Dear Susan:

This quarterly report describes our progress toward the goal of separating the influence of subject matter knowledge from that of reading skill on performance in a reading comprehension test. At this time, we are focusing on better ways to measure the quality of subject matter knowledge.

Two aspects of the quality of subject matter knowledge are (a) its correspondence to the knowledge of qualified experts, and (b) its internal consistency, sometimes called goodness (McClelland & Rumelhart, 1988), energy (Hopfield, 1984), harmony (Smolensky, 1986), or "harmany" (Thagard, 1989). Both aspects are measured by the cognitive structure test.

During the current grant, we have just completed a computer program that takes as input a list of terms provided by an expert (or from a file), and then immediately constructs and administers a cognitive structure test based on it, and provides plots of the results on the screen and printer, including linear plots, networks, and multidimensional scaling results. These are intended to make for productive interviews with experts to determine the meaning of the knowledge structure they have produced, which greatly helps with interpretability, as well as helping to specify alternative views thought legitimate by the experts. This program, which we call CSTST, standing for Cognitive Structure Test, is available for your use. It is a research tool, so it's easy to use only once you know how, and I will be glad to show you how.

We were already well advanced in our methods for measuring the novices' correspondence to the experts' knowledge structure, using quantitative methods including correlation, principal components analysis, network analysis, and multidimensional scaling. The other main aspect of the quality of subject matter knowledge that we are investigating is its goodness (or energy, harmony, or harmany). The aspect of quality we have measured is something like the non-technical meaning expressed by the term "internal consistency" (be careful here not to use the meaning of this term used in psychological testing). This refers to whether the different parts of the person's subject-matter knowledge "fit together" well. We measure this by measuring the extent to which the person's associative network "bears thinking about." The person's associative network of subject matter knowledge is composed of certain constraints which hold between the elements of his knowledge; we get these constraints when we give the cognitive structure test. We then measure the degree to which the constraints are satisfied by the thinking process of spreading activation, which we simulate on the computer.
We have now completed analysis of 4 experiments with a total of 27 experts and 652 novices in which we measured the quality of the subjects' prior knowledge in this way, and all confirmed our hypotheses. I enclose the paper. I have marked the parts where the relevance to the present project is pointed out most explicitly.

Wallace Sinaiko has asked me to keep him informed about the progress of this project, so I have sent him a copy of this letter and the paper. I have also sent them to the other people on the distribution list.

I'm aware that I have not always been as clear in these reports as I would wish. If anybody has any questions, please call me at (706) 542-3094, or at home at (706) 549-4661, or e-mail at IBRSUGA.cc.uga.edu. or fax at (706) 542-6064 or 3275. As always, I look forward to hearing from you.

Sincerely,

Bruce K. Britton
ABSTRACT

This paper reports four experiments showing that 27 experts' mental representations had significantly higher harmony and faster settling rates than 652 novices' when activation was spread through the representations in a simulation of thinking; that when coherent texts were read by novices, they produced mental representations with significantly higher harmony and faster settling rates than less coherent texts; and that novices whose representations matched the experts' mental representations had significantly higher harmony and faster settling rates. The results were found for declarative experts in history and procedural experts in literary interpretation, for Dutch and American experts, for novice groups including U.S. Air Force recruits and U.S. and Dutch undergraduates, and for both history texts and literary texts. These results were consistent with our hypothesis that the quality of a person's prior knowledge determines the harmony and settling rates of their representations and that these can be measured by simulating the spread of activation through the person's mental representation of a subject matter domain. Harmony may also be used as a metacognitive signal.
EXPERTISE, TEXT COHERENCE, AND CONSTRAINT SATISFACTION: EFFECTS ON HARMONY AND SETTLING RATE

Bruce K. Britton
University of Georgia

F. James Eisenhart
University of Georgia

ABSTRACT

This paper reports four experiments showing that 27 experts' mental representations had significantly higher harmony and faster settling rates than 652 novices' when activation was spread through the representations in a simulation of thinking; that when coherent texts were read by novices, they produced mental representations with significantly higher harmony and faster settling rates than less coherent texts; and that novices whose representations matched the experts' mental representations had significantly higher harmony and faster settling rates. The results were found for declarative experts in history and procedural experts in literary interpretation, for Dutch and American experts, for novice groups including U.S. Air Force recruits and U.S. and Dutch undergraduates, and for both history texts and literary texts. These results were consistent with our hypothesis that the quality of a person's prior knowledge determines the harmony and settling rates of their representations and that these can be measured by simulating the spread of activation through the person's mental representation of a subject matter domain. Harmony may also be used as a metacognitive signal.

In these studies, we investigated the quality of mental representations. To do this, first we measured each subject's mental representation for a domain, and then we simulated the subject's thinking process about it. We then compared the end product of the thinking process with the original mental representation; a good match indicated a high quality representation, in the sense that the constraints in the original representation had been satisfied. Another index that we used for the quality of the representation was the number of processing cycles required for the simulated thinking process to settle.

We measured the mental representations of experts and novices by asking them to rate the relatedness of all possible pairs of 12 terms from a text. The result was a fully interconnected network of associations. To simulate the thinking process, we spread activation through this fully interconnected network of associations until it settled into a stable state. Besides observing the time it took to settle (here called settling rate) we also calculated a harmony score, which is a measure of the "goodness" of the mental representation, based upon the degree to which the settled representation satisfies the constraints inherent in the original ratings of relatedness (McClelland & Rumelhart, 1986). Our hypothesis was that subjects with better prior knowledge would produce mental representations which better satisfied the constraints, leading to higher harmony scores and faster settling rates.

In our simulation, the person's knowledge about the subject matter area was represented by an associative network in the computer program, with the network's links, and the strengths of those links, constructed from the person's ratings of relatedness of the 12 terms. The person's thinking about this network of association was simulated by spreading activation along the links in accordance with their strengths until the network settled.

What are Harmony and Settling Rate?

Some simple illustrations of the spreading activation process will clarify the notions of harmony and settling rate. Consider first the two simplest possible networks, those of two nodes,
A and B, connected by a single link, which can be either excitatory, represented by a +1, or inhibitory, represented by a -1, shown in Figure 1. An excitatory link is equivalent to a positive association, corresponding to the notion that thinking of one idea leads to thinking of another idea: If one thinks of A, one will think of B, and vice versa. An inhibitory link is a negative association, corresponding to the notion that thinking an idea leads to not thinking of another idea: If one thinks of A, one will be less likely to think of B, and vice versa. If we start to spread activation from A to B and B to A, and allow the network to settle into a stable state, both of these networks will settle very quickly, and their final state will satisfy the constraints perfectly, leading to a harmony score of +1.0. That is, for the excitatory network both nodes will be on after the network settles, entirely consistent with the constraint that both nodes should be in the same state, expressed by the +1. So the harmony score will be at its maximum of +1 because the final state of the network is completely consistent with the constraints.

For the inhibitory network, one node will be on and the other will be off, consistent with the constraint that the nodes should be in different states, expressed by the -1. Again the harmony score will be at its maximum of +1 because the final state matches the constraints perfectly.

Harmony scores of less than one can occur in three-node networks. For example, consider the network at the left of Figure 2. Here A is excitatorily linked to B and C, but B and C are inhibitorily linked to each other. The thought that is equivalent to this network can be expressed in words as “Two things that are different from each other (i.e., B and C) can be the same as something else (i.e., A).” In trying to simulate the thinking of this thought, the spreading activation process may start out with A in some state, say S. Then B will tend to be in the same state S, because of the excitatory link between A and B represented by the +1. Then C will tend to be in a different state, say Not-S, because of the inhibitory link between B and C. But if C is in the state Not-S, then A will tend to be in the same state, namely Not-S, because of the excitatory link between C and A represented by the +1. But if A is Not-S, it will tend to make B be Not-S, which will tend to make C take on the state S, which will make A take on the state S, and so on. It is obvious that it is impossible for the final state of the network to match the constraints perfectly, and this leads to a harmony score below 1. Also, when initial activations are 1 for all units, the network takes a relatively long time (ten cycles) to settle to the relatively unharmonious solution it arrives at.

The experiential counterpart of this is that it would be very difficult for the human thinking process to come up with an entirely satisfactory interpretation of the thought “Two things that are different from each other can both be the same as something else”. That the spreading activation process has this same difficulty bodes well for its adequacy as a simulation. In the simulation, this difficulty in thinking satisfactorily about that thought is reflected quantitatively in low harmony scores and slow settling rates. In the human mind, there may be some cognitive counterpart to these quantities.

In contrast, consider the network at right in Figure 2, corresponding to the thought: “Things that are the same as each other (B and C) can both be different from something else (A).” Experientially, this is relatively easy to think about, and in the simulation the spreading activation process is quickly able to settle to a state that satisfies the constraints perfectly. That is, if A is in state S, then B is in Not-S, as is C, and A is in state S, and all these are entirely consistent with the constraints, leading to a harmony score of +1.0, and taking only 2 cycles to settle.

Figure 1
Two-Node Networks

![Two-Node Networks Diagram]

Figure 2
Three Node Networks

![Three Node Networks Diagram]
The Present Studies

Our hypothesis is that experts in a subject matter area, like history, will have arrived at an internally consistent mental representation of historical events in their area. Therefore the constraints in their network of associations will be easily satisfied, leading to high harmony scores and fast settling. Similarly, experts in the skill of literary interpretation will be well-practiced in arriving at internally consistent mental representations of literary texts. Therefore the constraints in their network of association will be easily satisfied, leading to high harmony scores and fast settling.

In contrast, novices in history and literary criticism will be less likely to come up with internally consistent representations of texts in those subject matter areas, and so the constraints in their network of associations will be less likely to be easily satisfied, leading to lower harmony scores, and slower settling for novices than for experts.

But even if novices don't have prior knowledge representations in an area, there are several ways in which they can construct internally consistent mental representations in a subject matter area. One way is by reading a coherent text that provides an internally consistent textual representation of the subject matter area. If that textual representation is learned, the result can be that the novice has acquired an internally consistent representation of the subject matter area, leading to relatively higher harmony scores and faster settling rates for those novices who have read coherent texts. But if the text is less coherent, the chances of the novice learning an internally consistent representation are lower, leading to relatively lower harmony scores and slower settling rates.

Another way in which novices can arrive at an internally consistent mental representation of a subject matter area, even if they are reading an incoherent text, is by using their reading abilities and domain prior knowledge to supplement what is provided in the text, so as to produce an internally consistent representation. So novices who are good readers and/or have lots of prior knowledge should have relatively higher harmony scores and faster settling rates.

In the experiments reported below, we tested these hypothesis by gathering mental representations from experts and novices who had read coherent or incoherent history or literary texts, and then simulated their thinking process by spreading activation through our copy of their mental representations, measuring harmony and settling rate. We expected higher harmony and faster settling rates for experts, for novices who read coherent texts, and for novices who were good readers.

Experiment 1

Method

Subjects. Eight subject matter experts were tested. For the comparison of the Original to the Revised texts, the novices were 357 Air Force recruits, 179 of whom read the Original text, and 178 the Principled Revision, which had been revised to be more coherent. For the study of novices who were good readers, the subjects were 211 Air Force recruits who had read the Original text.

Materials. The Original text was a 1000 word self-contained section from an Air Force ROTC training document. The Revised version had been modified to improve its coherence (Britton & Gulgoz, 1991).

Tests. The 12 most important terms from the text were selected by consensus between the author and a graduate student. All possible pairs of the 12 terms were constructed and presented to all subjects for rating on a seven point scale labeled from "very closely related" to "very distantly related." For purposes of the associative network used in our analysis, responses of "very closely related" were interpreted as excitatory links of +1 and "very distantly related" as inhibitory links of -1; the intermediate values were interpreted as +.67, +.33, 0, -.33, and -.67, respectively.

Analyses. The ratings of each subject were entered into a network in a program based on the Construction-Integration model of Kintsch (1988). Initial activation values were set to 1.0 for the data reported here. (Additional simulations with initial activations differing non-systematically gave the same pattern of results.) Harmony was calculated by taking the sum of the product of the correlations between the final activation of the units and the initial weight matrix, and scaling it by
the sum of the absolute values of the weights. The number of cycles to settle was recorded by the program.

Results

Columns 1-3 of Table 1 show the harmony and settling rates for the average expert and for the average novice in the groups who read the original text and the text revised to be more coherent. The harmony was significantly higher and the settling rates significantly lower for the experts than for the novices in either group ($t(184) = 6.72$ and 7.48, both $p < .001$ for Original text harmony and settling time, and $t(185) = 5.66$ and 8.07 for the Revised text.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>Novices who read Original Text</th>
<th>Novices who read Revised Text</th>
<th>Expert Representing Novices with Original Text</th>
<th>Remaining Novices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony</td>
<td>.789*</td>
<td>.286</td>
<td>.360*</td>
<td>.262</td>
</tr>
<tr>
<td>Settling Rate</td>
<td>4.00*</td>
<td>9.39</td>
<td>9.23</td>
<td>10.25</td>
</tr>
<tr>
<td>*p < .05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Also, the average harmony was significantly higher for the novices who read the revised text than those who read the original text, $t(353) = 3.01$, $p < .01$ and the settling rate was lower, although the latter was not significant.

A separate group of 211 novices who read only the original text were factor analyzed, and three factors were identified (as in Britton & Tidwell, 1990). The mental representation of novices in one of these factors was significantly correlated with the representation of the average expert (as in Britton & Tidwell, 1990). These novices were presumably the more successful readers. Columns 4-5 of Table 1 show the average harmony and settling rate for subjects in that factor, and for the remaining subjects. The novices with the expert representation had significantly higher harmony and faster settling rate, consistent with the hypothesis that they had more internally consistent mental structures than the remaining subjects, $t(209) = 6.37$, $p < .001$, $t(209) = 2.13$, $p < .05$.

Discussion

These results are consistent with our expectations that experts, readers of coherent text, and good readers would have mental representations that were more internally consistent than novices, readers of less coherent texts and poor readers. We conclude that the quality of the testee's prior knowledge may be measurable by calculating harmony and settling rates. The remaining studies replicated this finding with a different type of expertise, and also with different materials, experts, and novices.

Experiment 2

Subjects. Ten Dutch literature professors were used as experts, along with 14 undergraduate students from the same universities. Rolf Zwaan conducted the experiment.

Texts. Two literary texts were selected from an International anthology of prose poems; both were by well-known authors, one by a winner of the Nobel Prize for literature. One text described an elm log which had been sawn a year before, yet had produced a fresh green shoot; the other text described the struggles of a fly who had become stuck in flypaper. The Dutch translations were used.

Test. Twelve terms were selected, including six terms representing perennial literary themes – love, death, life, hate, happiness and sadness (these terms were the same for both passages) – and six terms from each passage; for the elm log passage these were log, green, branch, saw, tree, chop; for the fly passage they were flypaper, old age, attempt, give up, helpless, man.

All possible pairs were constructed and presented to each subject after s/he read the text, and each subject rated them on the same seven-point scale as used in Experiment 1.
Results

Table 2 shows the results. The experts had higher harmony and faster settling rate than the novices, consistent with our hypotheses, but the effect was significant only for settling rate, $t(22) = 1.70, p < .05$.

<table>
<thead>
<tr>
<th>Harmony and Settling Rates in Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experts</td>
</tr>
<tr>
<td>(n=10)</td>
</tr>
<tr>
<td>Harmony</td>
</tr>
<tr>
<td>Settling Rate</td>
</tr>
</tbody>
</table>

Experiment 3

A well-written literary text can be given a coherent literary interpretation. A well-written informational text can be given a coherent informational interpretation. But suppose a reader attempts to give a literary text an informational interpretation: Attempting to interpret a text differently from the way its author intended will presumably be more difficult, and the resulting mental representation will likely be less internally consistent. If so, harmony will be lower when readers are asked to interpret a literary text as a literal one, and settling rate will be slower. In Experiment 3 we asked novices to provide literal interpretations for four literary texts; novices in the control condition were asked to produce a literary interpretation for the same four texts.

Subjects. Seventy undergraduates were tested, half in the Literary Condition and half in the Literal Condition.

Texts. The Elm Log and Fly texts were used along with two additional literary texts from the same source, both by Nobel Prize winners in literature, one about a dream of a chess game, and the other about ants returning to a burning log. For each text, a literary title was provided for the literary group and a literal title for the literal group. The literary title was constructed to cue a literary interpretation: for the Elm Log passage it was "Rebirth of the Spirit"; for the Flypaper passage it was "How Man Ages and Dies". The corresponding literal titles were "Description of an Elm Log" and "A Description of how a Fly becomes Tangled in Flypaper". Titles were constructed similarly for the other two passages.

Tests. The same six perennial theme terms were used, along with six terms for each passage, tested as in Experiments 1 and 2. For each text, about half of the terms were more susceptible to a literal interpretation and half to a more literary interpretation. (For some passages, we judged that one or more perennial theme terms could more easily be interpreted literally in the context of that passage, so the same number of other terms were selected to be more susceptible to a literary interpretation.)

Results and Discussion

Table 3 shows the results. The novices who provided the literary interpretation had higher harmony and faster settling rate than those who provided the literal interpretation, consistent with our hypotheses, but only the harmony difference was statistically reliable, $t(138) = 2.42, p < .02$.

<table>
<thead>
<tr>
<th>Harmony and Settling Rates in Experiment 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literary Versions</td>
</tr>
<tr>
<td>Harmony</td>
</tr>
<tr>
<td>Settling Rate</td>
</tr>
</tbody>
</table>

Experiment 4

This experiment examined the ability of experts to provide a literal interpretation of a literary text.
Subjects. The experts were 9 faculty members professionally concerned with literary interpretation, from the Departments of English, Comparative Literature, Romance Languages, and Philosophy at the University of Georgia.

Materials. The texts and tests were the same as in Experiment 3.

Procedure. Each expert provided both a literary and a literal interpretation for each text, on two occasions separated by at least one month.

Results

Table 4 shows the results. The experts had higher harmony and faster settling rates when they provided the literary interpretations than the literal ones, but the effect was significant only for harmony scores $t(8) = 267, p < .05$. That the average harmony for the experts' interpretations of the literal versions is negative is particularly notable. It appears that literary experts have exceptional difficulty providing a literal interpretation for a literary text.

Table 4
Harmony and Settling Rates in Experiment 4

<table>
<thead>
<tr>
<th></th>
<th>Literary Versions</th>
<th>Literal Versions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmony</td>
<td>.230*</td>
<td>-.050</td>
</tr>
<tr>
<td>Settling Rate</td>
<td>12.00</td>
<td>20.00</td>
</tr>
</tbody>
</table>

General Discussion

These results show that the quality of a person's mental representation can be measured by spreading activation through it, and observing its settling rate and harmony. Validation of this was obtained by comparing (a) mental representations whose quality was known to be high a priori, i.e., those of experts, those of novices who arrived at representation similar to experts, and both experts and novices who read texts that permitted a coherent interpretation; to (b) mental representations which were known to be of lower quality a priori: novices, especially novices who did not arrive at representations like those of experts, and both experts and novices who read texts less susceptible to a coherent interpretation. In all cases the results were consistent with expectations.

The validity of this measure suggests it as a solution to a long-standing problem in the theory of metacognition: How does the person come to realize that there is something wrong with his mental representation, wrong enough to trip off fix-up mental activities, such as rereading the text to try to understand it better, asking questions, etc.? One way to know that you don't understand is to compare your understanding with the correct understanding, but this is not possible unless you already have the correct understanding. In contrast, it is always possible to calculate harmony, and the self-calculation of harmony can provide a feedback signal, which may correspond experientially to the feeling that your understanding is incomplete. This signal could then be used to trip off mental activities that will induce fix-up actions.

Harmony also provides a measure of quality that is independent of comparisons to experts, which may prove useful when experts have differing views, as often happens in complex subject matter areas, or when qualified experts are not available. For example, in evaluating the representation of a person who is the only expert in a field, or in which there are no experts, harmony may be the only measure available.

References

