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AFIT/GOR/ENS/93M-25

Abstract

This research will prod ýce a new modified Anderson-Darling and W" Good-

ness of fit statistics for the three parameter Weibull Distribution when all parameters

unknown and -stimated by Maximum Likelihood-Minimum Distance combination.

The critical values for each statistic , sample size and a levels 0.20,0.15,0.10,0.05

and 0.01 are produced. The Monte Carlo Simulation used 5000 repetitons for sarm-

ple sizes uf 10,15,20,25,30,40, and 50 with the Weibull shape equals to 3, scale equals

to 4 and location equals to 10. The power study is made for the same sizes as above

with the hypothesized Weibull Distribution against 8 other distributions.

VI"1*



MODIFIED GOODNESS-OF-FIT TESTS

FOR THIE WEIBULL DISTRIBUTION

1. Introduction

1.1 Backqround

The Air Force spends billions of dollars every year for data from experimen-

tation to solv3 the problems g:owing in size and complexity. Consequently, the

optimal utilization of data in making decision and a careful design and analysis of

the experiment become very important.

In order to solve complex problems, Military analysts frequently use Simula-

tion, or statistical models rather than analytical techniques or mathe"matical fornu-

lation. They have to g;ve special attention to choosing particular distributions using

sample data to characterize random elements of the system under study. Because

the quality of the analysis, decision or prediction depends on the appropriateness of

the models used.

If a theoritical probability distribution has been fitted to some observed data

and used as input to the simulation model, the adequacy of the fit can be assessed

by the graphical plots and goodness-of-fit tests. In order to carry out a simulation

using random inputs , we have to specify their probability distributions. Then given

that the input random variables to a simulation model follow particular distribu-

tions, the simulation proceeds through time by generating random values from these

distributions.

Our concern here is how the analyst might go about specifying these input

probability distributions. Almost all real systems contain one or more sources of

randomness. Furthermore, it is generally necessary to represent each source of system
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randomness Prothability distribution in the simulation model. The failure to

choose the correct distribution can also affect of a model's results. The choice of

probability distributions can evidently have a large impact on the simulation output

and, potentially, on the quality of the decisions made with the simuiation results.

1.2 Definitions

1. A distribution is a single or multi-parameter theoretical, statistical model of

data, often used to predict the behavior of a population of entities by studying

a sample of it.

2. G0ven a random sample X 1,..., X,, drawn from a distribution with cumulative

distribution function (cdf) F, then the empirical distribution function (edf) is

defined as

F,, = (thenumberofX's < x)/n

For all x values F,,(x) converges for large samples to F(x), the value of the
I

underlying distribution's culd at x [25:8]. The graphical representation of EDF,

CDF relationship is in figure(1.1).

3. A 'statistic is any function of the random variables constituting one or more

samples, provided that the function does not depend on any unknown param-

eter values [6:231].

4. Goodness-of-fit tests measure from .ýhe observed data the ability of the par-

ticular statistical distribution to model the underlying random variable. The

most commonly used goodness-of-fit tests are the Chi-square, the Kolmogorov-

Smirnov (K-3), the Cramer-von Mises (C-vM), and the Anderson-Darling (A-

D).

Before applying any goodness-of-fit test, the researcher must complete four

steps to determine which distribution is suggested the data. These are

e collecting data for the study problem,

1-2
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Figure 1.1. This figure describes the CDF and EDIF graphically.

e selecting which statistical distribution best characterizes the data,

* estimating parameters of the suggested distribution,

* determining if the data follows the chosen statistical distribution as se-

lected using one of the above goodness-of-fit tests which has the highest

power.

5. A statistical hypotlicsis, or hypothesis, is a claim either about the value of

a single population characteristic or about the values of several population

characteristics.

In any hypothesis testing problem, there are two contradictory hypotheses

under consideration. The objective is to decide, based on sample information,

which of the hypotheses is correct. The claim initially believed to be true is

called the null hypothesis and denoted by ti.. The other claim in a hypothesis

testing problem is called the altcrnative hypthesi3 and is denoted by If.. Thus
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we might test II,,: a 0.75 against the alternative H,, :t j4 0.75. Only if

sample dlata. strongly suggests that it is something other than 0.75 should the

null hypothesis be rejected. In the absence of such evidence, H1, should not be

rejected, since it is still quite plausible 16:283-28,11.

6. A lest procedure is a rule, based on sample data, for deciding whetlher to reject

H.. This procedure has two constituents:

a test statistic, a function of the sample data on which the decision (reject H10

or do not reject H,) is to be based, and

a rejection region, the set of all test statistic values for which 110 will be rejected.

The null hypothesis will then be rejected if and only if the observed or computed

test statistic value falls in the rejection region [6:284-285].

7. Power is the probability of rejecting the hypothesis when in fact is false. The

higher the power of a test, the lower the chance of accepting a distribution

when it is false. If the test rejects the hypothesis, one must return to the

second step selecting and testing another

8. An estimator is a numerical function of the data. There are many ways to spec-

ify the form of an estimator for a particular parameter of a given distribution,

and many alternative ways to evaluate the quality of an estimator [16:368].

distribution.

1.3 Scope

In this research I will study extensively three parameter Weibull distribution

with unknown parameters. Since I will estimate the parameters, I need to build

tables for each statistic, density, estimator and empirical distribution function. The

scope of the analysis will be to adjust the range of the tables in conjunction with

the time and computer resources available.
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1.4 Problem Statement

There are several goodness-of-fit tests for the two parameter Weibull distribu-

tion with shape and scale parameters. However the two parameter Weibull distribu-

tion assumes the smallest possible random variable is zero. When this assumption

does not hold we have to add another parameter ( iocation parameter ) to adjust the

smallest possible value to zero. In this case we can use the three parameter weibull

distribution with scale, shape and location parameter. But there is very little known

about goodness-of-fit tests for the three parameter Weibull distribution when all

parameters are unknown.

1.5 Research Objective

The purpose of this study is to derive critical values for a new goodness-of-

fit test statistic and to examine the power of the new test against the power of

alternative tests. Alternative tests may be derived for the comparison.

1.6 Summary

Most of the books about statistics do not include enough information how to

choose distributions to model the system bebavior and how to test the distributions

chosen. This kind of lack of information lead the statistical practitioners to choose

distributions well known and easy to apply, but not representing the data.

Most of the modelling work is highly dependent on the distributions chosen to

represent the random elements in the system modelled. If one does not have enough

information about how to choose distributions or does not test the distribution cho-

sen then the study is subject to incorrect results.

This study of statistical data will help the Air Force to better predict the

Reliability and maintainability of systems. Because in the litterature and in the real

life when using Weibull distribution as a model analysts consider minimum life of

product as zero. But there are cases where the minimum life is not zero. Most of the

S~1-5
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researchers did not adress this problem. Because when all the parameters known,

but shape parameter, null distribution theory wvill depend on the true values of the

parameters estimated. But when the location and scale parameters are unknown

and estimated by appropriate methods, the distributions of EDF statistics will not

depend on the true values of thle estimated parameters [2,5:103].

1.7 Support Requiremnents

This research will require ARIT computer resources. A program will be written

in Sun Pascal 2. Foi- educational purposes and validation of the Pascal codes MCAD

will be used.
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II. Literature Review

2.1 Background

This thesis effort is focused on the Weibull distribution with three parameters

unknown. In this research Maximum Likelihood Estimation (MLE) technique and

Minimum Distance Estimation (MDE) will be used to obtain the point estimates of

the unknown parameters of the Weibull distribution. In the literature review, special

attention is given to parameter estimation techniques, goodness-of-fit test statistics,

Srandom num ber generation techniques and generators.

The three parameter Weibull distribution is applicable to many random phe-

nomenon [11:164]. It has been found to provide a reasonable model for lifetimes of

many type of unit, such as vacuum tubes, ball bearings and composite materials

[4:17], for time to complete some task [16:333], and for interarrival and service times

(actually, the exponential distribution is a special case of both the gamma and the

Weibull distributions) [1:132]. Especially, in reliability estimation the Weibull dis-

tribution is second in use after the exponential ( Unfortunately in many cases, it is

used because it is easy to apply rather than because it is a choice based on a through

understanding of the fundamentals [15:233].

The following explanation shows intuitively that sometimes the Weibull distri-

bution provides a better model than the exponential distribution does.

The tail of the Weibull distribution may decline more rapidly or less rapidly

than ý,tbat of exponential distribution. In practice, this means that if there are more

large\service times than exponential can account for, a Weibull distribution may

provide a better model of these service times [1:132-133].

•allagher proved that the Weibull distribution allowed the pdf to fit data that

was actually from the gamma distribution and tested the robustness of the Weibull

with respect to other probability distributions.
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2.2 Maximum Likelihood

In the Hypothesis testing, usually parameters are unknown, and must be esti-

mated from the observed data.

In this research, MLE is choosen for the following reasons :[16:350-354]

MLEs have several desirable properties often not enjoyed by alternative meth-

ods of estimation, e.g., least-squares estimation, unbiased estimators, Modified

Moment Estimators and the method of moments; As Cohen [3:31] noted al-

though calculation of Moment estimators (ME) requires considerably less com-

putational effort than MLE, it should be remembered that estimate variances

of the MLE are smaller than corresponding variances of the ME. However,

ME are applicable over the entire parameter space, whereas computational

problems arise with MLE when /3 < 1.

1. For the most common distributions, the MLE is unique; that is, L(O) is

strictly greater than L(O) for any other value of teta.

2. Although MLEs need not be biased, in general, the asymptotic distribu-

tion (as n - oo ) of 0 has mean equal to 0.

3. MLEs are invariant; ýhat is, if fa=h(0) for some function h, then the MLE

of fa is h(0). (unbiasedness is not invariance) For example, the variance of

an exponential(beta) random variable is /32, so the MLE of this variance

is yn.

4. MLEs are asymptotically normally distributed;

5. MLEs are strongly consistent; that is, limný_.. 0 = 0

"* The use of MLEs turns out to be important in justifying the chi-square goodness-

of-test;

"* The central idea of ML estimation has a strong intuitive appeal.

2-2
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But finding MLEs for the three parameter Weibull distribution is very difficult.

The coefficient of variation cv = v - , where -f is knownilocation, can

sometimes provide useful information about the form of a continuous distribution.

For the Weibull distributions, cv is greater than, equal to, or less than 1 when

the shape parameter is less than, or equal to, or grater than 1, respectively. This

summary statistics is not particularly useful for other distributions, except Gamma,

Exponential, Lognormal [16:358].

It is possible to use the Kurtosis, which is a measure of the tail weight of a

distribution, as a function of distribution parameters. However, Law and Kelton did

not found the Kurtosis to be very useful for disciminating among distributions.

Some of the distributions have range [0,oo) ( such as gamma, Weibull lognor-

mal, exponential ). Thus, if a random variable X has any of these distributions, in

practice sometimes X cannot be less than some positive value -y ( such as service

time ). In this kind of situation, if range [0,oc) is used, even though P(X < -Y)=O,

there is a chance to generate a random variable less than -y.

To solve this kind of problem, we can shift the distribution -y distance to

the right. Here -y is called as location parameter. Then the range of the shifted

distribution becomes [-y,o). But the shifted Weibull, gamma (global) MLEs are

not defined very well [2]. That is, the likelihood function L can be made infinite

by choosing 3' = X(i)( the smallest observation in the sample), which results in

admissible values for the other parameters [16:401]. The same authors criticized

the approach suggested by Harter and Moore seeking a local, as opposed to global,

maximum point of L [10]. But this approach is very simple in concept. But as

Harter and Moore pointed out, when location estimate is bigger than X(1) numerical

problems occur because ln(Xcl) - y) does not exist. Harter and Moore suggested

censoring the random variables less than or equal to -1, then continuing the estimation

of the the parameters left.
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Cheng and Amin [2] proposed an alternative estimation ieie,-,d for'three pa-

rameters, called maximum product of spacing (MPS) estimatio.- *:,is method can

be used when MLE fails. This method solves three equations i. Lhree unknowns

using a numerical approach.

Dubey [7] suggested another method for three parameter estimation problem.

In practice this method first estimate the location parameter -Y by

y= X(I)Xc") - M (2.1)

XM) + X(n) - 2X(k)

where k is the smallest integer in 2,3,...,n - 1 such that X(k) > X(l). It is

shown by Dubey [7] that ý < X(,) if and only if X(k) < [x2I)+x¢2j . Zanakis [29]

in his research concluded that j' was accurate for the Weibull distribution. Given

as location parameter, two parameter MLE can be applied for the shape and scale

parameter after subtracting out j for all the observations.

Also, Johnson [14] discusses some other alternative estimators based on Order

Statistics. He also noted that the MLEs are regular ( in the sense of having the usual

asymptotic distribution ) only for shape estimate> 2. If it is known that 0 < Shape

Estimate < 1, then rain(Xi,..., X,,) is a super efficient estimator for the location

parameter. [14:256].

Usually location parameter is assumed zero. But a value of location less than

zero could indicate failure in storage [13:4-47]. Hirose [12:310] discuss the location

parameter in his paper as follows : In failure analysis (especially in electrical engi-

neering) it is well known that failures follow the Weibull cdf and there seems to exist

certain point, greater than zero, in the Weibull cdf under which a breakdown will not

occur, or at least will be very rare. Since very low failure probabilities are expected

in power electric equipment, electrical engineers consider it crucial to estimate this

point.

Hirose [12:330] proposed an algorithm of MLE comprised of three parts.

2-4



* Determining appropriate initial values for Newton-Raphson method.

* Finding the approximate values by using the line search algorithm.

o Solving the three simultaneous likelihood equations by Newton-Raphson method.

He concluded that the larger the shape value, the more often the parameters

fail to converge in MLE. But using Harter and Moore's algorithm this problem was

not encountered.

A scale parameter determines the scale ( or unit ) of measurement of the values

in the range of the distribution. A change in scale parameter compresses or expands

the associated distribution without altering its basic form. A change in shape alters

a distribution's properties (e.g., skewness) more fundementally than a change in

location or scale.

It is rare to know the parameters of a distribution being tested. In this re-

search, I will use two different estimation techniques: Maximum Likelihood Estima-

tion (MLE) and Minimum Distance Estimation (MDE).

The MLE selects as distribution parameters whose values that maximizes the

likelihood of the observed sample, where the likelihood function is the joint density

function. Therefore, the probability of the observed sample is maximized by the

choice of the distribution parameter values.

In recent studies by Dr. A.H.MOORE and his students , maximum likelihood

estimates with minimum distance estimation of location performed very well. Mark

GALLAGHER showed that estimating location by minimizing AD statistics given

Maximum likelihood estimates was the best method among several alternatives in-

cluding MLE. But in his study, he did not let location parameter go to below 0. Also,

in the location procedure he had a bug which did not give correct estimates of some

samples. This was corrected and the Whole program was rerun only for WEIBULL

tables. Surprisingly, minimizing the AD statistics was better than other techniques

he investigated, approximately 900 times out of 1000 repetitions.
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2.3 Random Number Generator

Any one who considers arithmetical methods of producing random digits is, of

course, in a state of sin. For as has been pointed out several times, there is no such

thing as a random number-there are only methods to produce random numbers, and

a strict arithmetic procedure of course is not such a method. ....We are here dealing

with mere "cooking recipes" for making digits.... [27].

Arithmetically generated random numbers ( usually called pseudorandom) can

be defined as numbers that appear independently drawn from the U(0,1).

The methodology of generating random numbers from a distribution is first

to obtain random variates from the uniform distribution on the interval [0,11, then

transforming these 111) random numbers in a way determined by the distribution.

A good arithmetic random number generator shoulId possess several properties:

*Above all, the numbers produced should appear to be distributed uniform- ly

on [0,1] and should not explicit any correlation with each other; otherwise, the

simulation's results may be completely invalid.

*From a practical standpoint, we would naturally like the generator to be fast

and avoid the need for a lot of storage.

*We would like to be able to reproduce a given stream of random numbers

exactly, for at least two reasons. First, this can sometimes make debugging or

verification of the computer program easier.

* There should be provision in the generator for producing several separate

"streams" of random numbers. A stream is simply a subsegment of the num-

bers produced by the generator, with one stream beginning where the previous

stream ends. We can think of the different streams as being separate and in-

dependent generators. Thus, the user can "dedicate", a particular stream to a

particular source of randomness in the simulation.

2-6



In the history of random number generation, throwing dice, drawing numbers

from It urn, or dealing otit cards has received a remarkable attention by statisticians.

Later, mechanized devices and elec, 3nic-random number generators have been used

to generate random numbers more efficiently and quickly. But as modern large-

scale simulations become possible by use of computers, methods to generate random

numbers by arithmetic ways has become neccesary. Arithmetic methods use a fixed

mathematical formula to generate random numbers. This kind of first generator

proposed by von Neumann and Metropolis [27] called midsquare method. But this

method failed because for some starting values it generates 0 quickly and stays

there forever. Later in 1951, Lehmer [17]introduced linear congruential generators

(LCGs). This generator uses a recursive formula

Zi = (aZi_, + c) mod rn) (2.2)

where m (the modulus), a (the mLlt'plier), c (the increment), and ZO (the seed )

are all nonnegative integers satisfying the following constraints : 0 < rn, a < m,

c < m, and Z0 < m. From equation(3), 0 < Zi < (m - 1). By dividing Z, by m

one can get pseudo random numbers on U(0,1). LCGs has a looping behavior ( the

same sequence of random numbers will repeat itself whenever Zi is equal to the Zo.

This lenght of cycle is called the period of a generator. This period is at most m.

When the period is m, it is called full period and any starting value will produce a

m - 1 different pseudorandom numbers. But if the period is less than m, than the

period will depend on only the starting value. Full period LCGs are desirable but

some of them can show nonuniformality leaving big gaps in the sequence of possible

values. Therefore m, a, and c parameters should be chosen very carefully. The

following theorem, as given in Law and Kelton [16] can be helpful in choosing these

parameters.

The LCG defined in Eq.(1) has full period if and only if the following three

conditions hold:

2-7



* the only positive integer that (exactly divides both m and c is 1.

e if q is a prime number that divides m, then q divides a - I

e if 4 divides 77, then 4 divides m - 1

When c > 0 LCGs are called mixed, otherwise (c = 0) they are called multiplica-

tive LCGs. In this research, multiplicative LCG will be used. GALLAGHER and

CROWN used different LCGs. They did not show why and how they choose their

LCG parameters (a, c, and m). I tried both sets of parameters. When Crown's pa-

rameters are used in Sun Pascal 2., Integer overflow experimented resulting negative

pseudorandom numbers on U(0,1). But this did not occur in CSC pascal. Thus,

One should be very careful choosing LCG parameters . For this reason m is chosen

as 231 - 1 (which is a prime) and c is choser, as 16807 which is used in IMSL routines

because it has the fastest execution time among three possible c values offered in

IMSL generators. Also Some of the simulation languages uses 16807 as multiplier

[16:3571. Later, using the Chi square test as shown in Law and Carson [16:4371. 5000

pseudorandom numbers are tested in MCAD. The chi-square test with all parame-

ters are known is used to check whether the pseudorandom numbers generated by

using this generator appear to be uniformly distributed between 0 and 1. We divide

[0,11 into k subintervals of equal length and generate U1, U2,..., U,U.For j = 2,..., k,

let f. be the number of the U1's that are in the jth subinterval, and let

X = n k)2X Ii=1

(2.3)

Then for large n, X2 will have an approximate chi-square distribution with k - 1

df under the null hypothesis that the Ui's are independently identically distributed

(lID) U(0,1) random variables. Th,'s we reject this hypothesis at level a if X2 >

w 2Xk_-,1 is the upper 1 - a critical point of the ch; square distribu-
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tion with k - 1 degrees of freedom (df). For the large values of k ,the following

approximation can be used

X (k,--1) - 9(k- 1) ± zi- 9(k- 1) (2.4)

where zl-,, is the upper 1 - a critical point of the Normal(0,1) distribution.

2.4 Random Variate Generation Techniques

In this section, The most widely used techniques for generating random vari-

ates will be briefly explained, such as inverse transform techniquu, the convolution

method, and acceptance-rejection technique.

2.4.1 Inverse transform technique. This technique is very straighforward.

It can be used when the inverse of cdf F(x) has an explicit formula. For example

since the Gamma distribution does not have an explicit cdf F(x) , thit method can

not be used to generate the random gamma deviates. A step-by-step procedure for

the inverse transform technique, illustrated by the exponential distribution, is as

follows [1:294].

* Compute the cdf of the desired random vaiiable X. For the exponential dis-

tribution, the cdf is F(x) = 1 - exp- ',x > 0.

e Set F(x) = R on the range of X. R has a uniform distribution over the interval

(0,1). For the exponential distribution, it becomes 1 - exp-A', x > 0.

* Solve the equation F(x) = R for X in terms of R. For the exponential distri-

bution, the solution proceeds as followz:

1. 1 - exp-A'\=R

2. exp-,\x = 1 - R

3. -)AX=h,1-R
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4. X = 4l4(1 - R) This equ:.tion is called a random variate generator

for the exponential distribution. In gereral this equation is written as

X = F-. Generating a sequence of values is accomplished through next

step.

5. Generate (as needed) uniform random numb-rs R1, R 2, R3,... and com-

pute the desired random deviates by

X= F-'(R,) 2.5)

For the exponential case,

Xi= In( - R2) '(2.6)
AF

One simplification to this equation is to replace (1 - Ri) by Ri.

The uniform , Weibull random generators ( using the inverse transform tech-

nique) are as follows:

- Uniform random generator: X = a + (b - n) R, given a < X < b.

- Weibull random generator : X = a[- In 1 - R] + -y, given x > 0

2.4.2 Convolution Method. The probability distribution of a sum of two or

more independent random variables is called a convolution of the distributions

of the original variables. The convolution niethod thus refers to adding together

two or more random variables to obtain a new random variable with the de-

sired distribution. This technique can be applied to obtain Erlang variates,

approximately normally distributed variates, and binomial variates. What is

important is not the cdf of the desired random variable, but rather its relation

to other more easily generated variates [1:317].
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i

Figure 2.1. Inverse Transformation Technique

In this research, the Gamma and normal random deviates are generate(] by

using this method as follows:

- An Erlang variable X with parameters (K, 0) is the sum of K independent

exponential random variables, X1(i = 1,...,K), each having mean I/KO;

that is, X = j=1 X,. Since each Xi can be generated by equation X=

TlnR, with 1/A 1/KO, an Erlang variate can be generated by

K
X = • In1Ri

i=1

- if the Gamma distribution's shape parameter is integer, it is called Erlang

distribution.

•4..3 Direct Transformation for the Normal Distribution. Consider two

standard normal randoin variables, ZI,Z 2, plotted as a point in the plane as

shown in Figure2 and represented in ploar coordinates as Z= B cosO and
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Z2= Bsin 0. It is known that B 2 = Z2 + Z2 has the chi-square distribution

with 2 degrees of freedom, which is equivalent to an exponential distribution

with mean 2. Thus, the radius, B, can be generated by B = (-2 In R)'1/2. By

the symmetry of the normal distribution, it seems reasonable to suppose, and

indeed it is in this case, that the angle 0 is uniformly distributed between 0 and

27r radians. In addition, the radius, B, and the angle,0, are mutually indepen-

dent. Combining Equations (1) and (2) gives a direct method for generating

two independent standard normal variates, Z, and Z2, from two independent

random numbers R1 and R2:

Z, = (-21n R1 )'/2 cos 2rR2 and Z2 = (-21n R,)1/2 sin27rR 2.

2.5 Summary

In this section, Maximum Likelihood and Minimum Distance estimation tech-

niques, random numbers and generators are discussed. Solutions proposed for

some of the MLE problems are presented.

2-12
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III. Methodology

3.1 Introduction

In this section, Weibull distribution will be discussed.

3.1.1 Weibull Cumulative Distribution Function (CDF).

F(x;0,/3,6) = 1- e-(-) (3.1)

where 0 > 0 is the scale parameter, /3> 0 is the shape parameter, 6 > 0 is the

location parameter

3.2 Weibull Probability Density Function (PDF)

f (x; 0,13) G X)-1 e-(ZeY (3.2)

3.3 Weibull Distribution Properties

- The exponential(p) and Weibull(1,/3) distributions are the same.

- X - Weibull(c,/3) if and only if xO - exp(I30)

- The natural logaritm of a Weibull random variable has a distribution

known as the Extreme- Value or Gumbel distribution.

- The Weibull(2,beta) distribution is also called a Rayleigh distribution with

parameter fl, denoted Rayleigh(/3). If Y and Z are independent normal

random variables with mean 0 and variance P32, then X = (Y 2 + Z 2)1/2

Rayleigh(21/2/3)

1. As a --+ oo, the Weibull distribution becomes degenerate at /. Thus,

Weibull densities for large alfa have a sharp peak at the mode.
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1 -- . . . j . . . . ,.... -

0.9 ,
0.8 Weibull(1O,3,3)

0.7

0.6 Weibull(10,5,3)F(X),05

0.4 ,
0.3 .

0.2 ,, Weibull(10,4,31

0.1

0
10 12 14 16 18 20

X

Figure3.1. This figure shows the effect of a change in scale when shape and location
are constant

2.
0o ifa<1

lim f(x)= I ifa1=

0 ifa>1

(3.3)

Following to figures do represent that the shape parameter is the key element

in the Weibull distribution. As seen from figure one, when shape is constant,

scale only streches or expands the CDF. But the following figure shows that

the different shapes causes the CDF shape change.

3.4 Maximum Likelihood Estimators

The meth,.d of maximum likelihood was first introduced by R.A.Fisher, a

geneticist and statistician, in the 1920s. Most statisticians recommend this

method, at least when the sample size is large, since the resulting estimators
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0.8 ~ .Weibull(10,4,I)

0.6 -

F(X) ,/.. Weibull(10,4,2)

0 .4 -- . '

"0.2 Weibull(10,4,3)

10 15 20 25 30

x

Figure 3.2. This figure shows the effect of a change in shape when scale and location
are constant

have certain desirable efficiency properties. The likelihood function tells us how

likely the observed sample is as a function of the possible parameter values.

Maximizing the likelihood gives the parameter values for which the observed

sample is most likely to have been generated, that is, the parameter values

that "agree most closely" with the observed data.[6:247-248] But Some statis-

ticians do not recommend to employ the MLE for the three-parameter Weibull

distribution unless there is reason to expect that 0 > 2.2.[3:271

The joint probability density function for a complete ordered random sample

Xi,i=l,2...,n,fromtheWeibulldistributionisinEq(4)L = (xi,...,x,,; ýy, 0,) =

II= f(xi; 7,- , 0, )(3.4)

L =(O-')" (x, - *( ) (3.5)

When 3 < 1, the distribution is reverse J-shaped and the likelihood nction

becomes infinite as -t= , xI, the smallest sample observation. Accordingly, in

this situation the MLE of - would be X1, but estimates of P3 and 0 would not

3-3

-7 ,-. - - -- . .



exist. The Weibull distribution is bell-shaped when 3 > 1, and MLE in that

case be found by simultaneously solving the system of equations obtained by

equating to zero the partial derivativatives of the loglikelihood function with

respect to the parameters. Taking the logarithm of L simplifies taking the

derivative of the equation by converting the product of density fu.action into

summation. Taking the logarithm of L, differentiating, and equating partial

derivatives to zero, we obtain

nL n
Oln_- =90"ZE(x, -)P- (7- - 1) -(x, - 7)-1 = 0 (3.6)

clIn L nO0n n +0-3 O (x, - -y)1=0 (3.7)

i=1

t9 In L n n ,
O - + •-ln(xi - y) - 0 "-E(xi -- Y)"iln(xi - -) =0 (3.8)

19P 0 t i=l

These three equations can not be solved explicitly. But as Cohen showed 0 can

be eliminated from the last two equations to give

(Xi - ) ln(, I) ( i) -E ln(x ,- -) = 0 (3.9)

-p ns=I

Subsequently, 0 can be stated as

Sn !~i

When we substitute this scale estimate into equation 3.5 , we get

-P) E(Xi-7^/)-I + n13 (t=-i(T (3.10)

But, still in order to get /3 and j we need to solve the equations 4 and 5 iteratively.

Actually when the location is known the first equation can be solved easily (but still
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iteratively) for i. Cohen gives some techniques for a first approximation to for

use in iterative process, such as the Weibull coefficient of variation and its square as

functions of the shape parameter. But since in this research the Hlarter and Moore

algorithm used we really do not need an initial estimate for I• • I tried several initial

estimates for/3 I got the same estimates for all three parameters without having any

problem. In the' researchs, Miller, Gallagher and Crown, they censored the data

when the location estimate is the first order statistic,j = xi. Also they did not let

the location parameter take negative values, once it did they let location parameter

to 0. In this research, the location paramet, allowed to go below zero. Also when

the location parameter is bigger than first order statistic, the sample is thrown away.

3.5 Minimum Distancr. Estimators (AIDE)

MDE is developped by Wolfowitz[28]. In his paper he also proved MDE consistency.

In this research, besides MLE , MDE is used to create several different estimators.

The main idea in MDE is to fit the distribution to the sample data. MDE minimize

a Goodness of fit statistics (GOF) between the distribution and the data values. The

GOF quantifies the difference (each GOF differently) between the EDF and CDF.

MDE has several advantages to the other estimation techniques.

- MD estimates are not very susceptible to outliers.[21:617]

- They are consistent.

- MD estimation methodology can be used to estimate the shape and scale

parameters besides location.[21:616] Originally this technique was used

only to estimate the location parameter.

Dr.A.H.MOORE and his students has studied extensively the MD methodology and

its applications to different distributions. Their studied showed that Minimum dis-

tance estimation for Gamma and Weibull distrbution gave better estimates than

MLE. In their studies, they estimated all parameters by MLE then, sliding the distri-

3-5



bution left and right to find the location parameter which minimizes the "Goodness-

of-Fit " statistic. Once the location obtained by this way, the other parameter or

parameters are reestimated by MLE.

3.6 Goodness-of-Fit Statistic

A statistic measuring the difference between EDF and CDF is called GOF statistic

based on EDF.. They measures the vertical differences between EDF and CDF. I will

consider three different GOF statistic: Cramer-Von Mises (CvM), the Anderson-Darling

statisticcalled A' and Modified W statistic.

3.7 Cramer- von Mises family

This class of measures discrepancy is given by Stephens as follows [25:100-101]

Q= n [F(x) - F(x)]20(x)dF(x) (3.11)
00

When tk(x) is 1, the statistic is called Cramer-von Mises statistic and When O(x) =

[F(x)(1 - F(x))]-' the statistic is Anderson-Darling statistic.[25:100-101] It is not

very hard to see the computational difficulty of this formula. But, Stephens found

suitable formulas for both CvM and A2 by using the Probability Integral Transfor-

mation (PIT) as follows:

1 1 2i- 1 2
Cvm 1 +- n i-+-Zi --- in1) (3.12)

2 n 2i - 1A2 = -n - 2 Z(log(Zi) + loge(1 - Zn,-i+l)) (3.13)

In these equations ,Given a random sample X1 ... X,, Zi = F(Xi), i=l,...,n and Zi

values arranged in ascending order,Z(l) < Z(2) < ... < Zn. In this research, to prevent

computational errors, Zi is bounded such that 0.0001 < Zi < 0.9999. The reasons to

choose A2 are numerous. Miller[19:26], Gallagher[8:40], Crown[4J,and many others
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concluded that A2 performed well in their studies. Also, Stephens among many GOF

statistic including S [18],Z recommenr ed A2 for EDF tests with unknown parameters

[25:1671

As an alternative test statistic, a modification of the W statistic [20:1375-1391] is

chosen for testing the goodness of fit for the three parameter Weibull distribution.

3.8 Minimum Distance of Location

The unknown parameters of the Weibull first estimated by MLE, then using these

estimates, the location is varied to minimize the A' or Cvm statistic.

T.he golden search method is used to obtain minimum distance estimates of location

when needed. An error tolerance of 10-6 is used.

3.9 Random Deviate Generation

In this research, the Weibull data is transformed to the Extreme value distribution

by using an appropriate transformation. Since the ML estimates are equalvariant

with respect to location and scale and the extreme value distribution does have only

location and scale parameters, only one set of parameters is used to obtain critical

values and do a power study for each sample size. The true Weibull parameters are

as follows:

- Location = 10,

- Scale 4, and

- Shape = 3.

3.10 WV" Test Statistic and Extreme Value Distribution

Ozturk and Korukoglu in their paper suggested a new test statistic which is a mod-

ification of the W statistic and obtained as the ratio of two linear estimates of the

scale parameter. They concluded that this new test statistic was computationally
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simple and had good powcr properties e.g. They shown that W" was more powerful

than Shapiro and Brain's test,a test based on the Wstatistic[24].

3.10.1 The Extreme Value Distribution. One easily can notice that all these

paper titles includes both the Weibull distribution and the Extreme Value Distribu-

tion. Because when the location is known, or 0, the following steps will show how

to transform the Weibull data to the Extreme Value Distribution. [25:150]

- The Extreme value distribution CDF is as follows

"F(y) = exp (exp ()

-00 < y < 00 (3.14)

with 6 = 1/3, where /3 is the Weibull distribution shape parameter and

phi = ln(O), where 0 is the Weibull distribution scale parameter.

Using these parameter relationships, ore can estimate the Weibull distri-

butions parameters by MLE, then obtain the Extreme value Distribution

parameters without estimating them by MLE.

- Make the transformation Y1 - ln(X, - -7),i = 1, ... , n.

- Arrange the Yi in ascending order.

- Test that the Y-sample is from the extreme value distribution given the

CDF above.

The extreme value distribution is one of the most used distributions modelling the

extreme values of random events [20:1376] and has an extensive literature. Harter

and Moore [9] reviewed the historical work for this distribution.
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The extreme value distribution is used on modelling rainfall, flood flows, Rantz

and Riggs, earthquakes, general meteorological data, aii, ft load, corrosion, and

microorganism survival times. [14:274]

3.10.2 W* test statistic. "his test statistic is based on the comparison of two dif-

ferent estimators of the scale parameters. In their study they used two different scale

estimators which are linear unbiased estimators, one is &,the probability-weighted

moment estiamtor of a and b, D'Agostino's estimator of a [5]. The formulas for b

are as follows:

n n

b = [0.6079 w,+,X(,) - 0.2570 wX(,)/n (3.15)
i=1 i=1

"where w =ln[(n + 1)/(n + 1 -- i)] i 1,2,...,n- 1

Wn - -- Wi

Wnf+i = wi(1 + ln(wi)) - 1 and w2n = 0.4228n - Ji=j n - lwn=i.

Scan be written as Zi=1(2j -n - 1)X(i)/(O.693147n(n -1)) This statistic is an un-

biased estimator of a as shown by Ozturk. Then the proposed test statistic becomes

W* b -(3.16)

Later, they standardized the equation as follows;

= w (3.17)
0.49 0..36 (.7

3.11 Approach and Methodology

The three parameter Weibull Distribution can be transformed easily to the two

parameter Weibull Distribution by subtracting the location parameter out from all

the ordered observations and shape parameter. After obtaining the two parameter

Weibull distribution, I will transform it to the Extreme Value Distribution by taking
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the logarithm base e ) of the observations. Then using one of 'the modified test

statistics I will test the hypothesis whether the sample comes from the Extreme or

not. Indeed if I reject the null hypothesis, I will also reject that the original data

comes from the two parameter Weibull Distribution.

In my research I will follow the steps below

1) Find all three parameters of the Weibull Distribution by Maximum Likelihood

Estimation ( MLE ).

2) Keep the Weibull's shape and scale parameter constant, then estimate the location

parameter by Minimum Distance Estimation.

3) Re-estimate the Weibull's shape ;nd scale parameter by MLE keeping the location

parameter constant.

4) Take the observations, subtract lccatio i estimate from each of them.

5) Transform the data to the extreme value distribution.-

6) Perform a goodness-of-fit test to check whether the

transformed data come from the Extreme Value Distribution.

7) Generate tables of critical values of the new test statistic.

8) Perform a power study for the new test against many other classical distributions.
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IV. Resuits

4.1 Introduction

In this chapter, the results of this thesis research will be presented including the

critical value and power comparison tables.

4.2 Critical Values

We will use the 5000 Weibull data samples' parameter estimates to obtain the AD

and W test statistics. Later these 5000 values will be ranked and tables will be made

of the 0.01, 0.05, 0.10, 0.15, and 0.20 testing significance (a) level critical values for

all sample sizes. The flowchart for calculating critical values is presented in table

4.1.

In this research the bootstrap method will be used to compute the critical values. In

this method, 5000 test statistics plotted on the horizontal axis versus some plotting

position on the vertical axis. For the plotting position in this thesis, the median

rank approximation shown here will be used.

As expected the critical values for both statistic increased slightly as sample size

increased. Besides the power study, an exoeriment designed to check invariance

property of the Weibull MLEs. In this experiment, from each parameter 3 different

values are chosen : for location (10,15,20), for shape (3,4,5), and for scale (3,4,5).

Then the results showed that the critical values for a given sample were equal. From

this result, I concluded that the 5000 repetitions was enough for this Monte Carlo

simulation and the study could be done only using one set of parameters (in this

research location=10,scale=4,and shape=3 are chosen ).

Yi= (4.1)
' ~n +.4
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Anderson Darling Critical Values

1-x n=10 n=15 n=20 n=25 n=30 1 n=40 n=50
.20 0.372164 0.400007 0.406372 0.413902 0.422886 0.424601 0.426555
.15 0.399923 0.431546 0.442253 0.448841 0.461475 0.461979 0.462581
.10 0.439678 0.475123 0.488239 0.496711 0.511983 0.519688 0.520989
.05 0.500419 0.560200 0.584271 0.592173 0.616696 0.617272 0.617850

0.1 0.632765 0.712128 0.7904,370.817037 0.824887 0.831194 0.836791

Table 4.1. In this table, Only MLE is used and AD statistic is minimized

[Anderson Darling Critical Values

1-x n=10 n=15 n=20 n=25 n=30 I n=40 n=50
.20 0.369178 0.397664 0.403394 0.411826 0.422235 0.426182 0.427678
.15 0.397186 0.428653 0.439700 0.447060 0.459889 0.465496 0.466856
.10 0.437097 0.473313 0.486487 0.494679 0.510844 0.518742 6.521566
.05 0.499525 0.556969 0.580953 0.590656 0.612755 0.615322 0.618043
.01 0.630202 0.713775 0.785557 0.813947 0.819577 0.828025 0.836470

Table 4.2. In this table, MLE and MD is used and AD statistic is minimized

The plotting position values on the vertical axis presents a scale between zero and

one which represents percentiles. The 80th, 85th, 90th, and 99th percentiles are

obtained by interpolating between the two plotted points wliose vertical axis values

surround the respective percentile value. Table 4.1 can be used when the minimum

distance is not calculated. 'Cable 4.2 is prepared as shown in Chapter 3 Methodology

section using the AD statistic. Table 4.3 can be used when the minimum distance

is not calculated.

Table 4.4 is prepared as shown in Chapter 3 Methodology section using the W

s9tatistic.

4.3 Power Study

In this section the results of the power study will be presented.
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Start

5000 repetitions Generate N Random Deviates

fr'om Weibull(10,3,4)

[ Calcuh, te M1,11s for all three .parameters

[Calculate Minimum Distance Estimate of Location

Recalculate MLE for Scale and Shape

tCalculate GOF statistic

Find the Critical Values

Stop

Figure 4.1. Ceneraiion of the critical valus
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'W statistic Critical Values (only MLE is used
l-x n=10 n=15 n=20 n=25 n=30 n=40 n=50

.900 0.065181 0.145342 0.185332 0.227954 0.281339 0.310155 0.315440
.925 0.127089 0.214784 0.273520 0.302680 0.362434 0.399650 0.410232
.950 0.201946 0.315025 0.383236 0.398015 0.492216 0.513646 0.539491
.975 0.335798 0.485980 0.557636 0.612199 0.703691 0.720623 0.718460
.995 0.612513 0.840787 0.9,12273 1.078666 1.040576 1.125672 1.170674
.100 -0.853239 -0.944861 -0.969439 -0.969083 -0.943755 -0.932115 -0.912232
.075 -0.9082,14 -1.012667 -1.037624 -1.052842 -1.022346 -1.028218 -0.992610
.050 -0.979875 -1.090568 -1.122980 -1.162780 -1.134543 -1.120286 -1.096457
.025 -1.118930 -1.257186 -1.274248 -1.308831 -1.289544 -1.306388 -1.280124

.005 -1.309019 -1.525660 -1.546312 -1.643209 -1.612966 -1.612228 -1.579373

Table 4.3. In this table, only MLE and WN statistic are used

'W statistic Critical Values (MLE and MDE are used)

1-x n=10 n=15 n=20 n=25 n=30 n=40 n=50
.900 0.071596 0.150106 0.186432 0.227004 0.284234 0.310347 0.317900
.925 0.132874 0.218182 0.275954 0.304353 0.366422 0.400847 0.414499
.950 0.209956 0.3190p0 0.384488 0.409164 0.497321 0.518350 0.540453
.975 0.337767 0.488484 0.564401 0.622717 0.707745 0.722411 0.724813
.995 0.616232 0.8441.-0 0.948521 1.085643 1.052511 1.138178 1.196816
.100 -0.809158 -0.908818 -0.930482 -0.931860 -0.927955 -0.922159 -0.909192
.075 -0.868837 -0.966379 -0.991926 -1.008289 -0.997781 -1.012072 -0.982636
.050 -0.934449 -1.03973i -1.070275 -1.104532 -1.091558 -1.098467 -1.086252
.025 -1.041221 -1.182828 -1.206187 -1.241062 -1.234929 -1,275192 -1.263546
.005 -1.245098 -1.414740 -1.461238 -1.538003 -1.552484 -1.558163 -1.529731

Table 4.4. In this ta le, MLE and MDE and W statistic are used
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After obtaining the tables of critical values, by generating random numbers from

selected distributions a power study can be made. We can test a random sample

given the Null hypothesis that the random sample is from a Weibull Distribution

with estimated parameters versus the alternative hypothesis that the data is from the

distribution used to generate the random sample tested. The A-D test statistic can

be obtained first estimating all three parameters by MLE, then obtaing the location

estimate by minimizing this statistic given the scale and shape estimates, finally

keeping the location estimate constant, reestimating the shape and scale estimates.

Later, this statistic should be compared to the appropriate critical values. If it is

larger than the critical value compared, then it should be concluded that the sample

is not from the Weibull distribution, and the Null hypothesis is rejected. This test

will be done for sample sizes of 10,15,20,25,30,40,50 with 5000 of each case. When we

divide the number of rejections by 5000 (total number of samples), we will obtain the
"I Xpower of the test. This power can be compared by only the well known Chi-Square

test. Because in the litterature there is no test for the three parameter Weibull with

all parameters unknown. In order to make a comparison of the test based on the A-D

statistic, only one competitor was chosen and that was Ozturk's standardized -

statistic. The tables show the hypothesized Weibull distribution with shape equal

to 3, scale equal 4 and location to 10, and the alternative distributions with level of

significance of 0.05 and 0.01. The distributions are as follows:

1. Weibull with shape = 3.0, scale = 4.0 and location = 10.0

2. Uniform on interval (10,15)

3. Uniform on interval (8,12)

4. Gamma with shape = 1.0 , scale =.2 and location = 10.0

5. Gamma with shape = 2.0 , scale =.2 and location = 10.0

6. Gamma with shape = 3.0 , scale =.2 and location = 10.0

7. Normal with mean = 15.0 and variance =2.0
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8. Normal with mean =12.0 and variance = 1.0

9. Beta with p = 2 and q = 2

First, the tables computed by using the standardized ,W* statistic will be presented.

Then tables computed by minimizing the A-D statistic will follow these tables. Since

there is no prior power information about the three parameter unknown case, I also

obtained the the tables and critical values by only using the MLE.

In this study, When shape parameter was 1 or less than 1 the sample rejected.

Because when location equals to x(i) Likelihood function become infinite. We have

to ignore this because all data are actually discrete, and the singularity disappears

on taking this account [26:360]

4.4 Verification and Validation

The computer code is verified line by line extensively. All the random number

generators are found in Banks and Carson [1:294-300]. The random generator is

chosen very carefully. In order not to have any randomization problems such as,

numbers do not appear to be distributed uniformly on [0,1] or the'y explicit corre-

lation with each other, a recommended IMSL generator is used. To validate the

computer code 1000 samples is taken and stored in two different files, then using

Mathcad the results are confirmed using several different approaches such as the

partials should be close to zero, the Mathcad estimates and estimates obtained by

using Harter and Moore's algorithm should be close to each other.

The A-D statistic, W*V. statistic, and Extreme Value Transformation procedures

are checked in the same way using Mathcad. By doing this It is intended to check

the validity of the computer code and to present a way for the future practitioners

to learn the theoretical concepts easily.
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Calculate the GOF statistic

Compare the Test Statistic

Calculated to the Critical Values

Print the Hypothesis Rejection Percentage

stop

Figure 4.2. Power Study
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SHo:Weibull Distribution Ha:Another Distribution

Sample Weibull Uniform Uniform Gamma Gamma
Size 1-x Shape=3 U(8,12) U(10-15) Shape=3.0 Shape=4.0

.20 0.191400 0.285400 0.286000 0.216200 0.204600

.15 0.143400 0.220600 0.224000 0.156000 0.154400
10 .10 0.097200 0.148600 0.146200 0.107400 0.108600

.05 0.049400 0.081000 0.078800 0.059000 0.057000

.01 0.015000 0.016200 0.016200 0.012200 0.011600

.20 0.182800 0.379000 0.373600 0.191400 0.208000

.15 0.137400 0.312400 0.302800 0.138400 0.155400
15 .10 0.093200 0.233800 0.224200 0.091200 0.104800

.05 0.045000 0.130200 0.120600 0.038800 0.047400

.01 0.012800 0.039800 0.034400 0.008800 0.010800

.20 0.206000 0.508600 0.502000 0.207200 0.224000

.15 0.150400 0.434800 0.421000 0.156200 0.170800
20 .10 0.108000 0.346800 0.326000 0.110600 0.116400

.05 0.046800 0.200800 0.191800 0.049600 0.052000

.01 0.007800 0.054200 0.049000 0.009600 0.010400

.20 0.194400 0.601400 0.593000 0.212000 0.229200

.15 0.151000 0.529600 0.513400 0.160000 0.181400
25 .10 0.109200 0.436400 0.424600 0.106800 0.128800

.05 0.052400 0.285400 0.271200 0.048400 0.063000

.01 0.009600 0.086600 0.084600 0.007600 0.013400

.20 0.184400 0.671600 0.662200 0.204000 0.222600

.15 0.139200 0.602800 0.585600 0.147200 0.169400
30 .10 0.098800 0.514400 0.493200 0.098400 0.118800

.05 0.050200 0.350400 0.320400 0.039800 0.053600

.01 0.013000 0.138800 0.125400 0.006600 0.010200

.20 0.189600 0.802800 0.798200 0.222800 0.231400

.15 0.146800 0.749600 0.739000 0.165000 0.178800
40 .10 0.099200 0.668800 0.654800 0.108400 0.127600

.05 0.046800 0.524200 0.514400 0.051600 0.066200

.01 0.009400 0.235800 0.222200 0.010000 0.013200

.20 0.194000 0.896800 0.893600 0.231400 0.261000

.15 0.149200 0.859600 0.857600 0.180400 0.206800
50 .10 0.092800 0.787000 0.784600 0.114000 0.145000

.05 0,.045000 0.662400 0.662800 0.053200 0.081600
1 .011 0.011200 0.392600 0.380600 "0.011200 0.024000

Table 4.5. In this table, Only MLE is used to estimate all three parameters and
AD statistic is used as a GOF statistic
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[Ho:Weibull Distribution; Ha:Another Distribution]

Sample Gamma Normal Normal Beta
Size 1-x Shape=5 N(15,2) N(12,1) B(2,2)

.20 0.226200 0.201400 0.185800 0.193400

.15 0.174400 0.149800 0.140200 0.148400
10 .10 0.121600 0.096600 0.087800 0.097800

.05 0.061600 0.045400 0.044400 0.048600
.01 0.014800 0.010800 0.010200 0.013200
.20 0.220800 0.194000 0.183400 0.204200
.15 0.170200 0.148400 0.14,1600 0.153400

15 .10 0.120800 0.099200 0.091400 0.102200
.05 0.057000 0.047800 0.041800 0.043000
.01 0.014800 0.013000 0.009400 0.008400
.20 0.245200 0.208600 0.201000 0.275200
.15 0.194200 0.153200 0.147600 0.210000

20 .10 0.135200 0.109400 0.105400 0.145400
.05 0.064000 0.049000 0.045800 0.059600
.01 0.011200 0.008000 0.008600 0.007400
.20 0.251800 0.195800 0.198000 0.280800
.15 0.198600 0.147400 0.150000 0.224600

25 .10 0.148400 0.102800 0.101400 0.159000
.05 0.070800 0.048200 0.050000 0.077000

1 .01 0.014600 0.009600 0.009200 0.012600
.20 0.241600 0.198000 0.192000 0.309400
.15 0.186800 0.151400 0.147000 0.237000

30 .10 0.130200 0.103800 0.097600 0.169400
.05 0.060800 0.050400 0.043000 0.082800
.01 0.015000 0.010600 0.007800 0.017600
.20 0.258600 0.206200 0.199000 0.378000
.15 0.198600 0.158000 0.152000 0.309000

40 .10 0.145600 0.100400 0.094200 0.223800
.05 0.081600 0.047800 0.044800 0.126800
.01 0.015200 0.006600 0.008200 0.024800
.20 0.274600 0.211000 0.211800 0.442800
.15 0.223200 0.166400 0.165800 0.363200

50 .10 0.158000 0.104200 0.107600 0.270200
.05 0.088800 0.055200 0.053000 0.154800

1 .01 0.025000 0.012200 0.010400 0.043000

Table 4.6. In this table, Only MLE are used and AD statistic is minimized
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Ho:Weibull Distribution ;H 0 :Another Distributionj

Sample Weibull Uniform Uniform Gamma Gamma
Size 1-x Shape=3 U(8,12) U(10-15) Shape=3.0 Shape=4.0

.20 0.191000 0.288800 0.289000 0.205600 0.195600

.15 0.142400 0.220800 0.224800 0.157200 0.147400
10 .10 0.096600 0.148000 0.148600 0.103200 0.097000

.05 0.049600 0.079800 0.078200 0.048800 0.049600

.01 0.015200 0.016200 0.016800 0.009200 0.010400

.20 0.183400 0.375000 0.373600 0.179400 0.198600
.15 0.138200 0.312000 0.303600 0.136000 0.152800

15 .10 0.093400 0.231400 0.221600 0.090800 0.105400
.05 0.044600 0.131200 0.122600 0.040200 0.048800
.01 0.012400 0.038200 0.033000 0.007400 0.011200
.20 0.208000 0.510000 0.504000 0.188400 0.230200
.15 0.150200 0.433000 0.423400 0.137600 0.174400

20 .10 0.106200 0.344000 0.326600 0.087800 0.122200
.05 0.047400 0.199800 0.192000 0.040200 0.062200
.01 0.008000 0.053800 0.049800 0.007000 0.019000
.20 0.196600 0.601000 0.592400 0.196000 0.223000
.15 0.150600 0.527600 0.515200 0.142600 0.168400

25 .10 0.108800 0.435800 0.425000 0.097000 0.121000
.05 0.052200 0.282200 0.268600 0.042400 0.062600
.01 0.009600 0.084600 0.083200 0.005000 0.016200
.20 0.183800 0.668200 0.672000 0.196400 0.208400
.15 0.139800 0.602200 0.592200 0.145400 0.154800

30 .10 0.098200 0.510200 0.500000 0.092400 0.106600
.05 0.050400 0.352400 0.336000 0.039200 0.052000
.01 0.013200 0.137600 0.128800 0.008600 0.012000
.20 0.189005 0.800400 0.801600 0.212800 0.226800
.15 0.14o200 0.747000 0.743200 0.156000 0.174800

40 .10 0.099400 0.665400 0.659200 0.100600 0.122200
.05 0.047000 0.523000 0.508800 0.049200 0.068800
.01 0.009400 0.234200 0.216800 0.009600 0.016800
.20 0.193400 0.895000 0.891800 0.215000 0.248000
.15 0.149200 0.859400 0.855800 0.153200 0.202200

50 .10 0.093200 0.785600 0.782400 0.098400 0.142000
.05 0.044400 0.658200 0.661400 0.049700 0.077000
.01 0.011000 0.389000 0.377800 0.009800 0.023200

Table 4.7. In this table, MLE and MD is used and AD statistic is minimized
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H0 :Weibull Distribution; HIf:Another Distribution

Sample Gamma Normal Normal Beta
Size 1-x Shape=5 N(15,2) N(12,1) B(2,2)

.20 0.200800 0.199000 0.202200 0.195600

.15 0.154800 0.145000 0.148600 0.145400
10 .10 0.103800 0.089400 0.100200 0.096000

.05 0.055600 0.044600 0.052200 0.049800

.01 0.009400 0.010000 0.013600 0.012200

.20 0.201200 0.195600 0.183000 0.206400

.15 0.155400 0.156000 0.135200 0.156400
15 .10 0.105600 0.104000 0.090200 0.103600

.05 0.047400 0.047800 0.039600 0.047600
S.01 0.012800 0.008200 0.008800 0.010000
.20 0.246200 0.217400 0.211200 0.300000
.15 0.194000 0.170600 0.160800 0.233400

20 .10 0.131800 0.122200 0.114200 0.167200
.05 0.065600 0.056800 0.054600 0.079400
.01 0.013400 0.012800 0.010200 0.014600
.20 0.233800 0.206600 0.195200 0.308100
.15 0.183800 0.157400 0.148600 0.239200

25 .10 0.133000 0.108200 0.098800 0.169500
.05 0.062200 0.050600 0.047400 0.081000
.01 0.011800 0.009600 0.007000 0.014800
.20 0.242000 0.203600 0.190000 0.313800
.15 0.191600 0.157000 0.142800 0.244800

30 .10 0.129600 0.105600 0.095600 0.176000
.05 0.064000 0.052000 0.042800 0.084800
.01 0.013200 0.011600 0.009400 0.015800
.20 0.253000 0.208400 0.211400 0.376200
.15 0.192400 0.158600 0.156800 0.299200

40 .10 0.138800 0.109400 0.105600 0.219800
.05 0.076200 0.054600 0.050000 0.126200
.01 0.013800 0.013200 0.008200 1.025400
.20 0.261400 0.212000 0.208000 0.439300
.15 0.209400 0.162400 0.159800 0.369400

50 .10 0.147600 0.110200 0.107600 0.27560C
.05 0.083800 0.054400 0.056000 0.160200

1 .01 0.021400 0.011000 0.011200 0.044200

Table 4.8. In this table, MLE and MD are used and AD statistic is minimized
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Ho:\eibull Distribution ; H0:Another Distribution]

Sample Weibull Uniform Uniform Gamma Gamma
Size 1-x Shape=3 U(8,12) U(10-15) Shape=3.0 Shape=4.0

.20 0.203600 0.233400 0.221000 0.216200 0.204600

.15 0.156000 0,185400 0.175000 0.156000 (.154400
10 .10 0.109600 0.139200 0.126000 0.107400 0.:08600

.05 0.051200 0.074200 0.065400 0.059000 0.057000
S.01 0.011600 0.026600 0.018800 0.012200 0.011600

.20 0.191400 0.319800 0.292800 0.231000 0.248200

.15 0.145000 0.265200 0.239200 0.175600 0.96600
15 .10 0.098600 0.209400 0.186200 0.119600 0.1[6200

.05 0.045600 0.124200 0.095200 0.049400 0.074400
__ .01 0.010400 0.038800 0.027800 0.009000 0.01.000

.20 0.185000 0.423600 0.391600 0.274000 0.285900

.15 0.140800 0.372600 0.339200 0.210000 0.222,00
20 .10 0.101000 0.308800 0.275200 0.146000 0.16'•00

.05 0.053800 0.209600 0.170200 0.074400 0.090 90

.01 0.009600 0.083600 0.068200 0.015200 0.023200
.20 0.190000 0.531600 0.508600 0.310200 0.29080C
.15 0.144800 0.461800 0.431400 0.234600 0.2362P9

25 .10 0.094000 0.380200 0.345000 0.160200 0.170000
.05 0.045600 0.282000 0.243400 0.076600 0.096600
.01 0.007800 0.115200 0.083600 0.012400 0.020400
.20 0.195800 0.659000 0.635200 0.316600 0.303200
.15 0.151800 0.592800 0.560600 0.247200 0.244600

30 .10 0.097800 0.501200 0.467400 0.166000 0.174600
.05 0.048200 0.377800 0.343000 0.059200 0.091800
.01 0.012400 0.181800 0.139800 0.007000 0.019800
.20 0.185200 0.820800 0.808800 0.351800 0.337400
.15 0.137200 0.755600 0.740600 0.279400 0.273600

40 .10 0.098600 0.683600 0.665600 0.215600 0.214000
.05 0.047000 0.531600 0.510400 0.110800 0.122200
.01 0.009400 0.310600 0.283600 0.027000 0.038800
.20 0.193000 0.923600 0.917600 0.354400 0.372200
.15 0.143000 0.884200 3.875600 0.295000 0.307600

50 .10 0.093400 0.827600 0.818200 0.221800 0.241400
.05 0.049400 r 704800 0.694200 0.135000 0.154600
.01 0.010200 0.469800 0.444400 0.038000 0.051200

Table 4.9. In this table, Only MLE is and W statistic is used
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110:eibull Distribution; Ha,:Another Distribution]

Sample Gamma Normal Normal Beta
Size 1-x Shape=5 N (15,2) N(12,1) IB (2,2)

.20 0.235400 0.226400 0.195200 0.158000

.15 0.187200 0.173800 0.148000 0.111000
10 .10 0.138400 0.124200 0.096800 0.068800

.05 0.075600 0.060200 0.048200 0.024000

.01 0.020000 0.015000 0.009600 0.003800

.20 0.262600 0.214000 0.206400 0.144200

.15 0.213400 0.166200 0.155000 0.097600
15 .10 0.153000 0.114600 0.102600 0.061800

.05 0.076400 0.054800 0.046400 0.019200
____.01 0.019000 0.014000 0.009600 0.001000

.20 0.280000 0.217600 0.210200 0.193400

.15 0.220400 0.169600 0.151400 0.140600
/20 .10 0.162600 0.114800 0.102800 0.096600

.05 0.094800 0.060800 0.051200 0.049000

.01 0.027200 0.018200 0.012800 0.007600

.20 0.298400 0.217600 0.200600 0.208600
.15 0.238400 0.169600 0.148800 0.155800

25 .10 0.174200 0.118400 0.101600 0.093200
.05 0.097200 0.059200 0.048600 0.041200
.01 10.027000 0.014200 0.008000 0.001800
.20 0.298400 0.210400 0.195800 0.272200
.15 0.243600 0.162400 0.149600 0.201600

30 .10 0.180600 0.112200 0.098600 0.132800
.05 0.094400 0.058600 0.049400 0.063000

____.01 0.020600 0.017000 0.010600 0.006600
.20 0.318000 0.222800 0.202800 0.357600
.15 0.256000 0.168600 0.155600 0.269000

40 .10 0.195200 0.117400 0.109600 0.198400
.05 0.120800 0.059600 0.056600 0.092000
.01 10.039000 0.015000 0.012800 0.016200
.20 0.347200 0.254600 0.233800 0.4610600
.15 0.290200 0.195600 0.177400 0.374400

50 .10 0.224800 0.134600 0.119200 0.277400
.05 0.144800 0.078800 0.066800 0.134400

1____ .01 10.050600 10.016600 10.013200 0.L030000j

Table 4.10. In this table, Only MLE is and W statistic is used
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Ho:Weibull Distribution ; H,:Another Distribution

Sample Weibiul Uniform lJniform Gamma Gamma
Size 1-x Shape=3 U(8,12) U(10-15) Shape=3.0 Shape=4.0

.20 0.203600 0.233400 0.221000 0.219200 0.240800

.15 0.156000 0.185400 0.175000 0.161800 0.184200
10 .10 0.109600 0.139200 0.126000 0.113000 0.133800

.05 0.051200 0.074200 0.065400 0.055800 0.071200

.01 0.011600 0.026600 0.018800 0.008600 0.015600

.20 0.191400 0.319800 0.298800 0.200600 0.235800

.15 0.145000 0.265200 0.249400 0.151400 0.185600
15 .10 0.098600 0.209,100 0.190400 0.104800 0.132000

.05 0.045600 0.124200 0.107000 0.049400 0.069600

.01 0.010400 0.038800 0.030800 0.008200 0.017800

.20 0.188000 0.445800 0.411800 0.223200 0.299400

.15 0.142000 0.390000 0.355200 0.163200 0.244800
20 .10 0.101000 0.327000 0.294000 0.111800 0.186000

.05 0.054200 0.224800 0.185400 0.055000 0.109400

.01 0.009000 0.0890U0 0.073200 0.009800 0.033600
•20 0.193400 0.551400 0.527600 0.245200 0.285800
.15 0.145400 0.485400 0.460200 0.189200 0.229600

25 .10 0.096000 0.406600 0.373800 0.125800 0.167800
.05 0.045400 0.302000 0.268000 0.059000 0.092800

1 .01 0.009400 0.129600 0.102000 0 007200 0.022200
.20 0.195400 0.668200 0.652400 0.288600 9.289400
.15 0.150400 0.605600 0.588000 0.222800 0.229000

30 .10 0.097000 0.525400 0.503000 0.147400 0.159200
.05 0.050000 0.406200 0.373600 0.071400 0.093200

S" .01 0.012400 0.187200 0.151200 0.012000 0.028400
.20 0.186600 0.826000 0.815000 0.320600 0.316200
.15 0.136600 0.765200 0.742800 0.242200 0.254200

40 .10 0.696400 0.695800 0.676000 0.172600 0.195600
.05 0.046400 0.551200 0.529000 0.080600 0.115200

,___. .01 0.008200 0.330800 0.294000 0,019000 0.035800
".20 0.191600 0.924800 0.919800 0.330400 0.361200
.15 0.144200 0.888200 0.881800 0.256800 0.293200

50 .10 0.094000 0.832600 0.825000 0.189200 0.222600
.05 0.048200 0.716200 0.705000 0.081000 0.138200

1 _ .01 0.009400 0.499400 0.470800 0.019800 0.048200

Table 4.11. In this table, MLE and MDE and W statistic are used
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H10:eibull Distribution; H0,:Another Distribution

Sample J Gamma Normal Normal Beta
Size j1-x Shape=5 N(15,2) N(12,1) B(2,2)

.20 0.231600 0.213400 0.204600 0.176400

.15 0.176800 0.163000 0.156400 0.126600
10 .10 0.130200 0.110400 0.103200 0.082200

.05 0.070000 0.062000 0.054600 0.039600
.01 0.012600 0.012000 0.010600 0.004600
.20 0.240600 0.210000 0.191800 0.154000
.15 0.191000 0.167400 0.142400 0.113000

15 .10 0.138600 0.111200 0.097400 0.070800

.05 0.077200 0.056400 0.046400 0.027600

.01 0..018000 0.012200 0.009400 0.002600

.20 0.293000 0.229800 0.226400 0.236600

.15 0.233600 0.180200 0.173200 0.190600
20 .10 0.173000 0.130600 0.116000 0.132200

.05 0.103600 0.072400 0.061600 0.065200

.01 0. 029600 0.020600 0.014000 0.008000

.20 0.290200 0.220400 0.197600 0.228000

.15 0.231800 0.170600 0.148200 0.173600
25 .10 0.1170800 0.118200 0.099200 0.117000

.05 0.093200 0.063000 0.046400 0.056400

.01 10.022000 0.012000 0.006800 0.006000

.20 0.195400 0.668200 0.652400 0.288600

.15 0.150400 0.605600 0.588000 0.222800
30 .10 0.097000 0.525400 0.503000 0.147400

.05 0.050000 0.406200 0.373600 0.071400
____.01 0.012400 0.187200 0.151200 0.012000

.20 0.310800 0.228800 0.214200 0.363600

.15 0.246200 0.174000 0.161400 0.280600
40 .10 0.186400 0.120600 0.112400 0.210600

.05 0.106200 0.066400 0.056600 0.099400
_____ .01 10.031000 0.018200 0.012200 0.020000

.20 0.321800 0.236800 0.230000 0.462400

.15 0.263400 0.183800 0.176400 0.386000
50 .10 0.198000 0.130200 0.120200 0.28480

.05 0.122200 0.078000 0.073200 0.145400
1____ .01 10.038600 J0.014800 10.014200 10.037000

Table 4.12. In this table, MLE and MDE and W statistic are used
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V. Conclusions and Recommendations

5.1 Conclusions

In this thesis, the Anderson-Darling and Modified W statistic critical values for

the three parameter Weibull distribution when all three must be estimated from

the sample first estimating parameters by MLE, later keeping the scale and shape

parameters cor.stant reestimate the location parameter, then recalculate the other to

parameters by MLE , are valid. In the power study, a true null hypothesis achieved

the expected level of significance. Also, another power study conducted for three

different values of the each parameter. In this study, a true null hypothesis achieved

in all of the 27 different parameter sets. From the latter experiment I concluded that

all the study can be made for only one set of parameters because the Extreme Value

Distribution only location and scale parameters ( this is proven by this experiment

having achieved the true null hypothesis in each set of parameters ). The conclusions

can be summarized as follows:

- Test based on A-D statistic

1. The Weibull distribution was able to fit the Normal, and Gamma

data. This shows the importance of the location parameter of the

Weibull Distribution.

2. The power was very good when the alternative distribution was Uni-

form. My conclusion from this result is the Uniform data can not be

fitted by the Weibufl distribution because even though the Weibull

can take many shapes it can not take a shape close to the Uniform

distribution.

3. The power was also high whei the alternative distribution was Beta.

4. As the sample size increased

* the power increased for the Uniform an" r ta distributions.
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* the power was stable' for the Normal and Gamma (istNuitioiis at

a given significanc(e level but very slightly increased.

- T'est b1sed on Wt* st.aist I(

* The power for the alternate Uniform and Beta distributions was

higher than the A---I) statistics power.

* In using this statistic the Gamma distribution's power was significant.

* Given the alternative ldistribution, the test can be made as only one-

tailed test. For example there was nearly no rejection on the upper

tail when the alternative distril)ution was the Uniform distribution.

* But for the Normal distribution this statistic also says that the normal

data can be fitted by Weilmll distribution.

General conclusions

1. This is the first test of the three parameter Weibull distributiot, where

the significance level of the test and the invariance of the test has been

examined.

2. This test has the additional p)roperty of demonstrating the robust-

ness of the three parameter Weibull distribution for modelling Nor-

nral,Heta and Gamma distributions. So, we can say that the Weibtll

distribution may provide enough flexibility neede to make a model

sufficiently accurate for use in modelling or in an analysis.

3. The three parameter Weibmll Distribution has great potential as an

alternative model for the normal distribution. Because both test's

showed that the normal distribution had achieved given significance

level.

The W• statistic appears to be more powerful than A-D statistic.

Especially, when the Alternative distribution is known, one-tailed

test can be made. This will increase this statistic's power. Because

in Uniform alternatives, there was no rejection in the lower tail, amid

5-2



there was some significance in upper tail-lower tail rejection numbers

and pattern.

4. the two statistic are very different from each other, one is based on

minimizing the distance between the EDF and CDIF, the other one is

based on the comparison of the two different scale estimates. A-D

test showed that Gamma, and Normal distributions can be fitted rea-

sonably well by the Weibull Distribution while the W test contradicts

the Gamma Distributions result.

In this research, two test statistics are used. In the literature there is

no goodness of fit test for the three parameter Weibull distribution.

Only one critical value table for each statistic is obtained. A statis-

tican can test its data by using only one table chosen a test statistic

(from A-D or W statistic ). We hope this research will be a step

towards finding better test statistics for the three parameter Weibull

distribution and increase the popularity of the Weibull distribution.

The conclusions based on the power study presen.ed in Chapter IV

are applicable to the 8 alternate distributions.

5.2 Recommendations for the Further Research

The following recommendations can be investigated in the future.

* In the three parameter case, in order to reach to the asymptotic

points Monte Carlo Simulation study should be extended to 20000

repetitions.

* A comparison can be made with the Chi-Square test against the pro-

posed tests.

* The W" statistic is a two-tailed test statistic. This statistic should

be used as a one tailed test statistic against an alternative distribu-
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tion known. This will increase the power of the test against known

alternative.

• Some authors criticized the Harter and Moore's method since in this

method we are really looking for a local maximum instead of Global

maximum. But As stated in Chapter IV and defended by Smith

[26:360] one can make the likelihood function infinite when the lo-

cation estimate approaches to the first order statistic. This problem

should be addressed in the future reseachs.

* Other invariant estimation techniques should be tried for the two

parameter extreme value d;stribution left after the transformation.
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Appendix A. Computer Program

program thesis(al,a2.out,input,output);
const

error = 0.000001; (* error and tolerance are limits *)
tolerance = 0.000001; (* used in the numerical routines *)
repetitions = 5000;

type
gofstat =(AD,CVM,ADEXT);
teststat=array[0..5001] of real;
critv=array[0..5] of real;
critW=array[0..10] of real;
critvalues=array[l..13,1..10] of real;
wmod=array [I..1001] of real; (* generated random variables
data = array[0..40] of real; (* position 0 is the number of rvs.
para = array[l..3] of real; (* array of the Weibull parameters *)
logpara=array [1..2] of real; (* in order location, scale, shape *)

var
NRrejAD,NRrejCVM,NRrejWup,NRrej Wlow,cvad,cvcvm: critv;
cvW:critW;

ADCRIT,CVMCRIT,wmodstat:teststat;
logdataset:data;
logmme:logpara;
inputs,al,a2,out:text;(* out is the output file
z, FOSL, (* cumulative value at each data point
dataset:data; (* generated random numbers
TRU, (* True parameters used to generate the data *)
MLE, (* Maximum Likelihood Estimates
MDLAD, (* Min Dist on Location using Anderson-Darling *)
MDLCVM para; (* Min Dist on Location using Cramer-Von Mises *)
which gofstat; (* Which goodness of fit statistic AD or CVM *)
mlemodcvm, temp, (* modified CVM for MLE parameters
mleerror, (* mle error for a particular parameter
mlegof,power, (* mle goodness of fit statistic
gofvalue,wmodst: real;(* each estimates goodness of fit statistic
seed,mlefails, (* seed for uniform random number generator
i,number,n,k,j ,nn,num: integer;
mlefailed, (* NLE procedure failed to converge
trueloc : boolean; (* true if location is assumed known for MLE *)
value array[l..5] of real
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function uniform(var seed:integer): real;
(* Generates a uniform random number *)

(* Introduction to Simulation by Payne(1982) page 310 *)
const

a = 16807;
C = 0.0;
m = 2147483647;

var
temp real;

begin
temp (a/m) * seed;
temp temp - trunc(temp);

seed trunc(m*temp);

if seed = 0 then
seed := 1;

uniform := seed / m;
end; (* function uniform *)

function yamma(m:integer) : real;
var

i : integer;
temp,temp2 : real;

begin
temp2 :=1.0;
for i := I to m do

begin
temp abs(uniform(seed));
temp2 temp2 * temp;

end;
gamma := (-1/m)*ln(temp2);

end;

function cvmgof(x:data;param:para): real;
(* This function returns the Cramer Von-Mises Goodness of Fit
(* Statitic for the three parameter Weibull.
(* Formulas published in Woodruff, Moore, and Dunne (1983)
(* Data must be ORDERED !

var
cum data; (* cummulative distribution *)
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i,num,: integer;

sum,temp real;

begin
num := trunc(x[O]);
for i :=I to num do

begin
if x[i] <= param[1] then cum[i] 0 else

begin
temp := -1*exp(param[3] * in((x[i]-param[l] )/param[2]));
if temp < -20 then cum[i] 1.0 else cum[i] 1 - exp(temp);

end;
end; (* for *)

sum := 0;
for i := 1 to num do

begin
temp cum[i] - (2*i - 1)/(2*num);

sum sum + temp*temp;
end; (* for *)

cvmgof := (1/(12*num)) + sum;
end; (* function cvmgof *)

function adgof(x:data;param:para): real;
(* This function returns the Anderson-Darling Goodness of Fit

(* Statitic for the three parameter Weibull.
(* Formulas published in Woodruff, Moore, and Dunne (1983)
(* Data must be ordered!

var
cum : data; (* cummulative distribution *

i,num : integer; (* num is number of data values *

sum, temp : real;
begin

num := trunc(x[O]);
for i := 1 to num do

begin
if x[i] <= param[l] then cum[i] 0.000001 else

begin
temp := -l*oxp(param[3] * ln((x[i]-param[1])/param[2]));
cum[i] := 1 - exp(temp);
if cum[i] < 0.001 then cum[i] 0.001;
if cumri] > 0.999 then cum[i] 0.999;

end;
end; (* for *)
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sum 0;
for i := 1 to num do

begin
temp (2*i -1)*(ln(cum[i]) + ln(1-cum[num+1-i]));
sum sum + temp;

end; (* for *)
adgof -1*num - (sum/num);

end; (* function adgof *)
function cvmextgof(x:data;param:para): real;
(* This function returns the Cramer Von-Mises Goodness of Fit
(* Statitic for the three parameter Weibull.
(* Formulas published in Woodruff, Moore, and Dunne (1983)

(* Data must be ORDERED

var

cum data; (* cummulative distribution *)
i,num integer;
sum,temp : real;
begin
nuw := trunc(x[0]);
for i := 1 to num do

begin
temp := -exp(-(x[i]-param[1])/param[2]);

cum[i] := exp(temp);
if cum[i] < 0.001 then cum[i] 0.001;
if cum[i] > 0.999 then cum[i] 0.999;
end; (* for *)

sum := 0;

for i := I to num do
begin

temp cum[i] - (2*i- i)/(2*num);

sum sum + temp*temp;
end; (* for *)

cvmextgof := (1/(12*num)) + sum;
end; (* function cvmextgof *)

function adextgof(x:data;param:para): real;
(* This function returns the Anderson-Darling Giodness of Fit
(* Statitic for the three parameter Weibull.
(* Formulas published in Woodruff, Moore, and Dunne (1983)

(* Data must be ordered!
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var
cum data; (* cummulative distribution'
i,num : integer; num is number of data values
sum, temp : real;

begin
num := trunc(x[O)D;
for i := 1 to num do

begin
temp := -exp(-(x[i]-param[l])/param[2]);

cum[i] := exp(temp);
if cum[i] < 0.001 then cum[i] 0.001;
if cum[i] > 0.999 then cum[i] 0.999;
end; (* for *)

sum := 0;
for i := I to num do

begin
temp (2*i -1)*(ln(cum[i]) + in(1-cum[num+1-i]));
sum sum + temp;

end; (* for *)
adextgof := -1*num - (sum/num);

end; (* function adextgof *)

function rof(x:data; pars:para; which:gofstat):real;
(* selects which "goodness of fit ".statistic to evaluate *)

begin
if which = AD then (* Anderson-Darling Goodness of Fit Statistic *)

gof := adgof(x, pars)
else if which = CVM then (*Cramer-von Mises Goodness of fit statistic*)

gof := cvmgof(x, pars);
end;

function cumweibull(dist:para;x:real): real;
(* returns the cumnmulative weibull value for point x
(* dist contains the weibull location, scale and shape *)

var
temp : real;

begin (* of function cumweibull *)
if x <= dist[lj then

cumweibull 0.0
else

begin
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temp exp(dist[3]*ln((x-dist[l])/dist[2]));
if temp > 20 then

cumweibull: 1.0

else
cumweibull I - exp(-l*temp);

end;
end; (* of function cumweibull *)

procedure MLEest(x:data;ctrue:boolean;var location,scaleshape:real;
var mlefailure:boolean);

(* Maximum-Likelihood estimation of three parameters weibull *)

(* Iterative technique developed by H. Leon Harter and Albert *)
(* H. Moore and published in Technometrics (Nov 1965).

(* Formulas (for two parameter) from ATC Notes page 235 were
(* adjusted. Also see Miller's 1980 thesis.

(* When location is unknown this procedure occasionally fails *)
(* to converge

var
r, (*.number of data points less than location *)

iterations, (* number of times both location and shape est *)

num integer; (* number of data points

a,b,
k,(* another name for shape used in locationest *)

mletol, (* error tolerance for mle procedure
lastshape,
lastlocation : real;

function shapeest(c,betaorg:real):real; (* part of MLE procedure *)
(* shapeest estimates the shape parameter for a given location *)

var
betal, (* betaorg is original shape *)

beta2, (* iterative estimate of shape *)

sumlnx, (* sum of ln(x[i])
temp,
temp2 real;

i :integer;
begin

betal :=.betaorg;
repeat (* iterative loop until beta converges *)

begin
temp 0;
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temp2 0;
sumlnx 0;
for i (r+1) to num do (* formula from ATC notes *)

! begin
begin temp := temp + exp(betal*ln(x[i]-c))*ln(x[i]-c);

temp2 temp2.+ exp(betal*ln(x[i]-c));
sumlnx sumlnx + ln(x[i] - c);

end;
beta2 (num-r)/(((num-r)*temp/temp2) - sumlnx);
betal (2*beta2 + betal)/3; (* formula overshoots *)
if (betal > 91 ) and (betaorg = 91 ) then

begin
betal :=91;
beta2 :=91;

end;
if betal > 91 then (* prevents unstable overshoots *)

begin
betal :=91;
betaorg :=91;

end;
end;

until abs(betal - beta2) < mletol,
k := betal;
shapeest betal;

end; (* function shapeest *)
function scaleest:reai; (* part of MLE procedure *)
(* scaleest estimatate the scale parameter. The scale is determined by *:

(* the location and shape paramters. Formula in Miller's thesis. (1980) *
var

temp, real;
i :integer;

begin
temp := 0;
for i (r+1) to num do

temp temp + exp(ln(x[i]-location)*shape);
scaleest := exp(ln(temp/(num-r))/shape);

end; (* function scaleest *)
function partial(c:real):real;(* part of locationest under MLE proc. *)
(* returns the derivative by c of ln(max likelihood function)
(* With the correct estimate of c the equation will be zero.
(* Harter and Moore (1965) found that with shape <= 1 the partial *)
(* is monotone. The resulting estimate is either 0 or the first *)
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(* order statistic. The function is positive with too low a c

(* and negative with too high a c.
var

sumx, (* sum of 1/(x[i]-c) (k is shape) *)
sumxck, sum of (x[i]-c) to the kth power *)
sumxckl:real; (* sum of (x[i]-c) to the k-i power *)

begin
sumx := 0;
sumxck : 0;
sumxckl : 0;
i := I;
r 0;
while x[i] - c <= 0.0 do (* censors data from below *)

begin
assumes data is ordered *)

r r + 1;
i + 1;

end;
for i : r+l) to num do

begin
sumx := sumx + !l(x[i]-'c);
sumxck : sumxck + exp(k*ln(x[i]-c));

* sumxckl sumxckl + exp((k-1)*ln(x[i]-c));
"end;

partial := (1-k)*sumx+(num*k*(sumxckl/sumxck));
end; (* function partial *)

function locationest(c:real):real; (* part of MLE procedure *)

(* locationest estimates the location. The iterative technique was used *)
(* by Harter and Moore (1965). Their equation 3.5 is simplified in that *)
(* only complete samples are allowed. Values for location are tried and *)

(* then adjusted to until the equation is equal to zero.
var

upper, (* upper limit on c
lower, (* lower limit on c
value, (* value of partial derivative of L *)
lowerval, (* value at lower limit
upperval :real; (* value at upper limit
i : integer; (* c is estimate of location

begin (* function locationest *)
value : partial(c); (* c is last estimate of location
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if value > 0 then (* bound c between a lower and higher value *)
begin (* the lower value is pos and higher is neg *)

lower := c;
lowerval := value;
if (c + 1.0) < x[i] then (* try to get a small interval *)

begin
upper := c + 1.0;
upperval := partial(upper);
if upperval > 0 then

begin
upper := x[11;
upperval := partial(upper);

end;
end

else (* c+1 > x[1] (too close to end of interval )*)
begin

upper := x[11;
upperval := partial(G,2er);

end;
end (* if value > 0 *)

else if value < 0 then
begin

upper := c;
upperval value;

lower := c - 1.0;
lowerval := partial(lower);

while (lowerval < 0.0) do
begin
lower:=lower-1.0;
lowerval:=partial(lower);
if (lowerval > 0 ) then
upper:=lower+1.0;

\upperval:=partial(upper);
end;

end

else if ab (value) < mletol then (* if is zero then quit *)
begin

upper c;
lower upper; (* prevents entering loop below *)

end;
if abs(upperval) < mletol then
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begin

c : upper;
lower :r upper;

end;

if abs(lowerval) < mletol then
begin

c := lower;

upper := lower;
end;

while ((upper-lower)>mletol) and (abs(value) > mletol) do
begin

c :w (upper + lower)/2; (* binary search for zero

value := partial(c);

if value > 0 then

begin

lower := c;

lowerval := value;

end;

if value < oi then

begin

upper := c;
upperval := value;

end;

end; (* while *)

i :- 1;

r :- 0;

while x[i] <= c do (* censors data from below *)

begin (* r is used in shapeest *)

r :r + 1;
i : i+ 1;

end;
locationest :- c;

end; (* function locationest *)

begin (* procedure MLEest *)
mlefailure := false;
num :- trunc(x[O]; (* the number of data points
if ctrue then (* locL .on is known *)

begin
i := 1;

r :a 0;
while x[i] <- location do (* censors data from below *)

begin
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r r + 1;
i :=i + 1;

end;
shape := 3.0;
mletol tolerance;
shape shapeest(location,shape);

end
else (* location is unkown *)

begin
mletol tolerance;
shape :=!.O;

b : 0.9*x[1];

r 0;

a:=-20;
shape := shapeest(b,shape);
location := locationest(b);

iterations 1;
begin

iterations := 1;
lastlocation := 0;
lastshape := 0;

while (abs(shape-lastshape)> mletol) and
(abs(location-lastlocation) > mletol) and

(iterations <= 1050) and (shape <90) do
begin

mletol := 100*tolerance;
while ((abs(shape-lastshape) +

abs(location-lastlocation)) > mletol) and
(iterations <- 1050) and (shape <90) do

begin
lastshape := shape;
shape := shapeest(location,shape);
lastlocation :- location;
location :- locationest(location);

if location > x(i] then
begin

writeln('location buyuk xl den',location);
r :-1;
i :-I;
while x[i] < x[l] do

begin
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r:=r+1;

end;
end;

if r >=1 then (* prevents cycling by not reestimating shape *)
begin (* location after shape when cencoring occurs

lastlocation := location; (* ends loop *)
shape := shapeest(location,shape);
lastshape := shape;

end;
iterations := iterations + 1;
end; (* 2nd while *)

(* increase tolerance *)

end; (* 1st while *)
if shape >90 then

begin
mlefailure := true;
writeln('MLE shape too large in',iterations:3,'iterations.');

end
else

mlefailure := false;
end;
end;

scale := scaleest;
a := partial(location);

if (abs(a) > 0.0001) and (not trueloc) then
mlefailure := true;

end; (* of procedure MLEest *)

procedure findcrit(x:teststat; var cvpass:critv);
var

mr teststat;
m,b,alpha : real;
i,num: integer;

function cv(x,mr:teststat;alpha:real):real;
var

m,b : real;
i : integer;

begin
for i :- 0 to num do
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begin
if (mr[i] < alpha) and (mr[i.1]>alpha) then

begin

mn :=(mr[i+l]-mr[iJ)/(x[i+l]-x[i]);
b mr [i] - m*x [i] ;
cv (alpha - b )/m;

end
else if mr[i] =alpha then

cv := x[i];
end;

end;
begin

num : repetitions;
for i:= 1 to nun do

begin
mr[i] (i-0.3)/(num+O.4);

end;
inr[0] := 0
rnr[num+1] 1;
mn (mr[2J -mr[1]/(x[2J-x[IJ);
b :mr[1] - i*x[lJ;
x[0] : -b/n;
if x[0] < 0 then

x[0] := 0;
mn (mr [nun] -ir [nun-i]) /(x [nun] -x[num-1]);
b mr~num) - m*x[num];
x[num+13 := (1.0 - )m

writeln('alpha critical value');
for i := 1 to 5 do

begin
alpha :=0.75 + 0.05*i;
if alpha > 0.96 then

alpha :0.99;
cvpass[i] cv(x,mr,a~lpha);
writeln(alpha:8:4,cvpass[i] :10:6);

end;
end;

procedure findcritW(x:teststat; var cvpass:critW);
var

mr teststat;
in,b,alpha :real;
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i,num: integer;
function cv(x,mr:teststat;alpha:rea)):real;

var
rn,b :real;
i : integer;

begin
for i :=0 to nurn do

begin
if (mr[iJ < alpha) and (mr[i+ll~alpha) then

begin

m :=(mr[i+1J-mr[iJ)/(x[i+1]-x[i]);
b : rr[i] - m*x[i];
cv :=(alpha -b)/m;

end

else if mr[i] = alpha then
cv := ~l

end;
end;

begin
nurn: repetitions;
for i:= 1 to nurn do

begin
mr~i] :=(i-O.3)/(num+0.4);

end;
rnr[0] :=0

rnr[num+1] 1;
mi (!nr[2] -mr[1J)/(x[2J-x[1]);
b : rr[1] - *x[l];
x[0] : -b/rn;
if x[O] < 0 then

X[O] : 0;
m (mrnrnurnl-rr[nurn-iJ)/(x[nurn]-x[nurn-1]);
b :r r(num] - m*x (numnJ;
x[num+l] := (1.0 - b)/rn;
writeln('alpha critical value for upper');
for i :- 1 to 5 do

begin
alpha := 0.875 + 0.025*i;
if alpht > 0.975 then

alpha :0.995;
cvpassti] cv(x,mr,alpha);
writeln(alpha:8:4,cvpass[i) :10:6);
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end;
writeln('alpha critical value for lower');

for i := 6 to 10 do
begin

alpha := 0.12S - 0.025*(i-5);
if alpha=O then

alpha := 0.005;
cvpass[i] := cv(x,mr,alpha);
writeln(alpha:8:4,cvpass[i]:10:6);

end;

end;

procedure GoldenSearch(x:data; which:gofstat; var pars:para);
(* starting at "a" searches in "direction" until the function stops*)
(* decreasing. Then begins a golden search on the last two
(* intervals just prior to the function increasing.

(* location should have bounded below the first order statistic *)
var

a,b, (* current right and left endpoints *)
ab, (* midpoint between a and b
left,right, (* golden search midpoints
fa,fab,fb,
fleft,fright, (* function value at current points *)
step, (* line search interval lenth
r,( sets golden search interval width *)
bound: real; (* golden search iteration error bound*)

begin
step : parsll]/20; (* line interval step size
r : 0.618034; (* golden search multiplier

a := pars[l];
fa : gof(x,pars,which); (* current objective value
fb : fa + 1; (* initiate loop

while (fb - fa) > error do (* loop determines direction to *)
begin (* decrease the function or if *)
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b a + step; (* current point is the minimum *)

pars[l] := b;
fb := gof(x,pars,which);

if fb > fa then (* try the other direction *)

begin
step := -1 * step;

b := a + step;

pars[l] := b;
fb := gof(x,pars,which);

end;
step := step/4;

end;.

if fb > fa then (* the original point was the minimum *)
pars[l] := a

else
begin (* line search to find interval with minimum *)

ab a; (* initialize search *)
fab fa;

repeat (* line search checks every step to find

a ab; (* where the function starts to increase

fa fab;
ab :b;
fab fb;
b b + step;
pars[1I := b;
fb := gof(x,pars,which);

until (fb > fab);

left b - r*(b-a); (*** GOLDEN SEARCH begins ***)
right a + r*(b-a);

bound 2 * abs(step);

pars[l] := left;
fleft := gof(xpars,which);
pars[1l := right;

fright:= gof(x,pars,which);

while abs(fb-fa) > error do
begin
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if fleft < fright then (* delete right interval *)
begin

b right;

fb fright;
right := left;

fright := fleft;
left := b - r*(b-a);

pars[l] := left;
fleft := gof(x,pars,which);

end; (* if *)

if fright <= fleft then (* delete left interval *)
begin

a left;

fa fleft;
left right;
fleft fright;
right a + r*(b-a);
pars[l] right;
fright gof(x,pars,which);

end; (* if *)
bound := r*bound;

end; (* of while *)

if fleft < fright then
begin

if fa < fleft then
pars[l] a

else
pars[l] left

end
else

begin
if fb < fright then

pars[l] b
else

pars[l] right;
end;

end; (* of else (from long time ago) *)

trueloc : true;
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MLEest(x,trueloc,pars[1J ,pars[21 ,partsr3l,mlefailed);

re estimate shape and scale using min dist estimate of location *

end; (* of procedure goldensearch *

procedure bubble(var critsort:teststat);

var

number,i,j :integer;

temp :real;

begin

number repetitions;
for j (number-i) downto 1 do

for i:= 1 to j do
begin

if critsort[i] > critsort~i+1] then
begin

temp :=critsort[i];

critsort[i] :=critsort[i+1];

critsort~i+1]: temp;
end;

end;
end;

procedure datasort(var dataset:data);
var

number,i,j :integer;

temp real;

begin
number trunc(dataset[O]);

for j :=(number-1) downto 1 do
for i:= 1 to j do

begin

if dataset[i] > datasetlli+1J then
begin

temp :=dataset[iJ;
dataset[i] :=dataset[i+1];
dataset[i+1 :=temp;

end;

end;
end;

procedure Weibull(TR:para; var dataset:data);
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(* Weibull generates a data set of Weibull random variables *)

(* Uses the invers-, transform technique. Banks and Carson *)
(* (1984) pages 294-300.

(* DATA MUST BE ORDERED FOR OTHER PROCEDURES
var

number,
i,j integer;
temp real;

begin

number trunc(dataset[O]); (* number of random variables (<30) *)

for i I to number do

begin

temp := uniform(seed);
dataset[i] := TR[2]*exp((i/TR[3])*ln(-ln(temp))) + TR[1J;

end;
datasort(dataset);

end; (* Weibull *)
procedure Normal(var dataset:data),

mean= 15 and std dev= 2.*)
var

number,i,j:integer;
temp2,temp:real;

begin

number := trunc(datiset[O]);
j :trunc((number+l)/2);
for i:= I to j do

begin
temp :=uniform(seed);
temp2:=uniform(seed);
temp :=sqrt(-2*ln(temp));
temp2:=temp2*6.2831853;
dataset[i] := 15 + 2 * temp*cos(temp2);
dataset[i+j]:=15 + 2 * temp*sin(temp2);

end;

datasort(dataset);
end;

procedure Normall(var dataset:data);

mean= 12 and std dev= I.*)
var

number,i,j:integer;
temp2,temp:real;

begin
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number trunc(dataset[0J);
j : trunc((number+l)/2);
for i:= 1 to j do

begin
temp :=uniform(seed);
temp2:=uniform(seed);
temp :=sqrt(-2*ln(temp));
temp2:=temp2*6.2831853;
dataset[i] :=12 + temp*cos(temp2);
dataset~i+j :=12 + temp*sin(temp2);

end;
datasort(dateset);

end;

procedure Erlang(m:integer;var dataset :data);
var

number,i,j integer;
temp2,temp:real;

begin
number :=trunc(dataset[0]);
for i:=1 to number do

begin
temp2 :=1.0;
for j:= 1 to m do

begin
temp :=uniform(seed);
temp2:= temp2*temp;

1end;
dataset~i :=(-m*0.25)*ln(temp2)+1o.0;

end;
datasort (dataset);

and;
p7.ocedure Beta(p,q:integer;var dataset:data);

var
i ,nurnber: integer;
xl,x2 :real;

begin
number :=trunc(dataset[0]);
for i:1l to number do

begin
xl gamma(p);
x2 gamma(q);
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data-et[i: xl/(xl+x2) + 10.0;
end;

datasort(dataset);
end;

procedure Unif(var dataset:data);

(* between 10 and 15*)

var

number,i:integer;
temp :real;

begin
number := trunc(dataset[O]);
for i:= I to number do.

begin
temp := uniform(seed);
dataset[i] := 5.0* temp + 10.0;

end;
datasort(dataset);

end;
procedure Unifl(var dataset:data);

(* between 8 and 12*)
var

numbez,i:integer;
temp :real;

begin
number := trunc(dataset[0]);
for i:= 1 to number do

begin
temp := uniform(seed);
dataset[i] := 4.0* temp + 8.0;

end;
datasort(dataset);

end;

procedure Getdata(k:integer;var dataset:data);
var

TR :para;
begin

if k=1 then

L begin
TREl :=10.;
T[2] := 4;
TR[3]:= 3.0;
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Weibull(TR,dataset);
end

else if k=2 then

begin
Unif(dataset);

end
else if k=3 then

begin
Unifl(dataset);

end
else if k=4 then

begin
/'Erlang(3,dataset);

end
else if k=5 then

*' begin
"" Er lng(4,dataset);

end
else if k=6 then

/ 1begin

Erlang(5,dataset);
end

else if k=7 then
begin

Normal(dataset);

end
else if k=8 then

begin
"Normall(dataset);

end
else if k=9 then

begin

Beta(2,2,dataset);

end
else if k=10 then

begin
Beta(2,3,dataset);

end
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end;

procedure logtrans(x:data;var wmodstat :real);

const

euler=0.5772156649;

var

n: integer;

temp,botemp,wixitemp,wnixitemp,wisum,wnisum,w2ntemp,wntemp,

witemp,wnitemp,sigmahat,b,wstar,mu,wixi,wnixi,ternpl:real;

I'egin

n: trunc (x [0])

temp:0O.0;

tempt :0.0;

botemp:0O.0;

wixitemp:=0.0;
wnixitemp:0O.0;

wisum: 0 .0;

wnisum: =0.0;

for i:=l to n do

begin

logdataset B.] 1n(dataset B.]-MDLAD [1]);

temp:=(((2*i)-n-l)*logdataset[i])4temp;

bot emp:=logdataset [iJ +botemD;
if (i~n) then
begin

v2ntemp:=0.4228*n-wnisum;

wntemp:=n-wisum;
vixi :wixitemp+wnternp*logdataset [i>'.

unixi :wnixitemp+w2ntemp*logdatasev,',

end

else

begin

vitemp:1ln((n+1)/(n+1-i));
vixitemp:=wixitemp+witemp*logdataset [i];

unitemp:=witemp* (1+ln (witemp)) -J;

unixitemp:=wnixitemp+wnitemp*logdataset [ii;
visum:mwisum+witemp;

vnisum:=wnisum+wnitemp;

end;
end;
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s~gmahat:= tcnip/(0.G93147*n*(n-1));
b):=(0 .(079*wnixi-0.2b7*wlxi)/:&i;

wstar:=b/sagmahat;

mu:=(b~oteýmp/n)+euler,*sigmahat;

wriodstat:=(wstar-1.0-(0.13/sqrt(n))+(1.18/ri))/te!mpl;

(*writeln('sigrnahat',sigmahat,'wstar',wstar,'mu',mu,'b',

b, 'wmodstat' ,wmodstat) ;*)

end;(*ýrecedure logtrans*)

begin (*thesis *

{rewrite(out)j;

{seed := 207982; sIOshl}

seed :- 568432;

TRU[2 := 4;

TRU[3]:- 3.0;

MLE[3] :ThU [31;

dataset[0] :=15;

nun: =15;

j: I
writeln('dataset[0]',datasept[0):2:0,'tru[3]',TRU[3],'num',nutm,'so(.d',sp;(ýd);

while j <= repetitions do

begin

mlefailed:w'false;

Weibull(TRIJ,dataset);

trueloc :- false;
MLEest(dataset,truelocMLE[1] ,MLE[ý1 RMLE[3) ,mlefatiled);

if not miefailed then

begin
'for i:=1 to num do

begin
writeln(a2,dataset~i]);
end;
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writ elri(a I M,ME[11 MI.E[21 ,MLF.[31) ;I

if ((j mod 100) =0) then

writelri(' ,)

(** CALCULATE MINIMUM DISTANCE ESTIMATES

for i:=l to 3 do

begin

MDLAD El]:=MLE Ei];

end;

which :=AD;
GoldenSearch(dataset,which,MDLAD);

logtrans(dataset,wmodst);

vznodstat[j] :=wmodst;

for i:1l to num do

begin
dataset [] :=-ln(dataset[i]-MDL.AD[l]);

end;

datasort(dataset);

MDLAD[1] :~-1n(MDLAI) [2]);

MDLAD[2)-iE1/MDLAD[3];

MDLAD [3] :-O.0;
gofvalue :- adextgof(dataset,MDLAD);

ADCRIT[j :=gofvalue;

end;
if m1~failed then

begin
miefails :- nlefails+1;

end;

end;

j.:"1;
bubble(ADCRIT);
bubble(wmcdstat);
findcrit(ADCRtIT,cvad);
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findcritW(wmodstat,cvW);

writeln('rulefails ',mlefails);

{for 1:=1 to repetitions do

begin

writeln('ad ',ADCRIT~iI ,i,' I ,dataset [i])
end;}
(*Power study*)

miefails:=0

for k:= I to 10 do

begin

writeln( 'k I')

for i:= 1 to 5 do

beg in

NRrejAD[i] :=0;
NflrejWup[il :=0;

NftrejWlow[i] :tO;

end;

while j <- repetitions do
begin

if MCI mod 100)=O) then

writeln(j);

miefailed:-false;

Getdata(k,dataset);

trueloc :falsc;
MLEest(dataset,trueloc,MLE[1] ,MLE[21 ,MLE[3] ,mlefailed);

if not mlefailed then

beg in

for ia:1 to 3 do

begin

MDLAD[iJ :urMLE~i];
{MDLCVMjJ :=MLE[i;) ;

end;

which := AD;

Go] denSearch(dataset ,which,MDLAD);
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logtrans(dataset ,wnodst);
for i:=l to 5 do

begin
if wrnodst > cvW[i] then

NRrejWupIii]:=NRrejWup[il+l;

end;

for i:=l to 5 do
begin

if wmodst < cvW[i+5J then

NRrejWlow[i] :=NRrejWlow~i]+1;

end;

for i:1l to num do

begin

dataset[i] :=-ln(datase-t[il-MDLAD[1B);

end;
datasort (dataset);

MDLAD [i :=-ln(MDLAD [2));

MDLADiI2] :=/MDLAD (3];
MDLAD[3]:0O.O;
gofvalue :- adextgof(dataset,MDLAD);

for i:= 1 to 5 do
begin

if gofvalue > cvad[i] then
NRrejAD[i :=NRrejAD[i]+1;

end;

J:j~

end;

if miefailed then

begin
mlefails:-mlefails+l;

end;

end;

j .1;
writeln('j ,' ,j ,mlefails);

mlefails: -O;
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for i:=l to 5do

begin

power NRrejAD[i~l/repetitions;
writeln('ad i=',i,'power=',power:8:6);

end;

for i:nl to 5 do
begin

po'wer :- (NRrejWup[i]+NRrejWlvw[i))/repetitions;

writeln('W i=',i,'power=',power:8:6,,'up ',NRrejWup[i]:3:6,
low ',NRrejWlow[ij:3:6);

end;

end;

end.
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