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Abstract. We identify various situations in probabilistic intelligent systems
in which conditionals (rules) as mathematical entities as well as their condi-
tional logic operations are needed. In discussing Bayesian updating proce-
dure and belief function construction, we provide a new method for modeling
if ... then rules as Boolean elements, and yet, compatible with conditional
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1 Introduction

In probabilistic systems, the production rules (if ... then .. rules) con-
nect events and are quantified by conditional probabilities. With additional
structures, such as conditional independence, the problem seems feasible and



computations are based entirely on the standard calculus of probabilities (see
e.g. Pearl, 1988).

The situation is far from clear when events of interest are conditional
events. In this paper, we will point out situations in which these problems
occur. When we try to extend probabilistic techniques to these situations, we
realize that new objects and tools are needed. It all boils down to modeling
if ... then ... rules in some appropriate fashion, and yet compatible with
conditional probability evaluations.

2 Why do we need a mathematical concept
of conditional events?

To be specific, propositions or events are viewed as elements of a a-algebra
A of subsets of a universe of discourse R. The pair (11, A) thus denotes a
measurable space. We use letters a, b, c ... to denote elements of A. Set
operations are: A (or simply -, for intersection), V (union), (-)' (complement),
< (set-inclusion), 0 (empty set).

There is more than one way to quantify a rule of the form "if b then a"
by probabilities. In the context of two-valued logic, this rule, symbolized as
b --+ a, is interpreted as, material implication, that is b --# a = b' V a, which
is an element of A. If P is a probability measure on A, then the strength of
the rule b -- a can be taken as P(b' V a). See e.g. Nilsson, 1986.

However, due to the meaning, as well as to the uncertainty involved, the
quantification of b -- a is via conditional probability, that is P(b -- a) =
P(a I b), provided P(b) > 0. If we take this viewpoint, then b --- a cannot be
modeled by material implication, since P(a I b) # P(b'V a), in general. More
importantly, if b -+ a is quantified by.P(a I b), then 6 --+ a cannot be an
element of A. This is known as Lewis' triviality result (Lewis, 1976). In prob-
abilistic systems (see e.g. Pearl, 1988), the modeling of causairelationships
among variables of interest (in some knowledge domain) seems unnecessary.
That is, one does not need to define b -- a as some mathematical entity. In 3r
contrast, relatious among variables, such as conditional independence, and
the assignment of conditional probabilities to rules (expressed in a natural
language), as well as prior probabilities, suffice to specify a joint probabil-
ity distribution on all variables involved, so that probabilistic inference can
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be carried out. This is somewhat similar to situations in probability and
statistics: the quantity P(a I b) stands for Pb(a) = P(ab)/P(b) where Pb
is a probability measure on A, defined as P6(a) = P(ab)/P(b). Although,
DeFinetti (1974) did consider (a I b) as a mathematical entity, namely an
object with three "truth"-values: true (when both a and b are true), false
(when a is false and b is true) and undetermined (when b is false), this obser-
vation does not contribute anything new to probability and statistics. It is
interesting to point out that, in the same vein, as far as we know, the concept
of "conditional random variables" was mentioned only in Wilks (1963), in
an intuitive setting.

The common point is this. While one is free to ask questions and pur-
sue mathematical investigations, the results obtained will be marginal and
hence ignored if they do not lead to advances in applications. See Goodman,
Nguyen and Walker (1992) for a history of the mathematical investigations
of conditional events.

As we will see, it turns out that the need to model conditional events
or production rules as mathematical entities (as opposed to primitives in
natural languages, as in Adams, 1975, or in the general discussions in the
philosophical community) is apparent in the field of expert systems where,
adopting Bayesian methodology, one insists onusing probabilistic techniques
for the management of uncertainty. This is essentially due to the fact that,
intelligent systems are concerned with reasoning with knowledge. Now, not
only knowledge can be represented in different forms, but it is, in general,
expressed in some conditional form.

In the following, we will illustiate the above need. Recall that we write
b --, a for "if b then a", and use P(a I b) to specify the strength of this rule.

(i) This example is inspired from Adams (1992). Consider a box con-
taining red, blue and white balls with'unknown proportions. We are inter-
ested in the probability of getting a blue ball on the first drawn of a ball
from this box. Suppose that we learn the information "there are many more
blue balls than white balls" (or even with more precise numerical informa-
tion, such as P(bluelnot red); .99). Let us examine the heuristic expression
P(bluel(bluelnot red)).

As emphasized in Adams (1992), the above expression cannot be written
in standard probability theory, since the antecedent (bluelnot red) (or not
red--blue) is not yet defined mathematically, and more over, as mentioned
earlier, even if it can be defined, it does not belong to the domain of P. Thus,
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first we need to model (not red-+blue), and then (not red--blue)--+,blue as
an iterated conditional. Once this task is completed, we still have to specify
an associated probability measure on the new space of conditionals to give a
rigorous formulation of the above heuristic expression.

Let us pursue this example a little further. In expert systems, we usually
have several rules, say "b, --+ ai", i = 1,2,... ,n. To evaluate the probability
of some event of interest c from this rule-base, we formally write

P(a I(b --+ a,) and (b2 -- a2) and ... (b, --+ a,)).

The combination of rules, say, via- the logical connective "and" can be carried
out if "and" is specified. This is basically the problem of "reasoning with
conditional knowledge", in which we need to specify a logic, that is, an
algebraic structure of conditionals.

(ii) A basic inference principle in rule-based systems is Modus ponens.
In two-valued logic framework, where b -- a = b' V a, we deduce a if the

evidence b holds. This is because here the partial order < (set inclusion) is
precisely the entailment relation. Specifically:

(b -. )b = (b'V a)b = ab< a.

When the evidence c 54 b, one can obtain a degree of uncertainty on a by
computing P[(b' V a)c].

Similarly, in fuzzy logic (see e.g. Yager et al, 1987), extending classical
logic, and where a, b, c become fuzzy sets, the conclusion of modus ponens
takes the form (b -- a)c, describing a new fuzzy set in which "conjunction" is
chosen as some t-norm (e.g. minimum operator), and the fuzzy implication
b --, a is interpreted using some truth table for the fuzzy implication (binary)
operator -+.

However, if we insist on the quantification P(b --+ a) = P(a I b), we have
to proceed differently, again, since b -- a will be no longer V' V a.

Writing b -- a as a conditional object (a I b), and identifying c with
(c I Q), we can form (a I b)(c I fZ) where conjunction of conditionals need to
be specified. From that, a computation of probability is-possible.

(iii) As mentioned in Goldszmidt and Pearl (1992), the ruled-base of an
expert system might contain a rule of the form "If (b -- a) then (d -, c),
symbolized as (a Ib) =ý (c I d).
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It is obvious that to quantify this rule by conditional probability, i.e.
computing P[(a b) =• (c I d)], we first have to define the objects like (a I b).
Next, =:> is some implication operator among these conditional objects, which
can be derived from logical operations among these objects. Finally, what
probability measure on the space of conditionals to use in order to quantify
the rule?

3 Bayesian updating and belief construction

Before going into probabilistic inferences such as Bayesian updating proce-
dures and combination of evidence using belief functions (Shafer, 1976), let
us outline briefly previous efforts on formulating a mathematical theory of
conditionals (see e.g. Goodman, Nguyen and Walker, 1991, for details).

Consider - again a measurable space (fQ,A). In view of Lewis' triviality
result, there is no binary operation -• from A x A to A (where x denotes
cartesian product) such that for any a, b E A, and any probability measure
P on A with P(b) > 0, one has

P(b --, a) = P(a I b).

Thus, in modeling the rule b -- a, whose quantification is P(a I b), one has
to go "outside" of A.

One axiomatic derivation leads to a representation of b - a as an "inter-
val" in A (see also, Nguyen, 1992), namely

b---a = {xEA:ab<x<b'Va}
= [ab, b' V a] for short.

When a = b, by identifying [a,a] with a, we see that in general, b --+ a lies
outside of A.

It is easy to check that [a, b] = 6' V a --+ a (since a < 6), hence the space
of all closed intervals, denoted as A I A, is precisely that of all conditionals
b -- a.

This space contains A strictly. Contrary to a statement in Gilio and
Spezzaferri (1992), these conditionals are equivalent to DeFinetti's condi-
tional events. To see this, viewing Q as the set of all models in a logical
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setting, DeFinetti's conditional event (a I b) is identified with the generalized
indicator function (see Schay, 1968)

( for w E ab
(a I b)(W) = 0for w E a'b

u forw E b'.

It is obvious that such functions are in one-to-one correspondence with ele-
ments of A I A, since they specify Y and ab, and conversely.

In fact, it is precisely this three-valued logic connection that one can
discover all possible algebraic structures of A I A. For example, Lukasiewicz'
three-valued logic (see e.g. Rescher, 1969) will equip A I A with interval
operations. That is,

[a, b] A (c, d] = [ac, bdJ

[a, b] V tc, dI = [aVc, bVd].

Note that A I A is not a Boolean algebra since it is not complemented.
Indeed, if a < b then b' < a'.

However, this bounded, distributive lattice has a pseudo-complementation:

[a, bfi = [b', bl,

satisfying Stone's identity

[a,b'V[a, bl" = [1,11

so that A I A is a Stone algebra (see e.g. Gratzer, 1978).
The above investigations provide a new mathematical framework for ma-

nipulating conditional information. \

While the mathematical concept of a conditional event, or of a production
rule, is well understood, one would like also to consider some other equivalent
representation of b --+ a which possesses some "boolean" flavor. This would
be useful as in the following situations.

(i) Suppose that P is a prior probability measure on (f0,A). When we
learn that some event a E A has occurred, we update our knowledge P by
conditioning on a, that is, change P to P,. flow can we continue to do so if,
instead of learning a, we learn a rule b -, a? Viewing b -# a as a conditional
event [ab, b' V a], how do we make sense of PIab. Pv o as a new probability
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measure? The difficulty seems to lie in the fact that [ab, ' V a] E A I A
which is not a Boolean a-algebra.

(ii) In the simplest situation of using belief functions to quantify our
degrees of belief (see Shafer, 1976), one can construct a belief function F
on fl (finite) from the knowledge of P(a), for some subset a of Q as follows.
Define the assignment mass function m :O -- , 11, where ?)(fP) denotes
the power set of fl, by x E P(Sl),

P(a) if X = a
mn(z) = 1- P(a) ifz= Q

10 otherwise.

And then, as usual, for y E P'(Q1),

F(y) = m m(x).

As in the Bayesian updating case, suppose we know a, b and P(a I b), how
should we proceed to construct an associated assignment mass function?

The difficulty is similar to that in the Bayesian updating case.
In view of situations as above, we are going to investigate, in the next

section, a "booleanization" of conditionals which should provide a new tool
for probabilistic inference with conditional information.

4 A booleanization of conditionals

Recall that a rule of the form b -- a cannot be modeled as an element of the
a-algebra A, as long as we want to quantify it by P(b --* a) = P(a I b), for
any probability measure P on the measurable space (Q, A).

In Section 3, we mentioned the conditional space A I A, strictly larger
than A, which admits b --+ a in, its elements. However, A A A is not a or-
algebra. We are going to search for a a-algebra larger than A I A for which
rules b -+ a are its elements.

We start from the following remark of D. Bambcr, NRaD (personal com-
munication),

PNab) o

1- Z P(ab)[P(b')r=

7



(using -- O E r", for 0 < r < 1). The term [P(b)1" suggests a product

measure of the set Y' x Y' x ... x Y (n times), where x denotes cartesian
product.

Since n runs over the set of non-negative integers, an infinite (countable)
product space is required.

Thus, let f2 be the infinite cartesian product of fl, i.e.

C E fl, Cý= (•aWI ,,, W2, Wn E9, n > 1

A cylinder in 5 is a subset of ! of the form a, x a2 x ... X an x fl Xf x...,
for n > 1, and ai E A, i = I...,n.

To simplify notation, we write a, x a 2 x ... x a, to mean the cylinder
with this base. Thus, for example, ab is viewed as the cylinder ab x Q x . •.,
and b' x Y' is the cylinder b' Y b' Q x - --, and so on.

Let A4 be the infinite product c-algebra on f, that is, the smallest a-
algebra containing all cylinders of fl.

Let P denote the product measure on (Q, .A) with identical one-dimensional
marginals P, that is

iP(a, x a2 x ... x a,, x fl x f)/x ... ) P(a,)P(a2) ... P(an), Vn >_ 1.

Now, observe that the cylinders ab, V x ab, b x b' x ab, ... are pairwise disjoint
in f. Indeed

ab = ab x R x Q x .-. = {1 = (wi,w2 ,w 3,...) :w E ab, w, E Q, n > 21

b' x ab= {C= ( 1 ,,,,...): w E b',w2 E ab,.OnE',n > 31,

(note that ab and ab x b' are not disjoiiit).
Consider the map

f : .A x. • A

defined by
f(A, b) = ab V (b' x ab) V (b' x ' x ab) v...

where, by abuse of notation, V stands for set union in Q. Note that f(a, b)
is a countable union of cylinders, and hence is an element of A.
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Since is a probability measure, we have

P(f(a,b)) = P[ab V (b' x ab) V (b' x x ab) V...]
= P(ab) +P(b×xab) + P(b' × Y x ab) +...
= P(ab) + P(W)P(ab) + P(b')P(b')P(ab) +.

+00
= cP(ab)[P(b')J" = P(a I b).
n----O

Thus, the probability space (l, .. ,/P) extends (f0, A, P) in the sense that, for
a E A, P(f(a, Sl)) = P(a), and for a, b E A with P(b) > 0, P(f(a,b))
P(a I b).

In view of this matching, the rule b -- a can be modeled as f(a, b) which
is an event, but in another measurable space.

Now, given b -- a, we can update P rigorously by Pb-o, as in the uncon-
ditional information case. Indeed, we take Pb-. to be Pf(a.b) : A , [0, 1],
which is a usual conditional probability measure: For

A E A, Pf(a.b)(A) =P[A A f(a, b)]/P(f(a, b))

where A stands for set intersection in f. For c E A, we take Pb-,(c) =
if(,b)(C x Qt x fl x... ).

As a final remark, while the booleanization of conditionals provide a rigor-
ous framework for probabilistic inference when dealing with conditional infor-
mation, the computations might be complicated. It is anticipated that logical
operations among conditionals (viewed as intervals ir Boolean a-algebras)
can be used as approximations to Boolean operations on fl, and thus reduce
the complexity of computational problems.

Acknowledgements. We express out thanks to D. Bamber, P. Caiabrese
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