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This paper continues the study of inelastic and ballistic collisions for the CsF-Ar system
using the impulse approximation (IA). The IA expresses the atom-diatom potential as the sum
of the two atom-atom potentials. The atom-atom interaction is approximated by a hard
core potential, and the laboratory differential cross sections are calculated for an initial relative
translational energy of 1.0 eV as a function of the laboratory recoil velocity of CsF. The
calculated differential cross sections are in excellent agreement with the experimental
measurements for all eight laboratory scattering angles for which the data are available. While
the calculated results show no significant dependence on the initial relative velocity or on
the initial vibrational quantum number of CsF, they do show a systematic variation with the
initial rotational quantum number-the ballistic effect is more pronounced than that
observed experimentally for initial quantum rotational numbers less than 30 and is not
pronounced enough for rotational quantum numbers more than 100. Two mechanisms give rise
to the ballistic peak. The first one is dominant when the laboratory scattering angle is
equal, or nearly equal, to the laboratory angle of the centroid velocity. This mechanism
transfers almost all of the relative translational energy into the internal energy of the
diatom and magnifies the center-of-mass (c.m.) differential cross section almost a million times.
This is due to a singularity in the Jacobian at very small c.m. recoil velocities, which
physically means that a small solid angle in the laboratory frame can collect the signal from
all 47r steradians in the c.m. frame. The second mechanism producing the ballistic
peak, also determining the smallest and the largest laboratory scattering angles, is the
rainbowlike singularity called edge effect. This mechanism becomes operative when the recoil
velocity of the alkali halide in the c.m. frame is perpendicular to its recoil velocity in -

the laboratory frame. While the dynamics of the collision leads to a conversion of the proper t(
amount of relative translational energy into internal energy of the diatom, the kinematic
singularities mentioned above magnify the relevant c.m. differential cross sections leading to the |
observed ballistic effect. The ballistic effect, therefore, should be observable for any two
collision partners under appropriate circumstances. The simple atom-diatom potential
reproduces the experimental results very well, because (i) for inelastic scattering, the • (1
experimental observations correspond to large center of mass scattering angles for which the •
attractive part of the potential makes little contribution to the scattering process, (ii) CD
for ballistic scattering, only the repulsive portion of the potential can cause a large amount of
energy exchange between the relative translational and the internal degrees of freedom,
and (iii) the calculated cross sections are insensitive to the details of the repulsive portion of
the potential. A number of consequences of the theory, including the conclusion that
the alkali halide beam in the experiments is rotationally unrelaxed, are discussed.

I. INTRODUCTION Obviously, those molecules that constitute the ballistic
peak have a substantial fraction of their relative transla- -

In a series of experiments, Herschbach and co- tional energy converted into internal energy during the
workers'- 3 have measured the differential cross sections for collisions. A theory of the ballistic effect is thus a theory of
the scattering of CsX (X-=F,I) by Ar as a function of the collisions during which a large fraction of the relative
laboratory recoil velocity of CsX by crossing the two translational energy is converted into internal energy. The
beams, at a right angle to each other, at a relative transla- pseudoelastic peak observed in the experiments' '1 corre-
tional energy of about 1.0 eV. In addition to a peak ob- sponds to large angle scattering in the center of mass
served around the elastically scattered CsX (pseudoelastic (c.m.) frame. The theory of the collisions comprising the
peak, formerly called the elastic peak 4), another peak, al- pseudoelastic peak, also under consideration here, is there-
most as strong as the pseudoelastic peak and named the fore a theory of large angle elastic and inelastic scattering.
ballistic peak, was observed in the vicinity of the recoil A model for the inelastic and ballistic transitions for
velocity corresponding to the motion of the center of mass. the CsF-Ar system constructed earlier4 produces excellent
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agreement with the experimentally measured differential experimental results measured, of course, in the lAborator,
cross section as a function of the laboratory recoil velocity frame. Section 11 discusses this tfanwforniaton, sh hii is
of CsF at the laboratory scattering angles of 30' and 600 derived in the Appendix Section ill gi , a brief account
According to this model, the inelastic (ballistic) collishows of the impulse approach (IA) for the atom *.*iahoni c4lli-

results when Ar strikes the Cs (F) end of CsF. The inelas- sions with a special emphasis on the part-classcal (prcsi-
tic collisions involve modest change in the rotational quan- ously -:alled "semi-classical"l formalism. The caltutation
turn number (Aj= 50); the ballistic collisions, on the other is still fully quantum, but by treating the two-body d)narrl-
hand, to conserve angular momentum and energy, must ics classically it is possible to save a great deal of comput-
involve large changes in the rotational quantum number ing time without appreciable loss of accuracy Section IV
(Aj up to about 200). Our model for the ballistic and large briefly describes the computational procedures used. Sec-
angle inelastic collisions has been able to give a quantita- tion V discusses the two mechanisms leading to the ballis-
tive explanation of the experimental observations of the tic peak. The results of the calculation are compared with

CsF-Ar system, but it has not been able to explain the the experimental measurements in Sec. VI. Our state-
ballistic effect observed in the CsI-Ar system. Our nodel, resolved three dimensional fully quantum calculation is ex-
however, has pointed out that the ballistic effect should not amined in greater detail in Sec. VII and some of its more

be observed in the l-Ar system at about I eV relative interesting consequences are pointed out. Concluding re-
translational energy because the 1, beam is rotationally marks and lessons learned comprise the last section. Sec.
cold (rotational temperature- 20 for the 1, beam vs VIII.
- 1000" for the CsI beam), a prediction in agreement with
the experimental results. The present theory has, in addi-
tion, predicted a ballistic peak for the 12-Ar system at II. TRANSFORMATION OF THE DIFFERENTIAL
relative translational energy of about 0.12 eV. 4 This pre- CROSS SECTION FROM THE CENTER OF MASS TO
diction of our model is in contrast to the prediction of an THE LABORATORY SYSTEM
earlier model5 of atom-diatom collisions, which concludes
that only about 25% of the initial relative translational The transformation between the cm. and the labor-a-

energy should be converted into internal energy during an tory coordinate systems has been the subject of several

Ar-I 2 encounter, independent of the initial internal energy studies."" We give a particularly simple derivation of the

of the diatom or the atom-diatom relative translational Jacobian for inelastic scattering. We then use this derisa-

energy. The same model5 predicts a transfer of about 96% tion as the starting point for the discussion of singularities

of the relative translational energy into internal degrees of and connect it with the previous work on the ballistic col-

freedom during an Ar-FCs encounter, again independent lisions.

of the initial internal energy of the diatom or the atom- The differential cross section in the labxoratory cooirdi-

diatom relative translational energy. It was pointed out nate system clL(0t,dL) is related to the differential cross

earlier4 that when the laboratory scattering angle is the section in the center of mass coordinate system c7(0,6) by

same, or nearly the same, as the laboratory angle of the the relation

c.m. velocity, a transfer of more than 96% of the relative row
translational energy into internal degrees of freedom is re- GL( 0 L 4 dL) = lim cr(,,)dfl/AfL, ()
quired to observe a ballistic effect. It will be shown later, in an, -al,

this article, that when the laboratory scattering angle is where 0, o are the polar and the azimuthal angles and It is
much larger than, or much smaller than, the laboratory the solid angle in the cm. coordinate system; the subscript
angle of the c.m. velocity, a transfer of a mere 75% of the L indicates that the angles are measured in the labxoratory
relative translational energy into internal degrees of free- coordinate system. denotes the maximum (mini-
dom may lead to a ballistic effect. Again this is in conflict mum) c.m. solid angle corresponding to laboratory solid
with the earlier model5 of impulsive collisions. Our model, angles fltAQlt.. Defining
since it has not explained all the pertinent experimental 2
observations, is only the first step in fully understanding (V2\, (2)
the mystery of ballistic collisions. Nevertheless, by virtue (]
of the excellent agreement between the calculated and the
measured results for the CsF-Ar system, the predictions it an tkn the limis A5t, a s
has made, and the experiments it has suggested, our model
represents a valuable first step. For this reason it is consid- d~,(A,,&t)
ered appropriate to present a more complete theory for the a,(Ol,bI) = -d(--)....... ýo(0.), (13
CsF-Ar system, expanding on the previous results as well I d(l(d)

as presenting new ones. where 0, ,, and 0_. oh, are polar and azimuthal scattering
Before presenting the detailed theory of the ballistic angles in the c.m. frame and the laboratory frame, respec-

effect, it is necessary to discuss the transformation of the tively. Defining y"= (tic m /n,) as the ratio of the velocity of
differential cross sections from the c.m. frame to the labo- the centroid in the laboratory frame to the recoil velocity
ratory coordinates. This transformation is an important of the observed particle in the c.m. frame, we show, in the
link bridging the results calculated in the c.m. frame to the Appendix,

J. Chem. Phys., Vol. 98. No 2. 15 January 1993
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dfllL(OL4L)f - 2 2,2 in this case the combined contributions from different tran-

I -1 T+7 (O-r I - 163 , -0") f (4) sitions can lead to an equally strong ballistic peak

where 02 - c' is the cosine of the angle between the recoil
velocities of the species detected in the laboratory and the Ill. ATOM-DIATOM IMPULSE FORMALISM
c.m. frames. It is shown in the Appendix that Eq. (4) is
identical to the one given by Schifl9 when one of the par- The complete formulation of the impulse approach to
ticles is initially stationary. This expression becomes infi- atom-diatom collisions was given earlier.' 3 Here we give a
nite when w2' approaches zero, i.e., when the c.m. recoil brief outline for completeness with an emphasis on the
velocity becomes very small, and also when the c.m. and part-classical approximation to the exact equations. In this
the laboratory recoil velocities are perpendicular. formulation the dynamics of two-body collisions is treated

When w' approaches zero, the direction of v', the lab- classically while the remainder of the calculation is carned
oratory recoil velocity, coincides with that of the centroid out using quantum mechanics. It has been found that this
velocity, vm. It is pointed out in the Appendix that in this procedure leads to substantially reduced computing time

case the Jacobian becomes a constant and is simply equal while the error introduced has never been found to exceed
to 4 1r/AflL, AflL being the laboratory solid angle seen by 10%. In the present calculation more than 100 000 differ-
the detector. For a 0.25" wide detector, the Jacobian is ential cross sections had to be computed; the use of this
equal to 8.4 X 105. Herein lies part of the mystery of the approximation has kept the computation time manageable.
ballistic effect! A millionfold enhancement of the cross sec- The interaction potential of the atom-diatom system in
tions for the processes Ofat lead to the conversion of almost the impulse formulation is the sum of the spherically sym-
all of the relative translational energy into internal energy metric atom-atom potentials, i.e.,
causes very small cross sections in the c.m. frame to stand
out in the laboratory frame. This hypothesis is the basis of V(y,,y 2 ) = V,(Y1 ) + V2(Y2 ), (6)
the proposal for the production of the state-selected and where V, and y, are, respectively, the interaction potential
velocity-selected molecular beams.4  and the distance between the incident atom and atom j of

When the laboratory and c.m. recoil velocities are per- the diatom. The distance between th. incident atom 3 and
pendicular, the Jacobian given above again becomes infi- atoms I and 2 of the diatom is written as
nite. It is shown in the Appendix that for a given final
vibrational-rotational state, i.e., for constant magnitude of Ys= [r 2 +2o/3 3 cos y + (ayi) 2 

1/2 (7)
cw, the laboratory scattering angle as a function of c.m. where s= 1,2 and r is the distance between the atom and
scattering angle goes through a maximum (minimum) the center of mass (c.m.) of the diatom; y3 is the internu-
when the iaboratcry scattering angle is greater (smaller) clear distance of diatom 1-2.
than the centroid velocity angle 02. An increase (decrease)
in the c.m. scattering angle leads to a decrease (increase) a,= ( - I )'m/(m) +m2), (8)
in the laboratory scattering angle. The situation encoun- m, is the mass of the spectator atom, and y, is the angle
tered here is the same as that encountered in the study of between the internuclear axis Y3 and the line r joining the
rainbows' 0 where the extremum in the deflection function atomet the cnm. of the diatom. thenfunct iof the

as a function of impact parameter leads to infinite classi- Hamiltonian for the diatomic molecule

cally calculated differential cross section. These two rain-

bowlike singularities, called the edge effect,"I correspond to q3

a lower and an upper bound for the laboratory scattering HDI2t AO 1 V3  (
angle for a given final vibrational-rotational state. The
rainbowlike singularities encountered here are due to kine- are the wave functions for the vibrational and rotational
matic effects and are distinct from the rainbows due to the motion of the diatom. The mo~r, nta are written in the
dynamical effects discussed previously.12  Jacobi notation; p. is the momentum of particle a with

In the Appendix the Jacobian for the edge effect is respect to the c.m. of bc and qo is the relative momentum
shown to be equal to of particles bc. Similarly, r. is the distance of atom a from

the c.m. of bc, y, is the distance between b and c, and VY is
d1fL sin OLAOL d4L D- 18 1/2 the intramolecular potential of the diatom 1-2. U,, is the

I d , (5) reduced mass of the atoms i and j, while the reduced massof a and bc is written as Pa

where the angle AOL is the width of the polar antle of the The Watson expansion, a multiple-collision expansion
detector. The Jacobian given by Eq. (5) for y, 5 and of the three-body T matrix, is written as14

AOL =0.250 deg can have a value roughly between 100 and
1000 depending upon the laboratory scattering angle, i.e.,
it can have a value between 4 and 40 times that given by y• where T') is the three-body transition matrix describing
alone. This effect is not as dramatic as that due to resonant the collision of the incident atom with atom j of the dia-
transfer of energy from relative translational motion into tom, i being the spectator atom. G is the propagator cor-
rotational and vibrational motion of the diatom. However, responding to the unperturbed Hamiltonian /,,. %iz.,

J. Chem, Phys, Vol- 98, No- 2, 15 January 1993
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of V'5'(y;). it is useful to ho)k at the two-bold I matrix as
HO- =Pi t+tAr IM, (1) an operator in the momentum space which modifies the

diatom wave function ý( qý ). Equation (I IS) transforms the
and, modified wae function back to the ctxrdinate space If

one recalls that the center of mass acquires a momentum
G3(z) (z-H 0 +iYj) . (12) equal to aiq during the collision when s is the spectator

The first two terms on the right-hand side of Eq. (10) are atom, Eq- (17) may be looked upon as the overlap integral
the single-collision terms. These terms are obtained by of the final-state wave function with the initial-state wave

summing all the diagrams involving the collision of the function that is modified by the collision- This view also

incident atom with atom I or atom 2. The graphs repre- connects the impulse approach discussed here with the the-

senting the collision of the incident atom with atom I (2) ory of transitions due to sudden perturbations, e g, atomic

followed by further collisions of the incident atom with transitions accompanying beta ray emission.

atom 1 (2) are contained in these terms. 14 The next two It was mentioned earlier that we will evaluate the two-

terms are the double-collision terms and are obtained by body I matrix in Eq. (18) using classical mechanics. In
summing all the diagrams involving the collision of the classical mechanics, a collision between two hard spheres
incident atom first with atom 1 (2) followed by collision leads to the reversal of the component of the momentum
with atom 2 (1 ).14 In the impulse calculation only the first normal to the surfaces of the two spheres al the point of
two terms, i.e., only the single collision terms, are retained, contact, while the other two components of the momentum

We can write the differential cross sectior' for scatter- remain unchanged.16 In other words, if a momentum
ing from initial state i to final state f as change q occurs during the collision, the initial momentum
do -- q/2 becomes the final momentum -t q/2., while the com-

v;j-p 'j'pq ponents of momentum perpendicular to q remain un-f v',p ,:3q) changed. Further, the transverse components of the mo-

mentum, which in classical mechanics do not enter the
P-3(2j± 1) TJ, (13) equations of motion, may have any value. It was shownP3 - earlier"• that this result also holds for scattering using the

where the scattering angle 0 and momentum transfer vec- impulse approach, provided the scattering angle is larger

tor q are related by than about 15'. This amounts to evaluating Eq. (18) by
setting the components of q3 along q equal to

q Cp)2+(P3 )-2p~p• osO, (14)
and, q3! i= - (a~q/2) +P 12A~C/(a~q). (19)

IT,fj2 1 I([TIh)I1, (15) where 4 is a unit vector along the direction of the trans-

m., ferred momentum and Ac is the difference in Internal en-

03 and o03 being the eigenfunctions of H, in the initial and ergy of the diatom between the final and the initial states

final states, respectively, and, The components of qI perpendicular to 4 are set equal to
zero. It was also pointed out earlier13 t!.at to evaluate the

T () -f ( T (q), (16) Iwo-body t matrix for a fixed value f-i qj. the momentum
v .... 1.2 due to the vibrational and rotatio' .,! motion of the diatom,

is to approximate it by its sph~rically symmetric compo-
The two terms on the right-hand side of Eq. (16) are the

single collision terms. When the incident atom collides nent, i.e..

with one of the atoms of the diatom, the other atom, the
one not participating in the collision process, is termed the (q t" q,) zix)(qi.p3.q) Y•(4) =(47r,) "2tf,(qj.p,.q).
spectator. For this reason the impulse calculation is also (20)

called the quantum mechanical spectator model. We recall
that Equation (20) 'ias the same structure as the peaking ap-

proximation. which evaluates the two-body t matrix setting

(1 T"(q) I) (-0 dy, (b'*(y,)exp( -- iaq.yy) qj= ... a"., i.e., using only the first term on the right-
J hand side of Eq. (19). Use of Eq. (19). however, gives

results which, unlike the results obtained by using the
: q"(yO), (17) peaking approximation,' 7 are time reversal invariant.,

where " his approach is called the part-classical approximation.
previously called semiclassical (a new name is given to

(y,)-(2) dqjexp( -iqj.yj) avoid confusion with other usage of the term semiclassical
f in scattering theory"•), because it has one foot in classical

X (qt"' I' q,) (q1 ) (8) nmechanics. Equation (20) has been extensively used by us
for calculating differential cross sections and has provided

is the wave function of the diatom modified by the two- answers always within 10%1 of those given by a spot check
body scattering process. To develop a feeling for the nature of the exact calculation. 4'M

J. Chem. Phys., Vol 98. No 2, 15 January 1993
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Recalling that 0(q3) is the wave function of the initial we get
state in the momentum representation, i.e.,

()2 1( (;I TO) (q) I = (41r) -1/2 * (±i)
CC(• = (-V '%j(93) yie.(3), (21) '

where v,j,m are the initial vibrational, rotational, and mag- )C m

netic quantum numbers, respectively, and, x C(jlj'00). (30)

lj(q 3) = yo dy1 Y3X{,j(Y 3 )jj(q3y 3 ), (22) Using the relation' 9

where X•j is the vibration-rotation wave function in the 3 C(jlj');mO)C(1j'j;mO) (-jy 6 ()

coordinate space, we can integrate Eq. (18) over q3 . Using we can write, using Eqs. (13) and (16)
the Raleigh expansion of the plane wave, i.e.,

da
exp(--iq3"Y3)=4vr I (-i)Y1,,U(Yt)*.,,(4t3)Jt(q3Y3), 3-(=-J3•f=u,'P]q

4M, (23) P3 v) ( 1) /+ 1

we obtain (3--(2j+ )- - - [C (jlj',oo)

+(')(Y3 ,qP3 )= (41)- 1/2 K' ,j (Y 3 413) Yj.P (h) (24) X N N ( , ./+ (- N1ZM ) (32)

where 
ul'

Equation (32) is our final result and is obtained by adding
S2 d= the amplitudes for scattering from the two scattering cen-

(,y3,p3,q) =-rj dq3 q3J(qiv;)t°(q3 'p3,q)Io,(q 3 )" ters.

(25)

A comparison of Eqs. (24) and (25) with Eqs. (21) and IV. COMPUTATIONS
(22) shows the similarity of their structure and provides In this section we briefly describe the computational
further basis for the statement that %P(') is the modified procedures followed. These procedures are the same as in
wave function for the internal motion of the diatom. Sub- the previous work on the collision of alkali halide mole-
stituting Eqs. (18) through (25) into Eq. (17), we get cules with argon. 4," Briefly, since the ground state of CsF

)1/2 is ionic, the Ar-CsF potential is taken to be the sum of
((/ [ dY3 €j(Y 3),Yj,(Y 3 ) Ar-Cs+ and Ar-F potentials. Only the repulsive portion

\T)/ 4of the Ar-ion potential, which is approximated by a hard

X exp(- ial • Y3 )K(S•) (qP 3,Y 3 ). core potential, is used in the present calculations. The hard
core radii for the Ar-Cs+ and Ar-F potentials are as-

(26) sumed to be given by the corresponding parameters for the

Again using the Raleigh expansion of the plane wave and Ar-Xe and Ar-Ne potentials.20 The parameters for the
writing '4(y3) =X,,./(y 3) Yj,,,(93), where primes denote diatom potential are taken from Huber and Herzberg. 2

the vibrational and rotational levels v',j' of the final state, The potential function thus obtained is extrapolated to
we get larger internuclear distances using a Pade [2,2] approxi-

(ji)'(-[ l][ ) 5]q/) mant. Wave functions for the internal motion of the dia-
(03'1 T ("(q) 103)= M• (,(q,P3) tom are obtained by solving the one dimensional Schro-

"U t dinger equation, containing the centrifugal term for the

"> Cjlj';mm' - M) rotational motion, using Numerov's method.

"X C(jlj';O0)Yt,. -() (27) V. MECHANISMS GIVING RISE TO THE BALLISTIC
PEAK

where Cs are the Clebsch-Gordan coefficients, Dl --(2j
+ 1), and Before we compare the calculated differential cross sec-

tions with the experimental values, it is desirable that we
=) • 2 discuss the physical basis for the ballistic peak. Figure 1.

N•!/'(P3'q) = , dy3 Y3Xj,(Y3)jl( Ia, I qY3) plotted using the points taken from the earlier work, 2 gives
a plot of the laboratory differential cross section as a func-

IK,)(P3,qy 3 ). (28) tion of CsF recoil velocity and illustrates the experimental

Taking our space fixed z axis along q, and using the rela- data we are trying to model. The ballistic peak on the left,
tion near the centroid velocity, represents the signal from those

molecules that have small c.m. recoil velocities and which
=(tIJ. 1/2 carry large amounts of internal excitation.' The ballistic

(,(0'0) m4- ,,, (29) peak was shown 4 to arise when Ar strikes the F end of CsF.

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993
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FIG. 2. Jacobian for the transformation of the differential croms %tclion
FIG. 1. Laboratory differential cross section as a function of the labora- from the c.m. frame to the laboratory frame as a function of the final
tory recoil velocity of CsF at the laboratory scattering angle of 60. This relative translational energy of CsF (measured as a fraction of the initial
figure is reproduced from Ref. 3. The pseudoelastic peak, cemtred at the relative translational energy) when the scattenng is .iewed along the
recoil velocity of about 1100 m/s, is where elastic scattering at large c.m. direction of the centroid velocity, ie., 6, = 6.
scattering angles (about 15(T) should be observed. The peak at about 500
m/s is the ballistic peak and is centered near the centroid velocity, The
CsF molecules contnbuting to this peak are moving slowly in the c.m from the c.m. to the laboratory coordinates, for the labo-frame. ratory scattering angle equal to the angle of the centroid

velocity, as a function of the fraction of the relative trans-
The peak on the right, called the pseudoelastic peak,4 cen- lational energy converted into internal energy. It is readily
tered at the recoil velocity corresponding to elastic scatter- seen from this figure why the differential cross section for
ing, arises4 when Ar strikes the Cs end of CsF and consists the resonant transitions in the laboratory frame is so much
of inelastic transitions involving modest changes ( I AEJ / larger than the neighboring transitions.
E<0.35) of collision energy. An earlier model of impulsive When the recoil velocities of the alkali halide mole-
atom-diatom collisions predicts5 a transfer of only 14% of cules in the c.m. frame and the laboratory frame are per-
the initial relative translational energy into internal energy, pendicular, the laboratory scattering angle for two values,
i.e., (IAEI /Ez0. 14), when Ar hits the Cs end of CsF. a maximum and a minimum, displays an extremum as a
The results of our calculation and those of the earlier 'unction of the c.m. scattering angle. The laboratory scat-
model nre in disagreement. Comparison of our calculation tering cross section, for these two values of laboratory scat-
with the experimentally observed pseudoelastic peak will tering angles, exhibits a rainbowlike singularity. Figure 3
decide if our theory is correct. gives a plot of the differential cross section, obtained by

It was shown earlier4 that when one is looking along or summing over the two branches in Fig. 16, in the labora-
close to the direction of the centroid velocity, most of the tory (c.m.) frame as a function of laboratory (cm.) scat-
contribution to the ballistic peak comes from the transi- tering angle. The collision parameters are given in Fig. 15.
tions which convert more than 97% of the relative trans- The minimum (maximum) laboratory scattering angle of
lational energy into internal energy. Further, the signal 30' (75') correspond to c.m. scattering angles of 18'
from a transition which converts more than 99% of the (117"). An order of magnitude enhancement of the differ-
relative translational energy into internal motion (resonant ential cross section due to the kinematic rainbowlike sin-
transition) may be larger than the signal from any other gularity (edge effect) is seen. The values of the minimum
transition by a factor of about 2-3. It was also pointed out and maximum laboratory angles are dependent upon the
that the c.m. differential cross section for the resonant transition under consideration. These kinematic rainbows,
transitions is within a few percent of the neighboring non- called the edge effect, tt are the cause of the ballistic peak
resonant transitions. What sets the resonant transitions when the laboratory scattering angle is much different
apart from the nearby transitions is the large Jacobian of from the direction of the centroid velocity.
transformation from the c.m. to the laboratory coordinate
system, which is very sensitive to the fraction of relative VI. COMPARISON OF THE CALCULATION WITH THE
translational energy converted into internal energy, The EXPERIMENTAL RESULTS
expression for the Jacobian is derived in the Appendix. The calculated results are compared with the experi-
Figure 2 is a plot of the Jacobian for the transformation mental results after they are scanned over by a normalized
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10-1

Sto'* FIG. 4. Flux of the Ar parent beam, in arbitrary units, as a function of
-the velocity of" Ar. The input function (solid line) repeets the actual
S~~~velocity distribution and is given by P(u) )= u• exp( - Jul - (•)••

0 with (v,) =2380 m/s and bvu, = 350 m/$ The output velocity distribution
(dotted line), represents the measured Ar parent beam ftux and is ob-

to• Wraied by modifying the input distribution by a normalized Gaussian

Sfunction with full-width at half-height given by the resolution function JR.
Z•_ The actual velocity distribution peaks at 2450 m/s, but the measured peak

-a0.

S• is at about 2050 m/s. The energy associated with the output distribution
= to"' ,,•peak is about 71% of the energy corresponding to the maximum of the

S•- input distribution.

30 2 0 40 00 180 to
0_ (deg .)

FIG. 3. Calculated laboratory (cm.m) differential cross section (cruZ/st)
as a function of laboratory (c-m. } scattering angle. Increased differential......,.....r ''."'•'---T.-,-T- " ........
cross section at the minimum and maximum laboratory scattering angles UsF(-l ,j-70 .At • f jv I A r
is due to the kinematic rainbows, also called edge effect (Ref. 11), and not

due to any peculiarities in the c~m. differential cross section. The collision 3 •-parameters are the same as in Fig. 15.hbrf

Gaussian function with the resolution ration Ru(Avc/vo)
19.3 + 0.034va ), where R is expressed in percent, Av ru is 2 lt d ,': bt

the full-width at half-maximum of the Gaussian, and v, is ::in units of m/s. To understand the role of the resolution tb 2 r/ T et

ratio in the experimental results, we plot in Fig. 4 the p i b on
output signal (dashed line) in arbitrary unitsass a functionm/sr
of the velocity of At when the input (solid line) is given by Ij ;A "'.',

P(V•)=v, exp(-[V-(•)6l2 with (ul) = 2380 m/s 41 .. •""" .
and bvl =350 m/s. It is seen that while the input velocity • /.. .. e .. .. 1,-• -peaks at 2450 m/s (ai .0 eV translational energy th), e t

output velocity peaks at about 2050 m/s. This shift due to i
the velocity dependent resolution function leads to the ac- .

00

tual energy being about 50% larger than the nominal en- 200 400o 6w) 800 100o 1210 14 On , 1410 180
ergy. Because the resolution function severely distorts the v;' Re' n ,lVA, 0% (me"')

calculated results, we will, after comparing the calculated

results with the experimental measurements and establish- FIG. 5, Laboratory differential cross section as a function of the labora-ing their credibility, present the undistorted calculated re- i ory recoil velocity ofsCsF at the laboratory -atterng angle of60" Dotted
line is the result of the impulus calculation for Ao velocity vt, hre 24l50 i

surts. This will permit us to examinwe pcalculation more and CsF velocity v.--- 5M m/s with the minal state of CsF given by v : I

closely and to see if any other lessons can be learned from and j= 70. The dashed line is the result of the impul• calculaton oh-

it. oained by averaging over the Ar velniuy acc(rdlng o the disgivtenobn
To de termine the dependence of the calculated results given in Re. 1; the velcity of the CsF beam is %till 50A) mi The exper-

impntal points are the same as s Fig o, taken from Refe, gand arc
on the inve it nty of Ar, we plot in Fig. 5 normalized to match the calculation for discrete veh. y at the large
the laboratory differential scattering cronsa section as a cross rction.
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FIG. 6. Laboratory differential cross section as a function of the labora- -/ " '..
tory recoil velocity of CsF at the laboratory scattering angle of 60(7 The "
velocity of the Ar and the CsF beams are vi = 2450 m/s and t2 = 500 m/s , < '5-
with the initial rotational state of CsF fixed at j= 60. The impulse calcu- ">- -
lations for initial vibrational levels v= 1,2. and 3 are represented by solid, ,.

dotted, and dashed lines, respectively. 1,11) HOO 1 1(710." 400 ! l ;'Q

function of the laboratory recoil velocity of CsF at the
laboratory scattering angle of 60°. The dotted line is our FIG. 7. Laboratory differential cross ection as a function of the laN'ra.

impulse calculation for the Ar velocity v, = 2450 m/s and tory recoil velocity of CsF at eight laboratory scattenng angle, 25ý-4'Y
The velocity of the Ar and the CsF beams are ri - 2450 ml/s and r,. 5-- Sthe CsF velocity vr2 = 500 m/s with the initial state of CsF m/s with the initial vibrational state of CsF fixed at v - 3 The impulse

given by v= I and j= 70. The dashed line is the impulse calculations for initial rotational levels j= 60, 10(), and 30 are represented

calculation using the probability of the Ar velocity given by solid. broken, and dotted lines, respectivelh

by the formula P(vj) =vl exp( -[(vU- (vl) )/1&1 2 ), while
keeping the CsF velocity at 500 m/s. The experimental
points are the same as in Fig. 1, taken from Ref. 3, and are paper we will assume that initial vibrational level of CsF is
normalized to match the calculation at the largest cross v= 3 because this is the average vibrational level at 1000 K.
section. It is seen that the calculation is insensitive to av- the temperature of the CsF beam.
eraging over the initial velocity distribution of Ar. Since To investigate the dependence of the calculated differ-
most of the initial translational energy is supplied by Ar, it ential cross sections on the initial rotational quantum num-
appears reasonable to assume that the calculation is also ber of CsF and to compare the calculated results with the
insensitive to averaging over the initial CsF velocity distri- experimentally measured ones, we plot in Fig. 7 the labo-
bution. In the rest of the paper we will present the calcu- ratory differential scattering cross section as a function of
lations for fixed velocities of the Ar and the CsF beams, the laboratory recoil velocity of CsF at eight laboratory

To investigate the variation of the calculated results scattering angles: 25*, 30',.., 60. . The velocity of the Ar
with the initial vibrational quantum number of CsF, we beam is fixed at vt = 2450 m/s; while that of the CsF beam
plot in Fig. 6 the laboratory differential scattering cross is fixed at v2=500 m/s. The initial vibrational level of CsF
section as a function of the laboratory recoil velocity of is fixed at v= 3. Dotted, solid, and dashed curves corre-
CsF at the laboratory scattering angle of 60*. The velocity spond to C4sF initial rotational levels j= 30, 60, and 100.
of the Ar beam is fixed at vl = 2450 m/s, while that of the respectively. The experimental points are taken from Ref.
CsF beam is fixed at V2=550 m/s. The initial rotational 3, and are normalized at each angle separately, to match
level of CsF is fixed at j=60. Solid curve, dotted, and the calculation for j=-60 at the largest cross section. It is
dashed curves are the results of our calculation for initial seen that the calculation is sensitive to the initial rotational
vibrational levels v= 1,2, and 3, respectively. The experi- level of CsF, and the best agreement for all eight laboratory
mental points are the same as in Fig. 1, taken from Ref. 3, scattering angles is given by the solid line. i.e.. j=R60.
and are normalized to match the calculation at the largest The calculated results are in excellent agreement with
cross section. It is seen that the calculation is insensitive to the measured ones at all of the eight available laboratory
the initial vibrational level of CsF. In the remainder of the scattering angles. The calculated results are not very sen-
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S............. ... .... ... . . .. . ... . ..... vector in the laboratory frame is 52.2'. 'The contribution to
the ballistic peak at the laboratory scattering angle ot 55' is

3 .dominated by the resonant transfer of the relative transla-
tional energy into the internal motion, while at the labora-
toiy scattering angle of 25', it is determined by the kine-
matic rainbow, or the edge effect."1 This is also the
conclusion arrived at from Fig. 8 where, for the 55' scat-
tering the ballistic peak is centered at the recoil velocity

.0.... equal to the velocity of the c.m., while for the 250 scattering
b ithe center of the ballistic peak is at a lower value of recoil

velocity. The ballistic peak for the laboratory scattering of
5- 55* is centered at the cm. velocity of 646 m/s, because

when all of the energy of relative translational motion has
been resonantly transferred into internal energy, the mol-
"ecule is stationary in the c.m. frame and it moves at the

Svelocity of the c.m. in the laboratory frame. The molecules
contributing to the ballistic peak at the 25' scattering angle

200 400 .................. have a substantial c.m. recoil velocity, and here the ballistic
(4• V,,o, ,Y (,,,', peak arises because of the kinematic rainbow, or edge ef-

fect.' t For this case the recoil velocity of the molecule in
the c.m. frame is perpendicular to its recoil velocity in the

FIG. 8. Calculated laboratory differential cross section as a function of laboratory frame, leading to the relationship (tv-)
the laboratory recoil velocity of CsF for the laboratory scattering angles
of 25* and 55° for initial vibrational-rotational level (v= 3. j= 60) of CsF. (vc m)'- (co2 . The laboratory recoil velocity, around
The remainder of the beam parameters are the same as in Fig. 7. which the ballistic peak is centered, is now smaller (about

575 m/s) than the velocity of the c.m.
It is worth noting that the ballistic peak for the 55'

sitive to the initial velocity distribution of the Ar beam or laboratory scattering angle displays a profile similar to a
to the initial vibrational quantum number of the CsF beam. Lorentzian. This is because the c.m. differential cross sec-
They are, however, sensitive to the initial rotational distri- tions for the dominant transitions are, because of the den-
bution of the CsF beam. The calculated results imply that sity factor, proportional to the c.m. recoil velocity. The
the rotational distribution of the CsF beam peaks around Jacobian varies inversely as the square of the c.m. recoil
j=60, rather than j=30 or j= 100. In other words, the velocity. The laboratory differential cross sections are
rotational temperature of the beam, if our calculation is to therefore inversely proportional to the c.m. recoil velocity
be believed, is close to 1000 K, the temperature of the oven. (the Lorentzian profile would be inversely proportional to

A word of caution here is, perhaps, in order. We are the square of the c.m. recoil velocity).
not saying that the magnitude of the ballistic peak in The ballistic peak at the 25' scattering angle has a more
CsF-Ar system is independent of the initial relative trans- complicated structure than that at 55'. There are more
lational energy, but that it is insensitive to whether one transitions comprising the 25* peak that have noticeably
performs the calculation at the average initial relative large cross section. In addition, the transitions are not sym-

translational energy of 1.0 eV or averages the calculated metross seced aroun , the transitions velotym-

differential cross sections over the experimental1 Maxwell metrically placed around the central recoil velocity of 575

distribution centered at 1.0 eV. The magnitude of the bal- m/s. These observations can be understood by referring to

listic peak does depend upon the initial relative velocity as Fig. 9, which gives a plot of the absolute value of the
iist peak doesb e the factnitiaourmodel predctie a eloistic pak Jacobian, for several laboratory scattering angles vs theis shown by the fact that our model predicts a ballistic peak laboratory recoil velocity of CsF for a 0.25' wide detector.
for the 12-Ar (I 2 beam temperature 250 K) at the initial We h aoaoysatrn nl seult h ao

relative translational energy of 0. 12 eV, but not at 1.0 eV.

Similarly, it is being stated that the magnitude of the bal- ratory angle of the centroid velocity (52.2'), the Jacobian

listic peak is independent of the initial vibrational level of is extremely large and very sharply peaked. As we move

CsF only if that vibrational level is one of the first four away from the direction of the centroid velocity, i.e., in-

levels, crease or decrease the laboratoy scattering angle. the
value of the Jacobian becomes smaller, the peak gets flat-
ter, and the center of thc peak moves towards smaller re-RESULTS coil velocities. This is because the farther we look from the

direction of the c.m. velocity, the larger (,) must be. and
Because the resolution of the instrument distorts the therefore the smaller v2' must be so that the square of these

calculated signal so severely, we present, in Fig. 8, the two recoil velocities can be equal to the ,quare of the cen-
calculated discrete spectra for 55* and 25* laboratory scat- troid velocity. Because the Jacobian is much flatter at the
tering angles. The initial rotational level of CsF for these 25* scattering angle, the laboratory differential cross sec-
calculations is j=60; the remaining beam parameters are tions resemble the c.m. differential cross sections, These
the same as in Fig. 7. and the angle of the centroid velocity points are apparent in Fig. 10, which gives a plot of the
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FIG. 9. Absolute value of the Jacobian for the transformation of the 0 ,

differential cross section from the c.m. coordinate system to the labora- 2 ,
tory coordinate system as a function of the laboratory recoil velocity of
CsF for various laboratory scattering angles. , . .,..• .

20-

c.m. differential cross section as a function of the labora- o . 4

tory recoil velocity of CsF at the laboratory scattering an- . .. L=-.. L2W'• ii, f ....0.
gles of 25" and 500. Since we are assuming an idealized C,0 Labo r ,ory00 ,0o0 :o0 ,o20 , 2,:

beam without late-al dimensions, each stick in the figure
corresponds to a c.m. differential cross section at a definite
c.m. scattering angle. 'Therefore, the c.m. differential cross FIG. 11. Center-of-mass differential cross section (cm

2/sr) as a function
sections in Fig. 10, upon multiplication with the appropri- of the laboratory recoil velocity (m/s) of CsF at the laboratory scattenng
ate Jacobian (Fig. 9) given the laboratory differential cross angle of 25', foc the most prominent transitions making up the ballistic

peak (top three frames), and the most prominent transitions making up
sections, plotted in Fig. 8. The c.m. differential cross sec- the pseudoelastic peak (bottom three frames). The beam parameters are

tions resemble the laboratory differential cross sections for the same as in Fig. 8.

the 250 scattering angle; for the 550 scattering angle, on the
other hand, the transitions most prominent in the labora-

tory frame (Fig. 8) are barely noticeable in the c.m. frame.
3 It should also be noticed that the pseudoelastic peak shifts

to smaller recoil velocities as the laboratory scattering an--• 0z5°1 gle moves away from the direction of the centroid velocity,
the maximum intensity occurs at the recoil velocity of 960

m/s for 250 and at 1100 m/s for 55'. This happens because,
when the laboratory scattering angle is farther from the
direction of the centroid velocity the angle between to• and

, ii becomes closer to 90, resulting in smaller value of

0O L 1 h. = [(,)2)2 + (t 0cm) 2 - 2wý - VcrII/ 2.
A closer look at the details of the scattering at 25* is

,, , provided by Fig. 11, which is a plot, again for an idealized
beam, of the c.m. differential cross section as a function of

I. the laboratory recoil velocity of CsF. The initial state of

I CsF is v=3, j=60; the Ar-CsF initial relative transla-
tional energy is 1.0 eV; the c.m. velocity is 646 m/s at a
laboratory angle of 52.50. The three upper frames are the

02 rotational transitions comprising the ballistic peak (Ar-F

?no 400 6o0 00 10o0 1200 encounter) for final vibrational levels tv'2,3, and 4; the
(*4- LA,.,.,raltt R',.. it Vel.(1tY hit/i three lower frames are the rotational transitions compris-

ing the pseudoelastic peak (Ar-Cs encounter) for the same
FIG. 10. Center-of-mass differential cross section (cm

2/sr) as a function final vibrational levels. The rotational transitions compris-
of the laboratory recoi! velocity (m/s) of COF at the laboratory scattering
angles of 25" (top frame) and 55' (bottom frame). The beam parameters ing the ballistic peak have almost the same structure and
are the same as in Fig. 8 appear to be independent of the final vibrational level. Be-

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993



I 098 R Sharma and J. Sindoni: CsF-Ar

when almost all of the in.Aial rclative translational cncrgs
has been conmerted into the internal energs, the c.m. df-
ferential cross section is independent of the c m '-czttering

angle. This effect, which was predicted earlier. 4  se-
cause, for the resonant energy transfer from translation to

vibration-rotation, the final orbital motion has very small
relative velocity and is therefore an isotropic .5 wave This
is one of the rare instances in atom--diatoms collisions

when one encounters partial waves with %ery low quantum
numbers.

S... VIII. CONCLUSIONS

The basic question is, why do the experimental results
agree with the calculatea results, which are obtained by

FIG. 12. Calculated c m differential cross section as a function of the c.m. using a simplified atom-diatom potential? Not only has the

scattering angle. When almost all of the initial relative translational en- atom-diatom potential been approximated by the sum of
ergy has been converted into internal motion, the final relative transla- two atom-atom potentials, the atom-atom potentials have
tional energy carries no angular momentum, leading to isotropic scatter- in addition to this approximation been replaced by two
ing. liard core potentials. A clue to the answer is pri.-ideo by

earlier work18 which studied the deactivation of highly ,i-
brationally excited KBr by Ar using exactly the same cal-

tween the recoil velocities of 200 and 400 m/s there are culation. For the largest c.m. scattering angle (75*) for
supernumerary rainbows and a primary rainbow in each which the experimental measurements were available, the
frame, and a secondary rainbow in the v'=4 frame, the calculated c.m. differential cross section plotted as a func-
rotational quantum number increasing with increasing re- tion of the KBr cm. recoil velocity agreed with the exper-

coil velocity. On the right side of each frame, after a larger imental measurements for all recoil velocities (0- I(XX)
gap in the center, the rotational quantum number de- m/s). For the smallest c.m. scattering angle (45°) for
creases with increasing recoil velocity and the transitions which the experimental measuiements were -,vailable. on
appearing first, i.e., closest to 575 m/s recoil velocity, are the other hand, the calculated c.m. differential cross setc-
constrained by the kinematic rainbowlike singularity or the tion plotted as a function of the KBr c.m. recoil velocity

edge effect. The rotational transitions j'= 194, 1t9, and agreed with the experimental measurements only for recoil
185 are the first to appear for the final vibrational quantum velocities larger than about 700 m/s. The answer, then. lies
numbers 2, 3, and 4, respectively. The highest final rota- in noting that (i) the pseudoelastic peak, involving trans-
tional level attainable is greater for smaller vibrational fers of small amounts of energy between translation and
quantum numbers because more energy is available when rotation-vibration, corresponds to large cm. scattering an-
the final vibrational quantum number is smaller. One can gles for which the attractive portion of the potential, in
regard these rotational transitions as dynamical rainbows analogy with the KBr-Ar results, makes no contribution.
and state that kinematic rainbows lead to dynamic rain- (i0) the ballistic peak involves transfer of a large fraction of
bows. As the recoil velocity increases and the final rota- the initial relative translational energy into it ternal energy,

tional quantum number decreases. the supernumerary, pri- which can be caused, again in analogy with the KBr-Ar
mary, and secondary rainbows are again seen. The results, only by the repulsive portion of the potential inde-
differential cross sections comprising the ballistic peak ex- pendent of the c.m. scattering angle and, (iii) the catula-
hibit a rich and complicated structure. tion is insensitive to the steepness of the repulsive portion

For the case of pseudoelastic scattering (Ar-Cs en- of the potential. Preliminary work 2' with the exponential
counter) depicted in the lower three frames of Fig. 11, repulsive potential supports this conclusion. We have a
there are at least two rotational rainbows in each frame, situation where the two ends of the diatom scatter, rode-
The frame corresponding to C%=2 exhibits a secondary pendent of each other, from the repulsive part of the atom-
rainbow on the left, while that for v' =4 exhibits a second- atom interaction potential. Further, the scattering from the
ary rainbow on the right. The smaller recoil velocities cor- repulsive portion of the potential does not appear to
respond to larger final rotational quantum numbers, while strongly depend upon the steepness of the repulsive poten-
the larger recoil velocities correspond to smaller final ro- tial. This, we believe, is why this calculation works so well.
tational quantum numbers. The inelastic transitions move It was pointed out earlier that the Jacobian for toe
towards larger recoil velocities as more energy becomes transformation from the c.m. to the laboratory frame may

available, i.e., as the final vibrational quantum number de- lead to the enhaa:,ement of the c.m. differential cross sec-
creases. The limit of the change in the rotational quantum tion by a factor of a million. This result is derived assuming
number is dictated by the conservation of angular momen- an idealized beam of infinitesimal extent. For -i beam with
turn. finite width and a detector of finite dimensions, the ballistic

Figure 12 is a plot of the c.m. differential cross section peak along the direction of the cm. velcity will contain

as a function of the c.m. scattering angle. It is seen that contributions from transitions which are not exactly reso-
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FIG. 13. Vector diagram for the CsF-Ar scattering. The initial laboratory velocity of the Ar beam (v,) is measured along the X axis and that of the
CsF (Y2) beam along the Z axis. The laboratory angles are measured from the direction of the CsF beam; Ol and Ot are the laboratory angles of the
centroid velocity v, . and the recoil velocity v, (laboratory scattering angle), rcspectively. The c.m scattering angle is measured from CH. the dtrecton
of initial c~m. velocity of CsF (w12). The pseudoelastic peak discussed in this article, centered at a laboratory recoil velocity of about !000 mr/t, anses
from the larger cm. scattering angles. The other pseudoelastic peak, centered at a laboratory recoml velocity of about 150 m/s, ansinin from smaller c m
scattering angles, was not experimentally detected and will not be further discussed. The circle in the figure corresponds to one-half of the initial relative
translational energy being converted into interial energy.

nant T-. ( V.R) piocesses. This may lead to an average pseudoelasstic peak and the ballistic peak, the earher model
value of the Jacobian which is considerably less than a of impulsive collisions,5 which certainly gives a much dif-
million. The actual value will depend not only unon the ferent value for the energy transferred during both the
extent of the two beams and the spread of their velocities, pseudoelastic and the ballistic collisions, may need to be
but also upon the molecule being studied. If the molecule re-examined.
has a large rotational constant and the energy spread of the Perhaps the most important results of ihis study is that
beams is smaller than the spacing between the final rota- the ballistic effect should be observable for all collision
tional levels, the average Jacobian may still be close to a systems under appropriate circumstances.
million. The parameters of the beams, the molecule stud-
ied, and the dimensions of the detector will all have to be This work was in part funded by AFOSR under task

carefully considered for a more detailed answer. 2303EP and Phillips Laboratory project 007. The authors

Our results require that the CsF beam in the expert- are grateful to Dudley Herschbach for many interesting

ments'-3 must not be rotationally relaxed. In fact, the ob- discussions and making available to them the relevant por-

servation of a ballistic peak for the CsJ-Ar system and the tions of the Ph.D. theses of Dr. Entemann, Dr. King, and

nonobservation of one for the 12-Ar system at the same Dr. Zare.

relative translational energy ( = I eV) is explained by our
model by postulating that transitions from higher rota- APPENDIX
tional levels populated in the Csl beam (oven temperature To derive the expression for the Ja,.sbian of transfor-
S1000 K) lead to conversion of a much larger fraction of mation between the laboratory and the center of mass co-
relative translational energy into internal energy than the ordinates as shown in Fig. 13. we pick the following nota-
low rotational levels available in the cooler (oven temper- tion:
ature z 2 50 K) 12 beam. This provides another test of our
model. (i) ,•, the initial velocity of Ar atoms, is along the X

Our calculations have been performed assuming ideal- axis in the laboratory coordinate system;

ized beams with infinitesimal extent. Still they agree re- (ii) v2, the initial velocity of the alkali halide, is along

markably well with experimental measurements. Perhaps it the Z axis in the labotatory coordinate system,

is because the broadening of the calculated results by the (iii) the coordinate system fixed in the laboratory

resolution function, discussed earlier, is much larger than frame is denoted by XYZ while that fixed in the

that due to the finite extent of the colliding beams. c~m. frame is denoted by xyz.

It is also useful to point out that, since our calculation The initial relative velocity and the velocity of the c.m.
agrees so well with the experimental results for both the are, obviously, in the XZ plane in the laboratory coordi-
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nate system. We also take this plane to be the xz plane of Dit~erentiating this equation, we get
the c~m. coordinate system. In addition, we assume that
the detector is also centered in this plane. Oi1 and 0, are the d~ 1 in 0. Cos
polar angles of the alkali nalide recoil velocity v, and of the ( +f)A,;)

centroid velocity vc ., respectively, in the laboratory coor-
dinate system. 0O is the angle between the initial velocity w, W ooealthtordtco cnee nteX
of the alkali halide in the e~m. frame and the centroid W no realtt rdtcoris cnee nteX
velocity Ucm. 0 (the scattering angle) is the angle between plaine. This enables us to put ttiA) in -.he above equation

the c~m. initial (Ri2 ) and e~m. final (recoil, w') velocities of obtaining

the alkali halide and 0 is the azimuthal angle of tj4 mea- dLsin 0,y sn0
sured from the xz plane. It should be pointed out that while 4- Y -- ---n-(
the differential solid angle in the laboratory fixed axis is di~( sn& 2
dflL =Sin 9 L dO1 dOL, the element of solid angle in the (A4)
c~m. frame isdf1=sin(8-Ot+02)dOdib. The vector equa-
tion To obtain the relation between dO anid dO1 . we rewrite Eqs.

~ + ~(Al) (A2) for 6b=0,

can be rewritten as Y1 CoOS O YCoOS 0 4COS(O- 0 + 0,),

Y1 COS OL=Y COS0 2+COS(O-01 +0 2),
yj %in01,=~ysin 02 ±sin(0- 01+0,). (A5)

yj sinOL COS L =ysin 0, sin(O-01 -0 2 )COS~ (A2)

yi sin OL sin (hL=sin(O-0 + 02)sin 6, Squaring the above equations and adding gives

where yvmWand yj au/wlco. From Eqs. (A2) we get 1= y2+ I + 2ycos(O- 01 ). (A6)
sin (b

tan d6L=y sin 02/sin (0- 01+ 0) + COS(h Dividing the second equation (AM) by the first one. we get

yi l i gs in iti ta n O L Y 2sin 0 + i ( 0 - 0 1 +- O )
sin 6L Y sin0 2  +2 sin O~cS 177.ycs 2 eo(~O±)

(+ sin'(0-01±0 2) +2 sin (0-01±+02)') resulting in

4001

200~

600

4 00~1

0 100000 5Oflp00 200100

Vhlv adlong n/s

FIG. 14. Vector diagrams to demnonstrate the existence of maximum (top figure) and minimum (bottom figure) lahoraiory scaiiering angle% for a given
value of the c-m recoil veloc~ity (is)) of CsF Ai the maximum and minimum laboratory scateteing angle%. the e~m. and laboratory recoil %t'locitic% Iar

perpendicular. The extrema in the laboratory scattering angle, as, a function of the c~m. scattering angle, lead it) rainbowltke singulanties in the Jacobian
for the e~m, to laboratory transformaiion at these points.
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ycos 02+ cos(0-601 + 2 ) When one of the collision partners is initially station-
COS OL .+ -y2+2ycos(O i)9 1p7 2. (AM) ary in the laboratory frame, i.e., v, =0 and Or=02=0, this

expression reduces to the one given by Schifl"
Differentiating,

dOL =sin 0, l+y 2 ±+2ycos(0-e01 )J3 2  dfIL(OD,, I) +'2(l+ 2 2ycosO) 3 /'2

Ii~~~ ~ I df(4) I1+ Y COS 01
X I{y2 cos(O-0 1 )sin 02+sin(0-0 1 +02) 2y,

+ysin 02+y sin(0-091+0 2 )cos(0- 01)}-1 +-? + -)"I

Y1- 2y _ _ YI Figure 14 shows that a maximum (top figure) and a

I l~cos(O-O1 )l- I ~l I + y2- 2 I "o 1' minimum (bottom figure) laboratory scattering angle ex-

giving us ists when the recoil velocities of the alkali halide in the cm.
and the laboratory frames are perpendicular. This is fur-

dflL(OL,OLb.) -M 2_ __ ther clarified in Fig. 15 which gives a plot of the c.m.

d( ) - I1 + --y? I = T( ;) ( ) scattering angle as a function of the laboratory scattering
angle. This figure clearly displays the extrema in the labo-

where (65 " 02) is the cosine of the angle between the recoil ratory scattering angle as a function of the c.m, scattering
velocities of particle 2 (CsX) in the c.m. and the labora- angle. At these extrema, the expression (A8) for the Jaco-
tory frames, and the relation - 2 = I +'j +2 cos(6' - r,) has bian becomes infinite. Figure 16 gives a plot of the labora-
been used to obtain the last form. The Jacobian, as was tory recoil velocity of CsF as a function of the laboratory
pointed out earlier, becomes infinite when either the recoil scattering angle. The laboratory recoil velocity displays an
velocity of the alkali halide in the center-of-mass frame 4o2 extremum at the minimum and maximum laboratory scat-
becomes very small, or when the recoil velocities of the tering angles. This is the reason that the absolute value of
alkali halide in the c.m. and the laboratory frames are the Jacobian stays constant for large changes in the labo-
perpendicular. Since the Jacobian, a transformation be- ratory recoil velocity of CsF (Fig. 9). To derive an expres-
tween two finite differential cross sections, cannot physi- sion for the Jacobian when the recoil velocities of the alkali
cally become infinite, a separate expression for it must be halide in the c.m. and the laboratory frames are perpen-
derived for the two cases cited above. dicular, one can write, using Fig. 17

t8oo

120

10

socase I

30 35 40 45 50 55 60 65 70 75

L ( d e g . ) -"

FIG. 15. Plot of the laboratory sattering angle 06. as a function of the center of mass scattenng angle 0 for the (v , -3 80. -SOW- 20. j'- 1 ) transition
of CsF (v1 = 2450 m/s. v2 = 500 m/s, AE/E=0.7778, ai =- 246 m/s, u•, . = 646 m/s). It is seen that the laboratory scattering angle, for these collision
parameters, cannot be less than about 30 and more than about 75". The laboratory recoil velocity v; and the c..- recoil velocity (d2 are perpendicular
for the maximum and minimum laboratory scattering angles and the laboratory scattering angle as a function of c m scattering angle displays an
extremum. This leads to the display of rainbows in the curve of the laboratory differential cross section as a function of the laboratory recoil velocity at
the maximum and minimum laboratory scattering angles. The discontinuities in the curve at c-m. scattenng angles of (Y and i 8O are not real and anse
from the fact that the c.m scattering angle is measured modulo ir and not modulo 2if.
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AAO z2 arc-os( I- yAtl, A0(AIG)

Using the relations arcsin(x) + arccos(x) ./2. and

arcstn( 1 -. x) r, /2. (2x)', we get

800 A,1 A~lA I I:
--- ; • ; . .... (A ll)SAO i -AO1

7. oo Together with
a d'b z I ! sin 01

2600,- ~1 1 n(- 4- U'(A12)
>

500 and

dfIL =sin OL dOL d6aL,

"400 . . .. .. w e get,

troid velocity, one can write, using Fig. 13, 0=0t. and
FIG. l6. Laboratory recoil velocity of CsF as a function of the laboratory 6 2=---0L, giving
scattering angle. The collision parameters are the same as in Fig. 15. At
th•. rainbow angles, • = = ( €o ) 2 + (r P•) and the laboratory recoil velocity d - I -A 4
of CsF is 597 rn/s, slightly smaller than the velocity of the center of mass. "• =Y~t A1.

When the laboratory scattering angle is not equal to the rainbow angles,
the signal from each transition is observed at two recoil velocities, one This expression for the Jacobian is valid only when the
lower and one higher than the velocity of the center of mass. correspond- laboratory recoil velocity is along the centroid velocity pro-
ing to the cases a and b center of mass scattering angles. Both cases
contribute to the ballistic peak. vided yIAOL< and ytA$;.i 1, AO, and Acti being the

width of the laboratory detector in the polar and azimuthal
angles. When this condition does not hold, the Jacobian

(AO ( /• ;--V';AOL\ becomes a constant and is simply equal to 4ir/Atl1 . This is
cosi -i- z (1I -- ytAO) (A9) because the signal from all 4•r steradians in the c~m. frame

I \ (02 / is now collected by the detector; a wider detector would

or not be able to collect any more signal.

- mooo ,

d L 8

SC

0- 5001- 
ý 0

.> I.
(2 Vo - 2

0 500 1000 1500 3000 20
VWlheitny a lonl Vr (r/s)

FIG. 17. Vector diagram illustrating the uncertainty in the c.m.lscattering angle due to a small uncertainty in the laboratory cattering angle at the
rainbow angle. The angular resolution of the detector, AOL, is exaggerated for the purpose of clarity.
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To make the connection with the previous work,; we "R D Lene. and R H Bernstein. MAole/'Ul R,',,I,.n Diinu ',, and

start with Eq. (A8) and note that ChenicWal Re•c'tt iv. 2nd ed ((Xfs•d tiiscý0'i1. Nr• "Ork, P•0)

E[ A Entemann. Ph 1) thesis. Chemistry irpartiren., Harvard t in

dwo• versity. litt7
WL 2 ( S) 1' 17 Warnock and R, 0 Bernsei, J Clien P~hyN 49, 1 S' 4lt

' I Schif. Quantum Mechanicv ( Mc(inOiw- hiP. Nc- York, 196I5

This equation is easy to prove. Using Fig- 13, we write "M S Child, Molecular Coll•on theory (Academyi, |.ondonr 19 74
" R N Zare, Ph.D. thesis, Chemistr Department, Har,,ard Lnierstit,

(w•)-= (,') 2 +' r -- 2V:i'm Cos( 0 - 02). (A 16) c Molecular Collision Dynamics, edited by J M BoI, man (Spriger. Ner

Differentiating Eq. (A 16), we get York, 1983). Chap. 4

R D Sharma, P M Bakh. and J M Sindni. Phyv kRe, A 4.3. 154i
w; dia,2= v; dl,,' -v, i dt' COS ( 0L -- 0 (AI7) ( 19q1 )

(0) dwim 1o(. M Eisen•erg and D. S Kolton. Theory, ofMeton Inter tcioni. ut-,h

Substituting for cos(0,-0 Ž) from Eq. (A16) we get Eq. Nuclei (Wle•t-lnterscience, Ne York. 1980)
(AIS). Going back to Eq. (A8), when there is a continu- "A S. Davydov. Quantum Mechanics (Addison-Wesley,. Reading,

1964),
ous distribution of energy levels, the Jacobian becomes just " 1. D. Landau and E. Mý [.fsham. Mechancs (lPergamon. New York,
yj. In our case, since we are dealing with discrete quan- 1(69).
tized rotational-vibrational levels, the Jacobian is given by "R. D. Sharma, P M Bakshi. and J M Sindoni. Phys Rev A 41. 6540
Eq. (A8). ,(1990)

" R. D. Sharma and I. M. Sindoni. Phys. Rev. A 45. 531 H 19"92

"'.M. E. Rose. Elementary lheory of Angular .Womentum (Wiley New
'H_. J Loesch and D. R, Herschbach. J. Chem. Phys. 57. 2038 (1972). York, 1957).
SD. L. King, H. J. Loesch. and D. R. Herschbach. Discuss. Faraday Soc. 2oJ, 0. Hirschfelder. C F. Curtiss. and R B Bird. Molecular lheosr of

55, 11-34 (1973), Gases and Liquids (Wiley. New York, 1Q54) The hard core radii oh.
'D. L. King, Ph.D. thesis. Chemistry Department. Harvard University, rained were. r(Ar-Cs' ) - 3 8 A and r(Ar-F ) 3 1 A However, to

1974. The scattering angles in this reference are measured from the conform with the earlier work (Ref. I) r(Ar Cs w u as changed to 3 5
direction of the Ar beam, whereas in Refs. I and 2 they are measured A.
from the direction of the cesium halide beam. We, in this work, will A K, P. Huber and G. Herzberg. Constants of Diatomic Molecules (Van
follow Refs. 1 and 2 and measure the angles from the cesium halide Nostrand Reinhold, New York. 1979)
beam. 221n Ref. 4. vi. the velocity of At. was taken equal to ,2550 rn/,s. the4 j, Mi. Sindoni and R. D. Sharma, Phys. Rev, A 45, R2659 (1992). J. M. relative translational energy corresponding to this selNccty is I I eV It
Sindoni and R. D. Sharma, 1. Chem. Phys. 97. 737 (1992). was since deemed more likely, based on the parameters in Ref 3. that

'S. W. Benson, G, C. Bernard, and James C. Wu. J. Chem. Phys. 38. 25 the actual beam velocity peaked at 2450 m/s, corresponding to relative
(1963). See also S. W, Benson, The Foundations of Chemical Kinetics translational energy of I 0 eV
(McGraw-Hill, New York. 1960). :'H. Dothe and R. D. Sharma (to be published)
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