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Inelastic and ballistic processes resulting from CsF-Ar collisions
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This paper continues the study of inelastic and ballistic collisions for the CsF-Ar system
using the impulse approximation (IA). The IA expresses the atom-diatom potential as the sum
of the two atom-atom potentials. The atom-atom interaction is approximated by a hard

core potential, and the laboratory differential cross sections are calculated for an initial relative
translational energy of 1.0 eV as a function of the laboratory recoil velocity of CsF. The
calculated differential cross sections are in excellent agreement with the experimental
measurements for all eight laboratory scatiering angles for which the data are available. While
the calculated results show no significant dependence on the initial relative velocity or on

the initial vibrational quantum number of CsF, they do show a systematic variation with the
initial rotational quantum number—the ballistic effect is more pronounced than that

observed experimentally for initial quantum rotational numbers less than 30 and is not
pronounced enough for rotational quantum numbers more than 100. Two mechanisms give rise
to the ballistic peak. The first one is dominant when the laboratory scattering angle is

equal, or nearly :qual, to the laboratory angle of the centroid velocity. This mechanism
transfers almost all of the relative translational energy into the internal energy of the

diatom and magnifies the center-of-mass (¢.m.) differential cross section almost a million times.
This is due to a singularity in the Jacobian at very small c.m. recoil velocities, which
physically means that a small solid angle in the laboratory frame can collect the signal from
all 47 steradians in the c.m. frame. The second mechanism producing the ballistic

peak, also determining the smallest and the largest laboratory scattering angles, is the
rainbowlike singularity called edge effect. This mechanism becomes operative when the recoil

velocity of the alkali halide in the c.m. frame is perpendicular to its recoil velocity in

the laboratory frame. While the dynamics of the collision leads to a conversion of the proper
amount of relative translational energy into internal energy of the diatom, the kinematic
singularities mentioned above magnify the relevant c.m. differential cross sections leading to the
observed ballistic effect. The ballistic effect, therefore, should be observable for any two
collision partners under appropriate circumstances. The simple atom-diatom potential
reproduces the experimental results very well, because (i) for inelastic scattering, the
experimental observations correspond to large center of mass scattering angles for which the
attractive part of the potential makes little contribution to the scattering process, (i)

for ballistic scattering, only the repulsive portion of the potential can cause a large amount of

energy exchange between the relative translational and the internal degrees of freedom,

and (iii) the calculated cross sections are insensitive to the details of the repulsive portion of
the potential. A number of consequences of the theory, including the conclusion that

the alkali halide beam in the experiments is rotationally unrelaxed, are discussed.

1. INTRODUCTION

In a series of experiments, Herschbach and co-
workers' ™ have measured the differential cross sections for
the scattering of CsX (X =F,I) by Ar as a function of the
laboratory recoil velocity of CsX by crossing the two
beams, at a right angle to each other, at a relative transla-
tional energy of about 1.0 eV. In addition to a peak ob-
served around the elastically scattered CsX (pseudoelastic
peak, formerly called the elastic peak?), another peak, al-
most as strong as the pseudoelastic peak and named the
ballistic peak, was observed in the vicinity of the recoil
velocity corresponding to the motion of the center of mass.
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Obviously, those molecules that constitute the ballistic
peak have a substantial fraction of their relative transla-
tional energy converted into internal energy during the
collisions. A theory of the ballistic effect is thus a theory of
collisions during which a large fraction of the relative
translational energy is converted into internal energy. The
pseudoelastic peak observed in the experiments'? corre-
sponds to large angle scattering in the center of mass
(c.m.} frame. The theory of the collisions comprising the
pseudoelastic peak, also under consideration here, is there-
fore a theory of large angle elastic and inelastic scattering.

A model for the inelastic and ballistic transitions for
the CsF-Ar system constructed earlier’ produces excellent
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agreement with the experimentally measured differential
cross section as a function of the laboratory recoil velocity
of CsF at the laboratory scattering angles of 30° and 60°.
According to this model, the inelastic (ballistic) collimoas
results when Ar strikes the Cs (F) end of CsF. The inelas-
tic collisions involve modest change in the rotational quan-
tum number (A= 50); the ballistic collisions, on the other
hand, to conserve angular momentum and energy, must
involve large changes in the rotational quantum number
(A up to about 200). Our model for the ballistic and large
angle inelastic collisions has been able to give a quantita-
tive explanation of the experimental observations of the
CsF-Ar system, but it has not been able to explain the
ballistic effect observed in the CsI-Ar system. Our .nodel,
however, has pointed out that the ballistic effect should not
be observed in the I,~Ar system at about 1 eV relative
translational energy because the [, beam is rotationally
cold (rotational temperature~ 230" for the I, beam vs
~ 1000° for the Csl beam), a prediction in agreement with
the experimental results. The present theory has, in addi-
tion, predicted a ballistic peak for the I,~Ar system at
relative translational energy of about 0.12 eV.* This pre-
diction of our model is in contrast to the prediction of an
earlier model® of atom-diatom collisions, which concludes
that only about 25% of the initial relative translational
energy should be converted into internal energy during an
Ar-1, encounter, independent of the initial internal energy
of the diatom or the atom-diatom relative translational
energy. The same model® predicts a transfer of about 96%
of the relative translational energy into internal degrees of
freedom during an Ar-FCs encounter, again independent
of the initial internal energy of the diatom or the atom-
diatom relative translational energy. It was pointed out
earlier® that when the laboratory scattering angle is the
same, or nearly the same, as the laboratory angle of the
c.m. velocity, a transfer of more than 969 of the relative
translational energy into internal degrees of freedom is re-
quired to observe a ballistic effect. It will be shown later, in
this article, that when the laboratory scattering angle is
much larger than, or much smaller than, the laboratory
angle of the c.m. velocity, a transfer of a mere 75% of the
relative translational energy into internal degrees of free-
dom may lead to a ballistic effect. Again this is in conflict
with the earlier model® of impulsive collisions. Our model,
since it has not explained all the pertinent experimental
observations, is ouly the first step in fully understanding
the mystery of ballistic collisions. Nevertheless, by virtue
of the excellent agreement between the calculated and the
measured results for the CsF-Ar system, the predictions it
has made, and the experiments it has suggested, our model
represents a valuable first step. For this reason it is consid-
ered appropriate to present a more complete theory for the
CsF-Ar system, expanding on the previous results as well
as presenting new ones.

Before presenting the detailed theory of the ballistic
effect, it is necessary to discuss the transformation of the
differential cross sections from the c.m. frame to the labo-
ratory coordinates. This transformation is an important
link bridging the results calculated in the c.m. frame to the

expenmental results measured, of course, m the luboratory
frame. Section H discusses this transtormation, which s
dertved in the Appendix Section I gives a brief account
of the impulse approach (1A) for the atom <datem colh-
sions with a special emphasis on the part-classical (press-
ously called “semi-classical”) formahsm. The caliulaton
is still fully quantum, but by treating the two-body dynam-
ics classically 1t is possible o save 4 great deal of comput-
ing time without appreciable loss of accuracy. Section 1V
briefly describes the computational procedures used. Sec-
tion V discusses the two mechanisms leading to the balhs-
tic peak. The results of the calculation are compared with
the experimental measurements in Sec. V1. Qur state-
resolved three dimensional fully quantum calculaticn s ex-
amined in greater detail in Sec. VII and some of 11s more
nteresting consequences are pointed out. Concluding re-
marks and lessons learned comprise the last section, Sec.
VL

it. TRANSFORMATION OF THE DIFFERENTIAL
CROSS SECTION FROM THE CENTER OF MASS TO
THE LABORATORY SYSTEM

The transformation between the ¢.m. and the labora-
tory coordinate systems has been the subject of several
studies.” " We give a particularly simple derivation of the
Jacobian for inelastic scattering. We then use this deriva-
tion as the starting point for the discussion of singulanties
and connect it with the previous work on the ballistic col-
lisions.

The differential cross section in the laboratory coords-
nate system o,(8,.6;) is related to the differential cross
section in the center of mass coordinate system o(6,4) by
the relation

1l
o (0Lb )= tim | 0(0.6)d0/AQ,. (n
an, -0 J0,

where 8, ¢ are the polar and the azimuthal angles and {1 15
the solid angle in the ¢.m. coordinate system; the subscript
L indicates that the angles are measured in the laboratory
coordinate system. (1,,,,, denotes the maximum (mmni-
mum) c.m. solid angle corresponding to laboratory solid
angles (1, + AQ,. Defining

R:
(—2,) =y, (2)
5}

and taking the limit as A{), approaches zero, the expres-
sion for the Jacobian is written as

PPN UL TR (21
7 Ou) = "gqp8y | 70 '
where 8, ¢, and §,. ¢, are polar and azimuthal scattering
angles in the c.m. frame and the laboratory frame, respec-
tively. Defining y=: (v, ,, /) as the ratio of the velocity of
the centroid in the laboratory frame to the recoil velocity
of the observed particle in the c.m. frame. we show, in the
Appendix,
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where 03 - @) is the cosine of the angle between the recoil
velocities of the species detected in the laboratory and the
c.m. frames. It is shown in the Appendix that Eq. (4) is
identical to the one given by Schiff’ when one of the par-
ticles is initially stationary. This expression becomes infi-
nite when wj approaches zero, i.e., when the c.m. recoil
velocity becomes very small, and also when the c.m. and
the laboratory recoil velocities are perpendicular.

When wj approaches zero, the direction of v3, the lab-
oratory recoil velocity, coincides with that of the centroid
velocity, v_,,, . It is pointed out in the Appendix that in this
case the Jacobian becomes a constant and is simply equal
to 4r/AC,, A}, being the laboratory solid angle seen by
the detector. For a 0.25° wide detector, the Jacobian is
equal to 8.4% 10°. Herein lies part of the mystery of the
ballistic effect! A millionfold enhancement of the cross sec-
tions for the processes thas lead to the conversion of almost
all of the relative transtational energy into internal energy
causes very small cross sections in the c.m. frame to stand
out in the laboratory frame. This hypothesis is the basis of
the proposal for the production of the state-selected and
velocity-selected molecular beams.*

When the laboratory and c.m. recoil velocities are per-
pendicular, the Jacobian given above again becomes infi-
nite. It is shown in the Appendix that for a given final
vibrational-rotational state, i.e., for constant magnitude of
w;, the laboratory scattering angle as a function of ¢.m.
scattering angle goes through a maximum (minimum)
when the iaboratcry scattering angle is greater (smaller)
than the centroid velocity angle 6;. An increase (decrease)
in the c.m. scattering angle leads to a decrease (increase)
in the laboratory scattering angle. The situation encoun-
tered here is the same as that encountered in the study of
rainbows'® where the extremum in the deflection function
as a function of impact parameter leads to infinite classi-
cally calculated differential cross section. These two rain-
bowlike singularities, called the edge effect,'! correspond to
a lower and an upper bound for the laboratory scattering
angle for a given final vibrational-rotational state. The
rainbowlike singularities encountered here are due to kine-
matic effects and are distinct from the rainbows due to the
dynamical effects discussed previously.'?

In the Appendix the Jacobian for the edge effect is
shown to be equal to

(4)

172

de, !
L . (5)

an

sin GLAOL d¢L
Sn(6+0,_6,)060 dé

_ s
= t = ]ABLI
where the angle A8, is the width of the polar angle of the
detector. The Jacobian given by Eq. (5) for y;=5 and
A8, =0.250 deg can have a value roughly between 100 and
1000 depending upon the laboratory scattering angle, i.e.,
it can have a value between 4 and 40 times that given by ﬁ
alone. This effect is not as dramatic as that due to resonant
transfer of energy from relative translational motion into
rotational and vibrational motion of the diatom. However,

R. Sharma and J. Sindoni: CsF-Ar

in this case the combined contributions from different tran-
sitions can lead to an equally strong ballistic peak.

. ATOM-DIATOM IMPULSE FORMALISM

The complete formulation of the impulse approach to
atom-diatom collisions was given earlier.'’ Here we give a
brief outline for completeness with an emphasis on the
part-classical approximation to the exact equations. In this
formulatiea the dynamics of two-body collisions is treated
classically while the remainder of the calculation is carried
out using quantum mechanics. It has been found that this
procedure leads to substantially reduced computing time
while the error introduced has never been found to exceed
10%. In the present calculation more than 100 000 differ-
ential cross sections had to be computed; the use of this
approximation has kept the computation time manageable.

The interaction potential of the atom-diatom system in
the impulse formulation is the sum of the spherically sym-
metric atom-atom potentials, i.e.,

Viyur) =)+ Valy,), (6)

where ¥V and y, are, respectively, the interaction potential
and the distance between the incident atom and atom j of
the diatom. The distance between thc incident atom 3 and
atoms 1 and 2 of the diatom is written as

ys= [ +2agpy cos v, + (ayy))?]'?, €

where s=1,2 and r is the distance between the atom and
the center of mass (c.m.) of the diatom; y, is the internu-
clear distance of diatom 1-2,

a,=(-1Ymy/(m +m,), (8)

m, is the mass of the spectator atom, and y, is the angle
between the internuclear axis y, and the line r joining the
atom to the c.m. of the diatom. Eigenfunctions v, , , of the
Hamiltonian for the diatomic molecule

2

HD!ATOM=‘2“2‘+ Vi(y) (9
Hi2
are the wave functions for the vibrational and rotational
motion of the diatom. The moincnia are written in the
Jacobi notation; p, is the momentum of particle a with
respect to the c.m. of bc and q, is the relative momentum
of particles bc. Similarly, r, is the distance of atom a from
the c.m. of be, y, is the distance between b and ¢, and ¥V is
the intramolecular potential of the diatom 1-2. u,, is the
reduced mass of the atoms ¢ and j, while the reduced mass
of a and bc is written as pu,,.

The Watson expansion, a multiple-collision expansion
of the three-body 7" matrix, is written as'®

T:T(l)+T(2)+T(I)G3T(23+T(J)G“TH)‘}_.‘._ (1))

where 7' is the three-body transition matrix describing
the collision of the incident atom with atom ; of the dia-
tom, / being the spectator atom. G is the propagator cor-
responding to the unperturbed Hamiltonian H,,. viz.,

J. Chem, Phys., Vol. 98, No. 2, 15 January 1993
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P '
Ho‘—"l;;g*”x)m‘nw (1)

and,

Gi(2)=(z—Hy+1in) L (12)

The first two terms on the right-hand side of Eq. (10) are
the single-collision terms. These terms are obtained by
summing all the diagrams involving the collision of the
incident atom with atom | or atom 2. The graphs repre-
senting the collision of the incident atom with atom 1 (2)
followed by further collisions of the incident atom with
atom 1 (2) are contained in these terms.'* The next two
terms are the double-collision terms and are obtained by
summing all the diagrams involving the collision of the
incident atom first with atom | (2) followed by collision
with atom 2 ( 1)."* In the impulse calculation only the first
two terms, 1.e., only the single collision terms, are retained.

We can write the differential cross sectior for scatter-
ing from initial state / to final state f as

do C o
E(:svjprffv Jpvg)

P . 2m\t
=;§(2]+l)" ‘uf(-ﬁm) | T, /1% (13)

where the scattering angle € and momentum transfer vec-
tor q are related by

¢ =(p3) 4+ (p3)* —2pyp; cos 6, (18)

and,

T, 7= 2 (&5 T b (15)

m.m’

¢, and @; being the eigenfunctions of H, in the initial and
final states, respectively, and,

)3 Tf}’w))~

s L2

T~ (16)
The two terms on the right-hand side of Eq. (16) are the
single collision terms. When the incident atom collides
with one of the atoms of the diatom, the other atom, the
one not participating in the collision process, is termed the
spectator. For this reason the impulse calculation is also
called the quantum mechanical spectator model. We recall
that

(31T (q) |3) = fdy; & ¥ (yDexpl -~ iagyy)

x W (yy), (17)

where
Vil y) =Qr) V2 J dqyexp(—iqi*yi)

x{q/|t'"{q,)8(qy) (18)

1s the wave function of the diatom modified by the two-
body scattering process. To develop a feeling for the nature

of W (y,). 1t is useful to ook at the two-body 1 matrix as
an operator in the momentum space which modifies the
diatom wave function $(q:}. Equation (18) transforms the
madified wave function back to the coordinate space. I
one recalls that the center of mass acquires a momentum
equal to aq during the collision when s 15 the spectator
atom, Eq. (17) may be looked upon as the overlap integral
of the final-state wave function with the initial-state wave
function that s modified by the collision. This view also
connects the impulse approach discussed here with the the-
ory of transitions due to sudden perturbations, e g., atomic
transitions accompanying beta ray emission. '

It was mentioned earlier that we will evaluate the two-
body ¢ matnx in Eg. (18) using classical mechanics. In
classical mechanics, a collision between two hard spheres
leads to the reversal of the component of the momentum
normal to the surfaces of the two spheres at the point of
contact, while the other two components of the momentum
remain unchanged.'® In other words. if a momentum
change q occurs during the colhision, the imtial momentum
—q/2 becomes the final momentum + q/2, while the com-
ponents of momentum perpendicular to ¢ remamn un-
changed. Further, the transverse components of the mo-
mentum, which in classical mechanmcs do not enter the
equations of motion, may have any value. It was shown
carlier'’ that this result also holds for scattering using the
impulse approach, provided the scattering angle w larger
than about 15°. This amounts to evaluating Eq. (18) by
setting the components of g, along g equal to

G 4= —(ag/2) +u;de/(ag). 19}

where ¢ 18 a unit vector along the direction of the trans-
ferred momentum and Ae is the difference n internal en-
ergy of the diatom between the final and the inttial states,
The components of q. perpendicular to g are set equal to
zero. It was also pointed out earlier'’ tLat to evaluate the
two-body 7 matrix for a fixed value ri q;. the momentum
due to the vibrational and rotatio’ 1! motion of the duatom,
1S to approximate it by its sph_rically symmetric compo-
nent, i.e.,

(Qf ! ' {q,) :’U()(qi-?l-q) Yo(§y) = (4m) lﬁll'{x)(q“l)hq).
(20)

Equation (20) has the same structure as the peaking ap-
proximation. which evaluates the two-body ¢ matrix setting
qi= ~ag’., e, using only the first term on the right-
hand sidie of Eq. (19). Use of Eq. (19), however, gives
results which, unlike the results obtained by using the
peaking approximation,'” are time reversal invariant.'
T his approach is called the part-classical approximation,
previously called semiclassical (a new name is given to
avoid confusion with other usage of the term semiclassical
in scattering theory'”), because it has one foot in classical
mechanics. Equation (20) has been extensively used by us
for calculating differential cross sections and has provided
answers always within 107 of those given by a spot check
of the exact calculation. !

J. Chem. Phys., Vol 98, No 2. 15 January 1993
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Recalling that ¢(q;) is the wave function of the initial
state in the momentum representation, i.c.,

2\
#(Q:s)‘—‘-(;) #1,49)) Y jm (G3), (21)

where v, j,m are the initial vibrational, rotational, and mag-
netic quantum numbers, respectively, and,

I, {q;)= fo dy: Yixa 03V il qw). (22)

where y, ; is the vibration-rotation wave function in the
coordinate space, we can integrate Eq. (18) over q,. Using
the Rateigh expansion of the plane wave, i.c.,

exp( —igy y3) =41 2, (= D'Yn(F3) Y2,(63) i gayy),
im (13)

we obtain

VI (y3,00:) = (4m) " VK (31.4.03) Yim(Fy)  (24)

where

2 ©
K.} py@) == f dg; (g (4330, (95).
V]
(23)

A comparison of Eqs. (24) and (25) with Egs. (21) and
(22) shows the similarity of their structure and provides
further basis for the statement that ¥‘* is the modified
wave function for the internal motion of the diatom. Sub-
stituting Eqgs. (18) through (25) into Eq. (17), we get

1

172
GIT@Ie=(5) [ an oYt

xexp( —iaq-y) K (apsys).
(26)
Again using the Raleigh expansion of the plane wave and
writing ¢3(y3) =Xy ;(73) Yy (¥3), where primes denote
the vibrational and rotational levels o',/ of the final state,
we get

LN,
GIT @10 =T (0S5 Mstam

X C(jlj'smm’—m)
XCU 00 YT, (@),  (27)
where Cs are the Clebsch-Gordan coefficients, {j]=(2;
+1), and
Nf,’,L,, APne)= fo dy; ¥3xer  (93) il o gps)

X K (p3,ap3). (28)
Taking our space fixed z axis along q, and using the rela-
tion

“] 172
Yzm(0,0):(z;) 6’",0' (29)
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we get

’ {1) ~ 172 Yy []) 2
(#3177 (Q) | ¢3) = (47) ;(t’) m)

X (11N, (493 CUl im,0)

X C(j1j*:00). (30)
Using the relation'®
. - Ti\SE
32 C(ﬂl';mo)C(J'J’;mO)=(TI-)—) 8.1, 31
we can write, using Egs. (13) and (16)
do . . ay ’
Fali=vips—~S=v"j'p3q)
I 2 ANYE RSO ,
==(2j+ 1)~} ’(—) (-«) 1Clj,00)
5 T e M}Z_}]( 1C ity
X | N+ (=N (32)

Equation (32) is our final result and is obtained by adding
the amplitudes for scattering from the two scattering cen-
ters.

V. COMPUTATIONS

In this section we briefly describe the computational
procedures followed. These procedures are the same as in
the previous work on the collision of alkali halide mole-
cules with argon.*'® Briefly, since the ground state of CsF
1s ionic, the Ar-CsF potential is taken to be the sum of
Ar-Cs* and Ar-F~ potentials. Only the repulsive portion
of the Ar-ion potential, which is approximated by a hard
core potential, is used in the present calculations. The hard
core radii for the Ar-Cs* and Ar-F ' potentials are as-
sumed to be given by the corresponding parameters for the
Ar-Xe and Ar-Ne potentials.’® The parameters for the
diatom potential are taken from Huber and Herzberg.®!
The potential function thus obtained is extrapolated to
larger internuclear distances using a Padé (2,2} approxi-
mant. Wave functions for the internal motion of the dia-
tom are obtained by solving the one dimensional Schro-
dinger equation, containing the centrifugal term for the
rotational motion, using Numerov's method.

V. MECHANISMS GIVING RISE TO THE BALLISTIC
PEAK

Before we compare the calculated differential cross sec-
tions with the experimental values, it is desirable that we
discuss the physical basis for the ballistic peak. Figure 1.
plotted using the points taken from the earlier work,? gives
a plot of the laboratory differential cross section as a func-
tion of CsF recoil velocity and illustrates the experimental
data we are trying to model. The ballistic peak on the left,
near the centroid velocity, represents the signal from those
molecules that have small c.m. recoil velocities and which
carry large amounts of internal excitation.' The ballistic
peak was shown* to arise when Ar strikes the F end of CsF.
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FIG. 1. Laboratory differential cross section as a function of the labora-
tory recoil velocity of CsF at the laboratory scattering angle of 60°. This
figure is reproduced {rom Ref. 3. The pseudoelastic peak, centered at the
recoi) velocity of about 1100 m/s, is where elastic scattering at large c.m.
scattering angles (about 1507} should be observed. The peak at about 500
m/s is the ballistic peak and is centered near the centroid velocity. The
CsF molecules contributing to this peak are moving slowly in the c.m.
frame.

The peak on the right, called the pseudoelastic peak,* cen-
tered at the recoil velocity corresponding to elastic scatter-
ing, arises’ when Ar strikes the Cs end of CsF and consists
of inelastic transitions involving modest changes (]AE|/
E<0.35) of collision energy. An earlier model of impulsive
atom-diatom collisions predicts® a transfer of only 14% of
the initial relative translational energy into internal energy,
i.e, (|AE|/E=0.14), when Ar hits the Cs end of CsF.
The results of our calculation and those of the earlier
model rre in disagreement. Comparison of our calculation
with the experimentally observed pseudoetastic peak will
decide if our theory is correct.

It was shown earlier* that when one is looking along or
close to the direction of the centroid velocity, most of the
contribution to the ballistic peak comes from the transi-
tions which convert more than 979% of the relative trans-
lational energy into internal energy. Further, the signal
from a transition which converts more than 99% of the
relative translational energy into internal motion (resonant
transition) may be larger than the signal from any other
transition by a factor of about 2-3. It was also pointed out
that the c.m. differential cross section for the resonant
transitions is within a few percent of the neighboring non-
resonant transitions. What sets the resonant transitions
apart from the nearby transitions is the large Jacobian of
transformation from the c.m. to the laboratory coordinate
system, which is very sensitive to the fraction of relative
translational energy converted into internal energy. The
expression for the Jacobian is derived in the Appendix.
Figure 2 is a plot of the Jacobian for the transformation

FI1G. 2. Jacobian for the transformation of the differential cross section
from the c.m. frame to the laboratory frame as a fusction of the final
relative translational energy of CsF (measured as a fraction of the mital
relative translational energy) when the scaltering 15 viewed along the
direction of the centroid veloaity, ie., 6,=6,.

from the c.m. to the laboratory coordinates, for the labo-
ratory scattering angle equal to the angle of the ceatroid
velacity, as a function of the fraction of the relative trans-
lational energy converted into internal energy. It is readily
seen from this figure why the differential cross section for
the resonant transitions in the laboratory frame is so much
larger than the neighboring transitions.

When the recoil velocities of the alkali halide mole-
cules in the c.m. frame and the laboratory frame are per-
pendicular, the laboratory scattering angle for two values,
a maximum and a minimum, displays an extremum as a
function of the c.m. scattering angle. The laboratory scat-
tering cross section, for these two values of laboratory scat-
tering angles, exhibits a rainbowlike singularity. Figure 3
gives a plot of the differential cross section, obtained by
summing over the two branches in Fig. 16, in the labora-
tory {c.m.) frame as a function of laboratory (c¢.m.) scat-
tering angle. The collision parameters are given in Fig. 15.
The minimum (maximum) laboratory scattering angle of
30° (75°) correspond to c.m. scattering angles of 18°
{117°). An order of magnitude enhancement of the differ-
ential cross section due to the kinematic rainbowlike sin-
gularity (edge effect) is seen. The values of the minimum
and maximum laboratory angles are dependent upon the
transition under consideration. These kinematic rainbows,
called the edge effect,'' are the cause of the ballistic peak
when the laboratory scattering angle is much different
from the direction of the centroid velocity.

Vi. COMPARISON OF THE CALCULATION WITH THE
EXPERIMENTAL RESULTS

The calculated results are compared with the experi-
mental results after they are scanned over by a normalized
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F1G. 3. Calculated laboratory (c.m.) differential cross section {cm?/sr)
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due to any peculiarities in the c.m. differential cross section. The collision
parameters are the same as in Fig. 15.

Gaussian function with the resolution ratio! R=(Av,/v,)
=(19.340.034v,), where R is expressed in percent, Av, is
the full-width at half-maximum of the Gaussian, and v, is
in units of m/s. To understand the role of the resolution
ratio in the experimental results, we plot in Fig. 4 the
output signal (dashed line) in arbitrary units as a function
of the velocity of Ar when the input (solid line) is given by
P(v)) =} exp( —[(v;— (1;))/60,)*) with (v,) =2380 m/s
and 8v, =350 m/s. It is seen that while the input velocity
peaks at 2450 m/s (1.0 eV transiational energy),?? the
output velocity peaks at about 2050 m/s. This shift due to
the velocity dependent resolution function leads to the ac-
tual energy being about 50% larger than the nominal en-
ergy. Because the resolution function severely distorts the
calculated results, we will, after comparing the calculated
results with the experimental measurements and establish-
ing their credibility, present the undistorted calculated re-
sults. This wili permit us to examine the calculation more
closely and to see if any other lessons can be learned from
it.

To determine the dependence of the calculated results
on the initial translational velocity of Ar, we plot in Fig. §
the laboratory differential scattering cross section as a
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function of the laboratory recoil velocity of CsF at the
laboratory scattering angle of 60°. The dotted line is our
impulse calculation for the Ar velocity v, =2450 m/s and
the CsF velocity v, =500 m/s with the initial state of CsF
given by v=1 and j=70. The dashed line is the impulse
calculation using the probability of the Ar velocity given
by the formula P(v,) =v; exp( —[(v,— (v,))/6v,]), while
keeping the CsF velocity at 500 m/s. The experimental
points are the same as in Fig. 1, taken from Ref. 3, and are
normalized to match the calculation at the largest cross
section. It is seen that the calculation is insensitive to av-
eraging over the initial velocity distribution of Ar. Since
most of the initial translational energy is supplied by Ar, it
appears reasonable to assume that the calculation is also
insensitive to averaging over the initial CsF velocity distri-
bution. In the rest of the paper we will present the calcu-
lations for fixed velocities of the Ar and the CsF beams.
To investigate the variation of the calculated results
with the initial vibrational quantum number of CsF, we
plot in Fig. 6 the laboratory differential scattering cross
section as a function of the laboratory recoil velocity of
CsF at the laboratory scattering angle of 60°. The velocity
cf the Ar beam is fixed at v;==2450 m/s, while that of the
CsF beam is fixed at v,=550 m/s. The initial rotational
level of CsF is fixed at j=60. Solid curve, dotted, and
dashed curves are the results of our calculation for initial
vibrational levels v=1,2, and 3, respectively. The experi-
mental points are the same as in Fig. 1, taken from Ref. 3,
and are normalized to match the calculation at the largest
cross section. It is seen that the calculation is insensitive to
the initial vibrational level of CsF. In the remainder of the
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FIG. 7. Laboratory differential cross section as a function of the {abora.
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m/s with the initial vibrational state of CsF fixed at v+ 3 The impulse
calculations for initial rotationai levels j= 60, 100, and 30 are represented
by solid. broken, and dotted lines. respectively.

paper we will assume that initial vibrational level of CsF is
v= 3 because this is the average vibrational level at 1000 K,
the temperature of the CsF beam.

To investigate the dependence of the calculated differ-
ential cross sections on the initial rotational quantum num-
ber of CsF and to compare the calculated results with the
experimentally measured ones, we plot in Fig. 7 the labo-
ratory differential scattering cross section as a function of
the laboratory recoil velocity of CsF at eight laboratory
scattering angles: 25°, 30°..., 60°. The velocity of the Ar
beam is fixed at v;=2450 m/s; while that of the CsF beam
is fixed at v, =500 m/s. The initial vibrational Jevel of CsF
is fixed at v=13. Dotted, solid, and dashed curves corre-
spond to CsF initial rotational levels =30, 60, and 100,
respectively. The experimental points are taken from Ref.
3, and are normalized at each angle separately, to match
the calculation for j=:60 at the largest cross section. It is
seen that the calculation is sensitive to the initial rotational
level of CsF, and the best agreement for all eight laboratory
scattering angles is given by the solid line, i.e., j=60.

The calculated results are in excellent agreement with
the measured ones at all of the eight available laboratory
scattering angles. The calculated results are not very sen-
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FIG. 8 Calculated laboratory differential cross section as a function of
the laboratory recoil velocity of CsF for the laboratory scattering angles
of 25° and 55° for initial vibrational-rotational level (v=3, j=60) of CsF.
The remainder of the beam parameters are the same as in Fig. 7.

sitive to the initial velocity distribution of the Ar beam or
to the initial vibrational quantum number of the CsF beam.
They are, however, sensitive to the initial rotational distri-
bution of the CsF beam. The calculated results imply that
the rotational distribution of the CsF beam peaks around
J=60, rather than j=30 or j=100. In other words, the
rotational temperature of the beam, if our calculation is to
be believed, is close to 1000 K, the temperature of the oven.

A word of caution here is, perhaps, in order. We are
not saying that the magnitude of the ballistic peak in
CsF-Ar system is independent of the initial relative trans-
lational energy, but that it is insensitive to whether one
performs the calculation at the average initial relative
translational energy of 1.0 eV or averages the calculated
differential cross sections over the experimental' Maxwell
distribution centered at 1.0 eV. The magnitude of the bal-
listic peak does depend upon the initial relative velocity as
is shown by the fact that our model predicts a ballistic peak
for the I,~Ar (I , beam temperature 250 K) at the initial
relative translational energy of 0.12 eV, but not at 1.0 eV.
Similarly, it is being stated that the magnitude of the bal-
listic peak is independent of the initial vibrational level of
CsF only if that vibrational level is one of the first four
levels.

Vil. DETAILED EXAMINATION OF THE CALCULATED
RESULTS

Because the resolution of the instrument distorts the
calculated signal so severely, we present, in Fig. 8, the
calculated discrete spectra for 55° and 25° laboratory scat-
tering angles. The initial rotational level of CsF for these
calculations is j=60; the remaining beam parameters are
the same as in Fig. 7, and the angle of the centroid velocity

vector in the laboratory frame 1s 52.2°. The contribution to
the ballistic peak at the laboratory scattering angle of 55 is
dominated by the resonant transfer of the relative transla-
tional energy into the internal motion, while at the labora-
tory scattering angle of 25°, it is determined by the kine-
matic rainbow, or the edge effect.'’ This 15 also the
conclusion arrived at from Fig. 8 where, for the 55° scat-
tering the ballistic peak is centered at the recoil velocity
equal to the velocity of the c.m., while for the 25° scattering
the center of the ballistic peak is at a lower value of recoil
velocity. The ballistic peak for the laboratory scattering of
55° is centered at the c.m. velocity of 646 m/s, because
when all of the energy of relative translational motion has
been resonantly transferred into internal energy, the mol-
ecule is stationary in the c.m. frame and it moves at the
velocity of the c.m. in the laboratory frame. The molecules
contributing to the ballistic peak at the 25° scattering angle
have a substantial c.m. recoil velocity, and here the ballistic
peak arises because of the kinematic raimbow, or edge ef-
fect.'" For this case the recoil velocity of the molecule in
the c.m. frame is perpendicular to its recoil velocity in the
laboratory frame, leading to the relationship (¢})°
= (v, m_)z——(wi)z‘ The laboratory recoil velocity, around
which the ballistic peak is centered, is now smaller (about
575 m/s) than the velocity of the c.m.

It is worth noting that the ballistic peak for the 55°
laboratory scattering angle displays a profile similar to a
Lorentzian. This is because the ¢c.m. differential cross sec-
tions for the dominant transitions are, because of the den-
sity factor, proportional to the ¢.m. recoil velocity. The
Jacobian varies inversely as the square of the c.m. recoil
velocity. The laboratory differential cross sections are
therefore inversely proportional to the c.m. recoil velocity
(the Lorentzian profile would be inversely proportional to
the square of the c.m. recoil velocity).

The ballistic peak at the 25° scattering angle has a more
complicated structure than that at 55°. There are more
transitions comprising the 25° peak that have noticeably
large cross section. In addition, the transitions are not sym-
metrically placed around the central recoil velocity of 5§75
m/s. These observations can be understood by referring to
Fig. 9, which gives a plot of the absolute value of the
Jacobian, for several laboratory scattering angles vs the
laboratory recoil velocity of CsF for a 0.25° wide detector.
When the laboratory scattering angle is equal to the labo-
ratory angle of the centroid velocity (52.2°), the Jacobian
is extremely large and very sharply peaked. As we move
away from the direction of the centroid velocity, ie., in-
crease or decrease the laborato.y scattering angle, the
value of the Jacobian becomes smaller, the peak gets flat-
ter, and the center of the peak moves towards smaller re-
coil velocities. This is because the farther we look from the
direction of the c.m. velocity, the larger w; must be, and
therefore the smaller v} must be so that the square of these
two recoil velocities can be equal to the square of the cen-
troid velocity. Because the Jacobian is much flatter at the
25° scattering angle, the laboratory differential cross sec-
tions resemble the c.m. differential cross sections, These
points are apparent in Fig. 10, which gives a plot of the
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F1G. 9. Absolute value of the Jacobian for the transformation of the
differential cross section from the c.m. coordinate system to the labora-
tory coordinate system as a function of the laboratory recoil velocity of
CsF for various laboratory scattering angles.

c.m. differential cross section as a function of the labora-
tory recoil velocity of CsF at the laboratory scattering an-
gles of 25° and 50°. Since we are assuming an idealized
beam without late-al dimensions, each stick in the figure
corresponds to a c.m. differential cross section at a definite
c.m. scattering angle. Therefore, the c.m. differential cross
sections in Fig. 10, upon multiplication with the appropri-
ate Jacobian (Fig. 9) given the laboratory differential cross
sections, plotted in Fig. 8. The c¢.m. differential cross sec-
tions resemble the laboratory differential cross sections for
the 25° scattering angle; for the 55° scattering angle, on the
other hand, the transitions most prominent in the labora-
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FIG. 10. Center-of-mass differential cross section (cm?/sr) as a function
of the laboratory recoil velocity (m/s) of CsF at the laboratory scattering
angles of 25° (top frame} and 55° (bottom frame). The beam parameters
are the same as in Fig. 8.
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FIG. 11. Center-of-mass differential cross section (em?/sr) as a function
of the laboratory recoil velocity (m/s) of CsF at the laboratory scattenng
angle of 25°, for the most prominent transitions making up the ballistic
peak (top three frames), and the most prominent transitions making up
the pseudoclastic peak (bottom three frames). The beam parameters are
the same as in Fig. 8.

tory frame (Fig. 8) are barely noticeable in the c.m. frame.
It should also be noticed that the pseudoelastic peak shifts
to smaller recoil velocities as the laboratory scattering an-
gle moves away from the direction of the centroid velocity;
the maximum intensity occurs at the recoil velocity of 960
m/s for 25° and at 1100 m/s for 55°. This happens because,
when the laboratory scattering angle is farther from the
direction of the centroid velocity the angle between w1 and
U, becomes closer to 90°, resulting in smaller value of
05 = [(@3)? + (Vo) — 20} Vo] V2

A closer look at the details of the scattering at 25” is
provided by Fig. 11, which is a plot, again for an idealized
beam, of the c.m. differential cross section as a function of
the laboratory recoil velocity of CsF. The initial state of
CsF is v=3, j=60; the Ar-CsF initial relative transla-
tional energy is 1.0 eV; the c.m. velocity is 646 m/s at a
laboratory angle of 52.5°. The three upper frames are the
rotational transitions comprising the ballistic peak (Ar-F
encounter) for final vibrational levels v’ =2,3, and 4; the
three lower frames are the rotational transitions compris-
ing the pseudoelastic peak { Ar-Cs encounter) for the same
final vibrational levels. The rotational transitions compris-
ing the ballistic peak have almost the same structure and
appear to be independent of the final vibrational level. Be-
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F1G. 12. Calculated ¢.m differennal cross section as a function of the c.m.
scattering angle. When almost all of the imitial relative translational en-
ergy has been converted mnio internal motion, the final relative transla-
tional energy carries no angular momentum, leading to 1sotropic scatier-

ng.

tween the recoil velocities of 200 and 400 m/s there are
supernumerary rainbows and a primary rainbow in each
frame, and a secondary rainbow in the v’ =4 frame, the
rotational quantum number increasing with increasing re-
coil velocity. On the right side of each frame, after a larger
gap in the center, the rotational quantum number de-
creases with increasing recoil velocity and the transitions
appearing first, i.e., closest to 575 m/s recoil velocity, are
constrained by the kinematic rainbowlike singularity or the
edge effect. The rotational transitions j =194, 189, and
185 are the first to appear for the final vibrational quantum
numbers 2, 3, and 4, respectively. The highest final rota-
tional level attainable is greater for smaller vibrational
quantum numbers because more energy is available when
the fina: vibrational quantum number is smailer. One can
regard these rotational transitions as dynamical rainbows
and state that kinematic rainbows lead to dynamic rain-
bows. As the recoil velocity increases and the final rota-
tional quantum number decreases. the supernumerary, pri-
mary, and secondary rainbows are again seen. The
differential cross sections comprising the ballistic peak ex-
hibit a rich and complicated structure.

For the case of pseudoelastic scattering (Ar-Cs en-
counter) depicted in the lower three frames of Fig. 11,
there are at least two rotational rainbows in each frame.
The frame corresponding to v’ =2 exhibits a secondary
rainbow on the left, while that for v* =4 exhibits a second-
ary rainbow on the right. The smaller recoil velocities cor-
respond to larger final rotational quantum numbers, while
the larger recoil velocities correspond to smaller final ro-
tational quantum numbers. The inelastic transitions move
towards larger recoil velocities as more energy becomes
available, i.c., as the final vibrational quantum number de-
creases. The limit of the change in the rotational quantum
number is dictated by the conservation of angular momen-
tum.

Figure 12 is a plot of the c.m. differential cross section
as a function of the c.m. scattering angle. It is seen that

when almost all of the ual refative translational energy
has been converted into the internal energy. the com. dif-
ferential cross section 15 independent of the ¢ m. scattenng
angle. This effect, which was predicted carlier.* arises be-
cause, for the resonant energy transfer from translation o
vibration-rotation, the final orbital motion has very small
relative vewocity and is therefore an isotropic s wave. This
is one of the rare instances in atom-diatoms colbsions
when one encounters pariial waves with very low quantum
numbers.

Vill. CONCLUSIONS

The basic question is, why do the experimental results
agree with the calculatea results, which are obtained by
using a simplified atom~diatom potential? Not only has the
atom-diatom potential been approximated by the sum of
two atom-atom potentials, the atom-atom potentials have
in addition to this approximation been replaced by two
hard core potentials. A clue to the answer is priidea by
sarlier work'® which studied the deactivation of highly vi-
brationally excited KBr by Ar using exactly the same cal-
culation. For the largest c.m. scattering angie (75°) for
which the experimental measurements were avatlable, the
calculated c.m. differential cross section plotted as a func-
tion of the KBr ¢.m. recoil velocity agreed with the exper-
imental measurements for all recoil velocities (0-1000
m/s). For the smallest c.m. scattering angle (45%) for
which the experimental measuiements were available. on
the other hand, the calculated c.m. differential cross sec-
tion plotted as a function of the KBr c.m. recoil velocity
agreed with the experimental measurements only for recoil
velocities larger than about 700 m/s. The answer, then, lics
in noting that (i) the pseudoelastic peak, mvolving trans-
fers of small amounts of energy between translation and
rotation-vibration, corresponds to large c.m. scattering an-
gles for which the attractive portion of the potential. m
analogy with the KBr-Ar results, makes no contribution.
(1i) the ballistic peak involves transfer of a large fraction of
the initial relative translational energy into ir ternal energy.
which can be caused, again in analogy with the KBr-Ar
results, only by the repulsive portion of the potential inde-
pendent of the c.m. scattering angle and, (it) the calcula-
tion 1s insensitive to the steepness of the repulsive portion
of the potential. Preliminary work®® with the exponential
repulsive potential supports this conclusion. We have a
situation where the two ends of the diatom scatter, inde-
pendent of each other, from the repulsive part of the atom-
atom interaction potential. Further, the scattering from the
repulsive portion of the potential does not appear to
strongly depend upon the steepness of the repulsive poten-
tial. This, we believe. i why this calculation works so well.

It was pointed out earlier that the Jacobian for the
transformation from the c.m. to the laboratory frame tay
lead to the enhaincement of the c.m. differential cross sec-
tion hy a factor of a miliion. This result is derived assuming
an idealized bcam of mfimitesimal extent. For 1 beam with
finite width and a detcctor of finite dimensions, the ballistic
peak along the direction of the c.m. velocity will contain
contributions from transitions which are not exactly reso-
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FIG. 1. Yector diagram for the CsF-Ar scattering. The initial laboratory velocity of the Ar beam (v,) 15 measured along the X axis and that of the
CsF {v;) beam along the Z axis. The laboratory angles are measured from the direction of the CsF beam; 6, and 6, are the laboratory angles of the
centroid velocity ¥, ., and the recoil velocity v; (laboratory scattering angle), respectively. The ¢.m. scattering angle 1s measured from CB, the direction
of initial c.m. velocity of CsF {a3). The pseudoelastic peak discussed in this article, centered at a laboratory recoil veloaity of about 1000 m/x, arises
from the larger c.m. scattering angles. The other pseudoclastic peak, centered at a laboratory recoil velocity of about 150 m/s, ansing from smallercm
scattering angles, was not experimentally detected and will not be further discussed. The circle in the figure corresponds 10 one-half of the imtial relstive

transiational energy being converted into interaal energy.

nant 7 — (V.R) processes. This may lead to an average
value of the Jacobian which is considerably less than a
million. The actual value will depend not only unon the
extent of the two beams and the spread of their velocities,
but also upon the molecule being studied. If the molecule
has a large rotational constant and the energy spread of the
beams is smaller than the spacing between the final rota-
tional levels, the average Jacobian may still be close to a
million. The parameters of the beams, the molecule stud-
ied, and the dimensions of the detector will all have to be
carefully considered for a more detailed answer.

Our results require that the CsF beam in the experi-
ments' -3 must not be rotationally relaxed. In fact, the ob-
servation of a ballistic peak for the CsI-Ar system and the
nonobservation of one for the I,-Ar system at the same
relative translational energy (=1 eV) i1s explained by our
maodel by postulating that transitions from higher rota-
tional levels populated in the CsI beam (oven temperature
=~ 1000 K lead to conversion of a much larger fraction of
relative translational energy into internal energy than the
low rotational levels available in the cooler (oven temper-
ature =250 K) I, beam. This provides another test of our
model.

Uur calculations have been performed assuming ideal-
ized beams with infinitesimal extent. Still they agree re-
markably well with experimental measurements. Perhaps it
is because the broadening of the calculated results by the
resolution function, discussed earlier, is much larger than
that due to the finite extent of the colliding beams.

It is also useful to point out that, since our calculation
agrees so well with the experimental results for both the

pseudoelastic peak and the ballistic peak, the carbier model
of impulsive collisions,” which certainly gives a much dif-
ferent value for the energy transferred during both the
pseudoelastic and the ballistic collisions, may need to be
re-examined.

Perhaps the most important results of this study 1s that
the ballistic effect should be observable for all colhsion
systems under appropriate circumsiances.

This work was in part funded by AFOSR under task
2303EP and Phillips Laboratory project 007. The authors
are grateful to Dudley Herschbach for many interesting
discussions and making available to them the relevant por-
tions of the Ph.D. theses of Dr. Entemann, Dr. King. and
Dr. Zare.

APPENDIX

To derive the expression for the Ja. obian of transfor-
mation between the laboratory and the center of mass co-
ordinates as shown in Fig. 13, we pick the following nota-
tion:

(i) ¢, the initial velocity of Ar atoms, is along the X
axis in the laboratory coordinate system;

(i1) v,, the initial velocity of the alkali halide, is along
the Z axis in the laboiatory coordinate system,
(111} the coordinate system fixed in the laboratory
frame is denoted by X YZ while that fixed in the

c.m. frame 1s denoted by xyz

The initiai relative velocity and the velocity of the c.m.
are, obviously, n the XZ plane in the laboratory coordi-
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nate system. We also take this plane to be the xz plane of
the c.m. coordinate system. In addition, we assume that
the detector 15 also centered in this plane. 0 and 8, are the
polar angles of the alkali nalide recoil velocity ¢ and of the
centroid velocity v_, , respectively, in the laboratory coor-
dinate system. ¢, 1s the angle between the initial velocity w,
of the alkali halide in the c.m. frame and the centroid
velocity v, . 6 (the scattering angle) is the angle between
the c.m. initial (w,) and c.m. final (recoil, w}) velocities of
the alkali halide and ¢ is the azimuthal angle of w;, mea-
sured from the xz plane. It should be pointed cut that while
the differential solid angle in the laboratory fixed axis is
dQ,=sin 8; d8; dd,, the element of solid angle in the
c.m. frame is dQ) =sin{6 -6, + 8,)d6 dé. The vector equa-
tion

Vi=Vem @ (A1)
can be rewritten as
yycos 6, =7 cos 8, +cos(6—-6,+6,),
Y1 5in 8, cos ¢, =y sin G, +sin(6—6, 4 6,)cos ¢ (A2)

¥, sin 8, sin &, =sin{§—8,+ 6;)sin ¢,

where y=v,,, /03 and v, =v3/w;. From Egs. (A2) we get

4 sin ¢
tan O L= Ty i 6,/5in(8— 6, +6,) +cos 61
yielding
_ sin ¢
sing, = sin’ 6, sinG,cosd 2
sin*(8—0,+6;) sin{0—8,+6;)
7

UsF

Dhfferentiating this equation, we get

dd,; . | ysin fh cos ¢
R T I S S ( 1
do . Tsin(6 6, +0,) (AY)

We now recall that our detector 1s centered m the XY Z
plane. This enables us to put ¢ =0 in the above equation
obtaining

sin &, ¢ yisingy
TSin(B-0,+8,) smn(8 -0, + 6,
(A4)

| =H

To obtain the relation between df and d0 ., we rewrite Egs.
{A2) for ¢=0,

yicos 0, =y cos 0, +cos(8-—-6,+6,),

Yy sin 8, =y sin O +sin(8— 4, + 0,). (AS)
Squaring the above equations and adding gives
Vi=7+1+2ycos(—6,). (A6)

Dividing the second equation (AS5) by the first one, we get

ysin §,4+-sin(8— 8,4 6,)
y cos G, +cos(6~6,+8,)

tan 9L=

resulting in

409

Velocity along v

200 +
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FIG. 14, Vector diagrams to demonstrate the existence of maximum (top figure) and minimum (bottom figure) laboratory scatiering angles for a given
value of the c.m. recoil velocity (@) of CsF At the maximum and minimum laboratory scattering angles. the c.m. and labaratory reconl velocities are
perpendicular. The extrema in the laboratory scattering angle, as a function of the ¢.m. scattering angle. lead to rainbowltke singulanties in the Jacobian

for the c.m. to laboratory transformation at these points.
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Y cOos 92+C05(0—-91+92)
[i+y +2ycos(8—8)))'""

Differentiating,

cos B, = (A7)

do,,""
|—d—é9‘ = |sin 8] [1+ 77+ 2y cos(8—6,) ]

X {{y* cos(6—8,)sin 8, +sin(6— 8, +8,)
+7¥sin 8, +7sin(8 -6, +8,)cos(6—6,)}]

7}1 27}| Yi

Ttycos(6-6)] [1+7 7| 18 65"

giving us
A0 (6p,) " 2y, vi
l = == a7 ar s (AS)
an(0,6) N4+r—71 (&} 53)]

where (@; - 3) is the cosine of the angie between the recoil
velocities of particle 2 (CsX) in the c.m. and the labora-
tory frames, and the relation ¥ =14} +2 cos(dj - ) has
been used to obtain che last form. The Jacobian, as was
pointed out earlier, becomes infinite when either the recoil
velocity of the alkali halide in the center-of-mass frame v}
becomes very small, or when the recoil velocities of the
alkali halide in the c.m. and the laboratory frames are
perpendicular. Since the Jacobian, a transformation be-
tween two finite differential cross sections, cannot physi-
cally become infinite, a separate expression for it must be
derived for the two cases cited above.

When one of the collision partners is initially station-
ary in the laboratory frame, 1.¢., v, =0 and #,=6,=0, this
expression reduces to the one given by Schiff’

d0(6,.4,) ”m{(u+f+aycmeﬁﬂ
d(6,¢) l "L |1+ycos 6 )

n
T+

Figure 14 shows that a maximum (top figure) and a
minimum {bottom figure) laboratory scattering angle ex-
ists when the recoil velocities of the alkali halide in the c.m.
and the laboratory frames are perpendicular. This is fur-
ther clanfied in Fig. 15 which gives a plot of the c.m.
scattering angle as a function of the laboratory scattering
angle. This figure clearly displays the extrema in the labo-
ratory scattering angle as a function of the c.m. scattering
angle. At these extrema, the expression {(A8) for the Jaco-
bian becomes infinite. Figure 16 gives a plot of the labora-
tory recoil velocity of CsF as a function of the laboratory
scattering angle. The laboratory recoil velocity displays an
extremum at the minimum and maximum laboratory scat-
tering angles. This is the reason that the absolute value of
the Jacobian stays constant for large changes in the labo-
ratory recoil velocity of CsF (Fig. 9). To derive an expres-
sion for the Jacobian when the recoil velocities of the alkali
halide in the c.m. and the laboratory frames are perpen-
dicular, one can write, using Fig. 17

180 ¢

148 &
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Paaaaaaatadaanesaosadiaadiassnrdsads camad Akt dobdetotsa ks tas sk L 3 wadho,
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55 80 85 70 75

()L(d“ﬁ-) ke

FIG. 15. Plot of the laboratory scattering angle @, as a function of the center of mass scattering angle 8 for the (v = 3, j= 80 . p" = 20, j* = 118) transition
of CsF (v, =2450 m/s, v,=300 m/s, AE/E=0.7778, wy=246 m/s, v, , =646 m/s). It is seen that the laboratory scattering angle, for these cotlision
parameters, cannot be less than about 30° and more than about 75°. The laboratory recoil velocity v; and the c.u.. recoil velocity w; are perpendicular
for the maximum and minimum laboratory scattering angles and the laboratory scattering angle as a function of c.m. scattering angle displays an
extremum. This leads to the display of rainbows in the curve of the laboratory differential crass section as a function of the laboratory recoil velocity at
the maximum and minimum laboratory scattering angles. The discontinuities in the curve at c.m. scattening angles of O and 180" are not reat and anse
from the fact that the c.m. scattering angle is measured modulo 7 and not modulo 2.
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FIG. 16. Laboratory recoil velocity of CsF as a function of the laboratory
scattering angle. The collision parameters are the same as in Fig. 15. At
th= rainbow angles, 7, = (@})? + (v3)? and the laboratory recoil velocity
of CsF is 597 m/s, slightly smaller than the velocity of the center of mass.
When the laboratory scattering angle is not equal to the rainbow angles,
the signal from each transition is observed at two recoil velocities, one
lower and one higher than the velocity of the center of mass, correspond-
ing to the cases a and b center of mass scattering angles. Both cases
contribute to the ballistic peak.

Af 0, — A0,
cos(——):: ——):(l—~ylA0L) {A9)

L4
2 w;

or

A8 =2 arccostl — y,Ad ). {A10)
Using the relations arcsin{x) +arccos{x) = 72, and
arcsin( 1 —x) = 7/2 - (20)"", we get

A0, 8y
20! =la6, (AL1)
Together with
ddy ! | sin
26| “Tsin(@=0,5 6,0 (A1)
dQY=sin(6 -0, + 6,)d8 d¢,

and
dY; =sin 8, d6, dé,,

we get,
,‘_’Eﬂwsﬁl’ig'” (A3
dQ | T A8,)

When the laboratory recoil velocity is along the cen-
troid velocity, one can write, using Fig. 13, 6=6,, and
6,=8,, giving

dQ; !

I;g{ =7 (A14)
This expression for the Jacobian is valid only when the
laboratory recotl velocity is along the centroid velocity pro-
vided ¥,A6,<1 and y,Ad;<], A8, and Ad; being the
width of the laboratory detector in the polar and azimuthal
angles. When this condition does not hold, the Jacobian
becomes a constant and is simply equal to 47/4€) ;. This is
because the signal from all 47 steradians in the c.m. frame
is now collected by the detector; a wider detector would
not be able to collect any more signal.
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FIG. 17. Vector diagram illustrating the uncertainty in the c.m. scattering angle due to a small uncertainty in the laboratory scattering angle at the
rainbow angle. The angular resolution of the detector, A6, is exaggerated for the purpose of clarity.
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To make the connection with the previous work,™ we
start with Eq. (A8) and note that

dwa
~r Ay ~
& =

= . Al
< dv] (ALS)

This equation is easy to prove. Using Fig. 13, we write

(W) = () 4+l =20, cos(B, —6,). (A16)
Differentiating Eq. (A16), we get
W) dwy=v; dvi—v, o, dvycos(8,—8,). (A7)

Substituting for cos(0, — 8 ,) from Eq. (A16) we get Eq.
(A15). Going back to Eq. (A8), when there is a continu-
ous distribution of energy levels, the Jacobian becomes just
74 In our case, since we are dealing with discrete quan-
tized rotational-vibrational levels, the Jacobian is given by

Eq. (A8).
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