
AD-A262 755

Collection-oriented Match:
Scaling Up the Data in Production Systems

Anurag Acharya and Milind Tambe

December 1992
CMU-CS-92-218

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

DTIC
S ELECTE

MAR 0 5 1993 IJ

Copyright © 1992 Anurag Acharya and Milind Tarnbe

"This research was sponsored by the Avionics Laboratory, Wright Research and Development Center
Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under
Contract F33615-90-C-1465. ARPA Order No. 7597. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. government.

93 03593-04659

Keywords: Artificial Intelligence, Database rule systems, Collection-Oriented Match. Set-Oriented rule

languages, Scalable match algorithms

4%

I II I I I I • I I I -a . -'A , , .. .

Acceion For

NTIS CRAM
DTIC TAB
U! announced 0

B y-- .- ..-.----

Distnribution

Availability Codes

Avail and / or
Dist Special

Abstract

Match algorithms that are capable of handling large amounts of data, without giving up expressiveness are a key
requirement for successful integration of relational database systems and powerful rule-based systems. Algorithms
that have been used for database rule systems have usually been unable to support large and complex rule sets, while
the algorithms that have been used for rule-based expert systems do not scale well with increasing amounts of data.
Furthermore, these algorithms do not provide support for collection (or set) oriented production languages.

This paper proposes a basic shift in the nature of match algorithms: from uple-oriened to cotlection-onented. A
collection-oriented match algorithm matches each condition in a productior with a collection of tuples and generates
collection-oriented instandaadons, i.e., instantiations that have collection of toples corresponding to each condition
in the production. This approach shows great promise for efficiently matching expressive productions against large
amounts of data. In addition, it provides direct support for collection-oriented production languages. We have found
that many existing tuple-oriented match algorithms can be easily transformed to their coUection-onented analogues.
This paper presents the transformation of Rete to Collection Rete as an example and compares the two based on a
set of benchmarks. Results presented in this paper show that. for large amounts of data, a relatively underoptimized
implementation of Collection Rete achieves orders of magnitude improvement in time and space over an optimized
version of Rete. The results establish the feasibility of collecuon-oriented match for integrated database-producuon
systems.

1. Introduction
The integration of relational database systems and production systems (forward-chaining rule systems)

promises a number of benefits. Production rules have long been known to be a natural mechanism for
enforcing integrity constraints, performing authorization checks and maintaining views (derived data) 19].
They have also been used to implement alerters that monitor conditions and triggers that conditionally
initiate actions [7,28]. A number of prototype relational database systems - STARBURST [341.
POSTGRES [28], ARIEL [16] and RPL [8] - use production rules for some or all of these purposes.
Commercial relational database systems like INGRES [171 and Sybase [291 also support production
systems. Most of these systems use fairly simple match algorithms to determine the set of production
instantiations (ARIEL is an exception). This effectively limits the complexity of the rules that can be
efficiently supported in the presence of large amounts of data (281. Typical rules supported in these
systems have a small number of simple tests. Supporting powerful rules in a database environment
requires match algorithms that can efficiently handle complex tests in the presence of large amounts of
data.

On the other hand, expert systems have long supported powerful rules. These systems have traditionally
used more powerful match algorithms like Rete and its derivatives [3. 101 and Treat [211. These
algorithms, however, have not been designed for matching large amounts of data and do not scale
well [23, 33]. This limits the the amount of data that expert systems can deal with and forces the expert
systems that have been coupled with database systems to either use only simple rules or maintain a small
separate subset of data by periodically issuing queries [23]. Extending the scope of expert systems to
include data-intensive tasks, without giving up expressiveness, requires powerful match algorithms that
can efficiently match large amounts of data.

The question then is: can production match algorithms support a large number of powerful match
operations and yet scale well with increasing amounts of data ? In this paper, we attempt to answer this
question by investigating an approach that avoids the major limitation on the scalability of traditional
match algorithms.

The primary reason why traditional match algorithms used in expert systems don't scale well is that
they generate a large number of combinations of individual tuples [13, 23, 311. These combinations are
generated during the match procedure as intermediate results and as production instantiatons. The total
number of such combinations can be a high order polynomial function of the number of ruples [23].
which leads to a combinatorial explosion as the number of tuples grows. For the sake of efficiency.
almost all existing match algorithms that are capable of matching powerful rules maintain some of these
combinations as intermediate match state [5, 141.

Research efforts at developing match algorithms with better scaling characteristics have focussed either
on maintaining less state [5, 161 or on efficiently maintaining the state on secondary storage f4. 26. 331.
These algorithms retain the tuple-oriented nature of the traditional algorithms. That is. they match
individual tuples, and generate combinations of individual tuples for intermediate results and
instantiations.

We take a different approach. Wc propose a basic shift in the nature of the match process: from tuple-
oriented to collection-oriented. In collection-oriented match, collections of tuples that match individual
conditions are the unit of matching, rather than individual tuples. The intermneiate results and
instantiations of collection-oriented match are combinations of these collections, instead of combinations
of individual tuples. For large amounts of data, the number of tuples that match individual conditions is
likely to be large. In such situations, the number of collections will be much smaller than the number of

2

tuples. This allows collection-oriented match to tame the combinatorial explosion, since it generates
combinations of collections instead of collections of tuples. Thus, it promises substantial improvements
in space and time requirements over tuple-oriented match algorithms without giving up expressiveness.

Collection-oriented match also addresses another problem with tuple-oriented match algorithms. These
algorithms do not provide efficient support for collection-oriented production languages. Collection-
oriented production languages are arguably more suitable for integration with relational databases than
tuple-oriented languages, since the unit of operation in relational databases is a relation rather than a
single tuple. Collection-oriented languages also make it possible to specify aggregate operations like
count, sum, statistical operations like mean and variance, data-fitting operations etc which .MC important
for database-based tasks [8, 12. 341. While such operations can be expressed in tuple-oriented languages,
they cannot take advantage of optimized procedures for these operations. Collection-oriented match
provides direct support for collection-oriented production languages. If needed, it can also be used to
implement a tuple-oriented production system such as OPS5 [61.

We have found that many of the tuple-oriented match algorithms can be easily transformed to their
collection-oriented analogues. To illustrate this, we describe the transformation of Rete to Collection
Rete, its collection-oriented analogue. To investigate the efficiency and scalability of Collection Rete, we
used it to implement a collection-oriented extension of OPS5. called COPL. We compared the
performance of this implementation with that of an optimized Rete-based OPS5 implementation on a set
of scalable benchmarks. Results show that. on these benchmarks, a relatively underoptimized
implementation of Collection Rete achieves between one and four orders of magnitude improvement in
time and up to one order of magnitude improvement in space over an optimized Rete implementation.

We believe this work has both scientific and engineering impacts. On the scientific front. these results
provide information on the efficiency and scaling characteristics of tuple-oriented and collection-oriented
match approaches. From the engineering perspective, we view them as establishing the feasibility of
collection-oriented match for matching large amounts of data and, therefore, for its use in integrated
database-production systems. In several of the experiments. the Collection Rete implementation (with its
limitations) matched over a million tuples within a reasonable time period. To the best of our knowledge.
this is approximately two orders of magnitude larger than the largest working memory previously dealt
with. Clearly, these results are specific to our benchmarks and more research on collection-oriented match
algorithms will be required before such large working memories can be routinely dealt with.

The rest of this paper is organized as follows. Section 2 introduces OPS5 and the terminology that we
will use in the rest of the paper. Section 3 presents collection-oriented match. and describes how it
supports collection-oriented production languages. Section 4 describes Rete, and its transformation into
Collection Rete. Section 5 describes our benchmarks, experimental methodology, results and analyses.
Section 6 addresses the issue of validity of these results. Section 7 discusses related work and the
implication of the collection-oriented approach for other match algorithms. Finally. Section 8 presents
conclusions and discusses issues for future work.

2. Background
Various languages have been proposed for integrated database-production systems. Many researchers

have focused on using OPS5 or OPS5-style production system languages ftr this
intzgration [5, 8, 12, 16, 27]. This section introduces OPS5 terminology using the simple production
system in Figure 2-1.

Figure 2-i-a shows the working memory in the system, essentially a relational database. The working
memory contains nine tuples (or working memory elements): W1,W2...W9. The symbols GOAL and

3

EMPLOYEE are called the classes of the tuples. and correspond to relations. The up-arrows (A) in the
tuples indicate attribute names, and correspond to the fields in a relation. These tuples are to be matched
with the production MAKE-TEAM, shown in Figure 2-1-b. The production has three conditions on its
condition-side or LHS. and one action on its action-side or RHS. The symbols in the conditions are either
constants. e.g.. HARDWARE, that test if these constants appear in specific fields of the tuples. or
variables (enclosed in c) that bind to values appearing In identical fields in the tuples. The production
MAKE-TEAMS teams up a pair of employees, who have worked together on a previous project, but have
different areas of expertise. The make command on the action side actually creates a new tuple of class
TEAM that includes the two members.

WI: (GOAL -TYPE CREATE-TEAM)

W2: (EMPLOYEE -NAME A 'PREVIOUS-PROJECT WARP -EXPERTISE HARDWARE.
W3; (EMPLOYEE -NAME B 'PREVIOUs-PROJECT WARP -EXPERTISE HARZWAPE)
W4: (EMPLOYEE -NAME C 'PREVIOUS-PROJECT PSM E-XPERTISE HARZWAPE)

W5: (EMPLOYEE 'NAME D ^PREVIOUS-PROJECT PSM ^EXPERTL3E RAPDWAPEý

W6: (EMPLOYEE ^NAME E ^PREVIOUS-PROJECT WARP -EXPERTISE ':MPILEPS'
W7: (EMPLOYEE ^NAME F ^PREVIOUS-PROJECT WARP "EXPERTISE :CMP:2zRC;

W8: (EMPLOYEE ^NAME 0 'PREVIOUS-PROJECT PSM 'EXPERT'SE ZOMPILERC'

W9: (EMPLOYEE ^NAME H ^PREVIOUS-PROJECT PSM ^EXPERTISE "OMPTLERS:

(a)

(PRODUCTION MAKE-TEAM

(GOAL 'NAME CREATE-TEAM)

(EMPLOYEE ^NAME <Ni> 'PREVIOUS-PROJECT <P> 'EXPERTTSE HARZWARE)
(EMPLOYEE ^NAME <N2> ^PREVIOUS-PROJECT -P> "EXPERTISE fCOMPILEP:'

(MAKE TEAM 'FIRST-MEMBER <Ni> ^SECOND-MEMBER NN2>1

(b)

Figure 2-1: A simple production system: (a) Working memory, and (b) A production.

Tuple-oriented match in a production system involves finding all possible tuple-oriented instantiations
of the production given the tuples. A tuple-oriented instantiation is a combination of tuples that provide
consistent bindings for the variables in the production. In Figure 2-1-a. the instantiation (WI, W2. W6)
provides one such consistent binding WARP for the variable <P>. Seven other production instantiations
are also generated: (W 1, W3. W6). (W 1, W2, W7), (W 1. W3. W7), (W 1. W4. WS), (W 1. W5. W8), (W 1.
W4. W9), and (Wi. W5. W9). When instantiations fire. action side is executed in the context of its
variable bindings, updating the working memory of the system.

3. Collection-Oriented Match
Collection-oriented match treats collections of tuples, rather than individual tuples as the primary

objects to be matched. A collection-oriented match algorithm matches each condition in the productions
with a collection of tuples and generates collection-oriented instantiations, instantiations that have
collection of tuples corresponding to each condition in the production. All tuples in the collections are
guaranteed to be mutually consistent. The following example clarifies this point.

Consider the production system shown in Figure 2-1. Here, collection-oriented match results in two
collection-oriented instantiations. The first is ({WI). (W2,W3}. {W6.W7}). Here. (WI) matches the
first condition, (W2. W3) matches the second condition and [W6. W7) matches the third condition. The
tuples in these three collections are mutually consistent with each other. i.e.. they have consistent values

4

for the variable <P> - WI is consistent with W6 and W7, W2 is consistent with W6 and W7, and so on.
Similarly, the second collection-oriented instantiation is ((WI), (W4,W5), (W8,W9}).

A comparison of these collection-oriented instantiations with the tuple-oriented instantiations presented
earlier illustrates two useful points. First. the two types of instantiations contain identical information
about consistency of matching tuples. Thus. the tuple-oriented instantations can be easily generated from
collection-oriented instantiations by creating a cross product of its component collections. For instance, a
cross product of (WI) , (W2,W3). (W6,W7). generates the first four tuple-oriented instantiations.

Second, the comparison illustrates the source of execution space and time efficiency in collection-
oriented match. As mentioned earlier, the primary cause of high space and time costs in tuple-oriented
algorithms is the generation of a large number of combinations of individual tuples. Collection-oriented
match cuts down on the number of such combinations. For instance, suppose each of the three collections
in one of the collection-oriented instantiations above contained N elements - the instantiation would
consume (N + N + N =) O(N) space. On the other hand. tuple-oriented match would create a cross
product of (N x N x N) tuple combinations as its instantiations: and consume O(N 3) space. If these
instantiation are maintained as part of the match state, as they are in many match algorithms, then the
space savings from collection-oriented match will be O(N 3). For a production with K conditions, the
asymptotic savings are O(NK). Actual savings are even greater for algorithms that maintain intermediate
products - since the constarh factor is larger for them.

A reduction in the number of combinations, either intermediate products or instantiations. leads to
coresponding speedups in execution time. For instance, avoiding the generation of O(NK) instantiations
will lead to correspondingly large speedups. Furthermore. the overheads of updating and maintaining
combinations as part of the match state are also reduced dramatically.

The preceding arguments establish two factors as influencing the speedup and match state reduction in
collection-oriented match: (i) the size of the collections Lnz match individual conditions (N in the
preceding paragraph), and (ii) the number of conditions in the productions (K in the preceding paragraph).
A third such factor is the amount of fragmentation in the component collections. The example in Figure
2-1 shows a simple case of fragmentation. Suppose all of the EMPLOYEE nuples in the figure had an
identical value for the PREVIOUS-PROJECT field, say MACH. Then matching the production MAKE-
TEAM using collection-oriented match would have resulted in a single collection-oriented instantiation
((WI), (W2,W3,W4,W5}, (W6,W7,W8,W9f). However, the EMPLOYEE tuples in Figure 2-I-a have
two different values for the PREVIOUS-PROJECT field. Therefore, two different collection-oriented
instantiations, with smaller component collections, are formed. It is as though the collection-oriented
instantiation with the larger collections has fragmented. In general. fragmentation may lead to the
formation of many collection-oriented instantiations with smaller component collections. This increases
both space and time requirements since more match state has to be generated and maintained. However.
fragmentation occurs because of the necessity to maintain consistency between collections. It is thus a
feature of the program and not the implementation.

Collection-oriented match does not improve the worst-case space and time complexity of production
match. It is still possible to encode NP-complete problems such as hamiltonian circuit or subgraph
isomorphism within the match of a single production.

3.1. Collection-oriented languages
As discussed earlier, ruple-oriented instantiations can he easily generated, as needed, from the

collection-oriented instantiations. This allows collection-oriented match to function simply as an efficient
match implementation for tuple-oriented production systems such as OPS5.

5

More importantly, collection-oriented match provides direct and efficient implementation support for
collection-oriented production languages [12, 341. At the core of such languages is the capability to
directly manipulate collections (or sets) as single entities, instead of manipulating them on an element by
element basis. These languages directly support collection-oriented operations such as counting, mean.
variance etc. In collection-oriented match, a single instantiation packages together collections that are
consistent with each other. This allows the action side of a production to be executed in the context of
values from a collection of tuples. rather than values from an individual tuple. For instance, in Figure 3- 1.
<ENMP> will be bound to the entire collection of EMPLOYEEs with an expertise in COMPILERS. Thus.
given the working memory from Figure 2-I-b. <EMP> will be bound to (W6,W7,W8,W9}. The function
CARDINALITY on the action side then counts these employees, and creates the tuple (COMPILER-
EXPERTS ACOUNT 4).

(PRODUCTION COUNT-COMP I LER - EXPERTS

(GOAL -TYPE COUNT-COMPILER-EXPERTS)

(EMPLOYEE ^NAME <X> ^EXPERTISE COMPILERS1 <EMP>

"-(MAKE COMPILER-EXPERTS 'COUNT (CARDINALI-Y EMP-

Figure 3-1: A simple example of a collection-oriented action.

Another language-related issue is the role of negated conditions in production systems. Negated
conditions are commonly used to restrict the match and sequence the firing of instantiations. In many
cases, the collection-oriented approach obviates such usage. A example is iterating over a collection of
tuples. Figure 3-2 shows how the counting operation performed by the collection-oriented production in
Figure 3-1 would be done in a tuple-oriented language.

(PRODUCTION CCUNT-COMPILER-EXPERTS

(GOAL -TYPE COUNT-COMPILER-EXPERTS)

(EMPLOYEE ^NAME <X> ^EXPERTISE CCMPILERS -FEMP-

(COMPILER-EXPERTS ^COUNT <VAL>! --C-..

(EMPLOYEE -NAME <X> -EXPERTISE COMPILERS 'COUNTED YES)

(MODIFY <C> ^'COUNT (COMPUTE ,VAL, - 1P)

(MODIFY <EMP> ^COUNTED YES))

Figure 3-2: Counting in a tuple-oriented production system.

We have developed a language called COPL (Collection-Oriented Production Language) with
collection-oriented semantics. COPL extends OPS5 in three ways. First. the instantiations of COPL
productions are collection-oriented, i.e., the variables are bound to collections of values instead of
individual values. Second, COPL actions are collection-oriented. For instance, the rmake action creates a
collection of tuples instead of a single tuple, the remove action removes a collection of tuples, and so on.
Third, as part of its actions, COPL supports calls to functions that operate on collections of values. These
functions perform collection-oriented operations (such as count, sum, etc.) or element-wise operations.
and return collections of values. Work on COPL is currently in preliminary stages. and many issues need
to be resolved. Nonetheless, we have used this version of COPL for our experiments.

6

4. Transforming a Match Algorithm
To obtain a concrete basis for investigating collection-oriented match, we elected to transform the Rete

match algorithm [10] to its collection-oriented analogue: Collection Rete. The decision to transform Rete
was based on three reasons. First, Rete is the most commonly used algorithm in production system
implementations. Second, Rete is intended for systems with a relatively slow rate of change of tuples.
Database systems are expected to have a slow rate of change. Third, an implementation of the Rete
algorithm was available to us. (As Section 7 shows, other algorithms can be similarly transformed.) In
order to understand Collection-Rete, it is first useful to understand Rete itself. Section 4.1 describes Rete;
subsequently, Section 4.2 will describe Collection Rete.

4.1. Rete
Rete employs two main optimizations: (i) it maintains match state from previous computations and (ii)

it shares common parts of conditions in a single production or across productions to reduce match effort.
We will use the simple production system shown in Figure 2-1 to explain Rete. In Figure 2-1, tuples
W1,W2...W9 are to be matched with the production MAKE-TEAM. Rete's operation in matching this
production can be understood using the analogy of water-flow through pipes. As shown in the upper part
of Figure 4-I-a, each condition of the production can be considered as a pipe, ending in a bucket. The
tuples flow through these pipes. Each pipe has filters associated with it. which correspond to the constant
tests in the condition, and allow only particular tuples to pass through. For example, the filters in the first
pipe (corresponding to the first condition) check if the tuple is of class GOAL, and has the value
CREATE-TEAM for its TYPE field. Therefore, only W I passes through the first pipe and appears in the
bucket for the first pipe. Note that since the filter EMPLOYEE for the second and third pipes tests an
identical field of the tuples, this filter is shared between the two pipes, illustrating the sharing
optimization.

Next, the small boxes with Xs inside them check for consistency between tuples. Since there is no
variable test between the first two conditions, the box that joins the first two conditions does not perform
any consistency checks. The tuple WI is therefore found consistent with each of the tuples W2,W3,W4,
and W5. This leads to the creation of the four tuple combinations: (WlW2), (W1,W3). (WlW4) and
(W I.W5), which are stored in the following bucket. Now the second small box checks the consistency of
each of these four combinations against the tuples matching the third condition: W6. W7. W8 and W9.
This involves testing the consistency of bindings for variable <P>. Eight different combinations of nuples
(W1,W2,W6),...(WI,W5.W9) succeed and form instantiations of this production. These instantiations are
stored in an instantiation set.

The buckets and the instantiation set in Figure 4-1-b contain the match state of Rete. If a new tuple. say
WI0, is added to the system. then only WIO will be matched; Rete will avoid re-matching WI.W2 W9.
The penalty for maintaining this state is that if a tuple is deleted, it has to be deleted from all the
combinations that contain it.

In a Rete implementation, the productions are compiled to a datafilow network as shown in Figure
4-1-b. Tuples travel down from the ROOT node. The filters that test for constants are called constant test
nodes. The buckets that store individual tuples are called alpha memories. The tuples stored in alpha
memories are called right tokens. Combinations of tuples. e.g.. (W I, W4), are called left tokens and are
stored in beta memories. And-nodes perform consistency-checks. while P-nodes add (and delete)
instantiations to the instantiation set. The tuple combinations mentioned as the cause of the poor
scalability of tuple-oriented algorithms are the left tokens and the instantiations.

7

ROOT

workin m• y

I EMPLOYEE

Cot GOAL

COND 1rITol-1 testCOD "" N
Co#)rrtN-1 CONDITION-2 nodes

COA EPLOYEE CONDITTON- 3 41CREATE-TEAN KAIR EAR E tc 04P IL E RS

CRE I4ARUWARE

I f -
T (A4.W2 |1 W2W WW,27,w!w

| tl~w) Imemorie WwtwS (wWw9

W4,1 P8W nodeod

(WI, 12. M6 1 144. W4) 141. 142. W6) (Wl, W4. 148)
(WI. W3, W6) (m1e 4, 14r) (W1. W3. W6) (W.1. W, 8)
(W1, W2. W6) (WI W4. W4)9 (WI, W2. W6) (W1. W4. W9)

.W1, W3, w7) (wI, W5, w9) (W1. W3, w7) (wI, wS. w9)

(-) (b)

Figure 4-1: Rete algorithm: (a) Analogy of water-flow through pipes, and (b) Dataflow network.

4.2. Collection Rete
We will use the example in Figure 2-1 to describe Collection Rete. Figure 4-2-a shows the

transformation of the Rete from Figure 4-1 into Collection Rete. (The detailed algorithm appears in

Appendix I.)

In Collection Rete, each condition matches a collection of tuples. Therefore, alpha memories in
Collection Rete store collections of tuples that match particular conditions. The first alpha memory stores

(WI). Since there is no consistency test between the first two conditions. (WI) is found consistent with

the collection {W2,W3,W4,W5} from the second alpha memory, forming a single left collection-token
({QWI }, {W2,W3,W4,W5}). In forming such a token, two constraints are observed. First, all the ruples in

the component collections of the token are guaranteed to be mutually consistent. Second. to obtain
maximum benefit from collection-oriented match, largest possible left collection-tokens are formed. For
instance, two separate left collection-tokens ((WI 1. {W2,W31) and ({WI), {W4,W51) could potentially
be formed instead of the single ({ W l), {W2,W3.W4,W5)), but this fragmentation has been avoided.

At this point, the left collection-token (QW I), (W2,W3,W4,W5 }) formed is stored in the beta memory

as shown. It is then checked for consistency with (W6,W7,W8,W9) in the third alpha memory to form
new tokens. Given the consistency test for variable <P> at this point, forming left collection-tokens

8

•I~ZKkOYu EML•[PLOYEE

CREATE-TEAM4 HARDWARK COMPILERS CR EAT E TE)PA R 4AR WAR E COMPILERS

(WI) (V2.W3,E4.WS) (W6,W7.W8,W9j WIWI fW I W W4,WS,1) 1I (W6'W7'W0.W9)1

L L
((Wl). NW2.WI). (W ".)) ((WI), (W2 , W3 0), W W6,w7ýn
((WI). (W4.WS), (WSW9)) ((ll, (W4,WI •). (,SU,9)J

(0) (b)

Figure 4-2: Collection Rete: (a) Transformation of Figure 4-1. and (b) Adding a tuple W 10.

becomes more complex. A simple method for forming such tokens is as follows. The left collection-
token is first sequentially compared with each element of the collection in the third alpha memory -
W6,W7,W8, and W9. During this process, a subpart (QWI), {W2.W3)) of the left collection-token is
found consistent with the tuple W6, forming a new left collection-token ((WI), {W2.W3), (W61). The
subpart is also found consistent with the tuple W7, forming ({WI), {W2,W3}, (W7)). Two other new
left collection tokens are also formed: ((Wl), (W4,W5}, JW8)) and (QWI), {W4.W5}, {W9}).

While these four newly formed left collection-tokens are consistent, they do not contain the largest
collections possible. For this, a merging step is required. This step maintains the consistency of
component collections. For two to'-ens to be merged, they must differ in exactly one component. For
instance, ((Wi), {W2,W3}, (W6}) and ((Wl), (W2,W3), (W7}) can be merged together to form
((WI), {W2.W3}, (W6,W7)). Similarly, the remaining two tokens may be merged to form: ((WIW ,
(W4,W5), {W8,W9)). After this, no further merging can take place. Since this is the final condition of
the production, the two tokens ({WI). (W2,W3}, {W6,W7)) and ((WI), (W4,W5}, (W8,W9}) are sent
to the P-node as collection-oriented instantiations.

Figure 4-2-b shows the operation of Collection Rete when a new tuple W 10 of the form (EMPLOYEE
^NAME I ^PREVIOUS-PROJECT WARP AEXPERTISE HARDWARE) is added to the working

memory. WIO becomes a member of the collection matching the second alpha memory. As in Rete, W 10
is then checked for consistency with the contents of the previous alpha memory. Since there is no

9

consistency test, a left collection-token ((WI}. {W10)) is formed. This token is then merged with the
token in the following beta memory to form ((WI), [W2,W3.W4,W5.Wl0)). While ({Wl). {Wl0)) is
merged, it is also compared with the collection in the third alpha memory. The token ((WI), (Wl0),
(W6.W7}) results from this comparison. This token is merged with an existing collection-oriented
instantiation that differs in only one slot, giving rise to the instantiation ({WI), (W2,W3.WlO).
{W6,W7}) as shown.

If a tuple is deleted, then it follows a course symmetrical to its addition. Suppose W 10 is deleted from
the Collection Rete in Figure 4-2-b. Wl0 is first deleted from the collection in the second alpha memory.
A new left collection-token ({WI}, (W1O]) is formed, with a delete flag. This token is then propagated
to the following memory nodes. This token causes breaching of the tokens in the succeeding beta
memories and in the instantiation set. Breaching undoes the effect of merging. The final result of this
processing is that the Collection Rete in Figure 4-2-b is reverts to its state in Figure 4-2-a.

This is the basic form of Collection Rete. A battery of optimizations can be applied to this basic
structure. Some of these optimizations are simply transplanted from Rete. An example of this is the
delete optimization introduced by Scales [251. When a tuple such as WIO is deleted from an alpha
memory, new left collection-tokens are not formed; instead, the successor beta memories (and the
instantiation set) are scanned, and any copy of the tuple in any token and instantiation is eliminated. This
automatically achieves breaching. Several other optimizations, some targeted specifically towards the
merging process - potentially a very expensive step in Collection Rete - are also possible. For
instance, a collection in an alpha memory can be pre-emptively divided into two or more equivalence
classes, where tuples within a single equivalence class have identical values for the fields tested for
consistency. In Figure 4-2, {W6,W7,W8,W9} can be divided into two equivalence classes: {W6,W7} and
(W8,W9}. Tuples in these two classes have identical values for the field PREVIOUS-PROJECT. Thus.
if the first tuple in a class is found consistent, then the entire class is guaranteed to be consistent, which
greatly reduces the merging effort for the collectiOn.

Hashing alpha and beta memories achieves a significant speedup for the tuple-oriented Rete
algorithm [151. Hashing quickly isolates the tokens in memories that are likely to match. In Collection
Rete, however, the gains from hashing are not expected to be as high. Each left collection-token
corresponds to many tuple-oriented tokens. As a result, much less effort is needed to isolate matching
tokens. Furthermore, hashing involves additional overheads, since the left collection-token has to be
placed in multiple buckets corresponding to the number of tuples in the collections being tested. These
considerations do not hold for alpha memories and they could still be hashed. However, the equivalence-
classes optimization already provides some of the advantages of hashing by partitioning the list of tokens.

5. Experiments
5.1. Benchmarks

We benchmarked implementations of Collection Rete and an optimized version of Rete. The Collection
Rete implementation was done as a part of a COPL implementation. For a Rete implementation, we used
CParaOPS5 [1, 181, the public-domain C-based OPS5 implementation available from Carnegie Mellon. It
is one of the fastest implementations of Rete and is faster than the previous version whose performance
was shown to be comparable to that of ops5c developed at University of Texas. Austin [221.

For the implementation of COPL, we modified a derivative of CParaOPS5 to use the Collection Rete
algorithm. The COPL implementation uses basic Collectin Rete augmented by the delete and
equivalence-class optimizations described in in the previous section. We have devised several other
optimizations, but have deferred their incorporation till we can evaluate their relative efficacy. Following
the argument from the previous section, we have not incorporated memory hashing into our

10

implementation. The current implementation of COPL does not support negated conditions; work on
implementing them is currently in progress. !However, as discussed in Section 3.1, COPL obviates the
need for many negated conditions. For each of the benchmarks, the CParaOPS5 programs required
negated conditions but COPL versions did not.

The benchmark suite onsists of three programs that are able to process varying amounts of data. This
allows us to investigate efficiency and scalability of the two algorithms. The programs are:

" make-teams: This program operates on a database of employees which contains information
about their present department, previous project and an evaluation of how good they are. The
task is to build teams of employees given constraints that each member must be from a
different department and some of the members must have worked together previously. The
programs builds and counts teams that are "good", goodness being defined in terms of the
individual evaluations. Data for this benchmark was generated by tking the number of
employees as an argument and randomly assigning employees to departments and projects.

"* clusters: This program operates on a collection of image objects that are char.cterized by
their position and type (e.g. road, hangar, tarmac etc.). It computes the distance between the
objects, builds clusters and compuites their average size. This task is similar to the those
performed by some knowledge-based image understanding systems (like SPAM [201). Data
for this benchmark was generated by taking the number of objects as an argument and
placing them randomly in a 100x 100 grid.

" airline-route: Tis program operates on a database of airline routes which contains
information about source, destination and cost of each flight. The task is to find a minimum
cost route for a particular traveler given the desired number of stages. If no route with the
desired number of lights can be found, it finds the best alternate route. Data for this
benchmark was generated by assuming ten airlines and twenty airports. Each airline was
randomly assigned a hub, and all flights were routed for that airline as outbound-inbound
pairs to random destinations. The cost for each flight is randomly assigned and is the same in
both directions.

For each benchmark, we ran a sequence of experiments with progressively larger amounts of data.
Each sequence of experiments was continued till thlw CParaOPS5 version ran up againsi time and/or space
limits In each case, we extended the series of experiments for the COPL version till it too ran up against
similar limits. We gathered numbers on the space and the time requirements and the size of working
memory for each experiment. For time measurements, we performed each experiment three times and
used the average time. All experiments were performed on a pair of Decstation 50(0X200 machines.
running Mach 2.5. with 96M memory. All the C code was compiled by the MIPS rc compiler with the -0
option. 1 The CParaOPS5 compiler had all the optimization switches turned on. To determine the tftal
execution time, we used the /bin/time facility available in Unix.

5.2. Results
For each benchmark, we plotted both time and space requirements against the input data iize. Noto that

some of execution-time graphs, the line for COPL programs is slightly above the x-axis. and due to the
scaling, appears to lie on it. Giraphs for execution time and space show results only for th, experiments for
which both CParaOPS5 and COPL programs could be run.

Figures 5-1. 5-2 and 5-3 contain the graphs plotting the total time and speedups against the input data
size for make-teams, clusters and airline-route respectively. The speedup graphs are plotted on a ! ;cale

'The C code includes COPL and CParaOPS5 libraries. generated wode from tuoth the comptilers and code for the extrmal
functions called.

11

to accommodate the large range. The inflections in the speedup curves are data dependent and not an
artifact of the match algorithm. They are caused by the order in which the random data is generated. The
maximum speedups were 13842 for make-teams. 1429 for clusters and 57 for airline-route.

I oo

-6 ý s 31 -

3000-----------------4 f. 31 -

"2000 10
_0 0 0

3 2 .

-1000--------------------

"0 10 20 30 40 50 60 70 70 1 2 30 40 50 60 70 50

(a) Total time (b) Speedups for COPL

Figure 5-1: Execution tinie for make-teams

l200 - * -C
- - ~~316 -

600--------------------/00

OW 32-
400 -1
200 ---

"2 0 50 10 150 200 250"300 30 400 0- so 100 160 200 250 300 350 4W0

Numbe A irput upli Numbw at ffVtA fup4.

,a) Total time (b) Speedups for COPL

Figure 5-2: Execution time for clusters

Figures 5-4 and 5-5 contain corresponding graphs plotting the maximum size of the match state
(including alpha-memory, beta-memory and the instantiation-set) against the input data size. The highest
ratios in the size of match state were 13.6 for make-teams, 3.4 for clusters and 1.6 for airline-route.

In all the three cases, for small amounts of data, the execution time and the size of match state for both
CParaOPS5 and COPL are comparable. As the size of input data increases, COPL soon dominates
CParaOPS5.

Another important metric for production system performance, besides speedup and state reducdon. is
the maximum size of working memory processed. This is different from the size of the input data and
includes all intermediate data generated during the computation. Figures 5-6 and 5-7 show graphs
plotting the maximum size of working memory against the execution time. These graphs have been

12

_OM 25 - --

A60000- -Y

~~10

4OWO

-200--0 _ -

•-1-,-,,, lf -•'S 2 -- - ___

0. -0oo , - 2 -.- - -

.1000 1"0 so 100 150 2000300 050 100 150 200 250 300
NUfd bnwA Numbe 0t4 riql t wpl

(a) Total time (b) Speedups for COPL

Figure 5-3: Execution time for airline-route

w 800 - -/ J 1A

-- - - / -

4000--

Gooooo

200 -- 200

0-... .==

210 30000000 5010.10020030

N 0

n So iroo ISo 200 250 300o5 0

(a) make-teams (b) clusters
Figure 5-4: Size of the total match state for make -teams and clusters

S7000D f

3000

2000 -.

1000

0 50 100 1iSO 200 250 300
NwyiW of WwAu tupui

Figure 5-5: Size of the total match state for airline-route

13

plotted on a log-log scale to accommodate the large range on both axes. They allow us to compare the
maximum size of working memory that each pair of programs can handle in a given amount of time.
These graphs show that In the same amount of time, COPL is able to process up to two orders of
magnitude more tuples than CParaOPS5. Furthermore, as more time becomes available, COPL is able to
make better use of it than CParaOPS5. These graphs show results for all COPL runs not just those for for
which the corresponding CParaOPS5 runs could be completed. The largest working memory processed
by COPL programs contained about 1.4 million tuples for make-teams, a little over 2.5 million tuples for
clusters and a little over 200,000 tuples for airline-route. Corresponding numbers for CParaOPS5 are
3015, 31813 and 36455. While these numbers do seem small compared to the corresponding COPL
numbers, it is important to remember that production system programs have usually dealt with no more
than a few thousand tuples.

310=76 Z 3162 .- -

31t2 I /

100••(00 iii
3182 ----

3161_-

100 --- 316 ~.4

L t mee take (IoocIOC

(a) make- teams .(b) clusters
Figure 5-6: Maximum size of working memory for make-teams and clusters

X 10000d -
631620-----

3162

1000-

II - Par PS5

0 0 1 3 10 32 100 316 1000316210000

Figure 5-7: Maximum size of working memory for airline- route

Raw data for the experiments is available in Appendix 11.

14

5.3. Analysis
As mentioned in Section 3, three factors govern the speedup and the match state reduction achieved by

Collection Rete: (i) the size of the collections that match individual conditions, (ii) the fragmentation
caused by the constraints between the conditions, (iii) the number of conditions in the productions.
Programs that have large productions with large collections matching each condition and little
fragmentation will achieve large time and space improvements. Programs that don't have some or all of
these characteristics will achieve lower or no improvements. The three benchmarks provide an
illustration. All three of them have large collections matching individual conditions, and hence show
some performance improvement. All three have some fragmentation, but airline-route has a significantly
higher amount of fragmentation, and shows correspondingly smaller speedups. Of the other two.
make-teams has more fragmentation than clusters, but it also has more conditions (three-to-four) per
production than clusters (two conditions). This more than offsets the effect of fragmentation in
make-teams, and leads to large speedups and match state reduction.

While all three programs achieve match state reduction, this reduction is not as high as the speedups
achieved. Partly. this is because alpha memories, which typically consume very little match time.
consume a relatively large proportion of match-state. Thus, for beta memories alone. the reduction in
match state is much higher. However, there are also some small match-state overheads associated with
COPL. First, the COPL implementation imposes additional organization in form of equivalence classes in
alpha memories. Second. it introduces additional organization on the left collection-tokens and the
collection-oriented instantiations. In particular. while tuple-oriented tokens consist of an array of pointers
to tuples, collection-oriented tokens are represented by an array of pointers to collections of tuples. each
collection being implemented as a cons-list. The extra space consumed by these overheads depends on
the amount of fragmentation in the system. For instance, if there is high fragmentation, as in airline-route.
then the cons-list becomes a factor in the space consumed.

We believe this work has b6th scientific and engineering impacts. On the scientific front, these results
provide information on the efficiency and scaling characteristics of tuple-oriented and collection-oriented
match approachs. From the engineering perspective, we view them as establishing the feasibility of
collection-oriented match for matching large amounts of data. For the clusters benchmarks, our
Collection Rete implementation (with its limitations) is able to match over 2.5 million tuples in about 1(X)
seconds; for the make-teams benchmark, it is able to match 1.4 million tuples in about 52 seconds. To the
best of our knowledge. this is approximately two orders of magnitude larger than the largest working
memory previously dealt with. Obviously, these results are specific to our benchmarks and more research
will be required before such large working memories can be routinely dealt with.

6. Discussion
Results of the magnitude described in this paper inevitably raise questions about the fairness of the

comparison and the validity of these results for real-world applications. By building a highly optimized
system and comparing it with a suboptimal system using benchmarks that contain large and
unrealistically complex productions, results can be made to look good. However. in our comparison. the
exact opposite is true. The target of our comparison, CParaOPS5. is actually a highly optimized system.
as testified by the following: (i) CParaOPS5 is based on a well-known compilation technique I I I and
includes a variety of optimizations (e.g. hashing of memories, caching of global values. aggressive
inlining); (ii) An earlier, slower version of CParaOPS5 was found to be only a factor ot 1.5 to 2 slower
than the optimized opsSc system distributed by the University of Texas, Austin 1221; (iii) For small
working memory sizes, CParaOPS5's performance is comparable to that of COPL. indicating that COPL
does not have some low level implementation advantage; (iv) CParaOPS5 has provided efficient support
for the SPAM knowledge-based image recognition system [201, which regularly takes fifty thousand to a

15

million production firings to run. Compared to CParaOPS5, the COPL system is in a relatively
underopdimized state. This is our first implementation of COPL, with no time spent on tuning its
performance. Additionally, our benchmark set contains simple productions of three-to-four conditions.
with the clusters benchmark containing only two conditions per productions. (A larger number of
conditions will give COPL much higher speedups.)

Furthermore, traditionally, performance improvements in the production systems world have been
confined to single digits (22, 24. 321. The speedups here go much beyond these single digits. It is against
this background that we find the results presented in this paper promising.

However, our benchmarks not completely bias-free. Given that we targeted production systems that
will operate with large amounts of data, the benchmarks are dominated by matching of large collections.
Will real integrated database-production systems show improvements similar to these benchmarks? If
these real systems match large collections, then they will obtain similar speedups. The size of collections
depends on the selectivity of the tests and the number of tuples tested. (Selectivity is defined = the
percentage of tests, constant or variable, that fail.) Large collections can occur if the selectivity is low. or
if the number of tuples tested is high or both. The expensive learned rules in the Soar production
system [19] provide one example of low selectivity. These learned rules so expensive to match that they
cause Soar to slowdown with learning rather than speeding up [301. Image recognition systems like
SPAM, and other database systems provide examples of systems where the number of tuples tested are
high. We expect that as the amount of data processed by production systems grows, the size of
collecl&ons will grow. Even for systems with high selectivity, large enough amounts of data will lead to
large collections.

One important point here is that collection-oriented match supports a collection-oriented programming
model. Production match operations, which were previously considered extremely expensive. are no
longer so. This will allow a change in the programming style and is likely to expand the scope of
applications to tasks which have hitherto been considered intractable.

7. Related Work
In this section, we discuss the implications of collection-oriented match for match algorithms other than

Rete. We have found it relatively easy to transform tuple-oriented algorithms to their collection-oriented
analogues. We also discuss other work related to matching large amounts of data.

Treat [21] is the other major algorithm found in the production systems literature. The key difference
between Rete and Treat is that Treat does not maintain beta memories as a part of its match state: it only
maintains the alpha memories and the instantiation set (see Figure 4-1). However. the operations it
performs to determine the instantiations are similar to those of Rete - it too creates left tokens, compares
these tokens with tuples in alpha memories to create new left tokens and so on. Treat can be easily
transformed to Collection Treat, along the same lines as Collection Rete. In Collection Treat, left
collection-tokens are compared with collections in alpha-memories. instead of individual tuples. and new
left collection-tokens are formed. Collection Treat enjoys three advantages over Treat: (i) a reduction in
the size of the instantiation set. which is the main source of space consumption in Treat 1231; (ii) a
reduction in the total execution time, given that collection-oriented tokens and instantiations are formed:
and (iii) direct support for collection-oriented semantics.

A'-Treat [16] is a refinement of Treat which replaces alpha memories by virtual alpha-memories, which
do not maintain state. Since collection-oriented match does not change the organization of the alpha
memories, A'-Treat can be transformed in the same way as Treat and the advantages listed above for
Treat would carry over to A'-Treat.

16

Mlranker et al.'s LEAPS [231 is another tuple-orlented match algorithm that reduces the amount of
state saved. LEAPS has shown large performance improvements over Treat in both execution time and
space. LEAPS achieves this improvement by exploiting OPS5's syntactic selection (conflict-resolution)
strategies - it computes only a single dominant instantiation instead of all the instantiations. As a result,
however, LEAPS is unable to support languages that do not depend on such syntactic conflict-resolution
strategies. such as Soar [19], PPL [2] and others [3]. LEAPS also does not directly support collection-
oriented languages. LEAPS can be transformed to match the dominant collection instead of the dominant
tuple from each alpha memory. Collection LEAPS would generate collection-oriented instandations.
which would allow it to support collection-oriented languages without giving up the advantages of

LEAPS. However, Collection LEAPS would be unable to support the other referred to above.

Another area of related work has been that of collection-oriented (or set-oriented) production
languages. Several such languages have been proposed [8, 12. 341. Collection-oriented match can provide

an efficient implementation substrate for these languages. Gordin and Pasik [12] suggest a modification
to Rete to support collection-oriented languages. The resulting algorithm merges the ruple-oriented
instantiations generated by Rete to generate collection-oriented instantiations. It does not take advantage
of the structure of collections to tame the combinatorial explosion.

Collection-oriented match was motivated by our previous work on tokenless match [31, 301. Hence.
there are some similarities between tokenless match and collection-oriented match. However. tokenless
match is targeted towards real-time systems and focuses on achieving a polynomially bounded match by
limiting expressiveness. In contrast, collection-oriented match imposes no restrictions on expressiveness.
As a result, even though it is able to improve production system performance, it does not improve the
asymptotic complexity of the match problem. Understanding the relationship between tokenless match
and collection-oriented match remains an interesting issue for future work.

8. Conclusions and Future Work
We can now answer the question that was raised at the beginning of this paper. Yes, collection-

oriented match algorithms can support a large number of powerful match operations and yet scale well as
the amount of data increases. Results presented in this paper showed that in several cases, which we

expect to occur in practice, collection-oriented match is able to match OPS5-style productions against
large amounts of data in reasonable amounts of time. While these results are based on an implementation

of Collection Rete, a collection-oriented analogue of Rete, this paper also discussed how other tuple-
oriented match algorithms can be transformed to their collection-oriented analogues. Based on a

preliminary analysis, we expect the transformed algorithms to scale better than the tuple-oriented
originals.

While these results have demonstrated large time and space improvements for COPL. much remains to

be done. Our immediate plans for further research are to complete the design and implementation of
COPL. This will allow us. and others in our environment, to build large applications in COPL. This. in
turn, will provide us a better understanding of the nature of computation in collection-oriented match and
its utility for real-world tasks. We also hope to use these tasks to evaluate the relative efficacy of hashing
and merging optimizations. Another investigation we plan to take up in near future is the development of

a uniform framework to understand and evaluate the different ways of dealing with collections in
production systems including collection-oriented match and tokenless match.

Acknowledgement
We thank Bob Doorenbos, Dave McKeown, Brian Mimnes, Dirk Kalp. and Paul Rosenbloom for helpful

discussions on this topic. We thank Gary Pelton and Rick Lewis for loaning us their workstations for the
experiments reported in this paper.

17

Appendix I. Detailed Algorithm for Collection Rete
The following describe the simplest version of Collection Rete. Section 1. 1 describes the algorithm for

adding a tuple to positive conditions. Section 1.2 describes the addition of a tuple to negated conditions.
Section L3 describes the deletion of a tuple. The notation used is as follows:

CI,..,Ci,..CN Conditions of the production matched

Alpha(C,) Alpha memory for condition Ci
Beta(C) Beta memory storing the results from the match of Alpha(C,) with Beta(Cit)

LCT, xxLCT Left collection-tokens

Counter(LCT) Counter associated with LCT

W A Tuple

In Collection Rete, the processing of alpha constant tests does not change. Therefore, the following
description is only for the processing in memories and two-input tests.

L1. Adding a Tuple: Non-negated Conditions
Figure 1-1 describes the procedures involved in adding a tuple W to a non-negated condition Ci. Two

main procedures are involved: Add_Tuple and AddLeft_CollectionToken. The procedure AddTuple
corresponds to a right-activation in Rete. Step I of Add_Tuple adds W to the collection in Alpha(Ci).
Step 2 searches the previous beta-memory Beta(Ci.t) for a consistent left collection-token LCT. The
procedure check_consistent returns LCT if W is consistent with LCT. However. W may be consistent
with only a sub-part of LCT. That is, if LCT consisted of i-I collections of the form (collectioni,
collection..2,...collectionji-l), then W may be consistent with only subLCT. which consists of
(subcollection 1. subollection_2,...subcollectionji-1). where sub_.,collectionj C collectionj for
(1 <j <i-1). In such a case, check_consistent will return subLCT. check-consistent returns NULL if at
least one of the sub_collection_j is NULL. If check.consistent returns a non-null value, then a successor
left collection-token SuccLCT is created, using the routine CreateNew_CollectionToken.

The procedure Add.LeftCollectionToken is then called. It corresponds to the left-activation in Rete.
Steps I through 3 add a new left collection-token to a beta memory. For this, step 2 searches for an
existing left collection-token in the beta-memory with which the new collection-token may be merged.
This merging is achieved by procedure Merge. It merges two left collection-tokens if they are identical
except for one collection. It also deletes the old (or previous) token. If such merging cannot take place.
then step 3 simply adds the new left collection-token to the beta memory. Steps 4 and 5 search the alpha
memory of the next condition for matching tuples. They merge the resulting left collection-tokens and
create successors. Step 6 recursively calls AddLeftCollection_Token using these these new successor
tokens.

L2. Adding a Tuple: Negated Conditions
Figure 1-2 describes the procedures involved in adding a tuple W to a negated condition Ci. Step I of

AddTupleNegated simply adds W to the collection in Alpha(Ci). Step 2 searches the previous beta-
memory for a matching left collection-token that is consistent. If a consistent token is found then its
counter is updated. For a negated condition Ci, a counter is associated with each left collection-token in
Beta(Ci-l) to count the number of tuples from Alpha(Ci) that have successfully matched it. If this counter
makes a transition from 0 to 1, then that token is deleted from the following beta memories. It is possible
W is consistent with only a sub-part of the left collection-token. In such an event, the token is itself split
into multiple parts - consistent and inconsistent parts - with each part maintaining a counter. The
counters for the consistent parts are incremented, but the counters for the other parts are kept unchanged.
If the counter again makes a transition from 0 to 1, then this consistent part has to be deleted. This

18

Procedure AddTuple(W, i)
Begin
1. Add W to the collection in Alpha(C,);
2. For each left collection-token LCT in Beta(Ci_1)

Begin
conLCT := checkconsistent(W, LCT);
if (con_LCT != NULL)

Begin
SuccLCT := Create_New_Collection_Token(conLCT, W);
Call Add_LeftCollectionToken(SuccLCT. i+l);

End
End

End

Procedure CreateNew_Collection_Token(LCT, W)
Begin
1. Copy LCT to NewLCT;
2. Copy W as the last collection of New._LCT;
3. Return(New._LCT);
End

Procedure Add_LeftCollectionToken(LCT, i)
Begin
1. Found := False;
2. for each left collection-token oldLCT in eta(Cj)

Begin
if LCT can merge with oldLCT then

Begin
newLCT := Merge(LCT, oldLCT);
Found := True;

End
End

3. if not(Found) then add LCT to Beta(C,);
4. Merge-list := Null;
S. For each tuple W in Alpha(Ci- 1)

Begin
conLCT := check_consistent(W, LCT);
if (conLCT = NULL)
Begin

SuccLCT := CreateNewCollectionjToken(conLCT, W);
if SuccLCT can merge with prev_LCT on Mergelist then

SuccLCT := Merge(SuccLCT, prevLCT);
Push Succ_LCT on the Merge list;

End
End

6. For each SuccLCT on Merge-list
Call Add_LeftCollectionjToken(Succ-LCT, i+l);

End

Figure 1-1: Procedure for adding a tuple: non-negated conditions.

19

deletion is achieved indirectly so as to maintain uniformity within the delete procedure.

The procedure Add_Left_CollectionToken_Negated describes the the operation in Beta(Ci.1). The
key idea here is to preserve the structure of Beta(Ci. 1) such that each counter in a left-collection token
preserves the exact count of the number of tuples matched. For this purpose, the new token LCT is first
compared with tuples in Alpha(Ci). Steps I through 3 find consistent matching tuples, and update
counters. Since only subparts of LCT may be found consistent, the counting step becomes more complex.
Step 4 merges the tokens emerging from step 3 into Beta(Ci_1). Step 5 accumulates the inconsistent
portion of LCT and sets the counters to zero. For the merges in Step 4 and 5. two tokens must not only be
identical In all execpt one collection, but they must also have identical values for their counters.

L3. Deleting a Tuple
Figure 1-3 and 1-4 describe the procedures involved in deleting a tuple from non-negated and negated

conditions. These procedures are anologous to their corresponding addition procedures. The new
concept here is breaching, which undoes the effect of merging. For a left collection-token T to breach
another, it must differ with T in at most one sloL If it differs in no slot, then the entire token must be
deleted. Another point is that during deletion, within a uniprocessor execution environment, no
conjugates [13] will be created. That is. if a deletion token arrives at a beta memory, then that beta
memory is guaranteed to have a copy of that token, in a merged or non-merged form.

20

Procedure AddTupleNegated(W, i)
Begin
1. Add W to the collection in Alpha(Cj);
2. For each left collection-token LCT in Beta(Cij 1)

Begin
conl_LCT check_consistent(W, LCT);
con2_LCT check_inconsistent(W, LCT);
if (conlLCT = LCT)

Begin
increment counter(LCT);
if counter changes from 0 to 1 then

Call DeleteLeftCollection_Token(LCT, i);
End

else
Begin

if (conl_LCT = non-null subpart of LCT)
Begin

Split LCT into conl_LCT and con2_LCT;
increment counter(conl_LCT);
if counter changes from 0 to 1 then
Begin

Call DeleteLeftCollection_Token(LCT, i);
Call AddLeftCollectionToken(con2_LCT, i);

End
End

End
End

End

Procedure Add_Left_Collection_TokenjNegated(LCT, i)
Begin
1. Merge-list := Null;
2. For each tuple W in Alpha(CO)

Begin
conLCT := consistent(W, LCT);
if (con_LCT != NULL)

Begin
Counter(conLCT) := 1;
Push con_LCT on Count-list;

End

3. if any conlLCT and con2_LCT on Count_list identical then
Begin

Increment Counter(conlLCT);
Delete con2_LCT from Count_list;

End
4. if LCT from Count-list can merge with old_LCT in Beta(CiO)

then new_LCT := Merge(LCT, old_LCT);

S. if subpart sub_LCT of LCT inconsistent with tuples in Alpha(Ci)
Begin

Counter(sub LCT) = 0;
if subLCT can be merged with old_LCT in Beta(Ci 1)

then new_LCT = Merge(sub_LCT, old_LCT);
Call DeleteLeftCollection Token(oldLCT, i);
Call AddLeftCollectionToken(newLCT, i);

End
End

Figure 1-2: Procedure for adding a tuple: negated conditions.

21

Procedure DeleteTuple(W, i)
Begin

1. Delete W from the collection in Alpha(C,);
2. For each left collection-token LCT in Beta(Ci-,)

Begin
con_.LCT :=consistent(W, LCT);
if (con-LCT !=NULLS)

Begin
Succ_LCT = CreateNewý_Collection_Token(con_.LCT, W);
Call Delete_Left_Collectionjroken(Succ_LCT, i+l);

End
End

End

Procedure Delete_Left_Collection_Token(LCT, i)
Begin
1. for each oldLCT in Beta(CC)

Begin
if LCT can breach old-LCT then

New_-LCT := Breach(LCT, oldLCT);
End

2. Merge-list :=Null;
3. For each tuple W in Alpha(Ci+1)

Begin
conLCT := consistent(W, LCT);
if (con_.LCT != NULL) then

Begin
SuccLCT = Creatie_New__Collection_Token(conLCT, W);
if LCT can merge with prevj..CT on Mergejlist then

Succ_LCT := Merge(SuccLCT, prevLCT);
Push Succ_LCT on the Merge..jist;

End
End

S. For each Succ_LCT on Merge-list
Call Delete_Left_Collection_Token(SuccLCT, i+1);

End

Frigure 1-3: Procedure for deleting a tuple: non-negated conditions.

22

Procedure DeleteTuple_Negated(W, i)
Begin
1. Delete W from the collection in Alpha(Ci);
2. For each LCT in Beta(Ci_1)

Begin
conLCT := consistent(W, LCT);
if (con_LCT != NULL)

Begin
decrement counter(LCT);
if LCT now merges with old_LCT in Beta(Ci_1)

new_LCT := Merge(LCT, oldLCT);
if counter changes from 1 to 0 then

Begin
Call Delete_Left_Collection_Token(oldLCT, i);
Call AddLeft_Collection_Token(newLCT, i);

End
End

End
End

Procedure Delete_Left_Collection_Token_rNegated(LCT, i)
Begin
1. Merge_list := Null;
2. For each tuple W in Alpha(Cj)

Begin
conLCT := consistent(W, LCT);
if (conLCT != NULL)

Begin
Counter(con_LCT) := 1;
Push conLCT on Count-list;

End
End

3. if any conl_LCT and con2_LCT on Countjlist identical then
Begin

Increment Counter(conlLCT);
Delete con2_LCT from Count ,list;

End
4. if LCT from Countlist can breach old_LCT from Beta(Ci_,)

then New_LCT := Breach(LCT, oldLCT);

5. if subpart subLCT of LCT inconsistent with tuples in Alpha(C,)
Begin

Counter(sub LCT) = 0;
if subLCT can breach prev_LCT in Beta(Ci_1)

then New_LCT := Breach(subLCT, prevLCT);
Call DeleteLeftCollectionToken(subLCT, i);

End
End

Figure 1-4: Procedure for deleting a tuple: negated conditions.

23

Appendix II. Detailed Experimental Results
This sections contains the raw data from the experiments. The time returned by /bin/rime has only one

digit after the decimal leading to quantization problems for small values. For computing speedups, we
have assumed that the smallest value of time is 0. Is. This provides a lower bound on the actual speedup
for the cases in wnich the value returned is 0.0 seconds. Note that in the following. K implies Kbytes. In
tables 11-3, 11-11, 11-12 and 11-15, all the ratioes are calculated with respect to COPL numbers. 2

Input total space (K) match state (K) number time (s)

data size of tuples

10 308 2 17 0.0

20 311 3 45 0.0

30 320 5 194 0.0

40 346 11 582 0.0

50 401 22 1419 0.0

60 498 37 3015 0.0

70 653 69 5383 0.2

80 921 127 9413 0.4

90 1163 167 13280 0.5

100 1420 214 17510 0.6

t10 2037 384 25931 1.0

120 2473 452 32999 1.1

130 3131 592 42971 1.6

140 4049 825 56153 2.0

150 5129 1123 71190 2,5

160 5888 1265 83062 3.0

170 7089 1500 101629 3.8

180 8600 1819 124554 4.5

190 10015 2098 146412 5.2

200 11146 2334 163640 5.9

250 22109 4481 333167 12.0

300 40239 8943 596015 22.2

350 64308 14834 945595 35.5

400 93875 21113 1393457 535

Table l-i1: Data from COPL experiments for make-teams

2For some tables, some entries are missing, as we were unable to measure a!l the details.

24

Input total space (K) mxatch %taw (K) J number tune (S)
data size of tuples

o0 872 2 17 0.0

20 890 5 0• 0.0

30 982 27 194 0,2

40 1220 97 582 1.9

50 1734 234 1419 16.3

60 2755 500 3015 100.1

70 4207 898 5383 644,3

80 6635 1580 9413 5536-8

Table -.2: Data from CPaOPS5 experiments for make-teaws

Input time ratio match state
data size ratio

10 1.0 0.89

20 L.C 1.63

30 2.0

40 -,.Q 8.82

50 163.0 10.73

60 100I>i 13.62

70 3224 13.11

80 13842 J 12.44

Table 11-3: Comparisons for make-teams

25

Input total space (K) match state (K) number time (s)
data size of tuples

10 310 3 85 0.0

20 313 4 177 0.0

30 319 7 339 0.0

40 326 10 551 0.0

50 335 14 838 0.0

60 348 18 1065 0.0

70 357 24 1517 0.0

80 372 30 1969 0.0

190 384 35 2311 0.1

1 397 39 2663 0.1

1"10 409 43 2970 0.1
i!20 426 49 3457 0.2

1.30 440 53 3804 0.2

140 461 61 4436 0.2

150 483 69 5113 0.2

160 501 75 5605 0.2

170 521 81 6127 0.2

I80 546 90 6884 0.2

190 575 :02 7791 0.3

200 600 110 8508 0.3

Table 11-4: Data from COPL experiments for clusters on 100x 100 grid - I

26

Input total space (K) match state (K) number time (S)
data size of tuples

210 631 122 9470 0.4

220 663 134 10462 0.4

230 692 144 11264 0.4

240 720 152 12046 0.4

250 755 165 13108 0.4

260 791 178 14195 0.5

270 825 189 15172 0.5

280 857 199 16029 0.5

290 999 215 17321 0.6

300 938 228 18468 0.6

310 981 244 19785 0.6

320 1021 257 20922 0.6

330 1059 268 21994 0.7

340 1104 284 23341 0.7

350 1151 300 24738 0.8

360 1199 317 26165 0.9

"370 1242 330 27342 0.9

380 1295 349 28974 0.9

390 1w40 363 30231 0.9

400 1393 381 31813 0.9

Table 11-5: Data from COPL experiments for clusters on 100x 100 grid - 1]

27

Input total space' (K) match state (K) . number time (s)
data size of tuples

410 1449 402 0.9

420 1563 420 1.0

430 1558 438 1.0

450 1676 479 1.2

460 1737 500 1.2

470 1802 524 1.2

480 1855 539 1.2

490 1924 564 1.3

500 1984 583 1.3

510 2052 607 1.3

520 2120 630 1.4

530 2194 657 1.4

540 2266 682 1.5

550 2378 707 1.6

560 2415 734 1.6

570 2495 763 1.7

580 2577 793 1.7

590 2659 823 1.8

600 2741 852 1.9

Table 11-6: Data from COPL experiments for clssters on OOx 100 grid - IMI

28

Input totl -pace (K) match state (K) number time (s)
dat size of toples

610 2826 883 1.9

620 2893 902 2.0

630 2981 934 2.0

640 1 3058 957 2.1

650 3140 984 2.1

670 3297 1033 2.2

680 3392 1068 2.3

690 3486 1101 2.3

700 3586 1137 2.4

800 4597 1491 3.0

900 5755 1900 3.8

1000 5867 1936 3.9

1100 8369 2788 5.5

1200 9847 3282 6.5

1300 11528 3869 7.6

1400 13284 4463 8.7

1500 15225 5138 9.9

1600 17335 5896 11.4

1700 19480 6608 12.7

180 21776 7391 14.2

1900 24183 8206 15.6

Table 11-7: Data from COPL experiments for clusters on I00x100 grid - IV

Input total space (K) match state (K) number time (s)
data size of tuples

2000 18971 3899 12.8

2200 22870 4705 15.3

2400 27085 5552 18,1

2600 31678 6479 21.0

2800 36658 7489 24.3

3000 41972 8560 27.9

3200 47675 9716 31.4

3400 53727 10934 35.6

3600 60159 12234 39.7

3800 66955 13606 49.1

4000 74125 15057 48.8

4500 93596 18968 2063409 71.9

5000 115352 23336 2546294 102,9

Table I1-8: Data from COPL experiments for clusters on 400x400 grid

29

Input tDtal space (K) match state (K) number tune (s)
data size of tuples

1o 884 3 85 0.0

20 913 6 177 0.0

30 960 1 339 0.2

40 1023 18 551 0.3

50 1104 27 838 0.6

60 1188 36 1065 0.9

70 1308 49 1517 17

80 1439 64 1969 2.7

90 1564 78 2311 3.6

100 1701 93 2663 5.3

110 1842 109 2970 7.4

120 2014 129 3457 10.3

130 2178 147 3804 13.0

140 2387 171 4436 18-3

ISO 2610 196 5113 24.3

160 2820 219 5605 32.3

170 3049 245 6127 40.2

I80 3306 274 6884 50.6

190 3594 307 7791 64.3

200 3870 338 8508 79.1

Table 11-9: Data from CParaOPS5 experiments for clusters on lOOx 100 grid - I

30

Iniput total spce (K) maih stat (K) number tume (s)
data size of tuples

210 4184 374 9470 98.5

220 4512 411 10462 118.1

230 4826 446 11264 141.3

240 5148 483 12046 167.9

250 5512 524 13108 197.5

260 5889 567 17195 231!5

270 6262 609 15192 269.0

280 6631 651 16029 311.7

290 7061 700 17321 358.4

300 7483 748 18468 409.8

310 7935 799 19785 467.9

320 8375 849 20922 532.1

330 8817 899 21994 599.6

340 9302 954 23341 675.3

350 9801 1011 24738 760.2

360 10314 1069 26165 847.9

370 10807 1125 27342 942.9

380 11363 1188 28974 1051.5

390 11884 1247 30231 1167.2

400 12453 1312 31813 1286.0

Table [1-10: Data from CParaOPS5 experiments for clusters - 11

31

Input time ratio Mutch state
dama size ratio

10 1 1.2

20 1 1.3

30 2 1.6

40 3 1.7

50 6 1.9

60 9 2

70 17 2.1

so 27 2.1

90 36 2.3

100 53 2.4

110 74 2.6

120 51.5 2.6

130 65 2.8

140 91.5 2.8

150 121.5 2.8

160 161.5 2.9

170 201 3

180 253 3

190 214 3

200 263.6 3.1

Table il-I1: Comparisons for clusters on lOOx 100 grid

32

Input time ratio match state
data size ratio

210 246 3.1

220 295 3. t

230 350 3.1

240 419 3.2

250 494 3.2

260 463 3.2

270 538 3.2

280 623 3,3

290 598 3.3

300 683 3.3

310 780 3.3

320 887 3.3

330 857 3.4

340 964 3.4

350 950 3.4

360 942 3.4

370 1048 3.4

380 1168 3.4

390 1297 3,4

400 1429 3.4

Table !1-12: Comparisons for clusters

33

Input total spae (K) match state (K) number time (s)
data size of tuples

20 323 17 27 0.0

40 347 38 58 0.1

60 374 62 109 0.2

80 450 126 282 0.5

100 552 207 599 1.1

120 683 306 1082 1.7

140 939 507 1892 5.1

160 1049 595 2216 6.9

180 1603 978 4741 10.8

200 1974 1233 6446 13.1

220 2757 1788 9740 23.6

240 3381 2230 12494 32.7

260 4740 3178 18546 62.7

280 5970 3998 24577 73.9

300 8556 5776 36455 135.8

320 11761 7898 52404 177.8

340 13664 9158 61866 200.8

360 21097 13952 100658 220.3

380 29092 19281 139880 426.7

400 41757 2733 203881 574.5

Table !1-13: Data from COPL experiments for airiine-route

34

Input total space (K) match state (K) number time (s)
data size of tuples

20 882 6 27 0.0

40 913 22 58 0.1

60 963 45 109 0.2

80 1113 103 282 0.6

100 1374 197 599 1.8

120 1783 351 1082 5.7

140 2420 560 1892 t8.2

160 2699 668 2216 25.3

180 4673 1309 4741 123.5

200 6029 1765 6446 233.7

220 8976 2717 9740 547.9

240 1127 3514 12494 912.7

260 16050 4885 18506 1984.9

280 ?1!' 6511 24577 3512.0

300 ý,467 9334 36455 7674.8

Table [1-14: Data from CParaOPS5 experiments for airine.route

Input time ratio match state
data size ratio

20 1.0 0.4

40 1.0 0.6

60 1.0 0.7

80 1.2 0.8

100 1.6 1.0

120 3.4 1.1

140 3.6 1.1

160 3.7 1.1

180 11.4 1.3

200 17.8 1.4

220 23.2 1.5

240 27.9 1.6

260 3 .7 1.5

280 47.8 1.6

300 56.6 1.6

Table 11-15: Comparisons for airline-mwte

35

References

1. Acharya A., and Kalp, D. Release Notes for CParaOPS5 5.3 and ParaOPS5 4.4. Distributed with the
CParaOPS5 release available from Carnegie Mellon University.

2. Acharya, A. PPL: An explicitly parallel production language for large scale parallelism. Proceedings
of the IEEE conference on Tools for Al, 1992, pp. 473-474.

3. Barachini, F. "The evolution of PAMELA". Expert Systems 8, 2 (1991), 87-98.

4. Bein J., King. R., Kamel, N. MOBY: An Architecture for Distributed Expert Database Systems.
Proceedings of the Thirteenth International Conference on Very Large Databases, 1987, pp. 13-20.

5. Brant, D. A., Grose, T., Lofaso, B., and Miranker, D. P. Effects of database size on rule system
performance: five case studies. Proceedings of the International conference on very large databases,
1991.

6. Brownston, L., Farrell, R., Kant, E. and Martin, N. Programming expert systems in OPS5: An
introduction to rule-based programming. Addison-Wesley, Reading, Massachusetts, 1985.

7. Buneman, P. and Clemowns, E. "Efficiently monitoring relational databases". ACM Transactions on
Database Systems (September 1979).

8. Delcambre, L. and Etheredge, J. N. The Relational Production Language: A Production Language for
Relational Databases. Proceedings of the Second International Conference on Expert Database Systems,
1988, pp. 333-352.

9. Easwaran, K. Specification, implementation and interactions of a rule subsystem in an integrated
database system. IBM Research Report, RJ 1820. August, 1976.

10. Forgy, C. L. "Rete: A fast algorithm for the many pattern/many object pattern match problem".
Artificial Intelligence 19, 1 (1982). 17-37.

11. Forgy, C. L. The OPS83 Report. Tech. Rept. CMU-CS-84-133, Computer Science Department.
Carnegie Mellon University, 1984.

12. Gordin, D. N. and Pasik, A. J. Set-Oriented constructs: from Rete rule bases to database systems.
Proceedings of the ACM SIGMOD conference on management of data. 1991, pp. 60-67.

13. Gupta. A. Parallelism in production systems. Ph.D. Th.. Computer Science Department, Carnegie
Mellon University, 1986. Also a book, Morgan Kaufmann, (1987)..

14. Gupta. A., Forgy. C., Newell, A., and Wedig, R. Parallel algorithms and architectures for production
systems. Proceedings of the Thirteenth International Symposium on Computer Architecture. June. 1986.
pp. 28-35.

15. Gupta, A., Tambe, M., Kalp, D., Forgy, C. L., and Newell, A. "Parallel implementation of OPS5 on
the Encore Multiprocessor: Results and analysis". International Journal of Parallel Programming 17. 2
(1988).

16. Hanson, E. N. Rule condition testing and action execution in Ariel. Proceedings of the ACM
SIGMOD conference on management of data, 1992, pp. 49-58.

17. INGRES Version 6.3 Reference Manual. 1990. INGRES Products Division. Alameda. CA.

18. Kalp, D. Tambe, M., Gupta. A., Forgy, C., Newell. A., Acharya, A., Milnes, B., and Swedlow. K.
Parallel OPS5 User's Manual. Tech. Rept. CMU-CS-88-187. Computer Science Department. Carnegie
Mellon University, November, 1988.

36

19. Laird FL E., Newell, A. and Rosenbloom, P. S. "Soar. An architecture for general intelligence".
Artificial Intelligence 33, 1 (1987), 1-64.

20. McKeown, D.M., Harvey, W.A., and McDermott, 1. "Rule based interpretation of aerial imagery".
IEEE Transactions on Pattern Analysis and Machine Intelligence 7, 5 (1985), 570-585.

21. Miranker, D. P. Treat: A better match algorithm for AI production systems. Proceedings of the Sixth
National Conference oi. Artificial Intelligence, 1987, pp. 42-47.

22. Miranker, D.. and Lofaso, B. "The organization and performance of a Treat-based production system
compiler". IEEE transactions on knowledge and data engineering 3, 1 (1991). 3-11.

23. Miranker, D. P., Brant D. A., Lofaso, B., Gadbois, D., On the performance of lazy matching in
production systems. Proceedings of the eigth national conference on artificial intelligence, 1990, pp.
685-692,

24. Nayak. P., Gupta, A. and Rosenbloom, P. Comparison of the Rete and Treat production matchers for
Soar (A summary). Proceedings of the Seventh National Conference on Artificial Intelligence, 1988, pp.
693-698.

25. Scales, D.J. Efficient matching algorithms for the SOAR/OPS5 production system. Tech. Rept.
KSL-86-47, Knowledge Systems Laboratory, Stanford University, June, 1986.

26. Sellis, T., and Lin, C. Performance of DBMS implementations of production systems. Proceedings
of the International conference on tools for Al, 1990.

27. Sellis, T., Lin, C., and Raschid, L. "Data intensive production systems: The DIPS approach".
SIGMOD Record 18, 3 (September 1989), 52-58.

28. Stonebraker, M. "The integration of rule systems with database systems". IEEE Transactions on
Knowledge and Data Engineering 4, 5 (October 1992), 415-423.

29. Sybase V4.0 Reference Manual. 1990. Sybase Corp. Emeryville CA.

30. Tambe, M. Eliminating combinatorics from production match. Ph.D. Th., School of Computer
Science, Carnegie Mellon University, May 199 1.

31. Tambe, M. and Rosenbloom, P. A framework for investigating production system formulations with
polynomially bounded match. Proceedings of the Eighth National Conference on Artificial Intelligence.
1990, pp. 693-400.

32. Tambe, M., Kalp. D., and Rosenbloom, P. An Efficient Match Algorithm for Unique-attribute
Production Systems. Proceedings of the International Conference on Tools of Artificial Intelligence,
1992. (to appear).

33. Tan, J. S., Maheshwari, M., and Srivastava, J. GridMatch: A basis for integrating production systems
with relational databases. Proceedings of the IEEE conference on Tools for Al, 1990, pp. 400-407.

34. Widom, J. and Finkelstein, S. "A Syntax and Semantics for Set-Oriented Production Rules in
Relational Database Systems". SIGMOD Record 18, 3 (September 1989), 36-45.

