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INTRODUCTION

Traditionally, Lagrangian codes have been used to simulate material response when the
amount of deformation is small. When the deformation is large, Eulerian calculations have
been employed. The Lagrangian calculation is more accurate — the Eulerian calculation has
greater applicability. These strengths and weaknesses are due to the convective derivative
which is absent in the equations written in the moving Lagrangian frame. Numerical
treatment of this advection ter.n is difficult and introduces inaccuracies into the calculation.
However, if these errors can be made small, the Eulerian calculation can be used to treat a

variety of high strain phenomena.

Various methods have been devised in order to achieve the best features of both approaches.
These “hybrid” techniques normally use two grids, one Lagrangian - the other Eulerian,
with information exchanged between them. These mappings add a good deal of complexity
to the calculation and can also introduce inaccuracies. Nevertheless, many hybrid

techniques have been successful and are widely used today

Unique in computational fluid dynamics is Smoothed Particle Hydrodynamics (SPH). This
technique uses no underlying grid - it is a pure Lagrangian particle method invented by
Lucy [1], Gingold [2,3], Monaghan [4,5,6] and Benz [7]. The absence of a mesh means that
large deformations can be computed in a pure Lagrangian frame. It is for this reason that
SPH has the potential to be a valuable computational tool. Although SPH has been proven
an excellent computational tool for astrophysical applications, its ability to treat typical
hydrocode production problems is largely untested at this point. The method is just now

being applied to a broad range of problems where its strengths and weaknesses are sure to
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THE METHOD

The foundation of Smoothed Particle Hydrodynamics is interpolation theory. The
conservation laws of continuum fluid dynamics, in the form of partial differential
equations, are transformed into integral equations through the use of an interpolation
function that gives the “kernel estimate” of the field variables at a point. Computationally,
information is known only at discrete points, so that the integrals are evaluated as sums over
neighboring points. These “interactions” result in a net force which will accelerate the
“particle”. The reason that an underlying grid is not needed is that functions are evaluated
using their value at the discrete points (particles) and an interpolation kernel. An
intzgration by parts then moves spatial derivatives from operating on the physical quantities
to operating on the interpolation kernel which is an analytic. These concepts will now be
described more fully. Consider a function f, a kernel W which has a width measured by the

parameter A, and the following equation:

< fir) >= jW(r-—r’,h)/(r’)dr’ . (1)
If the integral of W is normalized to unity, then it follows that

<fir) >————flr) - )

Relation (1) therefore defines the kernel estimate <f> of f. If W is the Dirac delta function
then we have the equality </>=f. Now suppose that fis known only at N discrete points that

are spatially distributed according to the number density distribution:

N
n(r) = > 8(r-r) (3)

J=1

If we associate with particle j a volume




mi

dr' = (4)
o(ry)
thus introducing the concept of particle mass (m), it follows from (1) that
. m,-
<firy> = z fi W(r—r,-,h)z_— _ (5)
f J

This equation defines a procedure for transforming integral equations to particle equations
and is therefore called “integral evaluation by the particle method.” A detailed discussion

of the theory of SPH is given by Benz [7].

DERIVATION OF THE SPH EQUATIONS

The conservation equations of continuum mechanics are:

do _ _, ¥ ()
dt axP '
a1 9% ©)
dd o af
dE ¥ ° (8)
di o af
d &t 9
an 2 U ©)

Dependent variables are the scalar density (p) and specific internal energy (E), the velocity

vector velocity U?, and the stress tensor 0® . The independent variables are the spatial
coordinates (x) and the time (¢), and the total time derivative (d/dr) is taken in the moving
Lagrangian frame. Summation over repeated greek indicies is implied. Let us now cast
equations (6-8) into the SPH framework by applying the procedure outlined above. First,
rewrite the momentumn and energy equations, so that the density (p) appears inside the spatial

derivative operator, then find the kernel estimate. The result is




do I alp ,
W—=d3' - W dx ) (10
[ dt CaP ) )
due o [\ ,. oﬂﬁ do
W———d"-_- IW—-—- — |a® -I 3x 11
17 ar ‘3"'”(9) ' FECZARNE v
1
and wiE g5 - -J oaf agun —zd’ J aﬂﬁgﬂ % px (12)
| o ox' 0 ox'?

We now linearize these equations by taking integrals of products equal to products of

integrals (a second order accurate approximation), giving

do ., a5,
I w?t—d%c = p(x) J wmd% . (13)
It o ‘___‘?___ ____O 3. 0 (x) ag 3
IW———d [Wax'ﬂ( o )dx o) [ ax'ﬁd , (19
and [Wdt d’x 200 fW Py a’x’ + pLT [W ,ﬁd . (15)

The right-hand-sides of these equations are now integrated by parts, assuming W

approaches zero fast enough that the surface terms vanish.

do ., ow .. 16
IWId% = -Q(x)JUG stx . (16)
LA (i KL AP il ) BNE L (17)
IW a 47" _I o(x') wBlE " QZ(X)I &) gemd™
i@_ ' Oaﬂ(x) 1 ' _a__w_ 3 ' oaﬂ(x)Ua(x)
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Finally, the integrals are evaluated by the particle method, Eq. (5), to give

do; m;
L - oy (-d)ws 19)

Ji f)
du? o o
- Z'"f(‘j?'*"éf)wifﬁ , (20)
J ' ]
af
dE; o;
and _(_i_ti = "Z',?—Zm! U?-Uja)w,.m (21)
LY

We have introduced the notation W = W(x;~ x;,h) and dW;;/ axf = W;g. In obtaining (19)
we subtracted from (13) the following term,

ol J %ﬂx' =l Yy Bw, 22)

i i G

which is zero because the kernel vanishes at intinity. In this way we introduce velocity
differences into the density calculation, which is desirable and consistant with the energy
calculation in (21). Eqs. (19-21) are the conservation laws of continuum dynamics written
in the SPH framework. A given particle i has a density determined by (19), an acceleration
obtained from (20) and an internal energy change given by (21). The summations are over
neighboring j particles. These equations are not unique. Several other forms of particle

equations can be derived using various mathematical manipulations. Some of these are

discussed by Monaghan [8].

THE DENSITY CALCULATION

It is important to recognize that (19) is not the density calculation that normally appears in
the SPH literature. It is more in the spirit of Smoothed Particle Hydrodynamics to compute

the density using the equation obtained by substituting p for <f> in (5). namely




oi = D> mW; (23)
J

With this equation only particle coordinates and masses are required to compute the density,
and the continuity equation (6) is automatically satisfied. The disadvantage of using (23) is
edge effects - particles near a free surface appear underdense and therefore in tension,
causing motion. Benz [7] discusses several possible solutions to this problem including
spacing modification, ghost particles, and initial relaxation and the use of (19). It is worthy
to note that differentiation of (23) leads to

2 - 'Qizgf(U?—Uf)W«m 24)

dt 7

which differs from (19) only in that ©i appears in the denominator rather than ©;. We have
not yet explored the consequences of using (24) in place of (19). The difference is of the same
order as the difference between the product of the expected values and the expected value of

the product.

ARTIFICIAL VISCOSITY & WALL HEATING

As they stand, Egs. {19-21) yield large unphysical oscillations near shocks. In fact, any
numerical solution of the continuum equations will exibit this behavior because the
dissipative terms have been omitted. Variations of physical quantities across shocks in
nature are far to sharp to be captured by numerical techniques. Von Neumann and
Richtmyer [9] invented “artifical viscosity” which acts to smooth shocks over a few
resolution lengths and stabilize numerical solutions. The additional term is introduced into
the equations as an artifical viscous pressure 1. We follow Monaghan and Gingold [4] who

derived the following artificial viscous pressure for SPH:




- atyu; + Pyl

if (Z-a)F~-7) <0 (25)
H-d = Ql]
0 otherwise
where
PTG
and
Gi = (ci +¢)/2 0; = (o; + 0)/2 . 27

The three parameters appearing in these equations have typtical values of @=0.5, 8=1.0 and
€=0.1. The linear term in (25) uses the sound speed (c). This artifical viscosity gives
satisfactory results in most cases, but under some severe conditions it fails to remove
spurious heating. An example of this is when a stream of gas is brought to rest against a
rigid wall. Noh [10] was able to improve numerical solutions in such cases dramatically by
adding an artificial heat conduction term to the energy equation. Monaghan [11] derived

the SPH analog of Noh'’s “wall heating” term in which the net artifical heat flux at particle i

is given by
i Ei
Z?—" r,, ViWj (28)
j Qi "/'
where
¢ =ghc + gh|Vv|-Vv) , (29)
and
gi = (& + ¢)/2 oi = (0i + g))/2 , (30)

Suitable values of the two parameters appearing in (29) are g1 = 0.5 and g2 = 1.0.




CONSTITUTIVE RELATIONS
The stress tensor apperaring in Eqs. (20) and (21) is defined in terms of an isotropic part

which is the pressure (P) and the traceless symmetric deviatoric stress (S):

o = psP - §9B . (31)

The pressure is normally computed using an equation of state having functional form

P=P(p,E), such as the Mie-Gruneisen equation for solids and gamma-law for gases.

Mie-Gruneisen P = Py{1-T'y) + T'oE (32)
ao’]"'bo’fz'*”coﬂ3 n>0
Py =
aqn n<0
Ideal Gas P = (y-1)oE (33)

The subscript "H” refers to the Hugoniot curve, while n=p/po-1 is used to represent the
compression and I’=I'p/po. For the anisotropic part of (31) we write a prognostic equation for

the deviatoric stress assuming small displacements
S = u@t = p(ef-1o%en) (34)

where p is the shear modulus and € is the traceless rate of strain. However, for finite
displacements this equation is not material frame indifferent [12] , that is, the material
response will depend in an unphysical way on rotations (and possibly translations) of the
material and of the observer describing it. A variety of frame indifferent stress rates have
been formulated. Herrmann [13] examines the relative merits of several of these. The
Jaumann rate is the most widely used in codes and we adopt it also. With the Jaumann rate.

our constitutive equation is




$aB _ SOTRPY _ SR = y@b (35)

The strain rate and rotation rate tensors that have been used are defined as follows:

a A a B
“-i(%e) meiBE) e

Particle equations for (35) are obtained by Libersky and Petschek [14] in a manner similar

to that of (19,20,21)

d.S‘ilﬁ - vBpa u mi a
T—Sf‘ﬂRIigy*Si R =52?;[(l}j - ) is + (Uf U?) rzﬂ‘g‘Déaﬁ] (37)
- ,

The divergence is already determined by (19), Di = -0i/0i , and the rotation rate is

R = [(U,-“-U?)m—('ff -U‘?)%.a] (38)

The plastic flow regime is determined by the von-Mieses criterion when the second stress

invariant J? = $%S% exceeds the known flow stess (Yo). The individual deviators are then

brought back to the flow surface.

w Y3
§% = 5% —-«»j{ (39)

A more accurate treatment for most metals, not yet implemented in our code, is obtained by
computing a history sensitive flow stress, rather than a predetermined fixed value described
above. The Johnson-Cook model [15], for example, takes into account thermal softening,
strain harding and strain rate effects on the equivalent flow stress. This more sophisticated
model contains seven strength related parameters. The elastic~-perfectly plastic constitutive
model described above contains two parameters, the shear modulus (p) and the plastic yield

stress (Yo).




THE KERNEL

The interpolation kernel or smoothing function most widely used in SPH is the B-spline Wa.

[
—175—(%-—v2+%v3) O<v<l v = [ri-rj| /h.
1
) =25\ 3 aup 1<v<2 0
\ 0 otherwise

The fractional coefficients appearing in (40) assure proper normalization and continuity.
This kernel interpolates to second order in & and is always positive in the range of interest.
The kernel also has compact support, that is, it goes to zero at a distance 2k from its peak.
This provides a clear limit on the number of neighbor particles. A Gaussian kernel is second
order accurate and positive definite, but the lack of compact support necessitates an
artificial cut-off, often taken at v=3, making it iess a less efficient choice. Higher order

interpolation kernels exist [5] but are not always positive definite.

TIME INTEGRATION

Eqgs. (19,20,21,37) are integrated using a standard leap-frog algoritihm [16] with time step
8¢, calculated from the configuration at time ¢, tc advance the field variabled to r + 6. We will
switch from superscript tensor indicies to subscripts here in order to accomodate the standard
superscript representation of the time stepping in which n indicates the current time t and

n+1 indicates the advanced time ¢+ 8t




o™'! = 0"(1-Dd) (41)
U = U + 12(00" + 80" )F (42)
E™' = E+ O"G (43)
Sas' = Sag+ O"H (44)
xatl = x4+ Uptiar (45)

In these equations F,G and H represent the total acceleration of, work per unit mass and
stress rate on a particle as determined by the interactions with neighbor particles. The
accuracy of the leap-frog scheme is second order in time and its stability is guaranteed by
using the CFL condition to determine the size of the time step 8. We find the minimum over
all particles of wh/(c +s), where c is the adiabatic sound speed, s is the particle speed, & is the

smoothing length and » a constant factor. Choosing w=0.3 seems adequate.

CODE ARCHITECTURE

MAGI differs from most codes in that it was designed from the beginning for application to
very large problems on vecto: supercomputers. Strategies for the efficient implementation
of the SPH method were considered and implemented throughout the design and coding of
MAGI. Vectorization, an efficient neighbor searcher, accomodaticn for the symmetry of the
particle interactions, and activity flags were all exploited for efficiency and reduced

computation.

Activity flags, which mark particles experiencing motion cr acceleration are used to gain
efficiency. Only active particles and those within a two smoothing lengths of active particles
need to be updated. Stationary, unshocked material remains inactive until impacted by
moving material or accelerated by a shock or stress wave. This capability results in
significant savings in computer time for problems that contain a large number of particles

that are initially unaffected by the impact.

1t




MAGI consists of a group of subroutines, partitioned by task, that are called in logical
sequence each computational cycle. They accomplish the following tasks that are basic (o
the SPH algorithm. (1) Compute the particle interaction sums on each particle to determine
the accelerations, strain rates, and energy increment. (2) Update the velocities, energies,
stresses, and density on each particle. (3) Update the pressure on each particle using the
new density and energy. (4) Advance the particle positions. The subroutines that perform
most tasks consist of a single FORTRAN DO loop that is easily vectorized. The interaction
subroutine, however, is an exception. It consists of nested loops, an outer unvectorized loop
over all active particles, and two inner loops that are indexed over the list of neighbors that is
returned by the linked list described below. Each of the inner loops is vectorized. In the
first, the interaction contributions of particle j are summed to particle i. The second updates

particie j by contributions from particle i.

The particle interactions themselves are ordered through a linked-list [17] which efficiently
determines the neighbor particles contributing to the forces on each particle. Only those

neighbor particles within the compact support of the smoothing function need to be

considered. The n® interactions that result from direct application of the SPH formalism,
without consideration of the finite support of the smoothing function, are reduced to order
n log n interactions by means of the linked-list. The interaction lists are further reduced in
length by taking advantage of the symmetry in the interactions and the activity flags.
Reflective boundaries are incorporated through the linked-list routines by means of “ghost”
particles, which are fictitious particles introduced just outside the computational domain to
balance the forces on boundary particles and mimic the effect of perfectly reflecting

boundaries. Qutflow boundaries have also been implemented.

The basic linked list algorithm is composed of two separate routines. The first routine

performs several book-keeping functions and is executed only once per problem cycle (time

12




step). This routine begins by calculating a box number for each particle based on is
position and the position of a regular grid overiaid on top of the computational domain (the
area or volume that bound the computational perimeter) if the particle is within twice the
smoothing tength (2h) of the computational boundary. Finally, a box-ordered linked-list is
assembled containing all particles (real and ghost) in order of increasing box number. The
number of particles in each box and the box offset (first position) in the linked-list are also
stored. The box-ordered linked-list, box offsets, and number of particles per box are used

in the second routine described below.

The second subroutine is used to find all nearest neighbors for particle i in the hydrodynamic
calculation loop which are subsequently returned in a nearest neighbor linked-list. This is
accomplished by looping over all particles contained in the adjacent boxes (defined in the
box-ordered linked-list) that surround the box containing particle i. If the nearest neighbor
index, j, for one of these particles is greater than i ({j—ji symmetry), and either particle { or |

is active, then particle j is tested for interaction proximity to particle i. If all of these

conditions are true ( j>i, i or j active, and |ri-r;| < 2h), then particle j is added to the

nearest neighbor linked-list of particle i.

CALCULATIONS

The Noh Problem - The uniform implosion of an ideal (y = 5/3) gas was conceived by Noh [10]
as a stringent test problem for shock codes. Initially, the gas is moving radially inward at unit
speed, unit density and zero internal energy. Noh found the analytic solution to be a shock
moving radially outward at speed 1/3. In spherical geometry the gas behind the shock has
particle speed (), specific internal energy 1/2 and density 64. The value of 64 is due to a
16-fold increase from adiabatic compression and a 4-fold increase across a strong shock for a
monatomic gas. Qur calculation used one-eighth of a sphere in three-dimensional Cartesian

coordinates and three reflecting planes. Particles were placed within this domain in a regula.

13




cubic array and then randomly perturbed with maximum excursion of /8. The initial radius
of the particle cloud was 70. The smoothing length was set to 1 with 1 particle-per-h in each
coordinate direction giving roughly 200,000 particles, including ghost particles. Each particle
was given unit density, unit speed inward and zero internal energy. Results of the SPH
calculation are shown in Figure 1a where the density is plotted as a function of radius for each
particle at time =48. Notice that all SPH particles fall on one curve showing that perfect
symmetry is achieved in the calculation. Thisis the result to be expected as there is no spatial
mesh which can bias the solution along gridlines. The shock is in the right place and the
density dip (energy spike) near the origin is kept small by the Noh wall-heating term. The
calculation took 8 hours to run on a CRAY2 machine. This is a relatively long time, we
suspect, compared to other methocs. The reason for the slowness is due to the implosion
nature of the problem coupled with our linked-list neighbor algorithm. As the gas continues
to move radially inward, the calculational time increases dramatically as the number of
interacting neighbors for each particle increases from 32 to 2000 because the particles are
piling up near the origin but the smoothing length remains fixed. An SPH calculation with
variable smoothing length [18] would prove much more efficient for this problem. For
explosions and rarefactions the variable smoothing length is often required in order to
maintain resolution in an expanding particle cloud. We also present results of the
“cylindrical” Noh problem in Figure 1b. In this geometry the gas behind the shock has
particle speed 0, specific internal energy 1/2 and density 16. The calculation was run to
time =60 in two-dimensional Cartesian coordinates and required 10.000 particles and 30

minutes of CRAY?2 time.

Cylinder Impact Test — Numerical simulation of the deformation of a metal cylinder resulting
from normal impact against a flat, rigid surface is often used to test constitutive models in
codes. There is ample experimental data and the tests are simple yet stringent. We have
modeled an ARMCO Iron cylinder with speed 221 m/s impacting a perfectly reflecting

surface using SPH. One-quarter of the cylinder and two reflecting planes were used to

14
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Figure 1. Density profile for the Noh implosion problem as a function of radius.
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model the cylinder. A third reflecting plane represented a perfectly rigid boundary. The
initial length of the Iron rod was Lo=2.54 cm and the initial diameter was Do=0.76 cm. The
smoothing length was chosen to be 4=0.076 cm with 2 particles-per~h in each coordinate
direction. A total of 24,455 particles were used. The yield strength (Yo) and shear modulus
(u) of the Iron were taken to be 6 and 0.1 Kb respectively. An initial density of 7.89 g/cc was
used. Figure 2 shows the final shape of the computed cylinder (2a) next to a photograph of the
experimental [19] article (2b). The the ratio of final length and initial length of the actual
experimental rod was Le/Lo =0.78. The calculation gave Lc/Lo=0.79. The diameter ratios
were De/Do = 1.80 for the experiment and Dc/Do = 1.55 for the calculation, showing that the
simulation has underestimated the bulge near the base of the rod. The calculation required 3
hours of CRAY?2 time. This relatively long run time is due to the small impact speed (0.221

km/s) compared to sound speed in iron (4.0 km/s) which controls the time step.

Hypervelocity Impact - Figure 3a shows the SPH calculated debris cloud resulting from the
normal impact of a 3 g Copper disk {11.18 mm dia x 3.45 mm thick) on a 2.87 mm thick
Aluminum bumper plate at 5.55 km/s. Figure 3b is a radiograph of the actual cloud taken
from Piekutowski [20]. The experimental impact was not exactly normal, the Copper disk
having a 5.4 deg yaw. We took the smoothing length to be #=0.20 mm and 2 particles per A
giving 10,000 particles total in the calculation. A Gruneisen equation of state with Copper
Hugoniot Us=0.39+1.5Up and Aluminum Hugoniot Us=0.53+1.5Up was used to describe the
lead in compression. The shear moduius () and yield strength (Yo) for Copper was taken to
be 0.46 Mb and 4.50 Kb respectively. For Aluminum we used pu=0.25Mb and Yo=5.50 Kb.
The calculation took 900 cycles and 1.8 c.p.u. hours on a CRAY2. The peculiar shape of the
Aluminum debris cloud is captured by the simulation. Figures 3c and 3d show three-
dimensional views of the particles. Figure 3c shows only Aluminum bumper plate particles

and 3d shows only Copper projectile particles.
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b. Experimental photograph {19].
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Figure 3. Debris cloud for the impact of a Copper pellet on an Aluminum bumper plate.
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DISCUSSION

The three-dimensional Smoothed Particle Hydrodynamics code MAGI has been described
and three calculations presented. Results of the calculations are in reasonably good
agreement with experiment and analysis showing that SPH can be applied to low speed
impacts as well as hypervelocity collisions where material strength is unimportant.
Advantages of the method are its robustness, conceptual simplicity, ease of adding new
physics, a natural treatment of void and the ability to handle high strains in a pure
Lagrangian frame. Tracking of debris clouds resulting from hypervelocity impacts is a
particularly important advantage of the method. The run times appear to be larger than for
Eulerian codes although no direct comparisons have been made. A variable smoothing
length formulation of SPH would dramatically improve the running time for the Noh
implosion and the lead impact problems presented here. More fundamentally, SPH appears
to be readily parallelizable. If so, a one or two o1.ier of magnitude speed up is possible on

todays massively parallel machines. This is an important area of research.
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