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FEEDBACK CONTROL OF KARMAN VORTEX SHEDDING

0. S. Park, D. M. Ladd, and €. Hendricks
NCCOSC, RDT & &
San Diego, California

ABSTRACT

A direct numerical simulation of the Navier-Stokes equations of
a feedback controlled cylinder wake flow at the Reynolds number
of 60 is presented. The simulation shows that vortex shedding
behind a circular cylinder is suppressed to a significant degree
by applying a feedback forcing with an appropriate phase via
blowing/suction slots located at £110° from the leading edge.
Depending on the phase of the feedback forcing relative to the
vortex shedding pbase, the shedding of the vortices is either
suppressed (stabilized) or further enhanced (destabilized).

1 INTRODUCTION

Many flows of engineering interest {e.g. separating flows) pro-
duce the phenomena of vortex shedding and the associated struc-
tural response. Applications include marine structures, under-
water acoustics, civil and wind engineering to name a few. The
ability to tailor the wake of a bluff body could be used to reduce
drag, increase mixing or heat transfer and enhanced combus-
tion. Vortex shedding from bluff bodies has been reviewed most
recently by Sarpkaya (1979) and Bearman (1984). Vortex shed-
ding from a cylinder occurs over wide range of Reynolds number
from 47 < Re < 300,000 and then again at Re > 10°. When
Reynolds number exceeds a critical value of approximately 47,
a symmetry breaking supercritical Hopf bifurcation occurs lead-
ing to a discrete frequency vortex shedding known as Karman
vortices. Chomaz et al. (1988) have demonstrated that this
symmetry breaking Hop{ bifurcation is related to the destabi-
lization of a global mode. The existence of an unstable giobal
mode is intimately linked to the fact that the near wake is abso-
lutely unstable followed by the convectively unstable far wake.
The understanding of the dynamics of two-dimensional wakes
at Reynolds numbers in the vicinity of the critical value is quite
firmly established. The preceding description of the vortex shed-
ding mechanismis from an instability perspective. From a mech.
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anistic point of view, a flow-induced feedback causes the shed-
ding of the vortices, where the changing location of boundary
layer separation oo one side of the cylinder causes a change in
pressure distribution that forces an opposite asymmetric change
in boundary separation. Any small flow perturbation is enough
to cause the initial asymmetry that starts the {eedback mech-
anism. The observation that the vortex shedding is caused by
the moving location of boundary layer separation is supported
by the absence of a distinct shedding frequency in the range
300,000 < Re < 3,000,000 where laminar separation followed
by turbulent reattachment fix=s the turbulent separation loca-
tion so firmly that feedback is inhibited.

Under the influence of vortex shedding, the changing pres-
sure distribution causes large oscillatory lift forces. When a cir-
cular cylinder is flexible and lightly damped or rigid and flexibly
mounted, vortex shedding can cause a coupled fluid structure in-
teraction. This flow-induced resonance, causes the body and the
wake to oscillate at the same frequency. This phenomenon, al-
ternately called galloping, lock-on or phase locking, results in
spanwise phase locking of the fluid and the structure causing
coherent vortex shedding along the span of the cyhinder.

The important aspect of this phenomenon, from a control
standpoint, is that the large pressure forces, both hift and drag,
are a result of the small viscous forces acting in the bound-
ary layer of the cylinder. This implies that small control forces
applied to the boundary layer can be used to control the larger
pressure {orces to achieve the effect of modifying the vortex gen.
eration and unsteady lift forces. This concept has been demon-
strated by Flowcs Williams & Zhao {1989), where the feedback
from a downstream hot film sensor was used to drive a speaker
embedded in the wind tunnel wall and suppress vortex shedding
from a cylinder in crossflow. The acoustic velocity perturbations
from the speaker are many Limes smaller than the freestream
velocity, and yet control was obtained. This study shows that
vortex shedding control is a real possibility. Two recent studies
(Tokomaru & Dimotakis {1991); Filler et al. {1991)) have shown

that small rotation oscitlations of a circular cylinder can cause
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lock-on. Numerical simulation of Karadakis & Triantalyllow
(1989) have shown that small vanations of the near wake pro-
duce lock-on.

The emphasis in this work 1s on active feedback control, as
opposced Lo open loap contiols as desciibed e Wa et al (1939),
Tokuntaru & Duvotakis (3991, and Filler et all {1991} i these
studies, rotary oscillation of the cyhindaer wis used o alter the
evliader wake, with no fecdback from the cslindsr or the flow.
Open loap control can canse fock-onr of vortes shedding and,
thercfore, modifly the vortes shedding phase, bat it as nghly
unhikely that it can suppress the vortex shedding altagether.

The most powerful asymmetric actnator for contral of the
boundary layer of the flow over a 2-D cylinder is the rotary oscil-
lation of the cylinder wall itself (sec Chang (1976) for numerous
scparation control schemes). However, this method of boundary
layer control has certain practical problems in implementation
as well as lack of generality to other geometries and therefore
will not be considered in this pager.

The next most powerful ictuator appears to be a pair of
suction/blowing slots located opposite to each other at some lo-
cation from the leading edge or the stagnation point. A small
amount of fluid sucked in e slot, thinning the boundary layer,
and ejected out through the other slot, will asymmetrically change
the location of the boundary layer separation.

In this paper, we will consider the problem of suppressing
or stabilizing the near wake of a flow past a circular cylinder
at Jow Reynolds number by direct numerical simulation of 2-D
Navier-Stokes equations.

2 NUMERICAL PROCEDURE

The control problem is investigated by numerically solving the
2-D Navier-Stokes equations in a stream function/vorticity for-
mulation as follows;

B o,
&"PV'(W)—"R—;VM, (l)

Vi = ~w, (2)

where w and ¥ are the vorticily and the stream function, respec-
tively. The above equations are nondimensionalized using the
cylinder radius, R, the freestream velocity, U, and the kinematic
viscosity of the fluid, ». The Reynolds number Re is defined as
follows; )

Re= Y4, @)
v
where d is the cylinder diameter. The boundary conditions on

the cylinder surface are
P =100=0, )

P(r = 1,0,1) = ¥,(8,1). (5)

In the case of zero blowing/suction, ¥, (8,t) is identically equal
to zero. Here we have two boundary conditions for the stream
function while there is no boundary condition for the vorticity.
Therefore, the second order accurate boundary condition for the
vorticity at the cylinder surface is derived using equation (2)
and the boundary conditions for the stream function. The outer
boundary conditions are
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where By = 23/12, By = —16/12, and £, = 5/12, and uw*, W*

and ¢¥™ denote the intermediate vorticity, the vorticity and the

stream funclion at n-th time level, respectively. The second

step is the implicit step, where the viscous effect is computed as
follows; " ) “

Wt Wt 2 2" +u:

At Re 2 ©

After the vorticity at {n+1)-th time level, w™*?, is computed, the

stream function, $**', is obtained by solving the equation (2)

for the stream funcilion. The accuracy of the numenical scheme
is second order in both space and time.

The computational grid is uniformly stretched in radial di-
rection such that the grid is denser near the cylinder surface to
resolve the high gradient of the flow there. A typical grid is
shown in figure 1. The outer computational boundary is located
at ro, = 59.38. The number of grid points in circumlferential
and radial directions are 256 and 128, respectively.

3 RESULTS AND DISCUSSION

Accuracy of numerical method was validated by comparing the
numerically obtained Strouhal number (5t} to the experimental
values at the Reynolds numbers of 60, 100, 150 and 200. The
nondimensional frequency St is defined as f,d/U, where f; is the
frequency of vortex shedding. In experiments at these Reynolds
numbers, due to the finite aspect ratio effect of the cylinder, the
vortices are shed from the cylinder at a small oblique angle to
the cylinder. Williamson (1989) found that the St — Re dis-
continuities occurring at low Reynolds numbers are due to the
obliqueness of the vortex shedding. He noticed that the parallel
shedding and the oblique shedding are related by the cosine of
the angle as follows. The frequency of the parallel shedding can
be obtained by dividing the frequency of the oblique shedding by
the cosine of the angle of the shedding that is the angle between
the spanwise oblique vortex line and the cylinder axis. He also
presented the universal St — Re curve without discontinuities by
correcting the effect of the obliqueness of the vortex shedding.
Our results are plotted with these corrected experimental val-
ues of Williamson (1989) in hgure 2. The agreement is excellent.
The results will presented for the case of the Reynolds number
of 60.

The lift coefficient is evaluated directly from the known vor-
twity field by the foHlowing fornmla
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Yo =1 cos{B)dl, {10}
where u,, 15 the radial veloaty at the eylinder sarface due to
the radial blowing Zsuction velocity Uaoogh the blowing /s Hon
slots. The first tenm is the contribution to the It of the Langen
tial viseous foree and the second term is the Bl doe to the pues.
sure force. The pressure foree is the dommant tenm in equation

(10). In particular, s positive i the posave yodocction

Ihe location of the actuator or the blowing /suction slots
is a critical factor in their effectiveness for the suppression of
the vortex shedding. We have tried the blowing/suction slots at
+50°, £65°, and £110° from the lcading cdge of the cyhnder.
With L..c a~tuators at £50°, or £65°, suppression of the vortex
shedding was not obtained. We think the meflectiveness of the
actuator was duc to the fact that the actuator was located too
far from the separation point on the cylinder surface. The sep-
aration points on the cylinder surface, at the Reynolds number
of 60, wander around =:120° as the vortices are shed. When the
blowing/suction slots were located at £110° from the stagra-
tion point, that is slightly ahead of the separation points of the
unforced wake, they proved to be strong actuators.

The blowing/suction velocity through small slots is dictated
according to the following feedback law.

aw(zn y= 0) s

wm.s

Uy = (ll)
where o is the feedback coefficient, w(z,,y = 0) is the mea-
sured vorticity at the downstream location, z,, along the cen-
terline and W, is the maximum vorticity at the same spa-
tial location for the unforced wake. Here, positive u; denotes
blowing/sucking through upper/lower slots. This choice of the
feedback law is motivated by the fact that as the flow becomes
controlled and approaches the symmetric configuration, the vor-
ticity w(z,,y = 0) tends to zero resulting in the small amount
of feedback. Therefore, as the desired state is approached, the
required forcing level becomes small.

The phase relation of the feedback relative to the vortex
shedding phase was determined by the downstream location of
the feedback “sensor”, z,. To properly choose z,, the move-
ment of the separation point as the vortices are shed must be
known. Figure 3 is the temporal plot of the vorticity at 6.01
radius downstream {z = —6.01) along the centerline (y = 0)
and the vorticity at cylinder surface (r = 1) at an angle of 110°,
which is slightly ahead of the upper separation point for the un-
forced wake. The vorticity measured on the centerline oscillates
around zero mean while the vorticity near the separation point
oscillates around some mean value. Let us denote w, and w, to
be the vorticity at the centerline and the vorticity on the cylin-
der surface, respectively. The phase relation between these two
are as follows;

we = Asin(2r f1), (12)

ry = BSiﬂ(?Xft + ¢) + Wameeny (11)

where ¢ is computed to be —0.7117x. The nondimensional fre-
quency, f, is the hall of the Strouhal number, St. Feeding back
the phase of the vorticity at 110° was tried first. The appropriate
sensor location, z,, for this phase is approximately 8 to 9 radius
downstream. The feedback coefficient o was varied {rom 0.3 to
1.8 for the fixed sensor location at 8.5 radius downstream. Sup-
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pression of the vortex shedding was obtamed dthougho it was uot
tutal suppression Figure 4 shows the vorticiy plots for several
a’s. The eptimum valuc lor a appears tobe ddose to L 1 As o e
creazes from aosmall value, the vortes shedding becomes shghth

As o

Lbecomues bugee than 11, the vortex shedihing, s calianeed. Fos

Suppres .mi‘ \\)!l: FONATH DU e o i ol i,i

o o= DT e ne weke stoncture foobs alimod <vomodtocat, Pies
s e the contesponding, streambine plats For the n;:lmm:}n
vadue of ol the tecaonlatig zone s dongated apptoachmg the
~teady solution A nnhns to the vatandatione ol o wherg (T80
of steady flow past a arcadas eyhinder at e = 60, the length
af the rearculating wake bubble is aronnd 4 cyvhnder dhameters
Wiren the shedding is nearly suppressed, the cecirculating wake
bubble is approximately 3 to 4 cylinder diameter long

Next, we fixed the feedback cocflicient o at 1.} and varied
the sensor location. The suppression of vortes shedding was
obtained only atl narrow range of the sensor location, which is
from 7.5 radius downstream to 9 radius downstrcam. The opti-
mum sensor location is around 8 radius downstream. In figure 6,
the vorticity plots for the flows with the sensors located al vari-
ous locations are given. The corresponding streamline plots are
shown in figure 7. With the sensor located at two radius down-
stream, the vortex shedding process is enhanced instead of being
suppressed as shown in figure 6a. As the forcing is turned on,
the vorticity and velocity fluctuations increase by about 100%
within one vortex shedding period. Fiowes Williams & Zhao
{1989) also observed that the phase reversal of the loud speaker
from the controlled case brought about an enhancement of the
fluctuation. Let us take a look at the optimum case, which is
the flow with the feedback sensor located at 4 diameters down-
stream. The near wake vorticity plot in figure 6b looks almost
symmetric. The streamline plot in figure 7b shows the recir-
culating wake bubble of the length of approximately 4 cylinder
diameters. Figure 8 and 9 are the time series of the lift coefh-
cient and the streamwise velocity at one diameter downstream
and one radius above the centerline, respectively. Forcing is

turned on at ¢ = 34 and is turned off at ¢ = 500. As the forc-
g is turned on, the fluctuations decay rapidly to a low level.
The lift coefficient fluctuation amplitude and the velocity fluc-
tuation amplitude are reduced to 25% and 15% of the unforced
case, respectively. The mean of the fluctuating velocity has also
decreased. As forcing is turned on, the cylir. der wake slowly re-
turns to the natural vortex shedding state as also observed by
Ffowes Williams & Zhao (1989). Figure 10 is the time series plot
of the square of the lift coefficient on a semi-log scale. As forcing
is turned off, the fluctuation begins to increases exponentially as
demonstrated by the straight linc or a semi-log plot. This region
is called a linear growth regicn which is followed by a transition
region and a saturation state as also observed in the numerical
simulation by Hannemann & Qertel (1989). When the forcing is
on, the fluctuations inodulate. The modulations of the fluctua-
tions can be explained as follows. As the forcing becomes small,
the suppression of the vortex shedding relaxes slightly resulting
tn the increased vorticity fluctuation. This increases the forcing
level once again. The increased forcing suppresses Lthe vortex
shedding process. Then the forcing decreases agan

Lastly, we briefly Jook at the downstream development of the
vortical structures. Figure 11 shows the vortical development of
the wakes of the unforced case and that of the suppressed case
up to 27 diamelers downstream. Although the near wake is sup
pressed to a significant degree, the small fluctyation in the near




. wake becomes amplified due to the convective nature of the in-
stability of the far wake as the fluctuation travels downstreant.
This is also observed by Ffowes Williams & Zhao (1989) and
shown in figure 5 of these authors. Despite of the fact that the
sear wake speetral level is low since the wake ix controtled, the
spectral level increases expouncutially in the downsticun diree-
tion.

4 CONCLUSION

We have been able to suppress the vortex shedding behind a
circular cylinder in a two dimensional numerical simulation at
the Reynolds number of 60 by active feedback control method.
The actuators we chose to use were the blowing/suction slats
located at £110° from the leading edge of the cylinder. The
control was possible in only a narrow range of phase while the
vortex shedding was enhanced if forced with the phase out of
this range. Although the present results are for the Reynolds
number of 60, a quite low Reynolds number, the authors be-
lieve that this active feedback control will still be operative even
at higher Reynolds numbers. The higher Reynolds number flow
control is currently being studied. One of us (D. S. Park) thanks
the support of the ONT (Office of Naval Technology) Postdoc-
toral Fellowship.
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Figure 1: Computational grid; 256 x 128.
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Figure 2: St versus fle; solid lincis data from Wilhamson {1989}
and solid square is the present data
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Figure 3: Vorticity lime series (solid line; z = ~6.0l, y = 0.
dashed line; r =1, 6 = 110°).
Figure 5: Streamline plot for the sensor (x,) located at 8.5 radius
‘ downstream (z, = —8.5). a) a = 0 (natural shedding), b)
* = e=03,ca=11da=18.;
>
i
E Figure 4: Vorticity contour for the sensor {z,) located at 8.5 Figure 6: Vorticity contour for o = }.1. a) z, = -2, b) z, = 8,
} radius downstream (z, = —8.5). Flow is from right to left. a) ¢z, = -9
: o = 0 (natural shedding), b) o = 0.3, c) e =1.1,d) a =18
r 63
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Figure T: Streamline plot for a = 1.1. a) z, = -2, b} z, = -8,
c)z, =-9.
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Figure 8: Plot of time series of lift coefficient for @ = 1.1 and
z, = —8. Forcing is turned on at ¢t = 34 and turned off at
t = 500.

025

3

* 0.20

) ]

4

>

3 o3

-

>

o 250

Figure 9: Plot of Lime serics of Streamwise velocity at z = —2
and y = | for @ = 1.1 and z, = —8. Forcing is turned on at

t = 34 and turned off at ¢t = 500.

Figure 10: Scmn-log plot «f time seies of the squate of Ll co.
efficiem for o = 1.1 and 7, = 8. The response after forcing 1s
turned off is shown.
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Figure 11: Downstream development of vorticily. a) natural
shedding, b) suppressed shedding (a = 1.1, z, = —38).




