most useful fregquency range. Figure 17 graphically
summarizes the performance characteristics of SRF.

If we again assume that the structural modal coordi-

nate is of the form:

E(t) = aelet (53)

the compensator response will be:

n(t) = peilet-# (54)

where ¢ is now defined by:

é = tan? | ) (55)
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Figure 17 Strain Rate Feedback

When w << w,, the phase angle, ¢, approaches -m/2. Substitu-
ting Equation (54) with ¢ = -7m/2 back into Equation (52a)

gives:

t+ (20w + GBw)E + w3E =0 (56)

resulting in an increase in damping. When w = @, ¢ = 0 and a

similar substitution yields:

!+ 270t + (02 + GBw?) E =0 (57)

increasing the stiffness of the structure. Finally, when w >>

w, ¢ = /2 and the structure response is:
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t+ (2{w - GBw)E + W3 =0 (57)

showing a decrease in damping. The obvious conclusion is to
design the compensator such that the structural frequencies cof
the modes to be damped fall well below the compensator natural
frequency.

The SRF simulations were done using the same fcormat as
the PPF simulations. The first three structural modes were
controlled using three compensators and the same four senscr/
actuator configurations. Additionally, the possibility of con-
trolling the first three modes using only one compensatcor and
cne actuator is investigated. The participation matrix formu-
lation is identical to the PPF case. The state-space transfor-

mation is applied to the system defined by:
HE
n

Selecting & precise compensator frequency is not as

D 0
-0 (AT)C D,

r
K cT(A)le 5} o (59)
0 K. kﬂ

clearly defined as it is with PPF. Additionally, the stability
condition is not as clearly as defined as in the PPF case due
to the fact that the closed-loop damping and st ffness matri-
ces can not be symmetrized. However, the wider active damping
region gives the designer a lot more flexibility in the cir-
cuit design. As long as the compensator frequency is greater

than the structural frequency, a certain amount of active
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damping will be provided. Although the stabilizing fesdback
gain matrix is heavily dependent upon the structure and com-
pensator frequencies, some numerical analyses predict that
higher compensator frequencies produce larger damping ratios.
A drawback to frequencies in this range is that, as shown in
Figure 18, the magnitude of the compensator transfer function
approaches zero limiting the amount of control. Further study
is required on this point. Again, the compensators were assum-
ed to have damping ratios equal to .1. To highlight the =f-
fects of varying compensator frequencies, simulations were run
for the three actuator/three compensator configuration with
two different sets of w, at the two extremes. First, the com-
pensators were aésigned frequencies ten per cent higher than
each of the structural modes. This response is seen in Figure
19. Although the higher modes are controlled, the first mode
is not significantly damped. The system is operating too far
in the active stiffness region. The dominance of the active
stiffness can be seen in the higher frequency of the first
mode. The second set of compensator frequencies were 50 times
higher than each of the structural modes. This has the effect
of placing all three structural modes in the active damping
region of all three compensators. This response is shown in
Figure 20. In this case, the transfer function magnitudes are
so small that gains four orders of magnitude larger than the

previous case are needed. With these large gains, the higher
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Figure 20 SRF w, = 50 x w

modes are almost immediately suppressed. The first mode, hav-
ing the lowest relative gain, is not controlled as efficient-
ly. A significant improvement in performance occurs as w,
moves farther away from w. The same variation in the system
response when the single actuator moves from the base to the
tip is seen as in the PPF simulations.

The control system can be simplified by only using one
compensator and one actuator at the base as shown in Figure
21. The motivation for this approach comes from the results of
the three compensator case where all three structural frequen-
cies were below the smallest compensator frequency. Theoreti-
cally, a compensator will provide active damping to all modes

with a lesser frequency. For this simulation, the compensator
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freguency was set at ten times the third modal frequency. The
system matrices must be modified because the compensator equa-
tion is now in a scalar form. As shown in Figure 22, this
configuration effectively controls all three modes with maxi-
mum effect on the higher modes. However, this method will only
work for a few densely spaced modes. If the frequency range is
expanded too far, the lower modes will not receive a strong
enough contrcl input.

This approach was also taken using an alternative
method. The sign of the gain applied to the compensator ocuput

is changed such that the structural modal equation is now:

t o+ 20wt + 0*f = Gun (60)

This has the effect of swapping the regions of active positive
damping and active negative damping and making the region cen-
tered around w, active flexibility. Now, the objective is to
set the compensator frequency below the first mode placing all
the modes in the active positive damping region. In this simu-
lation, the compensator frequency was set at 80% of the first
modal frequency. A first attempt was made using the same com-
pensator damping ratio ({ = .1). This was an unstable system
due to the resonance peak of the compensator transfer function
occuring in the active flexibility region. To improve the re-
sponse, the damping ratio of the compensator had to be in-
creased such that there was no resonance and the flexibility

effect was diminished with respect to the damping effect. A
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SINGLE ACTUATOR AND SINGLE COMPENSATOR CONTROLLING THREE MODES
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Figure 21 Single Actuator/Single Compensator Control Scheme

value for { of .95 produced the response in Figure 23. As ex-
pected, the higher modes are not damped out as guickly as in
the previous case. To prevent the first mode from being driven
unstable, the gain must be held relatively low which reduces
the impact at higher frequencies. In practice, the effective
bandwidth of the actual compensator must be considered. The
compensator will damp only those modes densely packed within
the range of control.

Deriving a stability condition for SRF similar to
Equation (51) for PPF proved difficult. A transformation to
symmetrize the modal equations could not be found. In their

unsymmetric form, the equations could not be manipulated to
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form a simple stability condition. The alternate method used

was to ensure all the eigenvalues of the system matrix of the

state-space equation were negative. Again, two gains were held

fixed while varying the third to determine the stable region.
4. Comparison of PPF and SRF

A strict side-by-side comparison of these two methods
is not feasible due to the fact that the compensators are not
performing the same functions in both methods. Also, since the
stable gain regions were so varied, a uniform set of operating
parameters that provided sufficient control in both systems
could not be defined.

Positive Position Feedback is preferable for applica-
tions where a siﬁgle mocde needs to be quickly damped. Control
can be maximized by taking advantage of the compensator reso-
nance occurring in the active damping region. PPF also has the
advantage of using the sensors to measure the structural dis-
pPlacement rather than the more difficult measurement of struc-
tural velocity as is needed with SRF. For multi-modal control,
the frequency requirements are too restrictive. One compensa-
tor per mode is required in this case. Unless the structural
characteristics are uniform and precisely known and unless the
compensator is closely matched with the modal frequency, PPF
will be operating at less than optimum.

Strain Rate Feedback has the advantage of controlling

modes over a wider range of frequencies. As was demonstrated,
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a single compensator feeding a single actuator can control

three modes. This is important in terms of reducing circuit
complexity and manufacture and implementation costs. However,
the active damping occurs in a region where the compensator
gain is not at a maximum. This has the effect of limiting the
amount of control on modes far from the compensator frequency.

The robustness of these two control schemes is demon-
strated in Figures 24 and 25. The scenarioc simulated here is
that the actual structural frequencies experienced on-orbit
are 10% less than the predicted values around which the com-
pensators were designed. All other parameters are kept con-
stant. This new response of the "modified structure" is shown
with the dashed line and is compared to the response of the
"original structure" shown with the solid line.

PPF produces almost an identical response for both
systems with only miniscule differences. Initial expectations
were that this frequency variation would produce a much more
significant difference. Further study revealed that the ro-
bustness of the system is very dependent on the compensator
damping ratio. Small values produce a phase angle curve that
approaces a square wave which were seen to emphasize the ad-
verse effects of a frequency change. Likewise, large values
stretch out the phase angle curve allowing a less significant
change in the system response. For this particular model, the
chosen value is large enough to prevent PPF’s frequency depen-

dency from degrading the system response. The key to providing

45




TIP MOTION - FEM PPF U=3 €1:.2838 62:G63=.81
8.82 T T T 3 v L4 T
8.845 1 - ORIGINAL STRUCTURE -
-~ MODIFIED STRUCTURE
8.981} -
e
z
i3
i
G 8.ees -
-
-
B
a h
a o e £~ == == = -
= o
] ;}
-8.885 -
-8.81 4
_8.815 I i 3 2 A i 1
[} 8.5 1 1.5 2 2.5 3 3.5 4
TIME, secc

Figure 24 PPF Structural Frequencies Varied 10%

8,825

TIP MOTION - FEM SRF U=3 G1=1.6 G2=63=%1

9.82 -

9.815

8.81

8.885+

DISPLACENENT

-8.885 |

Tip

-B.81

-9.81S -

T

-8.82

T ¥

~ ORIGINRL STRUCYURE

~= MODIFIED STRUCTURE

-9.825
L]

TINE, sec

pi:]

Pigure 25 SRF Structural Frequencies

46

Varied

10%




sufficient robustness is to have a moderate compensatcor dam-
ping ratio. Small values will limit the bandwidth ~f the com-
pensator and larce values, while still being robust, will
decrease the magnitude of the damping provided.

A variation of only the first mode is seen when using
SRF. The "modified" first modal frequency has moved closer to
the edge of the bandwidth of the compensators such that the
amount of damping able to be provided has decreased slightly.
The structure is also more flexible as seen in the lower fre-
quency. SRF is much less dependent on the compensator damping
ratio in terms of robustness. The system is operating in a
region where the slope of the phase angle curve is not signif-
icantly altered-by variations of the damping ratio. Simuala-
tions showed that the system was equally robust with damping

ratios different by twoc orders of magnitude.
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IITI. EXPERIMENTAL ANALYSIS
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ise the active darping control system. A detailed view of
he senscr and actuatlr locaticns is shown in Figure Z27. The
ceramics are mcunted cn both sides of the flexible arm with

ocppcsite polaritiss such that the sensor voltages and actuatoer

strains are consistent. The damping circuit consists of three

sections: a charze amplifier, a low-»nass filter and a power
Jrpliifier. The components of the filter were chosen such that

cmpensator values are w, = .15 Hz and { = .1.

For this analysis, the main body of the simulator is held
fixed and the flexible arm is the only component affected by
external forces. The flexible arm is supported by air pads

which allow two-dimensional motion in an approximately fric-

tionless envircnment.
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B. PROCEDURE

The objective cf the experiment was to investigate the
effectiveness of the PPF algorithm over a range of structural
frequencies and compare the results with theory.

To achieve a variety of frequencies, the configuration of
the flexible arm was changed by attaching and detaching the
concentrated masses. The natural frequency, w, for a simple

spring-mass system is 3Jefined by the relatiocnship:

o =X (61)
1

where m is the mass and k is the stiffness. The masses are
attached to the arm such that the stiffness remains constant.
Therefore, adding mass will lower the frequency from the ini-
tial value and vice versa. The selection of where to make mass
adjustments was a trial and error procedure until frequencies
of sufficient range and separation were found.

Data was obtained in the following manner. The signal from
the sensors was sent via a Gould 5300 Signal Conditioner to a
Gould RS3800 Stripchart Recorder. This allowed obtaining a
time history of sufficient length needed to calculate damping
ratios. Phase angle measurements were made using a Hewlett-
Packard 54601A Oscilloscope which displayed both the signal

from the sensors and the signal to the actuators. Frequency
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measurements were made using both sets of equipment. The data
was averaged over several run for each configuration.

With only a single compensator in the feedback circuit,
the system will only be effective on the mode for which it is
designed. Therefore, in this experiment, only the first mode
of the flexible arm was excited so that the cleanest and
smoothest signal could be recorded.

The damping ratio, {, was calculated using the log decre-

ment method:

{==*_1n (A‘) (62)

where A; is the initial amplitude, A; is the final amplitude
and n is the number of cycles between those two amplitudes.
The natural frequency is computed using the damping ratio and

the damped period, 74:

271
Oy = (63)

Tav1l - (?

However, the damping ratios are small enough with respect to
the frequency measurement accuracy that we can assume the nat-
ural frequency to be the same as the damped frequency. The

phase angle was calculated from the relationship:

¢ =w At (360°/cycle) (64)

51




where w is the structural frequency in Hz and At is the time
difference between the sensor and actuator signals as seen on
the oscilloscope. The theoretical value for the phase angle at

each structural frequency is calculated using Equation 42.

C. RESULTS
As shown in the plot in Figure 28, data was obtained in
all three regions of active flexibility, damping and stiff-

ness. (Refer to Figure 9). Although the experimental values

PHASE ANGLE VS STRUCTURAL FREGTENCY
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Figure 28 FSS Flexible Arm Phase Angles

for phase angle vary from theory (see Table I) as much as

seven degrees in the worst case and considering the +/- 2
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degree measurement accuracy, the data clearly follows the

trend we expect and we can assume the circuit is functioning

properly.
Table I
FLEXIBLE SPACECRAFT SIMULATOR - PPF
CASE PHASE ANGLE (Degrees)
Theoretical Experimental

1 19 15
2 29 29
3 32 36
4 55 59
5 g0 84
6 111 107
7 139 146
8 150 156

The parameters describing the dynamic response of the
flexible arm are listed in Table II. Examining the change in
frequency from the freely vibrating (open-loop) to the active-
ly damped (closed-loop) cases, the expected effect on the
stiffness term is evident. At the lower frequencies, a de-
crease is observed indicating the arm has become more flexi-
ble. At and near the compensator frequency, there is little or
no change. The higher frequencies exhibit an increase meaning

the arm has become stiffer.
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Table II
L.~~~ . "~

FLEXIBLE SPACECRAFT SIMULATOR - PPF
CASE FREQUENCY (Hz) DAMPING RATIO

Free Damped Free Damped 5 A
1 .116 .113 .0G95 .0070 -27
2 .128 .125 .0104 .0114 10
3 .133 .128 .0077 .0243 215
4 .141 .1490 .0059 .0325 450
5 150 150 0050 L0221 345
6 154 156 .0040 .0158 259
7 165 .168 .0056 .0145 161
8 177 180 .0035 .0093 165

A very pronounced variation is seen in the change in the
damping ratio when the feedback system is activated. At the
lowest observed freguency, the arm has become so flexible that
the damping worsens by 27 per cent. There is a steady improve-
ment as the structure moves into the active damping region.
The maximum effect is observed with Case 4 showing a 450 per
cent improvement. The magnitude of the control provided is
best appreciated visually as seen in Figure 29. Even at the
higher freguencies, while not in the active damping region, an
improvement in the damping ratio is produced by the increased

stiffness of the arm.
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One discrepancy evident in this data is that the greatest
improvement in the damping provided by the compensator does
noet occur at a structural frequency egual to the compensator
frequency. The cause of this variation has been difficult to
pin-point. In order for the transfer function resonance peak
to occur at .141 Hz, where the maximum increase was observed,
the compensator damping ratio would have to increase to .34 cor
the compensator frequency would have to decrease to .142 Hz.
However, this is not consistent with the phase angle data pre-
viously mentioned. This rules out any small variations in the
feedback circuit as possible sources of error. There are some
physical factors which may have caused inconsistencies between
the eight configﬁrations. Other experiments were being conduc-
ted while this one was in progress which did not allow a
uniform crientation of the flexible arm for all of the config-
urations. Varying frictional or gravitational effects may have
adversely affected the consistency of the results. Further de-
tailed experimental work is needed to precisely determine
where the maximum effect actually occurs.

This data highlights the advantages and disadvantages of
the Positive Position Feedback algorithm. When the compensator
is precisely tuned to the structural frequency, the system is
operating near the maximum gain of the compensator transfer
function. This enables the active damping control to have its
greatest effect. However, any deviation from this optimum re-

gion reduces the impact of the control system. As seen in this

55




06

[oes]) sw)

os ol o oz ot 0

~ |
e I / -
o .
/ !
Sy S -0
! N
/\\ 7 \ ]
(2 - (\ . ls(\\ e e e — e
{ ~ :
- - I - e e et o e
]
- : R R 4 1 -
1 .

josjuon bBuidweqg eaat}doy

0L X | ules}s

19_

ey e

;o ;

A -/ ¥ -l

/ B / L :
SR S—— ;o A
Y AR Yoo 7
v Ny o v
~ s NS -

uoljeIqQIA 2814

Figure 29 Flexible Arm First Mode Response
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experiment, only a 25 per cent reduction in the structural
frequency results in the compensator degrading the dynamic re-
sponse of the system. If the frequencies can not be matched
precisely, it is better to err into the active stiffness re-
gion where the structural characteristics are not adversely
affected. The efficiency of the control law with a bounded
gain space, 0<G<«1l, is heavily dependent upon the compensator
parameters w, and {,. It is recommended that moderately higher
compensator damping ratios be used so that a relatively large
amount of damping is provided while still maintaining suffi-

cient robustness.
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IV. CONCLUSIONS

Piezoceramic sensors and actuators have been shown to pro-
vide an effective means of contr~7ling structural vibrations.
An increase of 450 per cent in the damping ratio of the flexi-
ble arm of the Flexible Spacecraft Simulator was demonstrated
using the Positive Position Feedback algorithm. This system
provides the greatest degree of control when the compensator
is precisely tuned to the modal frequency. Its main limitation
is that only a single mode can be controlled per compensator.

Positive Position Feedback and Strain Rate Feedback have
significantly different control characteristics which were
analytically demonstrated for a cantilevered beam. SRF is more
advantageous than PPF in the multi-modal environment. With a
wider active damping region, it has the ability to stabilize
more than one mode given a sufficient bandwidth.

Recommendations for further study include a number of
topics. First, the dynamic response of the FSS flexible arm
could be improved by incorporating additional compensators
into the current configuration. The first mode is very rarely
the only mode excited during slew maneuvers and the higher
modes should be considered. This problem may be more easily
solved by building a Strain Rate Feedback circuit and integra-
ting it with the sensors and actuators currently mounted on

the arm. Also, the effect of multiple sensors and actuators on
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the arm can be investigated with an optimization study of sen-
sor/actuator placement. There are a variety of control laws
which can be used in this application. As an example, a combi-
nation of PPF and SRF could be developed which may incorporate
the strengths of each and cancel out the weaknesses.

The Flexible Spacecraft Simulator is an excellent tool for
studying, not only active damping control techniques, but
other spacecraft attitude control and dynamics problems. Cur-
rent research endeavors include designing an improved thruster
for attitude control and incorporating a robotic arm onto the

main body.
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APPENDIX

% Simulation of Beam Vibration using Finite Element Method

% Transformation into modal form using PPF with three control
laws

% utilizing three actuators on elements 1,5,8.

%

% Define physical constants:

%

n=_8; % number of elements
h=.1; % element length
d=.5; % element density
EI=.9; % modulus of elasticity times moment of
inertia

%

% Element mass matrix:

%

Mul=(d*h/420) * [156 22*h; 22*h 4*nh*2];

Mur=(d*h/420)*[54 -13*h; 13*h -3%*h"2];

Mll=Mur’;

Mlr=(d*h/420)*[156 -22%*h; -22*h 4*h"2];

%

% Element stiffness matrix:

Kul=(EI/h"3)*[12 6%*h; 6*h 4*h™2];

Kur=(EI/h*3)*[-12 6*h; -6*h 2*h"2];

Kll=Kur’;

Klr=(EI/h®3)*[12 -6*h; -6%*h 4%*1"2];

%

% Combine matrices for n element system. Disregard first two

YOows

¥ and columns for clamped end.

%

for i=1:n-1,
M(2*%1-1:2%3,2*%1-1:2%1)=Mul+Mlr;
K(2*%i-1:2%*3i,2*i-1:2*1)=Kul+Klr;

%
M(2*%i-1:2%i,2*i+1:2*1+2)=Mur;
K(2*i-1:2%1,2*i+1:2*%1+2)=Kur;
%
M(2%3+1:2%342,2%i-1:2%1)=M11;
K(2%1i+1:2%i42,2%1-1:2¥%1)=K11;
end
%

M(2*n-1:2%*n,2*%*n-1:2*n)=Mlr;
K(2*n-1:2*%*n,2*n-1:2%n)=Xlr;

%

Mi=inv (M) ; % Inverse of mass matrix.
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Obtain eigenvalues and eigenvectors:
phi, lambdal =eig (K, M) ;

Extract natural fregencies:

diag{lambda) ;

Sort from low to high frequency:

— o % o\® F oF o\° o\ — o o o

wl,numl =sort (w) ;

=w (num) ;

or j=1:2*%n
lambda(j,j)=w(j);

end

%

% Sort eigenvectors:

Hh ¥

o\

hi=phi(:,num) ;
Calculate generalized masses:
g=phi’ *M*phi;

Calculate weighted modal matrix:

Hh 0P o o & P o o'

or i=1:2*n
phiw(:,i)=phi(:,1i)/sqrt(Mg(i,i));
end
Mw=phiw’ *M*phiw;
Kw=phiw’ *K*phiw;
%
% Actuator location matrix (actuators on elements 1,5,8):
%
F=zeros (16,3);
F(2,1)=1;F{(8,2)=-1;F(10,2)=1;F(14,3)=-1;F(16,3)=1;
Ft=phiw’ *F;

[

Assign structural modal damping values:

o\® o\ o

z{(1)=.0001;2(2)=.0004;2z(3)=.0009;2(4)=.0015;2(5)=.0037;2(6)=
.0089;
z(7)=.01;2(8)=.025;2(9)=.042;z(10)=.067;2(11)=.098;2(12)=.11;
2{13)=.35;2(14)=.86;z(15)=1.21;2(16)=1.77;
%
% Assemble structural damping matrix:
%
D=zeros (2*n) ;
for i=1:2*n

D(i,i)=2*z (i) *sqrt(Kw(i,i));
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%

¥ Truncate o first three modes

£ 1

Kwlsfw 1:2,1:3°;

Forl=Zo 202,103,

%

% Assign compensator values

%

WCl=sgrc Kwl’l,1!);wC2=sgroi{Xwl{2,2)});wc3=sgrt(Kwl(3,63));

ZCl=.1l;zCc2=.1;zc3=.1;

Gl=.2238;322=.21;3823=.01;

Ke={wzl™2 0 2 2 we2™2 0; 0 0 wg3™2l;

Do=l2%zolYwll D 2; 0 Z*zc2*wc2 OD; 0 0 2*zcel3*weldl;

G=1G31 0 2; T GZ 0; 0 0 331

%

¥ Combine structure and compensator eguations into matrix

F oy

%

Ds={(C21 z=rcsi3); zercsi3) Dcl;

Ks=[¥wl -Frl*G*Kwl; -Kc*Ftl' Kcl;

%

% Put clcsed-locp system in state space form:

%

A=[zeros:5; sye(6); -Ks -Dsi;

B=zerecsiliz,l);

C=eya {12} ;

D=zercs{12,1);

T=:0:.01:5.99);

U=zercs (T} ;

XC=zercs(2*n,1);

%

% Initial displacements to excite 3 modes

¥

X0{1,1)=.0C8;X0{2,1)=.05;X0(3,1)=.01;X0(4,1)=0;X0(5,1)=.004;

X0{6,1)=-.086;X0(7,1)=-.007;X0(8,1)=-.086;X0(9,1)=-.016;X0(1
) =0;

X0(11,1)=-.015;X0(12,1)=.01;X0(13,1)=-.001;X0(14,1)=.173; ’
X0(15,1)=.02;X0(16,1)=.173;

Z0=1inv (phiw) *X0; % Initial displacement in modal
coordinates

Z01=20{1:3);

MO={201" 0 0 0 0O O O 0O
[Y,X]=1sim(A,B,C,D,U, T, M0
2%

% Put open-loop system in state-space form:
%

Aol=[zeros(3) eye(3); -Kwl -Di};
Bol=zeros(6,1);

Col=eye(g);

!

0]';
)
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Dol=zeros(6,1);
MOol=[Z01’ 0 O 0O);
[Yol,Xol)l=1sim(Aol,Bol,Col,Dol,U,T,M001);
%
%
% Convert back to tip physical coordinate:
%
phig=phiw(1:16,1:3);
for i=1:1000
tm=[{Y(i,1) Y(i,2) Y(i,3)1"';
g=phig*tm;
tip(i)=q(15);
tmol=[Yol(i,1) Yoi(i,2) Yol(i,3)1’;
gol=phig*tmol;
tipol (i) =gol(15);
end
%
% Plot data
%
plot (T,tip(:))
xlabel (’'TIME, sec’)
ylabel (’TIP DISPLACEMENT')
title (’TIP MOTION - FEM PPF U=3 G1=.2038 G2=G3=.01")
pause
plot (T,tipol(:))
xlabel ('TIME, sec')
ylabel (’TIP DISPLACEMENT’ )
title ('TIP MOTION - FEM OPEN LOOP')
pause
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