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AFIT/GCS/ENG/93M-04

Abstract

The Air Force Institute of Technology (AFIT) is developing a distributed inter-

active flight simulator, the Virtual Cockpit, using commercial graphics workstutions

and helmet mounted displays. The Virtual Cockpit communicates with other simu-

lators via local and long-haul networks using the SIMNE'r protocol.

The work reported in this thesis focuses on developing the terrain database for

the synthetic environment and on rendering the pilot's view of the database.

There are many different file formats for describing 3-dimensional geometric

polygonal objects. An analysis of three formats, AFIT GEOM, the Naval Postgradu-

ate School (NPS) DRP, and Software Systems' Flight, is presented. Each file format

is described, and their attributes are compared in a decision table.

A series of C++ classes were developed to render the file format used by

the terrain database. These C++ classes, which include classes for stationary and

moving entities, and for textures, are discussed. A technique for increasing the

rendering speed is also presented.

vii
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RENDERING THE OUT-THE-WINDOW VIEW

FOR THE AFIT VIRTUAL COCKPIT

L Introduction

1.1 Overview

Flight simulators are an integral part of military flight training. Although

instructors can not replace all flying time with simulator time, simulators do have

many advantages. For example, flight simulators "permit close observation of pilot

performance, they provide immediate feedback of information, and they permit a

pilot to experience malfunctions and flight conditions rarely encountered in actual

flight" (8). Additionally, increasing aircraft fuel costs and decreasing budgets will

force air crews to train more in simulators and less in the aircraft.

Along with this increasing interest in flight simulators, the Defense Advanced

Research Projects Agency (DARPA) gave the Air Force Institute of Technology

(AFIT) Graphics Laboratory a grant to build a flight simulator based on commercial

off-the-shelf computer graphics workstations and helmet mounted display systems.

The simulator would be connected to local and long haul networks enabling it to

interact with other simulators on the DARPA SIMNET network. The goal was

to have version one of the AFIT Virtual Cockpit participate in DARPA's Zealous

pursuit exercises in December 1992.

Zealous Pursuit is the first phase in development of DARPA's WAR BREAKER

simulation environment. The WAR BREAKER program is to develop and demon-

strate "capabilities enabling an integrated, end-to-end system that detects, identifies,

targets, and neutralizes time-critical targets". The simulation environment will be

"1,



one of the system engineering tools used to analyze WAR BREAKER system re-

quirements (13).

1.2 Problem Statement

The purpose of the AFIT Virtual Cockpit was to prototype a flight simulator

using a commercial off-the-shelf graphics workstation that costs under $250,000. This

prototype would demonstrate the ability to fly through a synthetic environment using

a believable flight dynamics model, while interacting with other vehicle simulators

appearing in the environment.

My task was to develop the database for the synthetic environment and to

render the pilot's view of the environment. The database required models of the

terrain elevation and of the cultural features, i.e., vehicles, buildings, bridges, etc.

The images rendered from the resulting database would provide all of the feedback

information to the pilot.

The Virtual Cockpit proje ct included two additional research areas. Capt.

John Switzer developed the aircraft dynamics and instrumentation model (12), and

Capt. Steven Sheasby developed the network software allowing us to communicate

with other simulators operating in the same synthetic environment (10).

1.3 Objectives

In approaching this proje~t, there were three main objectives. First, the en-

vironment had to contain both stationary and moving objects. Second, the ability

to texture map polygons was needed to increase the visual fidelity of the rendered

images. And finally, the imae ame rate needed to be high enough to prevent a

sluggish response to the pilot's input.

1.3.1 Static and Dynamic Models The database needed to contain both static

geometric models and dynamic geometric models. The static models are the houses,

2



trees, and other stationary objects that give the database visual complexity. This

complexity makes the envirenment appear more realistic. The models also give the

pilot visual clues about his altitude and speed. On the other hand, the dynamic

models are the aircraft and ground vehicles that are moving around in the environ-

ment. For uF, other simulators connected to the network would be controlling the

dynamic models in our world.

Obviously, the static models could be positioned in the environment prior to

running the simulator and that location would not change. However, the Virtual

Cockpit would need the ability to change both the position and the orientation of the

dynamic models during runtime. The network messages from the other simulators

would provide the position and the orientation n the world database.

1.3.2 Textures The Graphics Lab's new workstations have the ability to ren-

der texture maps in realtime. The second objective was to incorporate this realtime

texturing into the rendering of the database. The texture maps would increase the

visual fidelity and complexity of the database without increasing the polygon count

of the models.

1.3.3 Ftame Rate The last objective was to render at least ten to fifteen

images (frames) per second. A slow frame rate, one to two frames per second, would

give the Virtual Cockpit a sluggish response. Thus, the pilot would overreact to the

images and lose control of the aircraft.

Even though a satisfaccory frame rate is critical to successfully fly the Virtual

Cockpit, I decided to analyze the frame rate last. My approach was to analyze the

geometry file formats and to implement the rendering 4ftware frst. Then, I would

optimize the software to improve the frame rate.

1.4 Constraints

There were three major constraints that affected the development of this project.

3



Th- first constraint was the hardware available in the Graphics Lab. Since

the lab is equipped with Silicon Graphics workstations, all software development

and optimization would be done on those workstations. In 1992, the Graphics Lab

purchased Silicon Graphics 4D/VGX and VGXT workstations that have the ability

to texture map in realtime.

Secondly, the languages available for developing the Virtual Cockpit were C

and C++. We decided to use C++ in order to take advantage of the reusability

of the object oriented C++ classes. Also, previous students had created a base of

many C++ classes which could be used in developing the Virtual Cockpit.

Finally, the greatest constraint was time. Money, which is often a constraint,

was awilable for new hardware and software through a DARPA grant. However, the

acquisition process takes time and patience; neither of which are overly abundant in

students. Many times, the development process was delayed or inhibited because of

the hardware and software delivery date changes and postponements.

1.5 Thesis Overtnew

This thesis consists of five chapters. The first chapter includes a discussion

of the problem statement, the research objectives, the constraints on the research,

anu on overview of this document. Chapter II contains background information on

the PHIGS geometry format, techniques for achieving realistic images at interactive

?rocessing speeds, and the use of graphics workstations in flight s.mulators. Chap-

ter III analyzes three geometry file formats and the method used to select one of the

formats. Chapter IV discusses the C++ classes developed for the geometry format,

and the extensions made to the format. The final chapter discusses the results and

conclusions of the project, and recominendations for further research.

4



IT Background

.2.1 Overview

This chapter lays the groundwork for the remainder of this thesis. The Pro-

gramnmer's Hicrarchical Interactive Graphics System (PHIGS) for specifying graphics

data is described in Section 2.2. The next section looks at two techniques, textures

and levels of detail, that can be used in interactive simulators to increase the visual

realism. Section 2.4 describes a flight simulator developed by the Naval Postgraduate

School (NPS) that runs on a Silicon Graphics graphics workstation.

2.2 PHIGS

PHIGS is one of several graphics specifications standards. PHIGS is "an inter-

face between an application program and a graphics system that controls graphics

devices" (11).

The basic building blocks of PHIGS graphics data are called structures. Struc-

tures may contain graphics primitives, attributes, viewing selections, modeling trans-

formations, and references to other structures. Since structures may be nested, it is

possible to create complex hierarchical models from simple structures. Each struc-

ture is defined in it's own modeling coordinate system. Parent structures may apply

transformations of scaling, rotation, and translation to child structures.

The PHIGS database is dynamic. Any element of a structure may be edited

while executing the application. Elements may even be added or deleted. This

provides extensive flexibility at runtime. For example, changing the transformation

matrices will move a child structure relative to the parent structure.

PHIGS also binds attributes to primitives when the structure is traversed at

rendering time instead of when the structure is created. This allows child structures

to inherit attributes from parent structures. Since attributes may be changed while

5



executing the application, traversal-time~ binding is a necessity. Otherwise, the new

attributes would not take effect since the old attributes were bound to the primitive

when it was created.

These characteristics allow PHIGS to effectively model 3-dimensional objects

and to manipulate those objects in world coordinates. PHIGS, therefore, enables the

computer graphics user to move from the 2-dimensional realm of only manipulating

the 2D graphics image into the 3-dimensional world of virtual environments and

manipulating objects within those environments (4).

2.3 Intera ctive Techniques for Increased Realism

As flight simulator images become more and more realistic, pilots feel more like

they are actually flying and less like they are playing a game. This section discusses

some of #he techniques available for creating realistic images. However, some tech-

niques that create photo realistic images, such as, ray tracing and radiosity, require

more time than is feasible in an interactive application such as a flight simulator.

Therenbre, the scope of this section concentrates on two techniques, texture mapping

and levels of detail, which can improve the image realism in interactive applications.

2.3.1 Textures Early computer generated images were too simple and plain.

For an image to look realistic, it must have the appearance of complexity. 'Texture

mapping is a relatively efficient way to create the appearance of complexity without

the tedium of modeling and rendering every 3D detail of a surface" (5). Modeling

every detail of a surface would also require more polygons in the model. The extra

polygons would increase the rendering time and, thus, decrease the frame rate. Of

course, rendering textured polygons takes longer than rendering Gouraud shaded

polygons. However, the increased realism is well worth the extra time spent in

processing.

6



In addition to a more realistic image, texture maps increase the visual cues

pilots need while flying in flight simulators (2). These visual cues help to determine

the altitude and speed without constant watcbing of the instruments. Therefore, the

flight simulator would more closely simulate an actual flight, and the effectiveness of

the training would increase.

2.3.2 Levels of Detail Image rendering time is directly related to the number

of polygons being rendered. Therefore, as the polygon count decreases, the frame

rate will increase. This is the fundamental concept behind having multiple levels

of detail for the geometric models. As a viewer moves away from an object, the

viewer can distinguish less detail about that object. Therefore, at that distance, the

database can use a simpler model with fewer polygons to represent the object.

Three things to consider about levels of detail are: how many levels of detail

are necessary, how much simpler should the next model be, and what is the switching

distance, the distance from the eye to the model, between levels of detail. A common

approach has been to have three levels of detail, high, medium, and low. However,

the difficulty is trying to minimize the visual discrepancies between levels of detail

by varying the number of resolution levels and the transition distances. Michael A.

Cosman has proposed as many as eight levels of detail for representing terrain. He

suggests that as the distance doubles, the polygon count should decrease by half (3).

This will give more levels of detail, but the change between each level will be less

noticeable.

On the other hand, for models of objects, Roy Latham uses the rule of thumb

that the polygon count from one level of detail to the next should differ by an order

of magnitude (7). The use of multiple levels of detail is still subject to personal

preference and artistic license.

Choosing the correct transition distance is another tradeoff. This time the

tradeoff is between visual discrepancy and polygon count. The switching distance

7



should be great enough to minimize the visual distraction of the model changing,

but it should also be small enough to help reduce the overall polygon count and to

increase the frame rate.

To alleviate the effect of one model "popping" or suddenlY' switching to the

next level of detail, we can blend the two models using transparency. Mr. Latham

suggests completely fading in one model before fading out the other model. This will

prevent the possibility of a light, that is behind the object, becoming visible when

both of the transitioning models are partially transparent.

Of course, the switching distance triggers the beginning of a transition between

levels of detail. However, Mr. Latham says once the transition starts then it needs

to complete in a given amount of time. If the completion of the transition is also

triggered by distance, then it is possible to circle around an object, such as a control

tower, at the switching distance, and the object will stay a conglomerate of the two

transitioning models. However, if the transition completes in a given amount of time,

then both levels of detail will be visible only for that short amount of time (7).

2.4 Flight Simulators on Graphics Workstations

Most commercial flight simulators used by the military and by airlines for

training are large and expensive. The simulators require special facilities for the

projection systems and multiple computer image generators (CIGs). The CIGs xise

expensive proprietary hardware to generate multiple channels for display. Due to tae

expense of these commercial flight simulators, only large organizations can afford to

own them. However, with the cost of graphics workstations dropping, the possibilities

exist for developing low-cost flight simulators, where the hardware costs less than

$250,000.

NPS has demonstrated this capability. They developed a prototype flight sim-

ulation of an Army weapon system called the Fiber Optically Guided Missile (14).

The initial terrain database is a 35 x 36 kilometer area of Fort Hunter Liggett, CA.

8



However, the terrain database for the missile flight is a 10 kilometer square subset

of the total terrain. The missile launch site and the target site determine the area

extracted from the terrain database.

Once the terrain is extracted, launch occurs, and the missile flight simulation

starts. From this point until missile impact, the monitor displays the view from the

missile's onboard "camera". The operator may pan, tilt, and zoom the camera view.

He may also input navigation corrections to ensure hitting the target.

The Naval Postgraduate School implemented this prototype on the Silicon

Graphics Iris 3120 graphics workstation. The missile flight -rimulation can render

between 1500 and 2000 polygons per frame at a rate of th!ee to four frames per

second. Since this was published in 1988, Silicon Graphics has increased the polygon

throughput of their internal graphics engine, and they have added real-time texture

capability. These improvements to the graphics workstation would increase the frame

rate and improve the visual realism of the simulation.

2.5 Summary

The information in this chapter gave a baseline f.:• comparison and analysis

of geometry formats and flight simulator requirements. The discussion on PHIGS,

texture maps, and levels of detail described features to look for when analyzing and

choosing a format for our geometric models. The requirements for the AFIT flight

simulator were based on the accomplishments of the NPS low-cost simulators.

9
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III. Geometry File Formats

S.1I Overview

This chapter gives a comparison of three different file formats for describing

three-dimensional polygonal objects. The AFIT GEOM format, developed by and

used at AFRT, is described in Section 3.2. The next section gives a description of the

Naval Postgraduate School's DRP format which is used to describe terrain databases.

Section 3.4 describes the Flight file format, version 11, used by Software Systems

in their commercial modeler, MultiGen. A comparison of these three geometry file

formats is in Section 3.5.

3.2 AFRT GEOM Format

The AFRT GEOM format is the geometry file format currently used at AFIT.

The object description is stored in ASCII files, and the file format was designed to

be simple but also flexible. Since GEOM files are ASCII files, any text editor may

be used to create and to edit the files. Along with text editors, tools are available

which revolve, rotate, scale, translate, and combine GEOM files. By using these

tools, simple objects may be modified and combined into more complex objects and

written to a single GEOM file.

3.2.1 GEOM File Description The geometry information in a GEOM file

is position dependent. The vertices (points) are grouped together and sequentially

numbered. The vertices are then referred to by number in the description of an indi-

vidual polygon. Polygons (patches), attributes, and textures are also listed together

in the file and are referred to by their position number.

Figure 1 is an example of a simple GEOM file. The first line is a comment

and is ignored by all rendering software. The second line says vertices are listed7

counter-clockwise in polygon descriptions. It also tells the rendering software to cull

10
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/
,/'

Five sides of a cube with some transparency and some texture maps
ccv purge
points 20 patches 5 attributes 4 textures 3
/* bottom face of cube will have checkerboard on it */
0. 0. 0. normal 0. 0. 1. tindex 0. 0.
1. 0. 0. normal 0. 0. 1. tindex 1. 0.
1. 1. 0. normal 0. 0. 1. tindex 1. 1.
0. 1. 0. normal 0. 0. 1. tindex 0. 1.
/*top face of cube will be opaque red */
0. 0. 1. normal 0. 0. 1.
1. 0. 1. normal 0. 0. 1.
1. 1. 1. normal 0. 0. 1.
0. 1. 1. normal 0. 0. 1.
/* y-O face, will have Lenna on it */
0. 0. 0. normal 0. 1. 0. tindex 1. 0.
1. 0. 0. normal 0. 1. 0. tindex 0. 0.
1. 0. 1. normal 0. 1. 0. tindex 0. 1.
0. 0. 1. normal 0. 1. 0. tindex 1. 1.
/* xal face, will have mandrill on it */
1. 0. 0. normal 1. 0. 0. tindex 0. 0.
1. 1. 0. normal 1. 0. 0. tindex 1. 0.
1. 1. 1. normal 1. 0. 0. tindex 1. 1.
1. 0. 1. normal 1. 0. 0. tindex 0. 1.
/* x-O face, will be transparent blue */
.0. 0. 0. normal 1. 0. 0.

0. 1. 0. normal 1. 0. 0.
0. 1. 1. normal 1. 0. 0.
0. 0. 1. normal 1. 0. 0.

4 1 2 3 4 attribute 1 texture 1 type TEXTURE
4 5 6 7 8 attribute 2 type PLAIN
4 9 10 11 12 attribute 3 texture 2 type TEXTURE
4 13 14 15 16 attribute 3 texture 3 type TEXTURE
4 il 18 19 20 attribute 4 type PLAIN
shading FLAT reflectance FLAT kd .3 ks .6 n 10 color 1 0 0 opacity 1
shading FLAT reflectance FLAT kd .3 ks .6 n 10 color 1 0 0 opacity I
shading FLAT reflectance FLAT kd .3 ks .6 n 10 color 1 0 0 opacity 1
shading FLAT reflectance FLAT kd .3 ks .6 n 10 color 0 0 1 opacity .5
/usr/eng/kfife/rle/checkerboard. rle
/usr/eng/kfife/rle/lenna .rle

/usr/eng/kfife/rle/mandrill .rle

Figure 1. Cube description using AFIT GEOM format.

11 "
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polygons that are facing away from the viewer. The third line is the first line with

required information. It states the number of vertices, polygons, attributes, and

textures contained in the file.

From the information in line three, we know the next 20 lines, excluding com-

ments, will be vertex lines. Each vertex is defined by the XYZ coordinates and

optional normal, color, and texture indices.

After the vertex information, are five lines describing the polygons. The first

polygon is defined by four vertices, vertex one, two, three, and four. Attribute line

one provides the color and shading information, and the first texture map is also

applied to the polygon.

Each attribute line specifies the shading and the reflectance model to use in

rendering the image. The kd, ks, and the n are the diffuse lighting component,

the specular component, and the power coefficient for rendering specular highlights.

This attribute also defines the color and the transparency of the polygon.

The last lines of the GEOM file are the paths to the texture image files. These

texture maps must be stored in the run-length encoded (rle) format of the Utah

Raster Toolkit.

3.2.2 Extensions to the AFIT Format The previous section gave a basic de-

scription of the AFIT GEOM format. However, as AFIT moved into research in

virtual environments, the GEOM format did not provide enough information. Addi-

tional information was necessary in order to move objects through the environment

and to create multiple instances of an object without actually duplicating the geo-

metric description. Capt. John Brunderman filled this gap in the format by creating

three additional file formats, TEMPLATE, LINK, and PLACEMENT (1). The three

new formats are also ASCII based.

The TEMPLATE format provides the information to create more complex

objects from simpler GEOM files. The compone-ts are combined in a hierarchical 7'

12
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description file for a dataglove
files 2 components 11

file palm.geom
file finger-part.geom

component I parent 0 file 1 begin translate 0.0 0.0 0.0 end

/Thumb "

component 2 parent I file 2 begin translate -0.25 -0.30 0.1
rcty -25.0 rotx 30.0 scale 0.25 0.25 0.24 end

component 3 parent 2 file 2 begin translate 1.0 0.0 0.0 rotx 10.0
scale 0.7 0.7 0.8 end

// Index finger
component 4 parent 1 file 2 begin translate O.-ý -0.19 0.0 roty 3.0

scale 0.25 0.24 0.24 end
component 5 parent 4 file 2 begin translate 1.0 0.0 0.0 roty 9.0

scale 0.8 0.7 0.7 end

// Middle finger

Figure 2. Excerpt from a TEMPLATE file (hand.desc).

structure, and each component may be scaled, translated, and rotated. Because

of the tree structure of tl, format, whenever a parent component is :otated, the

child components will also move. Part of a TEMPLATE file describing a hand is in

Figure 2. There are definite similarities between the TEMPLATE format and the

GEOM format. In the example, the number of files and components are listed in the

second line. Then the file names for the underlying geometric objects are given. The

remainder of the TEMPLATE format consists of lines describing the components.

The components are given a number, and the parent component and the file number

are specified. The rest of the line gives position and orientation relative to the parent.

13
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This is a test file for the linking control algorithms
AAGUN maxtypes I
USERDEF maxtypes 2

USERDEF type 1 level 1 name Hand dpath hand.desc
AAGUN type 1 level 1 name AAA1 gpath gun.geom
AAGUN type 1 level 2 dpath gun.desc
USERDEF type 2 level 1 name Cube gpath cube.geom

Figure 3. Example of a LINK file (test.Ink).

This is a test file for Grid Class (Placement)
minx -1000 miny -1000 maxx 1000 maxy 1000 gsize 200

create AACUN type 1 begin translate -200 -200 0 rotx 20.0 end close
create AAGUN type 1 begin translate -2000 -2000 0 end
create USERDEF type I begin translate 20 20 20 scale 1.2 1.2 1.2

end close

Figure 4. Excerpt from a PLACEMENT file (test.dbs).

A LINK file creates the links between categories of objects and their geometric

descriptions. Figure 3 shows an example of a LINK file. Lines two and three state

that the file specifies one object of category AAGUN and two objects of category

USERDEF. The objects for each category are numbered in the type fiela. The level

determines the resolution or the level of detail provided by this geometric description.

The rest of the line gives a name which may be used in referencing this object and

the TEMPLATE or GEOM file that describes the object.

The PLACEMENT format places instances of object typ's on a grid in a

virtual environment database. Figure 4 shows part of a PLACEMENT file. The

second line describes the size of the grid. The following lines create instances of the

object types and specify positions and orientations for those instances.

14
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3.3 NPS DRP Fomat

The NPS DRP. format was developed by David R. Pratt at the Naval Post-

graduate School for describing terrain databases (9). Geometry information is stored

in eight different file formats. Two of the file formats are the same, but used for

different purposes. Only the six unique file format-, will be discussed here..

Terrain polygon information is contained in two different file formats. Files

in Terrain Polygon File Format One are processed to produce Terrain Polygon File

Format Two files and NPSOFF Model files. Figure 5 shows a sample of the Terrain

Polygon File Format One. The lines beginning with C make the color table. The

first line is color zero; the second line is color one. The C line contains the RGB

values and a user defined index. One common use of the index is to link a texture

map with this particular color. The remaining lines give polygon information. The

P line gives the number of vertices in the polygon and an index into the color table.

The D line gives the XYZ coordinates for the associated vertex. NPS terrain files

assume positive X to be east, positive Y to be up, and positive Z to be south. The

origin for the terrain is at the northwest corner of the database.

The second terrain format is Terrain Polygon File Format Two. A sample of

this format is in Figure 6. The polygons in this file format create a regular grid. The

first line of the polygon information specifies the X index, the Z index, the number

of vertices, the index into the material/color file, the polygon priority, and a "u" or

"I" for upper or lower triangle. The normal to the polygon is found in the next line.

And then the vertex information follows in XYZ coordinates. The polygon priority

determines the order of rendering. Priority one polygons are rendered first, and the

other polygons are then rendered on top.

The Material and Color File Format sets up a color table which is indexed

by the Terrain File Format Two files and by the NPSOFF Model files. Figure 7

shows two colors from a material/color file. Comments may be added to the file in

the normal "C" style. The defmateriol and the defend determine the beginning and

15



C 100 100 100 102
C 50 50 50 54
C 50 50 50 43
P 30
D 24000.000000 560.832031 16000.000000
D 24125.000000 565.708801 16000.000000
D 24000.000000 606.247192 16125.000000
P 30
D 24125.000000 565.708801 16000.000000
D 24000.000000 606.247192 16125.000000
D 24125.000000 560.832031 16125.000000
P 31
D 25477.865234 377.649994 23386'.757813
D 25367.464844 377.649994 23309.585938
D 25,463.337891 377.649994 23354.072266

EIgure 5. NPS Terrain Polygon File Format 1.

128 271 3 12 1 u
-0.004827 0.989798 0.142398
16000.000000 970.483215 34000.000000
16000.000000 988.466431 33875.000000
16125.000000 971.0928S4 34000.000000
128 271 3141 1
-0.078355 0.973753 0.213696
16000.000000 988.466431 33875.000000
16125.000000 971 .092834 34000.000000
16125.000000 998.524841 33875.000000
244 398 4 6 10 u
30613.970703 191.380005 49863.968750
30601.439453 190.279999 49875.000000
30619.599609 190.800003 49875.000000
30622.470703 191.050003 49872.468750

Figure 6. NPS Terrain Polygon File Format 2.

16



/* color 7 */
defmaterial
lt-green
e0ilsion 0.000000 0.000000 0.000000
ambient 0.064314 0.109020 0.064314
diffuse 0.321569 0.545098 0.321569
specular 0.000000 0.000000 0.000000
shininess 0.000000
alpha 1.000000
defend
/* color 20 */
defmaterial vindow
emission 0.000000 0.000000 0.000000
ambient 0.521463 0.521463 0.521463
diffuse 0.571542 0.571542 0.571542
specular 1.000000 1.000000 0.936407
shininess 108.712250
alpha 0.707472
defend

Figure 7. NPS Material/Color File Format.

end of a material definition. Following the defmaterial is the name of this particular

material. The RGB values are then given for the emissive, ambient, diffuse, and

specular components of the material. The shininess coefficient determines the size

of the reflective highlight. Transparency is specified by the alpha value.

Individual objects and components of vehicles are described in NPSOFF Model

Format. Figure 8 shows an excerpt from a NPSOFF file. The setmaterial and

the color name specify the color and material for the following polygons until the

next setmaterial. The defpoly starts the polygon definition. It is followed by the

coordinates of the normal, the number of vertices, and the coordinates of each vertex.

The &d4decal, underlay, overlay, and enddecal describe coplanar or decal polygons.

The underlay polygons are rendered first, and then the overlay polygons are place

on top.

17



setmaterial
mlO6matS

/* poly #94 */

defpoly
0.000000 1.000000 0.000000
3
1.550000 1.790000 -1.350000
0.313333 1.790900 -1.350000
1.550000 1.790000 0.000000

defdecal
underlay
/* poly #95 */
defpoly
0.000000 1.000000 0.000000
3
-2.160000 1.790000 1.350000
0.313333 1.790000 -1.350000
-2.160000 1.790000 -1.350000

/* poly #96 */
defpoly
0.000000 1.000000 0.000000
3
0.313333 1.790000 1.350000
0.313333 1.790000 -1.350000
-2.160000 1.790000 1.350000

overlay

setmaterial
mlO6mat4

/* poly #59 e/
defpoly
0.000000 1.000000 0.000000
3
-2.000000 1.790000 1.200000
-0.200000 1.790000 -1.200000
-2.000000 1.790000 -1.200000

euddecal

Figure 8. NPSOFF Model File Format.

18



o al 1 101 3
F 0.000000 1.510000 0.000000
F 1.655800 0.380000 0.000000
P 1
N -4.345000 0.000000 -2.240000
M 5.695801 2.370000 2.240000

0 z106 3 103 1
P 1o
M -3.430000 0.000000 -1.850000
M 2.920000 2.230000 1.850000

Figure 9. NPS Vehicle Parameter File Format.

Vehicle Parameter files combine individual components into objects. An ex-

ample is shown in Figure 9. The 0 line starts the vehicle description. It contains

the vehicle name, the vehicle type index, the destroyed vehicle index, and the num-

ber of components in the vehicle. The F lines give a translational offset for each

subcomponent. The line beginning with P contains two binary flags. The first flag

specifies if this vehicle contains weapons, and the second flag determines if this ve-

hicle can resupply other vehicles. The two M lines contain minimum and maximum

XYZ values for the vehicle. Those values may be used to create a bounding box for

the vehicle.

Finally, the Model Instance file puts the database together. Figure 10 is a

simple example. The 0 line gives the object name. The instance (1) lines specify

the instantiations of the models. They contain the XYZ translation and an optional

rotation value for each instance.

3.4 Flight Format

Unlike the other two geometry file formats which are public domain, Flight

format is a proprietary format developed by Software Systems for their commercial

19
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0 carport
I 16000.00000 20100.00000
I 16000.OOOOC 20200.00000
0 watertower
I 16100.00000 20000.00000
I 16150.00000 20000.00000
0 Zville-sign
I 17000.00000 20200.00000
0 church
I 18000.00000 20100.00000
o house3
I 18100.00000 20000.00000
I 18150.00000 20000.00000
I 18200.00000 20000.00000
I 18250.00000 20000.00000
I 18300.00000 20000.00000

Figure 10. NPS Model Instance File Format.

modeling package, MultiGen. Flight files are also binary files, whereas the other wo

formats use ASCII files.

3.4.1 Flight Geometry Hierarchy In a Flight file, the geometric description is

stored in a hierarchical structure. Figure 11 shows an example of a simple Flight file.

The root node is called the header and, appropriately, stores information relating to

the entire file. The header node has a group node for a child. Groups may contain

other group nodes, level of detail nodes, or object nodes. Level of detail nodes are

similar to group nodes except they also have switching distance information. The

subtree below a level of detail node is only visible when the distance from the eye

point to the modeled object is within the switching distance range. Object nodes

contain polygon nodes. And polygons are composed of vertex nodes.

Because of the tree structure, attributes for a node will also apply to the subtree

of that node. The color table, the material table, and the texture palette are stored

with the header node.

20
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Header

Color Table

Material Table

Texture Palette

Group I7

Group rLOD LOD L Goup
SExternal

Object Reference

SPolygon PolygonI

Vertex Vertex I [ Vertex

Figure 11. Example of the hierarchy in a Flight file.
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ATTRIBUTE WEIGHT FLIGHT INPS ] AFIT

File Structure
Binary 1.0 ,
ASCII 1.0 + +

Levels of Detail 2.0 + + +
Instancing 1.5 + + +
Materials

Emission 0.1 + + -

Ambien" 0.1 + + +
Diffuse 0.1 + + +
Specular 0.1 + + +
Shininess 0.1 + + +
Alpha 1.5 + + +

Texture 2.0 + + +
Minification 0.1 + - -

Magnification 0.1 + -

Wrap Method 0.1 + -

Environment 0.1 + -

Single File or 1.0 -

Multiple Files 0.8 - +
Subface Polygons 1.0 + + -

Z-axis up 0.5 + - +
de facto Standard 3.0 + - -

SGI Performer compatibility 2.0 + - -

Total Weight 14.4 9.5 9.7

Table 1. Decision table for geometry file formats.

3.5 Geometry Format Comparison

In order to compare the three formats, attributes for each format were given

weights and then combined into a decision table. The format was marked with a plus

(+) if the format had the attribute and it was an asset. If the format did not have the

attribute or if the attribute was a disadvantage, then the format was marked with

a minus (-). The total weight for a format was the sum of the attributes marked

with a plus. The resulting decision table is Table 1.
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The binary or ASCII file structure could have gone either way. Both have

advantages and disadvantages. For example, the ASCII formats can be edited with

common text editors, which cannot be used on a binary format. However, a binary

format should have the advantage of being smaller and, therefore, using less disk

storage. But Flight files have extra padding for future enhancements. Thus, Flight

files are still about the same size as the corresponding AFIT GEOM files.

There were many similarities. Both Flight and AFIT GEOM formats can

represent multiple levels of detail. All three formats can have instances of the same

model. And they all have materials and textures. However, Flight contains some

additional information to slightly modify the texture. NPS and Flight both have the

ability to prioritize coplanar polygons (subface polygons), so rendering occurs in a .

definite order without Z-buffering problems.

The differences ranged from subtle to major. The NPS format already has

the ability to page large terrain databases in and out of memory. Flight and AFIT

GEOM would need that extension.

Another difference was the number of different individual file formats. Flight

has one format and one file, but the file teDds to be large. AFIT GEOM has four

file formats. So, the GEOM files are smaller, but they are more numerous. NPS has

nine file formats, which can be unwieldy.

The major difference between the formats was the close cooperation between

the developers of Flight format and Silicon Graphics (SGI). In the Silicon Graphics -"

world, Flight format is quickly becoming a de facto standard. This is even more

apparent since SGI included the ability to read Flight files into its Performer software.

Performer is a high performance, rapid rendering environment for prototyping real-

time simulation applications (6).

On the basis of the decision table, Software Systems' Flight format was chosen

as the geometry file format for the Virtual Cockpit.
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IV. Rendering Flight Format

4.1 Overview

This chapter discusses my implementation for rendering geometric models in

Software Systems' Flight format, version 11. A description of the C++ classes and

methods is in section 4.2. Section 4.3 discusses the additions made to the Flight

format.

4.2 Classes

The C++ classes can be divided into two groups: classes for the nodes of the

Flight hierarchy tree, and classes for the tables and pallettes of information. Classes

for AFRT extensions to Flight format will be discussed in another section.

4.10.1 Node Classes Each tree node in the Flight hierarchy has a particular

record type, i.e., header, group, LOD, etc., and a corresponding C++ class. Table 2

shows the Flight nodes and their classes.

Initially, I duplicated the Flight hierarchy in memory by using the node classes.

This was a quick and simple recursive approach to rendering Flight files. To render

a group node, render the subtree below it. To render an object node, render the

polygons below it. Eventually, the "problem" of rendering a geometric object was

divided into smaller pieces which were easily handled. For example, a vertex is

rendered by sending the coordinates to the rendering pipeline.

This approach worked, however, the rendering speed was too slow. When flying

the Virtual Cockpit with instruments, the frame rate was only one to two frames

per second. After "flying" various configurations of the cockpit: with instruments,

without instruments, with many polygons, with few polygons, etc., the rendering

bottleneck appeared to be the tree traversal time.
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FLIGHT NODE C++ CLASS
bead MGBead

header MGHeader
group MGGroup

level of detail MGLOD
external reference MGExtern

object MGObject
polygon MGPolygon

vertex bead MGVertexBead
vertex S MGVertexS
vertex C MGVertexC
vertex V MGVertexV

Table 2. Flight nodes and their C++ classes.

Therefore to increase the frame rate, all of the rendering information is now

pushed up into the header node during preprocessing. After the Flight file is read

into memory, the tree is traversed, and rendering control flags and coordinates are

written into two arrays in the header. Rendering control information is stored in an

array of integers and the vertex cooidinates and normals are stored in an array of

floats. To render the header node, two pointers are incremented down the rendering

arrays, anId the information is sent to the pipeline. This method increased the frame

rate to seven to nine frames per second.

4.2.2 Table and Palette Casses Separate C++ classes were created for the

Flight records that describe the color table, the material table, and the texture

palette. Another class was also created to contain the transformation matrix found in

the Flight transformation record. The names of the C++ classes and their associated

Flight records are listed in Table 3.

Flight files may contain only one each of color and material tables, and texture

palettes. These records are located immediately after the header information. The

classes for the color table, the material table, and the texture palette are primarily

25
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FLIGHT RECORD J C++ CLA=fS
color table MGColorTable

texture palette MGTexturePaletta

transformation matrix MGMatrix

Table 3. Flight records and their C++ classes.

arrays of the information. For materials and textures, the only information that is

saved in the array is the index number used to define the material or the texture. Af-

ter the material or the texture is defined, the index number is used to bind (activate)

or unbind (deactivate) the material or texture.

I created the MGMatrix class purely for convenience. It gave me the flexibility

to define matrix multiplication, rotations about an axis, translating and scaling

operations.

4.3 AFIT Extensions to Flight Format

To the original Flight format, I added two extensions and provisions for a third.

This was simple since Flight has two user defined fields, Special 1 and Special 2, in

group, level of detail, and object nodes. Additionally, header, group, level of detail,

object, and polygon nodes have an optional comment field that may be used for

special processing.

4.3.1 Triangle Mesh The Zealous Pursuit terrain files provide terrain eleva-

tion on a regularly spaced grid. Figure 12 shows the easiest method for creating a

polygonal skin over the terrain data. By connecting the elevation points along the

grid lines and then dividing each square into two triangles, we can create a geomet-

ric model of the terrain. The resulting terrain model is a triangle mesh since it is

constructed entirely from adjacent triangles.
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Elevation
Points

Figure 12. Terrain model created from adjacent triangles.

To render the terrain, each triangle may bt: sent individually through the ren-

dering pipeline. This means, however, three vertices are sent through the pipeline

for each triangle. A vertex in the center of the terrain grid is shared by six trian-

gles, and, therefore, it is sent through the pipeline six times. On the other hand, if

the vertices are sent to the pipeline in a different order, information may be shared

between adjacent triangles. By sending the vertices in Figure 13 to the pipeline in

numerical order, the previous two vertices can be used with the new vertex to render

the next triangle. The Silicon Graphics GL library allows us to take advantage of

this geometry.

In order to describe a triangle mesh in Flight format, the Special I field of the

object node was used. When the field is set to one, the polygons and vertices below

this object form a triangle mesh. To render the tritingle mesh, the three vertices of

the first triangle are sent to the pipeline. Then the first vertex of each subsequent

triangle is sent. Therefore, the ordering of the polygons and vertices is critical.
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13 5 7

Figure 13. Simple triangle mesh.

For Figure 13, the triangles would be ordered alphabetically in the Flight

hierarchy. The vertices for triangle A would be listed numerically, 1, 2, 3. However,

the first vertex for triangle B must be vertex 4 because it is the vertex that is not

shared with triangle A. So, the vertices for triangle B would be 4, 3, 2. The vertices

for triangle C would be 5, 3, 4, etc. Figure 14 shows part of the Flight hierarchy for

Figure 13.

4.3.2 Dynamic Models Dynamic models are those objects in the virtual en-

vironment that either have moving parts or the entire object moves. For all of the

dynamic models, the constraint was made that the moving part must be described

in a separate Fligh~ file and referenced as an external reference file.

This constraint allowed the use of the Special I field in the group node above

each external referez~ce node. If the field is set to one, then the external reference is

dynamic and may m~ove relative to the rest of the model. If the field is zero, then

the external reeec'is static and may not move.

In order to mvthe dynamic models, an array of transformation matrices is

stored with each instantiation of the model. The first matrix transforms the entire

model, and the f3llowing matrices transform the dynamic external references.
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Vertex 1 _J Vertex 2 Vrtex 3

Figure 14. Part of the Flight hierarchy for a triangle mesh.
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4.3.3 Terrain Paging The MGTgrid class is an extension that was not fully

implemented. Another hierarchical layer was added above the Flight header node.

This layer would be a two-dimensional grid of terrain models. Each grid point would

reference the header node of a Flight terrain file. However, only the files for the nine

closest grid points would be read into memory at one time. By moving across the

grid, new terrain files would be paged into memory and old files would be paged out.

Currently, this class behaves like the MGHeader class. It is only a placeholder

for future research.
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V. Conclusions and Recommendations

Overall, the rendering component of the Virtual Cockpit was a success. We

are able to fly through the database and to render the cockpit and other textured

objects at an acceptable frame rate. Of course, what is acceptable for the initial

version may not be acceptable for the next version.

Using an object oriented approach to the rendering helped tremendously. Flight

format quickly sepitrated into definable objects and C++ classes. Once the initial

version of the classes was working, it was simple to add additional methods and ex-

tend the rendering features one at a time. The object oriented approach also reduced

the trauma of integration when I combined my code with the code of Capt. Switzer

and Capt. Sheasby.

The following section discusses the results and conclusions for each objective

of the project. Recommendations for future work are in the final section.

5.1 Conclusions

Thei-e were three objectives for the rendering portion of the Virtual Cockpit.

The first objective was to render stationary and moving objects in the synthetic

environment. Second, the ability to render texture maps was necessary to increase

the visual realism without increasing the total polygon count. The last objective

was to maintain a frame rate of at least ten to fifteen frames per second.

5.1.1 Static and Dynamic Models The static models are the terrain and all of

the non-moving objects in the database. The rendering of static objects was achieved

with the rendering of Flight files in general. Figure 15i shows a close up of the terrain

database with external references to a castle model and to a tree model.

The dynamic models are the objects that move through the database. By

including a transformation matrix with an external reference, the static external
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Figure 16. Instruments in the virtual cockpit.

reference became a dynamic model. Figure 16 shows the moving dials and objects

that make up the instrument panel in the Virtual Cockpit. The F-15 in Figure 17 is

another example of a dynamic object.

5.1.2 Textures The proper application of textures can dramatically increase

the realistic impression of computer simulations. Textures add detail and variety

to the database. Therefore, the ability to use textures was absolutely essential.

Figure 18 shows the terrain and the simplified cockpit without an airframe. The

terrain was textured to resemble sand. Texturing can also be seen in Figure 16. The

instrument panel was textured with one texture image to provide the numbers and

the back-ground for the dials.
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Figure 17. Dynamic model of an F-15.
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Figure 18. Virtual cockpit without the aircraft.
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5.1.3 F~-ame Rate Although the objective was to achieve at least ten frames

per second, the frame rate had the lowest priority for this version of the Virtual

Cockpit. The goal was to make it work, first, and then to improve the performance.

The Virtual Cockpit now has a frame rate of seven to nine frames per second.

This frame rate did not achieve the objective, but flying the Virtual Cockpit at

seven frames per second is not difficult. However, if the frame rate drops to three or

four frames per second, the cockpit becomes difficult to fly because of overreacting

to the display images. Therefore, the current frame rate for the cockpit can not

decrease very much before the cockpit becomes unflyable. Future versions of the

Virtual Cockpit will probably require a higher frame rate in order to have more

leeway before dropping to an unuseable frame rate.

5.2 Recommendations

Every thesis project has room for future improvements, and this one is certainly

no exception. Some recommendations for each of the objective areas are given.

Many of the static and dynamic models need two versions: a working one and

a destroyed one. We also need the ability to switch from the working model to the

destroyed model. After a vehicle is hit, we should see flames and smoke, then just

smoke, and finally the destroyed model.

The data structure that holds the external references and the dynamic refer-

ences also needs to be more efficient than the current structure. Currently, it is

a simple linked list, which worked well for the number of moving vehicles we had.

However, as the number of different referenced models increases, the length of the

linked list will increase, and the average search time of the list will also increase.

Therefore, the external and dynamic references need to be stored in a data structure

which may be searched more efficiently than the linked list.

In the area of texture mapping, having the ability to dynamically change the *

texture indices of a polygon would create some interesting effects. Normally, the
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texture indices for a vertex do not change. But, changing the texture indices at

runtime would cause the texture map to move on the polygon. By smoothly varying

the texture indices, a water texture map would move across a polygon giving the

effect of flowing water. The same technique could be used to move a cloud texture

across a polygon sky.

Finally, the issues of frame rate and performance will become more critical in

future versions of the Virtual Cockpit. Some possibilities for improvement are in

the algorithms for coarse clipping and polygon culling. Currently, Flight file objects

axe clipped if their bounding boxes are outside of the viewing volume. Changing

the algorithm to use a bounding sphere instead of a bounding box would reduce the

number of dot product calculations from eight to one. At the same time, polygons

could be culled according to their priority level. If the frame rate is below a certain

threshold, then low priority polygons are not rendered. As the frame rate increases,

more of the low priority polygons could be rendered.
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The Air Force Institute of Technology (AFIT) is developing a distributed interactive flight simulator, the Virtual
Cockpit, using commercial graphics workstations and helmet mounted displays. The Virtual Cockpit communi-
cates with other simulators via local and long-haul networks using the SIMNET protocol.
The work reported in this thesis focuses on developing the terrain database for the synthetic environment and
on rendering the pilot's view of the database.
There are many different file formats for describing 3-dimensional geometric polygonal objects. An analysis
of three formats, AFIT GEOM, the Naval Postgraduate School (NPS) DRP, and Software Systems' Flight, is
presented. Each file format is described, and their attributes are compared in a decision table.
A series of C++ classes were developed to render the file format used by the terrain database. These C++
classes, which include classes for stationary and moving entities, and for textures, are discussed. A technique for
increasing the rendering speed is also presented.
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