¥/

AFIT/GCS/ENG/93M-n1

OBJECT-ORIENTED DATABASE
ACCESS FROM ADA

THESIS
Reproduced From __ Li Chou
Best Available Copy Lt Col, ROCAF

AFIT/GCS/ENG/93M-01

93 4 02 902

Approved for public release; distribution unlimited

£0000949 105

\mmm <Yy

DTIC

ELECTE
APRO5 1993

06837

AFIT/GCS/ENG/93M-01

OBJECT-ORIENTED DATABASE ACCESS FROM ADA

THESIS

i
|

Prescated to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University |
In Partial Fulfillment of the '
|
Requirements for the Degree of

|
Master of Science Acc?sion For .
NTIS CRA&I
DTIC TAB
Unarnounced 0O
Justification
Li Chou, B.S. o
Distribution
Lt Col, ROCAF Availability Codes
Avail and/or
Dist Special
gl
March 1993
(SPECTED 4
LYY
e

Approved for public release; distribution unlimited

List of Figuresconnv... e P e
Listof Tables R
Acknowledgements i i i s s i e e
13 < o
I IntroductioR v vttt it i s e

11 Backgroundovvniiinans e

1.2 Problem Statement. RIIIE V.

1.3 Research Objectives

14 Approach b e e e e ettt

1.5 Materials and Equipment

16 DocumentSummary v v vt v vt vt onnonanrooss
II. LiteratureReview¢c¢c00eenetnnns

21 Overview cee s

2.2 Overview of ObjectStore. IR

2.3 Programmiag Language and DBMS

231 Doatapersistence0oc0o0nveusne

23.2 Programming Language Interfaceto DBMSs 2-7
233 Approaches to theinterface ie el 2.7
24 Adaand C/C++ Communication00veeeenen.n. 29

241 Information Hiding e, 29

3.4.2 Overloading. e et . 210

243 Polymorphism C et et es e 2-10
2.5 Interface Programmingfrom Verdix Ada. 2-11

>

v
251 CreateParallelDataTypes0t ivennan
2.5.2 Declare External Subprograms

2.5.3 Accessing C++ and ObjectStore’s Extended Functions .

254 AdabindivgtoXwindow
26 Summary
III. Design and Implementation
31 Overview e e
3.2 The Prototype of Ada/ObjectStore. oo vve v
3.21 Ada/ObjectStoreinterface. R
- 3.2.2 Compare Ada/ObjectStore and ObjectStore. A.
3.3 ImplementationIssues ., R, e :
331 ClibrarylInterface. P .
332 Typesinthelnterfaceo
3.4 Implementation Ada/ObjectStore Facilities R
3.5 Testing of Ada/ObjectStore e e P
3.5.1 Testing Ada/ObjectStore functionality
3.5.2 PerformanceTesting v v i v vnesas
36 Summary ettt e e
IV. Results Analysisttt iinervtnoeonnonens
41 Overview i ittt it e

4.2 Performance Comparison of Ada/ObjectStore and ObjectStore

4.3 ProblemsEncounteredt ih ittt e
431 DebUBEer . . v i v i e e
4.5.2 Understanding ObjectStore,
433 InterfaceLimitations.
44 SUMMAIYttt it et e et e e

V. Conclusions and Recommendationa e e .
5.1 Overview aees . e e .
5.2 Summary of Research e e e
83 Conclusions Cens e e e
5.3.1 Data Persistence . . .‘ e e
5.3.24 Reliability, Maintenance, and Efficiency
5.3.3 Data Abstraction. e e .

5.4 Recommen(iations for Future Research e
5.4.1 Transparency RN et
5.4.2 ExceptionHandling e
5.4.3 Version Management. e

5.4.4 VarimtRecofds Ce e e e

L S I)

5.5 Summary.._.... Ch e e s e s a e e .
Appendix A. Raw Performance Tést Results . . b. EERREE e e e
Appendix B. Test Programs . . .i et et e . . .

B.1 Test Program: adaobj.mk (for adaobja) e e

B.2 Test Program: adaobja annn

B.3 Test Program: adacol.mk (for adicol.a) e e e e

B.4 Test Program: adacola et

B.5 Test Program: adaobj.mk (for adaobj.c) e e

B.6 Testl_’rogram:adaobj.c........... e .

B.7 Test Program: adacol.mk (for adacolc)

B.8 Test Program: adacol.rt invvennennnna.

B.9 Test Program: purobja v v v v ittt .

B.10 Test ngr@: purobjc e et e

B.11 Test Program: hello.ost.mk (for helloosta) ceae

B-3

B-9
B-10
B-17
B-19
B-25
B-27
B-33
B-38
B-44

Page

B.12 Test Program: hellooat.at u-45

B.13 Test Program: hello_ost.mk (for helloost.c) e B-47

B.14 Test Program: helloost.c i it ienean B-48

Appendix C. Interface Programso v vrnas . . C1
C.1 Interface Program: Makefile e C-2

C.2 Interface Program: os_typesa e C3

C.3 Interface Program: os.typ.ba e C-4

C.4 Interface Program: cstorea N C-5

C.5 Interface Program: ostoreba, C-8

C.6 Interface Program: ostorega 0., C-14

C.7 Interface Program: ostorgb.a » cen C-15

C.8 Interface Program:oscolla e C-17

C.9 Interface Program: oscollba. e e e C-20

C.10 Interface Program: oscura e i e e e C-34

C.11 Interface Program: os.curbaa v i i i i i i C-35

C.12 Interface Program: except.a v v v v v v v v v oo e e C-39

C.13 Interface Program: exceptba. e e C-40
Bibliography e e e i e e ++vesesesss. BIB1
Vitao i e, e e e C e e e e VITA-1

arh e b s e) A e i i s A R o b A S i it i
VRS e L R R et e S o Dk i b A ekt o il

Figure

2.1. Examples for the function name encoding scheme

2.2. Application Program Configuration Using the SAIC Binding .

3.1. Objectaccess. ‘. .

3.2. Manual schema generation

List of Figures

[-
R L

Page

2-15
2-16

3-2
33

List of Tables

1.1. DBMS Support of Engineering Dcsién Tool Characteristics
The parallel data types between Verdix Ada and traditional C

. The function name and parameter encoding scheme e

. Fundamental data types of C/C++, ObjectStore,and Ada e

.2. Functions of Ada/ObjectStore and their equivalent functions in ObjectStore C++

lib‘rary et e e e e et e e e e e e
Functions of ObjectStore C++ library (mangled name) and the same functions in
Clibrary I R R T N R R R vi e e e s e
The data type and alignment size using in Adaand C/C++
. Benchmark performance results for hello_ost.a and helloost.c

. Benchmark performance results for hello.ost.a and hello_ost.c (C++ mangling in-

terface) 0o 0l e e e

. Benchmark performance . 3ults for hello_ost.a accessing C++ and C library inter-

face e e e e e
. Benchmark perforinance results for adaobj.a and adaobjc. e
. Benchmark performance results for adacol.a and adacole
. Benchmavk performance results for purobj.aand purobjc.
. Benchmark performénce results for adaobj.a and purobja.
. Benchmark performance results for adaobj.c and purobjc......... e

. Comparison of fiie size written in Ada and C (static binding)

Page

1-2

2-12
2-13

34

36

37

310

4-1

4-2

4-2
43
4-3
4-4
4-4
4-5
4-6

Acknowledgements

Many persons helped me go through studying here. It is hard to name all of them, but I must
mention Maj. Mark A. Roth. I owe him much for his advise aﬂd patience in helping me through
this difficult time. If I am a dragon, I could be swimming in shallow water; lahguage barrier
constrains my entire apace.v Without Maj. Roth’s endless advise and patient comimunication-a
real life example of interfacing in languages, I would probably pack my luggage and return to my
domicile before I could finish my thesiv.

It is exciting to count the days preparing to go back home. For the 21 months I stay, I need
to thank all my friends here; I need to thank my wife Susan (Fen-Ming) and my children Amy
(Chia-Hui}, Jenny (Chia-June), and Charlie (Chia-Chun)., Without their support, I could not have

completed this work.

Li Chou

AFIT/GCS/ENG/93M-01

Abstract

Ada embodies many modern software engineering principles, namely, modifiability, efficiency,
reliability, and understandability. Its powerful data abstraction allows programmers to easily model
objects in t_he real world. However, Ada does not provide data management facilities as a database
management éystem (DBMS} does. A DBMS provides long term storage. It provides a couvenient
and efficient environment to manipulate data. Currently, with Ada, access to # DBMS is typically
done through the use of a language extension and a preprocessor to convert the ex‘ensions to
library calls appropriate for the DBMS. These systems currently support relational DBMS's é.nd
some variant of the SQL data mznipulation language. However, the uata structures in traditional
DBMS and in Ada are very different and cause limitations that affect Ada’s ability to access

- traditional DBMS for more complex applications, such as computer-aided engincering design.

Now, object-oricnted design (OOD) is a new way of thinking about problems using mod-
els organized around real-world concepts. Currently, the OOD methodology has been imple-
mented in object-oriented programming languages (OOPL) and object-oriented database systems
(OODBMS). They provide the same methcdology to handle objects. An OODBMS includes mest
benefits of a relational DBMS and, in addition, provides the capability to manipulate complex,
heterogeneous data. ObjactStore is an OODBMS. An interface from Ada to Obj'ecit;Store cbuld

fulfill the requirements for complex applications.

To approach this research, first, the parallel data types in C and in Ada were implemented.

Then the interface functions were implemented according to the functions described in the Object-

Store Referunce Manual. For reasons of simplicity, the interface is done via the ObjectStore C ki-
brary. Performance testing is accomplished by comparing the differences between Ada/ObjectStore
and C/ObjectStore.

Ada/ObjectStore performed better in CPU time than C/ObjectStore. However, there is not
much difference between Ada/ObjectStore and C/ObjectStore. The main factors that affect the re-
sult of performance still depend on the two languages own abilities. Ii is clear that Ada/ObjectStore
provides the capability of data persistence to Ada. This result favorably affects program length,

program development time, program maintainability, and application reliability.

OBJECT-ORIENTED DATABASE ACCESS FROM ADA

I. Introduction

1.1 Background

Historically, persistence of data was accomplished through file systems. File systems provide
data storage required by the application programmer to manage data, but wi*h file systems it is

difficult to support data censistency, concurrency, and sh aﬁng worl between applications.

Unlike file systems, database management systems {DBMS) provide an environment which is
both convenient and efficient for computer appiicationa to manipulate data. Database management
systems not only s\ipport data storage, but also maintain data prot-actioﬁ. DBMS protect data
against inconsistency through concurrency control and recovery methods in spite of multiple users

and system failures. In addition, DBMS provide services for data sharing, security, and query.

However, the relational database management system (RDBMS), cufrently the DBMS of th_e
choice, has many shortcoxﬁings. Ir particular, it has deficiencies for complex design and engineer-
ing applications. The object-oriented DBMS (OODBMS) is a new generation of DBMS whick
incorporates the object-oriented programming psradigm into a databas'-, system. It retains the ca-
pabilities of traditional DBMSs; plus, it supports complex data types, multiple versions, and long
transactions. Table 1.1 is a good summary comparing RDBMS and OODBMS suppcrt of several
chacacteristics of engineering design tools. From this table it is evident that a gopod OODBMS can
potentially provide the database support necessary for a comolex application (11).

Ada is the standard US DoD programming language. Access to a\\ DBMS {rom Ada is typically
done through language extension and a preprocessor to convert thiextensions to library calls
appropriate for the DBMS. These systems currently stpport RDBMSs and some variant of the
SQL data manipulation language. Current OODBMSs are written ptimarily for the C or C++
language. Ada can interface with C via the Ada interface facility pr INTERFACE. The pragma
INTERFACE specifies the other language and informs the compiler that lan object module will be
supplied for the corresponding subprogram (1). AFIT hasan OODBMS; bjectStore, an OODBMS
from Object Design, Inc., and several Ada compilers; This thesis demonsb rates that Ada can access
an OODBMS that provides extended capabilities for Ada that has object inanagement facilities.

1-1

Design Tool

sttributes of a
typical adder and
modifies them to fit
a particular circuit.

" the achema 1anst be
defined a prio~.

Traditional Object-Oriented
Charecteristic Example DBM35 DBMS
mrlex Stute References to T A key is required for each | Fundamzutal to the
subcomponents sib-component. Joins are | object -oriented paradigm:.
within circuit. required to merge into a
single object.
Inhentance New adder : 1herits Complete specification of rundamente] to the

object-otiented paradigm.

Cumplex Data
Types

Graphicel represen-
tation of a circuit.

QOnly supports basic data
types such as integer and
character.

Supports graphical and
textual data and allowe
user to define data types.

Multiple Views

Top level view of
design or mnore
detailed look at a

Must be defincd in the
application. Limited by
record oriented retrieval.

Can be sp-cified ns a
method for the ubject.
Data is more easily

sub-component. retrieved using
object-oriented storage
techniques.
Maltiple Carreat and May support multipls Generally built in as a
Versions histor.cal versions. versions of individual tree structure with root
recoids, node representing a
version. Tree includes all
objects which make up the
vergion.
[Phased To) down design. Not supported. Entire Refined schewa can
Development schema must be defined a | inherit characteristics of a
priori. higher level and modify
for next phase.
warge Data Thoutands of Limited cnly by physical Clustering by object
Volume sub-componeats in a | storage; kowevar, reduces the namber of
circuit. record-oriented storage disk accesses. Complex
may limit the size of data types remove object
record, causing multiple size restrictions. - -
record retrievals for a
single object.
‘Long Desigaer takes two Built around short More appropriate
Transaction week to riodify a business transactions. concugrency control and
Duration specific circuit Inefficiency and failure failure recovery methods
design. occur with long used to support long
transactions. transactions.
[Fast “Thousands of A single view requires Designed to retrieve large
Performance sub-components are multiple joins and many amounts of data at once.
retrieved and dis- individual accesses.
played in seconds.

Table 1.1. DBMS Support of Eugineering Design Tool Characteristics

(11)

1-2

1.2 Problem Statement

Currenily, Ada can interface with RDBEMS, cuch as the Ada embedded statements of the
ORACLE RDBMS (Ada/OCI). RDBMS that provides tue ability to mode} information organized
as records has widely been implemented in Management Intormation Systems (MIS) applications.
However, the RDBMS has its limitations for more complex applications, such as computer-aided‘
engineeﬁng design. Object-oriented concepts have been implemented increasingly in the field of
software engineering. OODBMS, one of implementations using an objectTOrienied model, includes
most of the benefits of RDBMS. In addition, it has the ability to manipulate complex, heterogeneous
data. Current OODBMS such as ObjectStore are ‘vritten in C or C++. These OODBMSs are
tightly bound with C or C++. To extend Ada’s capability in area of complex, data-intensive
‘applications, there ﬁxust be a way that Ada can interface with OODBMS.

1.3 Research Obj«tivca

The primary purpose of this thesis is fo demonstrate that an Ada binding to Cb jectStore can

be accomplished, and that the interface fuhctionnlity is similar to the existing C/C++ binding to

ObjectStore. Furthermore, the performance of the Ada interface should approach tke performance
of the C/C++ interface. ' ' ‘

Ada is & very powerful programming language and was designed for problem domains needing
a software-intensive system. It requires efficiency, reliability, and maintainability. An Ada interface
to ObjectStore should not lose these good abilitics. Also this thesis should identify Any‘posaible

limitations related to the interface.

1.4 Approach

This thesis effort resulted in the development of an ObjectStore binding for Ada. ObjectStore
is written for C/C++. The basic approach employed in this effort consisted of the following:

o Created parallel data types of Ada and ObjectStore. In order to safely convert data that cross
the interface, parallel data type needed to be created first. Ada supports scalar, composite,
accesa, private and subtypes, and derived types. A type declared in Ada should have a parallel
data type implemented in ObjectStore.

o Implemented interface functions. A series of predefined pragma INTERFACE and pragma |
INTERFACE_NAMEs were established to link to the ObjectStore function’s. Several interface
packages were implemented according to the classification of the ObjectStore functions.

13

o Implemented test programs using implemented interface packages. The test prdgram verified
the functionality of the new implemented interface functions. Before a test program was
compiled, a datahase schema was implemented. Binding to the ObjcctStore library was
accomplished at compile time by the Ada linking facility.

1.5 Materials and Equipment

This research effort utilizes ObjectStore, version 1.2 and development facilities on a Sun
Sparc I workstation. Verdix Ada, version 6.0, is used to compile Ada programs and the Ada to
ObjectStore interface programs. ‘

1.6 Document Summary

Chapter % describes properties of ObjectStore and describes ObjectStore’s abilities in sup-
pori of computer-aided design applications. Futthermore, this chapter describes data persistence,
and how a prograinming language that can extend its capability of handling persistent data
through a databace. This chapter also describes previous research in interface programming from
Ada. Chzpter 3 summarizes the prototype of Ada/ObjectStore designed by Object Design, Inc.
(18), and present a desigr. of Ada/ObjectStore via the ObjectStore C library. A comparison of
Ada/ObjectStore and C/ObjectStore performance after Ada has extended the ability of data per-
sistence is described in chapter 4. This chapte: also discusses some problems encountered in the
effort of :mplementating the Ada/ObjeciStore interface. Chapter § includes conclusionc reached

regarding the objectives of this thesis and recommendations for further ressarch.

II. Literature Review

2.1 Overview

In order to begin developing a set of interface programs written in Ada thalt provide access
to ObjectStore, an OODBMS product written in C/C+-+, we need to know some concepts and
techniques related with this topic. One key area m to compare intercommunication characteristics
of Ada and C/C++. To achieve this requirement, a review of some features of Ada and C/C++
was conducted. These features are abstract data type, data persistence, and current examples of

Ada bindings, including X windows and ORACLE.

2.2 Overview of ObjectStore

ObjectStore, developed by Object Design, Inc., is an object-oriented databare management
system (OODBMS). It provides a tightly integrated language interface with the features of data
management found in traditional DBMS. ObjectStore was designed to provide a unified program-

mwing interface for both persistent and transient data.

OODBMS contain capabilities of data management as with traditional DBMS. In addition,
OODBMS more directly integrates with an object-oriented pregramming environment. Therefore,

the advantage of the OODBMS over the traditional DBMS is that it provides both data persis-

tence and expressibility (19). In a traditional DBMS, transient data are stored in variables in the
programming language, and persistent data are stored in the database. Programmers explicitly
convert data between transient and persistent states. However, object instances in an OODBMS
application are either persistent or trausient. The persistent data in ObjectStore is provided by

overloading the C/C++ ’s memory allocation operator. Transient data is provided with the ordi-

nary operators of C/C++. ObjectStore provideeﬁlibtwbnljp‘eisibténtw and iﬁnsﬁfnﬁ dat‘ai;"bdt;mft;; N

more efficient data handling, it provides the developer with a single view of memory by dividing the
memory space into program memory and databasze memory. Persistent data stored in ObjectStore
are handled by C/C++ programs exactly the same way as transient (non-persistent) data are (17).

ObjectStore is an object oriented database management system. It provides the data query
and management capabilities of a traditional database. In addition to the capabilities of a tra-
ditional database, it provides the flexibility and power of the C++ object-oriented programming
language and the versioning mechanism to support creation and manipulation of alternative ob-
ject versions. The versioning mechanism enhances parallel work on shared data (17). To group
objects together, ObjectStore provides collections which provide a convenient means of storing and
manipulating objects. This feature is not supported by C++ and most DBMSs (14). Collections

2-1

et s mesd S < i

are abstract structures which resemble arrays in traditiona! programming languages or table in
relational DBMS. ObjectStore collections provide a variety of behaviors, including ordered or un-
ordered collections (lists), and collections that either do or don’t allow duplicates (bags or sets).
These are commonly used to model one-to-many and many-to-many relationships. They also pro-

vide a domain for iteration and for the execution of queries (17).

ObjectStore’s unique Virtual Memory Mapping Architecture (VMMA) achieves its perfor-
mance by using memory mapping, caching, and clustering techniques to optimize data access. The
key features of ObjectStore’s virtual memory mapping architecture allowé persistent data to be
handled exactly the same way as transient data, minimizing overhead of retrieving and manipu-
lating large amounts of data, and managing versioned data in a way that does not slow access to
non-versioned data. In addition, ObjectStore performs effective associative access and optimizing
of queries. These techniques formulate efficient retrieval strategies and minimize the number of

objects examined in response to a query (17).

~ ObjectStore applications require three auxiliary processes for their execution: the ObjectStore
Server, the Directory Manager, and the Cache Manager. These processes are started automatically
when an ObjectStore application starts. Most users never have to worry about starting ur stopping
them. The Server handles all storage and retrieval of persictent data. The Directory Manager
manages a hierarchy of ObjectStore directories by storing its information in a diréctory database.
The Cache Manager manages an application’s data mapped or waiting to be mapped into virtual
memory (17). A

There are four approaches to using ObjectStore: (17)

1. the C library interface,

2. the C++- library interface without class templates,

3. the C++ library interface with class templates, and

4. the C++4 library interface with class templates and the ObjectStore DML.

The C++ library interfaces involved in application systems depend on the compiler used. For the
C++ library interface without class templates, the compiler used is based on AT&T’s cfront. For
the C++ library interface with class templates, the C++ compiler used should include the ANSI
Draft Standard. The Object Design C++ compiler supports class templates and ObjectStore’s
DML, which provides clarity and convenience to access database. Furthermore, the Object Design
C++ compiler allows applications that mix these approaches freely; a program could perform some
queries using the DML and some queries using the C++ library interface.

2-2

2.3 Programming Language and DBMS

For a long time, programming lenguage designers have tried to find out an effective way of
handling long term storage. Data, if required to survive a program activation, needs to be stored in

a file or a DBMS. However, the Jata structuresin traditional DBMS and in programming languages

~ are very different. The traditional DBMS only supports limited data types, but most programming

languages support complete data type systeins. 'Now, object-oriented design (OOD) is a new way
of thinking about problems using models that are organized around real-world concepts. Currently,
the OOD methodology has been implemented in programming languages (OOPL) and database
systems (OODBMS). Because they provide the same methodology to handle objects, they provide
an advantage for data pefsistence. The following describes the characteristics of data persistence,

defines persisteht programming languages, and why we need programming languages that interface

" toa DBMS.

2.8.1 Data persistence. Persistence is the ability of the programmers to have their data
survive the execution of a process in order to eventually reuse it in another process. Persistence

should be orthogonal to type. The user should not have to explicitly copy data to make it persistent.

Booch (7) defines persistence as follows:

Persistence is the propeity of an object through which its existence transients time
_(i.e. the object continues to exist after its creator ceases to exist) and/or space (i.e. the
object’s location moves irom the address space in which it was created).

Persistent data should have the following properties (2):

manipulates that data object. Conversely, a fragment of program is expressed independently
of the persistence of data it manipulated. For example, it should be possible to call a procedure
with either persistent or transieat objects as parameters.

2. Persistence data typc orthogonality: persistence should be a property of arbitrary values and
not limited to certain types. All values should have the same rights to persistence.
3. Persistence tranbparency: persistence is transparent when the programmer is not aware of
how the data maps between memory and storage.
Barper, in “Modules and Persistence in Standard ML” (10:26-27), pointed out that the most
general notion of persistence, called object persistence, consists of viewing all objects as existing in
persistent storage, with transient storage serving only as a cache for quick access. Each object is

23

identified by a persistent identifier, or PID, which is the address of that object in persistent storage.
The heap is garbage collected as usual so that only accessible objects are preserved. The garbage
collector is for efficiency, which depends on what slgorithm is used. In order to ensure that all
accesses to persistent data are type safe, each object must have its ty;;e associated with it. Some
sort of run-time type checking must be involved. A persistent environment must associate the type

of a structure with the object in pérsistent storage.

Cardelli (8:37-39) classified persistence strategies and sketched three different persistence
models. These correspond to three different semantics for intern-extern. Extern is defined as
the operation that copy objects from transient to persistent memory, and Intern is a symmetrical
operation for those objects. These strategies are fhe fetch-store, load-dump, and lock-commit
model. Cockshott (3:236) gave a similar but more detailed view of addressing mechanisms for

persistent objects. The following is a summary of some of the categories:

o The Fetch-Store Model
This model is backup storage for transient objects. The association between internal and
external objects is mediated by handles. Extern makes a copy of a transient object in per-
sistent storage, associating it with a handle. Many calls to extern on the same object and
different handles will make many independent copies. Calls of extern on two objects which
share a sﬁbstmcture will duplicate the substructure. Intern has the same functions but op-
posite direction, copying objects from persistent sforage to transient storage. Sharing is only

preserved within persistent objects.

o Core Dumping, or session persistent
A simple way of providing persistence is to make PIDs macbine addresses and dump the whole
core at f\he end of a session and reload it at the start of the next session. This is a simple
techniqu‘e and this gives us very efficient use of dirk storage, as data is held in contiguous
storage. Farbage collection and space recovery is simple too. However, the shortcoming is
that it will not be able to hold a collection of data that is larger than its RAM since they
assume th\at the whole collection of data is loaded into RAM at the start of each session.
Another c(}nsiderable cost is the time required to startup and close down. The vser must wait

for the whc}le image to swap in or out at the start or finish of the session.

o Use of VirtLal Memory, paged or segmented.
This technique is to make the PIDs virtual addresses in a paged or segmented siore. It is not
necessary to dump or reload the cntire image. Instead, it can be done incrementally, a page

or segment at a time as needed. Implementations of virtual memory are transparent to users.

24

It allows multiple users running programs concurrently. Each program is given the illusion

that it is using physical memory alone. However, it will work with degraded performance.

o Multiple Address Space Models A _
In this implementation, the PID is charged according to which address space the object
contained is currently residing in. If it is resident in RAM, the PIDs are converted to RAM
addresses. If it is on disk, the PIDs are represented as disk addresses. A search is made of
a memory resident table called the PIDLAM. This table holds a two way mapping between
PIDs and local addresses. These are disk addresses and RAM addresses respectively. Every
object that was brought in from disk in this session must have an entry in the PIDLAM. The
drawback of this technique, however, is that a complex body of software is neeced to manage

the PIDLAM. Any algorithm used is not just for simplicity. The current PS-Algol uses this

technique.

e Associative PID Addressing & Paged Virtual Memory
This puts another level of addressing above virtual memory. The PIDs here are names of

objects rather than addresses. A combination of associative memory hardware and firmware

maps these names onto paged virtual memory.

2.8.1.1 Persistent Programming Languages. A persistent programniinglanguageis a
programming language that provides the ability of data persistence. Thefe are several approaches
to providing persistent data services: files, special hardware devices, and databases (19). Most
progrzimming languages do not provide thi: :bility. Atkinson pointed out that in any program
written with a non-persistent programming language, there is usually a considerable amount of code,
typically 30% of the total, concerned with transferring data to and from files or a DBMS (2). Much
space and time is taken up by code to perform translations Letween the program’s data and the form
used for the long term storage medium. Therefore, the main advantage of persistent programming
languages is quite clear. That is, it favorably affects program length, program dévelopment time
and program maintainability. To discuss persistent programming languages, we need to look at

what languages should provide and what abilities are required for persistence.

o Data type completeness: »
The basic requirements for data persistence are persistence independence and data type or-
thogonality. However, a complete type system should have a methnd that stores persistent
types, such as a schema generator that generates a schema in a DBMS. More specifically,
data persistence in programming languages is achieved through data type persistence. The

persistent data type works with a data type checking algorithm (data type checking will be

mentioned later) to protect data across the boundary between storages and application pro-

grams. Both languages, Ada and C, provide base data types and abstract data types, except
inheritance. Both provide data type completeness, and, in sonte cases, Ada is better than
C in data ahstraction. Unfortunately, as with most programming languages, they co not

orovide any way to store data types.

Memory allocation and deallocation: .

Ada and C provide three kinds of memory allocation: static (global), automatic (stack), and
dynamic (heap). Static and automatic memory normally is allocated at block entry, Dynaunic
memory is explicitly allocated memory. In Ada memory deallocation works automatically.
However, in C deallocation is done explicitly. Garbage collection, or memory deallocation, is

a factor of performance for languages.

Type checking:

Itis dangei'ous to allow languages without a strong type checking mechanism to handle
persistent data. Languages must provide type checking mechanism to protect against asystem
crash during run time. Because rhmy objects are transferred between the disk and memory
while the system is running, any type mismatch will cause the system to exit abnormally, or
even worse, cause some erroncous data to be stored. Languages should provide a method of
storing and retrieving persistent data as well as a description of its type and a method of
type checking. Type checking is another weak point of C. Ada proﬁdes strong type checking
to prevent run time errors. Moreover, Ada’s exception facility provides a more elshorate way

to handle errors at run time. C does not have those benefits.

Persistence through reachability or declaration:
Persistent programming languages provide the ability of data persistence through reachability
or declaration. Programmers need to understand how data persistence is provided by the

language they use.

— Persistence through reachability:
This approach has one or more persistent database roots and makes every object that
is reachable from these persistent. This was the approach used in oue of the earliest
persistent programming languages, PS-ALGOL (2)

- Persistent through declaration:
This approach is to declare data structures that are persistent. For example, to declare
a structure PERSON that is persistent, all objects created for PERSON are persistent.
Languages may provide a different operation for allocating persistent or transient ob-

26

v

jects, like ObjectStore does (17) Besides the fact that objects can Le declared to be

persistent, classes can be declared to be persistent, too. Classic-Ada provides persistence
by declaring classes to be persistent (22). However, the persistence ability in Classic-Ada

has limitations; all objects under the class declared persistent must be persisient.

¢ Memory management:
Memory is used to temporarily store a program and its data. Programming languages provide
a uniform memory system. That is data is uniformly distributed in the memory regardless of
‘its properties. All addresses of pointers are memory addresses. However, for persistent data,
PIDs representing addresses of objects on disk are required. Also new operators are required
to enable thew to dereference PIDs. Laﬁguages, for example PS-Algol (3:243) use multiple
address spaces, sepa.raté the memory so it is persistent and transient. All persistent objects
are stored in the side of persistent memory, and all transient objects are stored in the side
of transient memory. Other languages such as LISP and PROJOG (23) are implemenied in
a different way: Persistent Memory. A persistent memory systcm that is based on uniform
memory abstraction eliminates the distinction between the computational (transient) and
long-term storages (persistent). The uniform memory abstraction is that a processor views

memory as a set of variable-sized blocks or objects interconnected by pointers. Ali objects

that are in the transitive closure of the persistent root are pers'istent, and vice versa for

transieat objects.

2.3.2 Programming Language Interfac? to DDMSs. Ada, a procedural programming
language, is based op constructs such as loops, branches, and if/then pairs. These programming
languages provide good performance in computations, but in the case of intensive interrelated data
retrieval and manipulate, they provide aAta store and query facilities which are fay behind those of
a DBMS. A DBMS provides cc wrrency control, and failure recovery for data that it stores. Also
a DBMS supports a transaction mechanism to ensure that the persistent value including updates
produced by transactions are executed to completion. However, programming languages alone do
not provide recovery algorithms that acts on persistent values. Persistent programming languages
have gained the advantage of simplicity and ma’ntainability (2). But, to obtain the best advantage,

allowing a program language access to a database is an advantageous approach.

2.5.3 Approaches to the interface. A programming language interface to a DBMS can be
accomplished by two methods-loosely coupled or tightly coupled. The following discusses the two
methods and their trade offs.

gl -

2.9.8.1 Locsely Coupled - ORACLE and Ada. ORACLE is a Relational Database

Management System (RDBMS) and can be accessed and manipulated by an application program

written in Ada. ORACLE provides a set of host language calls that car be included in application
programs. An Ada program that embeds these calls is known as an Ada/OCI program (16).

Ada/OCI provides a direct intarface to the ORACLE RDBMS. The SQL of ORACLE is a
ron-procedural language. That is, most statements are executed independently of the preceding or
following statement (16). Ada is a procedural language and it has limitations on data management.
However, under Ada/OCI construction, programmers can write software that combines the advan-
tage of SQL and Ada. The basic structure consists of several statements. For example, a program
establishes communication with the GRACLE RDBMS by issuing the LOGON call. Communication
takes piace via the Logon Data Area that is defined within the user program, and the EXECUTE.
SQL call executes a specified SQL statement.

ORACLE fetches and stores data objects into and out of the user program by directly acées&
ing the data via its actual address. Because of this requirement, if the data in Ada accomplish this
accessing, all scalar objects are represented as record types with a single component of the scalar
type. For uxample, tae type used to represent short integer (16-bit) to ORACLE for d#taba.se

operations is defined as follows (16):

ﬁypo oracle_short_integer is record
int : short_integer;
end record;

ORACLE performs data conversions for data types provided by the vser program. On retrieval
operations, ORACLE converts from the internal format of the data as stored in th. Jatabase to an
" external format as defined by the user program. On storage operations, ORACLE converts from
external to internal data types. ORACLE may store characters in ASCII strings and numbers in a
variable length scaled integer format.

The disadvantage of OCI/Ada is they are loosely coupled. Rumbaugh pointed out {19)
that this scerario is unattractive and the fundamental problem is twofold. The problem of this
implementation is that they are totally differsn: languages. The interface is through a set of
language calls whica are implemented by ORACLE. Moreover, ORACLE does not provide the
complete capability of data persistence. The programmer must explicitly convert data between

persistent and transient formats. This conversion causes inconvenience for application deveiopers.

_ 2.5.3.2 Tightly Coupled - ObjectStore and C/C++. Section 2.2 shows ObjectStore
is a tightly integrated language interface for tke features of data management. ObjectStore was

2-8

\

designed to provide a unified programming interface to both persistent and transient data. Data
that are allocated in persistent meiaory with an overlovaded C++ new operator are persistent.
Otherwise, they are transient. Programmers handle the persistent and transient data with no
difference. Because the capability of complete data persistence is achieved, the explicit I/O and
data conversion are not required. Furthermore, ObjectStore ptov‘idesisome advantageous abilities
for manipulating data. For example, the collection provides the ability to handle aggregate data

structure, and it allows application programs to be developed more simply and readily maintainable.

2.4 Ada and C/C++ Communication

Ada, from several poiuts of view, provides data abstraction. Ada’s package can define a set
of values or data structures and 2 set of uperations that manipulate the data structure it defines.
A package consists of two parts: packuge speciﬁcafion and bedy. The specification contains the
declarations of types, objects, and subprograms and acts as an interface between the package and
client programs. The package body contains the actual code for the subprograms declaved in the

specification. Data declared in the specification is accessible from the external world, but data

contained in the body is hidden from the outside. However, a current shortage in Ada’s data

abstraction is that it doesn’t support inheritance.

Although Ada is not truly an OOPL, Ada does support some of the major concepts of
the object-oriented philosophy in the area of data abstraction, namely overloading, encapsulstion
(packages), information hiding (private types and package bodies), These features make Ada a

cuite suitable OOPL. The following discusses those features in Ada and compare those features to

C.

2.4.1 Information Hiding. The information-hiding feature of abstract data typing means
that objects have a “public” interface. However, the representativns and implementations of these
interfaces are “private”, The abstraction mechanism that enforces the access und update of objects
with user-defined types is encapsulated. Hence, it can only be performed through the interface
operations defined for the particular type. Ada provides inforination hiding. For example, a data
structure, stack, is defined to “private”. The type name of stack will be allowed to export from a
package, but its internal structure is invisible to the user program. Also Ada provides a greater
degree of information hiding or encapsulation. Fax example, the stack can be completely concealed
in the package body. Because of encapsulation, only one stack is required. The programs will
be simplified when the encapsulated stack is used. C does not support information hiding and

encapsulation.

29

2.4.2 Overloading. Overloading allows operations with the same name but different se-

mantics and implementations, to be invoked for objects of different types. This is one of the most
powerful and useful co.cepts of object orientation. The common examples are overloading oper-
aters and overloading names. In almost all laﬁgnages, the arithmetic operators “4", “.” and “*
are used to add, subtract, or multiply integers or floating-point numbers. These opcrators work

even though the underlying machine implementations of integer and floating-point a.rithmetic'.are ‘
quite different. The compiler generates object code to invoke the appropriate implementation l;a_s'ed
on the kind of the operands. Ada and C support overloadiug operators, but only Ada rupports
overloading names. Names, in any language, are used to denote entities. Ada is good for large scale
systems in which the name space may contain more than hundreds of names. In order to avoid
problems using nanies already defined, Ada allows the overloading of certain names. This facility
is specially useful for subprograms and enumeration literals. One exception is that object names

cannot be overloaded. One example of overloading a subprogram’s name, CLEAR, is as follqws:

procedure CLEAR (THE_VALUES : in out VALUES);
procedure CLEAR (THE.MATRIX : in out MATRIX);

2.4.8 Polymorphism. Polymorphism generally represents the qua'ity or state of being able
to assame different forms. When applied to programming languages, it indicates that the same
language construct can assume different types or manipulate objects of different types. Fairbrairn
(3:70) pointed out that with polymorphism the function works just as well whether the type is, for
example, int or char. The idea is to replace the irrelevant details with a type-variable that can be
filled in later. Overloading is analogous to polymoi'p‘\ism, such as “+”, an overloading operator,
can apply to different types of objects in which base types are INTEGER or FLOAT. To maximize
the re-usage of software, it is important to be abie to parameterize software components so that the
same blueprint can be used in type-safe fashion for different applications. Ada’s generics support
parameiric polymorphism. In contrast, C has no parametric facilities. The common practice is to
use the C preprocessor (a macro expander) to duplicate text with suitable replacement in order
to simulate generic instantiation (21). This mechanism is purely lexical: there are no syntax or
semaantic checks attached to the macro definition nor to each of its expansions. Another way is using
“void*” as a parameter. Because the object is typed as “void*”, a cast is necessary when using
it. The weak type checking of C makes programmers responsible for types matching in application

programs, and this will cause the most common type of run-time errors.

2-10

TR T I R T R R

2.5 Interface Programming from Verdiz Ada

The main issue of binding between Ada and C is to match parameters. Objects that can be
matched in these two languages are based on their type systems. Fortunately, types in Ada and C
can be manipulated to match. C functions act like functions or procedures in Ada depending on

whether or not they return a value. The following are basic concepts to accomplish the interface.

2.5.1 Create Parallel Data Types. - The VADS Prograrmer’s Guide points out that the
first step in creating an Ada interface to a subprogram in C is to “create parsliel data types” (24).
The paralle} type, or data structure does not mean the type’s name are identical in Ada and C, but
the composition, length, and alignmeﬁt of the component of that type are required to be identical.

From the pi’oglfammer’s guide of Verdix Ada, two basic approaches are aveilable for creating parallel

data tybes:

1. using parallel data types known by the programmei' from reading the vendor’s documentation,

and
2. using Ada representation specifications.

Ada representation clauses allow the Ada programmer to define an exact duplicate of the physical
layout of any data type in another language once it is known. For example, the type INTEGER in
Ada corresponds to the type int in C; the type SHORT. INTEGER is equivalent to the the type short
in C. Both int and short represent a 16 bit integer. Table 2.1 shows some base types that parallel
between Vercix Ada and traditional C. Ada allows type specifications that are largely independent

of the implementation. For example, the type SEORT_INTEGER in Ada can be defined to equal
the type unsigned short in C. Type, storage, record layout, and alignment can all be controlled.

When the underlying representation of a type has no analogue in Ada’s language, the data type
can be defined by the programmer using Ada representation specifications and UNCHECKED.
CONVERSIONs. For example, the type char is used Both to represent a character or a byte
integer value. There is no exact Ada analogue to this behavior, but the generic function UNCHECKED.
CGNVERSION offers a method for controlled easing of type conversions: Ada’s TINY.INTEGER can be
used for numeric representations and type CHARACTER can represent a character value (24). One
thing that is important when using the parallel data types is that the PRAGMA INTERFACE permits
only 32-bit or 64-bit scalar values to be passed; Consequently, when you pass INTEGER you can
pass it by parallel INTEGER variables in C. But, wh2n you pass SEORT_INTEGER variables to a C
function, you must pass them by address. System address is a predeﬁned attribute in Ada. The
value of this attribute is defined in the package SYSTEM.

2-11

5 R @9 WS A R e

Traditional C | Verdix Ada |

int INTEGER

long INTEGER.

short SHORTINTEGER

char CHARACTER
TINYINTEGER

float SHORT_FLOAT

double FLOAT

Table 2.1. The parallel data types between Verdix Ada and traditional C

In compound typ:s, such as ARRAY or RECORD, the same approach can be taken. Both C
and Ada associate the label of compound types with a base address and offsets provide access
to individﬁal components of these types. For the Ada programmer, as long as the compound
types are composed of equivalent sixhple data types, the offsets will be calculated similarly and the
structure of compound types wiil be idestical. Verdix recommends that che STSTEM, ADDRESS of the
first element of an Ada array be scat to pass the array to C. For record types, the pointer which
contains the ADDRESS of the first element is the best way to send the record to C. Pointers and
address types are implementation specified. Ada’s host conventions usually aliows the use of Ada
pointer and address types parallel to their C counterparts. If for some reason, host conventions are
not followed, representation specifications can be used to fit the size and range of the data type
(24). ‘ '

String types in A-a and C are different. A C string is simply a pointer that points to the first
character. The string is terminated by a null character. In another words, there is no explicit length
for C to vtore. In Ada, however, a string is repreaented by a pointer to an unconstrained array of
characte: s and it needs an explicit length provided by its attribute, LENGTH. An Ada subprogram
that calls a C function passing a string as & parameter should be prepared to make the necessary

conversions.

2.5.2 Declare External Subprogiams. After parallel types have been designed, interface
packages need to be implemented to access progr. ns written in C. Ada provides an ability of
interface to other languages. A subprogram written in C can be called from an Ada program
provided that all communication is achieved via paiameters and function results (1). This is
accomplished by a predefined PRAGMA INTERFACE.NAME to establish a link from the Ada procedure
or function name to the corresponding procedure or function written in C The Verdix PRAGMA
INTERFACE allows Ada programs to call subroutines defined in C with:

pragma INTERFACE_FAME (Ada_subprogram_name, subprogram_ link_name);

2-12

- [Encoding Scheme | Types Encoded Symbols |

[Basic Types void

char

short

int

long

float
double

long double

sre

— e

v
c
s
i
1
f
d
T
| K e
Type Modifiers Unsigned U
const . |C
v
S
P
R
[1

volatile

_| signed
Standard Modifiers | pointer

reference &

array

function .

ptr to meémber | S::*M1S

Table 2.2. The function name and parameter encoding scheme '

The sudbprozram 1ink name argument mky be formed from a string literal, a constant string
object, or a catenation of these operands. C, unlike Adn, is case sensitive, so subprogram link.
neme in pragna INTERFACE must be same as the case of the function written in C. A pragma is
allowed at the place of declaration, and must apply after Ada_subprogram name used in its pragma
INTERFACE.NAME has been declared. The Ada compile;- handles parameter pushing and target

language com;iiler naming conventions and checks to make sure the parameters are allowed in the

target language.

2.5.8 Accessing C++ and ObjectStore’s Extended Functions. C++ is an eitension of the
C language, implemented not only to add object-oriented capabilities but also to redress some of
the weaknesses of the C language. Many features are added auzhrha, inline eipa.nsion of subrou-
tines, overloading of functions, 1nd function prototypes (19). It was originally implemented as a
preprocessor that translates C++ into standard C. After the functions cf C++ are translated to
C, Ads can access the intermediate C functions as described above. In “Type-safe Linkage for
C++” (4) an encoding zcheme for functions written in C++ that can be linked by C is presented.
The encodirg scheme is designed so that it is easy to determine, if a name is an encoded name.
What name the user wrote, what class (if any) the function is a member of, and what the types of
arguments are in the function. The types are encoded as in Table 2.2,

213

For a global function, the name is encoded by appending _F followed by the signature. Figure
2.1(a) shows an example. For a member function in a class, first, the class name that contains
this member function is appended to a number which represents the length of the class name. The
encoded class name then is appended by the member functiou name and two underlines. The design
decision to involve a length is to avoid terminators. Both the class name and user defined type name

require their length in the encoding scheme. Figure 2.1(b) shows how to encode racord::update(int).

The ObjectStore function are exactly C++’s syntax, so it should be the same as C++. This
can be encoded and then access provided to those encoded functions from Ada. Rosenberg (18)
designed a prototype of Ada/ObjectStore, which is an interface that allows applications written in
Ada to access ObjectStore. The interface of Ada/ObjectStore is actually done by accessing C++
encoded (mangled) names which are kept in ObjectStor(‘:’s library. One example, database::get <1l
databases, is shown in the Figure 2.1(c). The length in Pere shows that it can be used to repr sent

the length of a user defined type name, \

2.5.4 Ada binding to X window. Ada binding‘f to X windows is a good example fc - Ada
programs accessing C functions. The X window systexni, developed in the mid 1980s, chang :d the
way that user interfaces were developed. The X windon system, or X, is a high performan-., de-
vice independent, network transparent window system t‘hat allows fcr the development of portable
graphical user interfaces (20). X windows manages what is seen nn the display screen. The pro-
grammer is not constrained by any particular policy.]is a result, X provides mechanism rather
than policy (12). But the X window system was impleni!ented i the C language. Therefore, there
wzs no way for Ada to access X windows. Recognizing the benefits of the X window system, some
members of Ada community began working oﬁ ways to access the X window system from Ada.

One successful method is by way of a binding.

Under a Software Technology for Adaptable Systein foundation contract, in 1987 the Science
Applicaticns Internaticnal Corporation (SAIC) developed Ada bindings to Xlib, which is written in
C. The actual Ada interface is accomplished through the use of Ada pragma interface statements.
A pragma conveys iuformation to the compiler. The name of interface after pragma means the
Ada compiler allows subprograms written in another language (7). The configuration of the SAIC
binding shows in Figure 2.2 (13).

Some functions are missing from the SAIC binding because of the shortcomings of interface.
One shortcoming is the procedure variables required as parameters to function calls (23). A few
Xiib functions require procedure variables as parameters to function calls. Ada does not directly

2-14

print(int, char, double)

tht 1

print_Ficd - (a)
record::update(int)

] 'L.l ®)
update_6recordFi :

stati- void get_all databases(int, dataAba.se**, int&)

s o

get.all databases_8databaseSFiPP8databaseRi

e — (s) A global function. S
(b) A member function in a class.
(c) A ObjectStore member function in the class of database and a ObjectStore defined

A da_.ta.ba.se::get.a.ll.da.tabases
|
type, database.

Figure 2.1. Examples for the function name encoding scheme

215

B AR B i, - Ao 66 0 ik b« 8 o At | o wrete A5
LT .- .

.
\

Application
Program
(Ada)

SAIC Biading (Ads)

Xlib (C Routines)

X Server

L

Keyboard

[<3K*]

Figure 2.2. Application Program Configuration Using the SAIC Binding

support procedure variables. Another one is the representation of event types as enumerated types.
In the C version the events are represented as integers with a large block of consecutive integers,
beginning with zero, reserved by the X Cousortium for future .use. X was designed to be easily
extensible. But, by using enumerated types for event types, adding new events is nontrivial because
the programmer nc-eds to ensure the position in the enumerated type declaration matches the event
numbers used in the C code. Enumeration types for events limit the extensibility of Ada/X (23).

2.6 Summaeary

OODBMS is a new generation database uysfem. Because traditional DBMSs have proven
inadequae in some applications, the OODBMS is designed to widen the applications of database
technology. The ObjectStore is currently one of the commercial OODBMSs available. It combines
the paradigms of object oriented programming language, C/C++, and capabilities of DBMS. Ada
bindings to C have been implemented in some applications. One milestone is Ada bindings to X
windows. For Ada bindings to a database, the important factor in this effort is how Ada deals with
persistent data. Some features of persistent data, type systems in different languages have been
examined. The purpose of thie thesis is to design an Ada binding to CbjectStore to extend Ada’s
capabilities in the area of OOCBMS.

2-16

III. Design and Implementation

3.1 Overview

To deéign of an interface between Ada and ObjectStore the designers require a good under- 3

standing of the two languages and their capabilities as related to the interface. Based on these
requirements chapter 2 described programming language interface to 2 DBMS, Ada and C/C++

communication, and interface programming from Verdix Ada. In this chapter, the design is then .

compared to differeat models and the best model is chosen to accomplish the task. Finally, the
implementation follows the design paradigm to approach functional completeness. For perforraance
measurement, the code is instrumented with timing commands where appropriate. Testiag is then

accomplished to verify functionality as compared to the ObjectSiore.

3.2 The Prototype of Ada/ObjectStore

The prototype of Ada/ObjeétStore implemented by Object Design, Inc. is a high level design
providing to basic interface facilities to Ada. The Ada/ObjectStore interface should be complete
and transparent. Performance is an another important factor for evaluating the interface and it
should be as close as C/C++ accessing ObjectStore. Completeness requires that all functionality
in ObjectStére should ideaily be accessible from Ada. Transparency should be provided so that
an Ada programmer would not need any knowledge of C or ObjectStore’s native facilities in using
the Ada/ObjectStore‘ interface. Finally, we desire the performance of the Ada/ObjectStore inter-
face to be as fast as the performance of the ObjectStore C/C++ interface. That is, it provides
near virtual memory access speed to persistent Ada instances. The following is a summary of

Ada/ObjectStore(18).

3.2.1 Ada/ObjectStore interface. Object Design Inc. provided a prototype interface be-
tween ObjectStore and Ada. This interface is based on the interface facilities supported by Verdix-
Ada. These are PRAGMA INTERFACE, PRAGMA INTERFACENAME, PRAGMA LINK.WITH, and PRAGMA
INLINE. Object Design considered the following options in designing the interface (18):

1. Object access
This would provide Ada abstract types for objects actually represented and accessed in
C/C++. Each object in Ada would have one counterpart in C/C++ stored in the Ob-
jectStore database. The Ada type would have no Ada lewel functionality at all, but would
uniquely ideutify a persistent C/C++ object. All functions affecting persistent objects would
be written in C/C++, not in Ada, using the existing interface (see Figure 3.1). Ada sim-

31

Transient Persistent

objects objects

Ada programs ObjectStore
Figure 3.1. Object access

ply handles the OID of associated ObjectStore objects via the interface from C/C+;+-. The
disadvantage of this simple interface is that this would not provide transparency for Ada
programmers. ObjectStore has a characteristic that treats transient and persistent data in

the same way. In this option, Ada programmers lose this characteristic because when they

want to deal with persistent data they must send data to C/C++ to store in a database.
Furthermore, this option implies a rigorouely‘ separating persistence store for objects from
the Ada code and data space. Therefore, this option needs s large number of foreign func-.
tion calls between Ada and C/C++. These calls will affect performance and may prohibit

applications.

2. Basic persistent Ada instances (Manual schema generation)

This approach directly represents Ada ebjects in the ObjectStore database. In this approach,
Ada programmers Lave the same capabilities as ObjectStore programmers in manipulating
both transient and persistent data (see Figure 3.2). The basic requirement of this interface
is to provide a set of Ada declarations for the kernel functions of the ObjectStore libr

interface, which has functionalitics of ObjectStore dealing with persistent data. In this ap-
proach, transparency to Ada programmers is achieved. The Ada programmers may apply\
these kernel functions without knowledge of the C language. However, because of the lack of
a preprocessor to generate the scheme. transferring data types from Ada to ObjectStore, they
will have to separately specify T descriptions of the Ada types. A C/C++ macro facility can

be provided to ease these definitions.

3. Advanced persistent Ada instances (Automastic schema generaticn)

This option gives total transparency to Ada programmers. The manual schema as described

3-2

P e PP AR AN SN P

Persistént gbjects
Transient
objects
" Ada programs ObjectStore

A Figure 3.2. Manual schema generation
above needs to separately specify C/C++ descriptions of Ada types in a C/C++ macro

language. ITlus option provides a preprocessor to parse Ada type definitions and build Ob-

|
jectStore compilation schemas directly. This is feasible because the ObjectStore type system
is available at run time and is general enough to represent virtually any type.

- 8.2.2 Compare Ada/ObjeciSiore and ObjeciSiore. The Ada/ObjeétStom interface pro-'

vides several of Ada’s portable types related to ObjectStore (a list of the most fundamental types
is in Table 3.1) 'mxd some of the kernel functions. Table 3.2 showe those functions that parallel
to ObjectStore’s. functions in C/C++ library. The functions in Ada/ObjectStore dealihg with the
database are enough to manipulate persistent data. For efficiency, Ada/ObjectStore plrovides an
interface to C+i. An example of the function “DATABASE_CREATE" is as follows:

function c_ d;nbau create (PATR: ADDRESS;
MODE: U_MODE;
OVERWRITE: OS_BOOLEAN) return DATABASE;

pragma INTERFACE(C, c_database_create);
pragma INTERFACE_NAME(c_database_create,
C_SUBP_PREFIX & “create__8databaseSFPCciT2");

function DATABASE_CREATE(PATH: STRING;
MODE: U_MODE := 88#664%;
OVERWRITE: BOOLEAN := FALSE) return DATABASE is
begin '
return
c.database_create(c_ada_to_c(PATH(PATH’FIRST)’ADDRESS,
PATE’LENGTH), MODE, B_TO_OSB(OVERWRITE)); end

33

C/CH++ T OBIECTSTORE TYPES | ADA 7+ 9ES |
unsigned char | os.unsigned.int8 UNSIGN..) TINY INTEGER
signed char o08._signed_int8 TINY INTEGER
| unsigned short | os.unsigned.int16 UNSIGNEDSHORT.INTEGER
[short 08.int16 | SHORTINTEGER =~
unsigned int os_unsigned.int32 UNSIGNEDINTEGER
int 08nt32 - INTEGER ’
int os_boolean BOOLEAN

Teble 3.1. Fundamental data types of C/C++, ObjectStore, and Ada

DATABASE_CREATE;
pragna INLINE(DATABASE_CREATE);

The “create_8databaseSFPCciT2" is a C++ mangled name. The function c.ada.toc pro-
vides the facility of transferring a string in Ada to C++-. ‘ .

ObjedStom;s C/C++ library interface allows access to many of ObjectStore’s features di-
rectly from C/C++ programs. These features include (17):
o databases and segments,
¢ roots,
e transactions,
o references,
"o collections,

e queries, and

—_— ® versions.

Ada/ObjectStore provides basic functions of databases, roots, and transactions. Segments,

references; collections, queries, and versions are not provided.

Because Verdix Ada has pragma interfacename and interface C options that allow C
functions to be called from Ada, if necessary, it should be not difficult to implement aa interfr.ce
that parallels what ObjectStore has. But, it will have some limitations such as relationships which
relies heavily on the syntax and semantics of C+4. Some features of ObjectStore’s ‘uterface are
missed in the prototype of Ada/ObjectStore. These features are mentioned as follows:

o Collections:
A collection is an object that serves to group together other objects. Collections in Object-
Store provide a convenient means of storing and manipulating groups of objects. With ihis

3-4

~

facility, objects in the same class are ‘ransparent to programmers. We can use linked lists in
Ada data structures to implement the same functionality as the collections have, but it will
be complicated. Collections hide a detailed mechanism that manipulates groups of objects

from programmers.

o Version management: »
Version management has very important facilities especially for computer-aided design (CAD)

applications. These applications support cooperative work by a number o: engineers on the

same design. Currently, Ada/ObjectStore does not provide version management facilities.
That means Ada/ObjectStoreis not currently good in CAD applications, or other applications
which need to check out data for extended periods of time. Version management ..eeds two
classes of functions, configurations and workspaces.
) Exbeptions:

Ada/ObjectStore provides an exception handling facility to report errors that arise. They
apply an interface that maps each predefined ObjectStore exception to an associated Ada
éxceptic;n. They are implemented through a routine that utilizes a hash table to determine
the Ada exception associated with the signaled ObjectStore cxception. It then calls an Ada
routine which raises the exception. Ada/ObjectStore’s pafkﬁges except.a and except.b.a
(see Appendix C.12and C.13) provide this one-to-one mapping. For example, the parameter
ERR in the procedure of OS_.ADA_ EXCEPTION will return an integer that maps to an
exception in ObjectStore. An corresponding exception will be raised in this package, if it
happens. However, except.a and except.b.a only define one exception for the purpose of
demonstrating that it is poséible to convey an error message to Ada when an error is arisen
in ObjectStore. For practical application and functional completeaess of Ada/ObjectStore,
ochpt.a and except.b.a are needed to implement all exceptions that ObjectStoré has.

3.3 Implementation Issues

Because ObjectStore provides four kinds of interface approaches as described at Section 2.2,
which one will be used must be decided first. Then, what types defined in Ada and their counter-
partsin C need to be considered. Finally, an interface is designed and it contains Ada’s subprograms
to link to their parallel functions in ObjectStore. The followit g discusses the decision that was made
to use the C library interface, compares the type system in the interface, and then describes how
Ada/ObjectStore facilities were implemented.

35

7

Ada/ObjectStore Functions ObjectStore Functions
(C++ Library)
DATABASE ROOT.GET_.VALUE | database_root::get_value
DATABASE_ROOTSET.VALUE | database_root::set_value

PERSISTENT.NEW void*::operator new
DATABASE_CREATE database::create
DATABASE_LOOKUP database::lookup
DATABASE_OPEN database::open
TRANSACTION_GET_CURRENT | transaction::get_current
TRANSACTION.BEGIN transaction::begin
TRANSACTION_.COMMIT transaction::commit

‘Table 3.2. Fucrctions of Ada/ObjectStore and their equivalent functions in ObjectStore C+-+
library

3.3.1 C Library Interface. Clearly, only two kinds of interfaces, C and C++, are con-
cerned. Using C++ library interface with class template DML or the C++ library interface with
A class templates will be complex because of the need to encode clags names in the ﬁ:angled C names.
Furthermore, the DML can not be used in the interface unless a preprocessor is implemented. To
implement the class template and the preprocessor in the interface will be more complicated than

the C/C++ library interface. The decision to use the C library interface is based on:

1. The syntax of languages:
Because both Ada and C are not OOPL, they do not provide the concept of class. Also, the
syntax and object defined in Ada and C are almost same. Most functions in the C library
can be exactly replicated in Ada. For example, a function to create a database root designed
in Ada “function DATABASE_CREATE ROOT(DB : DATABASE; NAME : string) return

7 DATABASE_ROOT;” is exactly the same as “database_root * database_creste_root(database '

*db, char *nane)” in the C library. The interface in Ada is done by directly putting database.
create_root in a statement pragma INTERFACENAMF. Jowever, the same function in C++ is
a member function defined in class database, which iz “ database.root * create_root(char
*name)”. Because, in this case, it is in the class of dxtabase, the parameter of database
is not required. This is also part of the distinct syntax in C++, which provides facilities
pointing to member functions. This is quite different in comparison to C and Ada.
2. The Complexity of Ada/ObjectStore Interface:
Because C++ was designed using a preprocessor to convert C++4- programs to standard C

before they are compiled, all C++ functions, as in Table 3.2, can be represented by their
mangled names as shown in Table 3.3. The interface of Ada to C++ library is actually done

36

ObjectStore Functions ObjectStore Functions
| C++ Library (mangled name) C Library L
et.value_13database_rootFP5 Pvis database root get_value
set_value__13database_rootFPvP5 Pvtis database_root_set_value
nw_FUiP8databaseP5 PvtsiPv objectstore._alloc
create_8databaseSFPCcil2 database create
‘| lookup._8databaseSFPCci database lookup
open._BdatabaseSFPCciT2 database_open
. . | getcurrent_11transactionSFv transaction.get_curreat
" begin_11transactionSF2; transaction type_enum transaction begin
commit_1ltransactionSFP11transaction transaction_commit

Table 3.3. Functions of ObjectStore C-++ library (mangled name) and the same functions in C
library ,

by the mangled name, which is put in the statement pragma INTERFACE_NAME. Table 3.3 also
shows the same function of each C++ mangled name and it_s corresponding function in C. It
is obvious that the C++ mangled name is more complicated than the name in the C library.

The main concern of this thesis is to implement an interface from Ada to access ObjectStore.

" That means the goal of this design is to prove that the interface, Ada/ObjectStore, could be done
and the performance is not greatly altered. The interface of Ada/ObjectStore can be done by using
ObjectStore C and C++ library, but it will increase the &ompleﬁty if the C++ libracy is used. So
the design decision to interface Ada/ObjectStore was decided using C library functions. '

3.3.2 Types in the Interface. Ada/ObjectStore provides persistent objecte for Ada. How-
ever, types written for the schema raus be based on parallel types between Ada and ObjectStore.
For this reason, types defined in Ada are matched to C in a manually constructed C macro. To
implement an interface, types defined in the interface should be considered first.

Ada is a strongly typed language. That reuns objécts of a given type may take on only those

values that are appropriate to the type. In addition, the only operations that may be applied to
an object are those that are defined for its type. Ada provides a more advantageous type system
than C. Private type ability is an 2xample. For interfacing witk another language, representation
clauses can be used to specify the mapping between types. Section 2.5.1 bas discussed the concept
of creating parallel data types between Ada and C. Scal s composite, and access type have been
mentioned. Tables 2.1 and 3.1 show scalar types in C and their counterpart types in Ada.

Now, abcut implementation issues, because the main purpose of involving ObjectStore is to
provide data persistence for Ada, a detailed observation needs to be done in which the types in C

37

can map types defined in Ada. One fundamental concépt is that all types declared in the interface

map through their base type that is a predefined physicai layout. That means an abstract type
defined, for example AGE, in Ada it it base type is short_integer, the interface type in C must
be short because the physical layout in both types, short_integer in Ada and short in C, are
represented in 16 bits. Nothing needs to be done with abstract type AGE. Another example for
using a representative clause is as follows:

type TE){PERATURE is range -100 .. 130;

for TEMPERATURE’SIZE use 8+BITS;

As a resuit of this declaration, every object of type TEXPERATJRE will occupy no greater than

8 bits of storage. For physical alignment, if the user uses such a specification, a sign char should
be used in C because of 8 bits of storage. A representative clause provides efficient feature for
Ada. However, representation specifications are implementation dependent; a given compiler must
process the semantics of each clause correctly. Otherwise, the clause will have no effect (6:324).
The programmer must bear in mind that he must implement the same size (or storage) of type in
C to correspond to the size declared using representation specification in Ada. It is complicated

and unwise tc define a type if its size is not 8, 16, 32, ar 64 bits.

A floating type can be assigned and described in termns of attributes called precision and range.
The precision describes the number of significant, decimal places that a floating value carries. The
range describes the limits of the largest and smallest positive floating value that can be represented
in a variable of that type. The floating types in Ada include the type float. An implementation
may also have predefined types such as short.float, which has less precision than float. Ada

provides an explicit mechanism to define a precision floating type. By defanlt, a 32-bit word

represents the type short_float, and 64-bit for type £loat. This corresponds to the type float
and double, respectively, in C. The number of decimal digits of significance in C is 6 and 15 digits
for £loat and double, respectively. This is the same as in Ada. The prcgrammer needs to notice
that a floating type declared in Ada and its corresponding type in C have the same storage size,
32 or 64 bits, for example. For the significant digits of the floating types, Ada provides an ability
to define the number of decimal digits of significan:e but the number of decimal digits must be set
equal or less than the maximum digits supported by the Ada compiler and machine used. C does
not provide this ability so that the number of deéimal digits that are always given by the maximum
digits supported by the C compiler and machine used. Because the Verdix Ada and traditional C
compiler provide the same maximum decimal digits and the interface is implemented in the same
computer, the floating type defined in Ada will not lose its accuracy when it interface with f1oat and
double in C, respectively. One release note from Verdix Ada (24) pointed out that the programmer

38

e

need beware of passing floating point parameters from Ada to C using pragma INTERFAZE. It does

not work correctly in some cases when there are more than six words of parameters.

The fized pbint type in Ada provides an absolute accuracy. There is no similar type provided

in C. The implementation of the interface for the fixed point type in Ada has the same concern

as the floating types—accuracy. The Verdix Ada provides 32-bit storage size for. the fixed type and

its maximum decimal digits is 3 (24). It should be no problem that define a float type in C to

receive and store the fixed type from Ada.

For predefined type and subtype oﬁe needs to trace its parent type {base type) to ﬁnplement
a corre :yonding type in C. The range constraint of scalar types in Ada prbvides a better practice
for defining explicitly the bounds of its types. The Ada compiler then chooses the appropriate
underlying representation. Howevef, in the interface, the base types are more interesting than each
of these constrained types; the Ada programmer may design an abstract data type to map to the

real world, but he must put a corresponding type in C to store the value from Ada applications,

The compound type in Ada requires an access type to poix;t to it in the interface so that
objects of the compound type crossing the interface boun&ary is accomplished via the access type. A
parallel data structure must declare and strictly demand a physical alignment to the corresponding
type in Ada. That means the storage size of each component in C needs to align in Ada.

» The enumeration type is like the mutual properties of scalar and compound type. It iz
constructed in a similar way in Ada and C, using a variable that presents an offset from that
" enumeration type. If prograthers declare an enumeration type in Ada and store it as an int in
C, there is no difference in using an enumeration type than using a scalar type in the interface.
. There are two possible implementation methods: one is using Ada’s attribute POS to convert the
ennmerstion variable to an integer before it is sent to C, another one is to directly send to C
as au ernnmeration ype. Both ways work fine. However, tlie disadvantage for the former one is
that the programmer needs to do conversion task, and an extra integer variable is required. The
disadvantage for the latter is that the enumeration type must be known in the interface package,
by declaration or by using the with clause. Moreover, the Ada compiler will generate a warning
message, as folloin, if tle latter one is used.

varning: RM 13.9(4): discrete type arguments to ’C’ must be 32 bits wide.

Boolean in Ada is a predefined enumeration type. To iniplement a co-responding type in C

is the same as the enumeration type described above,

Table 3.4 summarizes all types in Ada and their counterpart typesin C.

39

Size [ADA TYPES (Verdix Ada) [C (Traditional C) |

| 8 bits | CHARACTER

| char

1

8 its TINY_INTEGER signed char
1 bits SHORT.INTEGER short
[73bits__| POSITIVE int
42 bits NATURAL int
32 bits INTEGER int
32 bits SHORT.FLOAT (floating point) [float
64 bits | FLOAT (floating point) double
32 bits . | FIXED POINT.TYPE float
[32'bits ENUMERATION TYPES int
32 bits BOOLEAN int
[Variablef | ARRAY TYPES array types 7]
(Interface by the address
of the first element) |
Variablet | STRING TYPES | char*
(Interface by the address
of the first character)
Variablef | RECORD TYPES struct
(Interface by access types)
I S]
[32bits [ACCESS TYPES poiuter

t sizes of the the elements must be the same in both Ada and C

Table 3.4. The data type and alignment size using in Ada and C/C++

3-10

3.4 Implementation Ada/ObjgctStbré Facilities

Verdix Ada =hows how to create parallel data types and declare external subprograms. The
protctype of Ada/ObjectStore, a high level view, then shows how to design a simple and effi-
cient model: basic persistent Ada instances (manual schema generation). This work continues the

approach of manual schema generation from the prototype‘of Ada/ObjectStore and expands its ca-

pabilities. Another concept of Ada/ObjectStore designed is that all PRAGMA INTERFACE statements '

are put in the package body. As we know the Ada package, one of the fundamental program units,
permits a user to encapsulate a gfoup of logically related entities. As such, they directly suppcrt
the software principles of data abstraction and information hiding. The specification of nackages
forms the programmer’s contract with the package client. A client never needs to see the package
body nd does not need to know how the functions work. Some functions in ObjectStore need to be
handled before being called from Ada because of incompatible parameters, such as STRING type.
In these cases, an intermediate subprogram is needed. However, most functions in ObjectStore can
be directly called from Ada using PRAGMA INTERFACE without special handling. Ada/ObjectStore
follows Ada's software design principles that enforces a clean interface of a package specification
to clients; all PRAGMA INTERFACE statements are collected in the package body even without an

intermediate subprogram.

After the functions of ObjectStore were analyzed, there are some new operations and types

that need to be addressed. Those are described as follows:

e New types from the ObjectStore: . ,
The new types from ObjectStore, such as os_collection® or os_cursor* which are pointer

types, are implemented the same a Ada/ObjectSfore: all types of pointers in ObjectStore

are handled in Ada as a new integer. Persistent objects are manipulated by ObjectStore. Ada
acts like a temporary holder that feceives the pointer from and sends it back to ObjectStore.
Therefore, these types are declared as a user defined type and its base type is integer. For
exarple 0S_COLLECTION is defined as follows:

type OSTORE_OPAQUE is new INTEGER;
type O3_COLLECTION is new OSTORE_OPAQUE;

o Procedure variables:
Ada does not support procedure variables (23). It is difficult for Ada is to simulate a parallel
function in which C can combine procedure variables and a bit-wise operator in a simple

statement. However, for this simple statement, Ada needs a lot of works to simulate it. For

311

example, in the function 0S_COLLECTION_CRANGE_BEHAVIOR, one of its parametersis BERAVIGR
and its type is OS_.UNSIGNED_INT32. In C, it is defined a type as follow:

typedef enum oas_collection_behavior {

os_collection_maintain_cursors=i,
os.collection_allow_duplicates=1<«<i,
os_collection_signal_duplicates=1<<2,
os_collection_allow_nulls=1<<3,
os_collection_maintain_order=i<<4,

} os_collection_behavior; -

When the BERAVIOR is sent to ObjectStore, it is simple to use randomly combined variables

in the parameter list to compute a 0S_UNSIGNED.INT32’s value, such as:

os_collection_chaige_behavior(os_coll,
os_collection_maintain_cursors |
-os_collection_allow_duplicates |
os_collection_maintain_order)
Fortunately, in this special case each procedure produces a value that is power of 2, and the
bit-or operation then is fundamentally the same as the add operation. Two ways caa be used

to simulate this behavior in Ada:

1. Declaring global constants:

MAINTAIN_CURSORS : constant OS_UNSIGNED_INT32 := 1;
ALLOW_DUPLICATES : constant 0S_UNSIGNED_INT32 := 2;
- SIGNAL_DUPLICATES : constant 0S_UNSIGNED_INT32 := 4;
ALLOW_NULLS : constant OS_UNSIGNED_INT32 := 8;
MAINTAIN_ORDER : constant OS_UNSIGNED_INT32 := 16;

The advantage of this way is that when the value «f éEHAVIOR is sent to ObjectStore it
is easy to perform a bit-or operation by adding constant integer variables. The above
function could be simulated as follows:

os_collection_change _behavior(0S_COLL,
MAINTAIN_CURSORS +
ALLOW_DUPLICATES +
MAINTAIN_ORDER)

However, the disadvantage of this way is the value of BEEAVIOR in Ada received from
ObjectStore. The value shown to the user is just an integer such as, for example, 1. This
is an unfriendly user interface. The iuterface should provide a friendly user interface so

that the value shown to user should be an enumeration value such as, for example,
MAINTAIN._CURSORS. Ada does not allow a type overloading in the same scope. In this

312

P

_4\»‘4"“.

case, if MAINTAIN_CURSORS is declared as constant 0S_UNSIGNZD.INT32, Ada does not

allow it to be declared as a value in an enumeration type in the same scope.

2. Declaring an enumeration type:

type 0S COLI.ECTIDN BEBAVIOR is (MAINTAIN_CURSORS,
ALLOW_CUPLICATES,
SIGNAL_DUPLICATES,
ALLOW_NULLS,
MAINTAIN_ORDER);

To implement in this way, an additional subprogram is needed to pa.fse an input string
and then to compute the result of BEEAVIOR before it is sent to ObjectStore. The same

function simulated to C is as follows:

os_collection_change_behavior(0S_COLL,
“"MAINTAIN_CURSORS
ALLOW_DUPLICATES
" MAINTAIN_ORDER")

The disadvantage of this method is that it involves another subprogram and surely takes
more time. However, the advantage is that when the value of BEFAVICR in Ada is received
from ObjectStore, it can be easily transferred to a meaningful word such ag, for example,
an enumeratlon value—HAINTLIN.CURSURS

User-deﬁned enumeration types help to make programs more readable, understandable,

and maintainable., The maintainability of software wriiten in Ada is one positive a.spect

* an enumeration type is a better approach than the declanng globa.l constants.

¢ Naming convention:
‘In order to implement the same functionality that ObjectStore has from Ada, the subpro-
gram’s name in Ada should be exactly the same as in the ObjectStore. For example, the func-
tion os.collection_create in ObjectStore is implemented in the function 0S_COLLECTION.
CREATE in Ada. The only difference is that the former is in lowercase, but the latter is in

uppercase.

After these consideration mentioned above have been done, the functions in the Ada/Ob jectStore
corresponding to the ObjectStore are implemented readily, mapping functions in ObjectStore with
Ada subprograms. ‘

3-13

in compa.nson to C Consxdenng the benefits of user-defined enumeratxon typea, decla.rmg :

O O TS

i
P4

b

8.5 Testing of Ada/ObjectStore

The purpose of the testing is to check the execution of the software against the requirements
in the specifications of Objectstore Reference Manual. ‘Testing is done by a group of functious that

have been implemented.

8.5.1 Teats'nj Ada/ObjectStore functionality. Testing of Ada/ObjectStore is based on
subprograms implemented. However, test prograxhs are designed from a simple program which
works correctly é.nd then inserts a new subprogram when possible in a suitable position. A software
testing method is used: white box testing that fequires execution each statement at least once. All

results are compared in compliance with the ObjectStore Reference Manual.

3.5.2 Performance Testing. Cattel points out that “The most accuraie measure of perfor-
" mance for engireering applications would be to run an actual application, representing the data in
the manner best suited to each potential DBMS.” (9:364) He summarizes the three most important

measures of performance in an object-oriented DBMS as:

e Lookup and Retrieval. Look up and retrieve an object given its identifier.
o Traversal. Find all objects in the hierarchy of a selected object.
" o Insert. Insert objects and their relationships to other objects.

Berre and Anderson’s HyperModel benchmark (5) presents a similar approach to performance
measurement. In addition to the operations proposed by Cattel, the HyperModel benchmark

includes:

o Sequential Scan. Visit each object in the database sequentially.

\

| @ Closure Operations. Perform operations on all objects reachable by a certain relationship
from a specified object.

e Open-and-Close. Time to open and close the database.

We want to compare the performance of Ada/ObjectStore to ObjectStore. The Sun operating

tem provides profiling options which are implemented by the compiler. This profiling provides
detailed timing and usage statistics from processes specified by the user. A program (Command-
Stats.c) (11:28) is written for gathering statistics. CommandStats raakes calls to the Unix functions
getrusage and gettimeofday and calculates processing time, Time is measured in CPU, user, and
elapsed time. The CPU time is the total amount of time spent executing in system mode. The

user time is the total amount of time spent executing in user mode. The elapsed time is the total

3-14

kot N S Lt s s Y ke i o 8 E

o

amount of time spent executing a process. Two CommandStats are needed in a testing program,
and they are put before and after the module which is measured. Because CommandStats.c is a
C program, it can directly be used in testing program written in C. However, a testing program -
written in Ada can not directly call CommandStats.c. An interface package, statis.ada.a anda C ' i

program, stat.c, are required to perform the job of accessing CommandStats.c

. ‘ Performance testing compares the differeaces in access time between programs written in

. Ada/ObjectStore and ObjectStore that access the same ObjectStore database. The two programs

are designed to correspond to each other as closely as possible. For example, the test sequence in
Ada/ObjectStoreis to call 0S_CURSOR_CREATE and at same place in the test sequence for ObjectStore . -

a corresponding function os_cursor_create is used.

The performance comparisons are conducted using these guidelines as mentioned. One ex-
ception is that the Closure Operations in the HyperModel benchmark are not measured because
the ObjectStore C library interface does not provide the capability of relationships. Also, because : /
the performance compares the difference between Ada/ObjectStore and ObjectStore C library in- ‘ 3 /
terface, a complicated data model is not involved currently in this performance testing. Two kinds : v

of simple objects were created to collect statistical data. They are classified in two test groups.

1. A single object:
A single integer “count” is stored in ObjectStore. Tﬁree test programs were implemented; ' T
two of them are written in Ada accessing C library and C++ library (mangled name), and
the third is written in C. The test programs, hello.ost.a(c) in different directories provide the
performance testing for accessing this integer “count”. (Appendix B.14 and B.12) o : \

2. A compound obje‘ct:‘
Two record data structures LINK_NOTE and NOTE_COL, which contain 108 and 104 bytes respec-
tively, were implemented. The database bnote.db was created to store 10,000 LINK NOTEs
for Ada/ObjectStore test programs and the database cnrte.db was create to store 10,000

DI RN U S

KOTE.~0Ls for Ada/ObjectStore collection test programs. The data structure for LINK_NOTE
is declared as follows: ;

struct link_note

{
int priority; /s 4 bytes »/
char name[20]; /* 20 bytes =/
char note[80); /= 80 bytes =/
struct link note #*next; /* 4 bytes »/

3-15

The data structure for KOTE_COL is almost the same as LINK.NOTE except the field snsxt.

The member of struct snext is no longer needed because of the ObjectStore collection that
already provides facilities to manipulate its elements. The same structures were defined in
Ada as follows:

type LINK_NOTE; .

type LINK_NOTE_PIR is access LINK_.NOTE;
type LINK_NOTE is .

record
priority: integer;
name : string(1..20);
note : string(1..80);
next : link_note_ptr;
end record;

Two test programs, adaobj.a and adaobj.c, also perform the job of testing basic functions .
for Ada and C respectively (Appendix B.2 and B.6). The extended functiors “collection” is tested
‘by adacol.a and adacol.c (Appendix B.4 and E.8). The performance is measured in the area of

initiaizing, lookup and retrieval, sequential scan, and opening and closing a database.

¢ Initializing a database. The functibn initial_db inserts 10,000 objects in the database.

o Opening and closing a database, The function DATABASE_OFEN_CLOSE measures the time
required to open and close a database 10 times.

¢ Look up and retrieve an object from the database. The function DATA_RETRIEVE searches the
database until it finds the specified nbject and then displays it.

o Sequential scan. The DATA_SCAN procedure finds the database root and then gets objects one
by one in the database and displays them.

In order to observe the perforrance change after both Ada and C added the facility of
data persistence, program purobj.a and purobj.c were implemented for Ada and C, respectively
(Appehdix B.9 and B.10). The two programs are the same as adaobj.a and adaobj < except that
all functions calling the database are removed. That means all objects created are transient only.

8.6 Summary

The Ada language provides abilities to interface different languages. The Ada compiler
gives a specific and detailed method to implement varialles and subprograms in the interface.
Ada/ObjectStore is a milestone for Ada accessing a database. We can expand its functions and
implement those functions in a set of abstract modules, which is Ada’s package. The abstract

3-16

module is used as an interface layer between the application module, which is Ada programs, and
the concrete module, which is pure ObjectStore functions. Ada programmers create Ada programs
as they used to be. They don’t need to kvow how the persistent data are handled by a concrete
module. The collection facilities in Ada/ObjectStore enhance. a programmer’s designing abilities
and, at the sa:he time, the maintainability is accomplished in short and simple statements. The
~ testing of Ada/ObjectStore is done by functionality and performance. After the testing, we can
compare the difference between Ada/ObjectStore and ObjectStore using the C library interface.

317

i sk o e

et i

e s~ 0.l o

N\

1V. Results Analysis

4.1 Overview

The primary objective of this thesis is to show that an interface of Ada and ObjectStore
can provide almost the same functionality and perfdrmance as ObjectStore. The database was
designed in the same way as in ObjectStore and it is described in Section 3.5.2. Because all objects
are stored into ObjectStore, not Ada, so as long as an object has crossed the boundary of interface
into ObjectStore, it is handled by ObjectStore. Performance is the vital factor in judging the
difference between Ada/ObjectStore and ObjectStore, However, because the performs,ncé does not
measure the eficiency of ObjectStore itself in managing objects, two simple objects are required to
be created and stored in these tested databases. This chapter points out the different performances
for Ada and C in manipulating the database.

4.2 Performance Comparison of Ada/ObjeétStore and QbjectStore

The results of the performance testing where a single integer is stored in ObjectStore are

- shown in Tables 4.1 and 4.2. From these results, some conclusions can be drawn. Table 4.1 and

Table 4.2 show that when manipulating a single integer, if the integer was retrieved and modified
once, Ada/ObjectStore’s performance is much slower than C/ObjectSfore’s. However, if it runs 100
times, Ada/ObjectStore’s performance is close to C/ObjectStore’s. Table 4.3 shows the difference
between two .Ada/ObjectStore programs, that one run using the C++ mangled interface is better
than one run using the C library interface. However, the difference in performance between these

two prdgrams decreases when they run 100 times,

The results of the performance for testing a database created by ObjectStore using a linked list

~ and ObjectStore using collections are shown in Table 4.4 and 4.5. From the testing results of initial-

ization and opening and closing a database, Ada seems doing a better job on dynamic storage allo-

Criteria Tested | Resource Ap;l'ication Programs | Percent

Measured ellooet.a | hello_ost.c | Chan
Run Once User time (seconds) 0.032 0.038 -15.8
CPU time (seconds) 0.345 0.108 | +219.4
Elapsed time (seconds) 0.778 0.332 | +134.3
Page Faults without I/O 215.883 142.000 | +52.0
Run 100 Times | User time (seconds) 0.680 0.635 +7.1 |
CPU time (seconds) 1.853 15221 +21.7
Elapsed time (seconds) 13.611 12.666 +7.5
Page Faults without I/O | 1007.333 939.167 +7.3

Table 4.1. Benchmark performance results for hello.ost.a and hello_ost.c

41

Criteria Tested | Resource | Application Programs | Percent
l Measured . hello_ost.a | hello.ost.c | Change
Run Once User time (seconds) 0.043 0.038] +13.2
CPU time (seconds) 0.195 0.108 | +80.6
Elapsed time (seconds) 0.579 0332 | +744
Page Faults without I/O 211.000 142.000 | +48.6
Run 100 Times | User time (seconds) 0.677 0.635 | +6.6
: CPU time (seconds) 1.713 1.522 | +125
Elapsed time (seconds) 13.275 12.666 +4.8
Page Faults without I/O | 1003.000 939.167 +6.8
Table 4.2. Benchmark performance results for helloc.cs and helloost.c (C++ mangling
interface) C
Criteria Tested | Resource Application Programs | Percent
Measured hello_ost.a | hello_ost.a | Change
C++ library | C Library ~
Run Once User time (seconds 0.043 0.032 | 4344
CPU time (seconds) 0.195 0.345 -43.5
Elapsed time (seconds) 0.579 - 0.778 -25.6
| _ Page Faults without I/0 211.000 215.883 -2.3
Run 100 Times | User time (seconds) 0.677 0.680 -0.4
CPU time (seconds) 1.713 1.353 7.8
Elapsed time (seconds) 13.275 13.,11 -2.5
Page Faults without I/0 1003.000 | 1007.333 -0.4

Table 4.3. Benchmark performance results for hello_ost.a accessing C4++ and C library interface

42

LI

TR S SV

RN

L R o LR et i S T b T

Criteria Tested

Resource Application Programs | Percent
Measured adzobj.a | adaobj.c | Change
Initialize User time {seconds) 1.233 0.966 | +27.6
(10,000 CPU time (seconds) 0.321 0.330 2.7
Objects Elapsed time (seconds) | 6.502 4760 | +36.6
inserted) Page Faults without 1/O | 290.500 319.000 -8.9
Open & Close User time (seconds) 0.076 0.059 | +2858
CPU time (seconds) 0.070 0.119 -41.2
Elapsed time (seconds) 0.388 0.269 | +44.2
Page Faults without I/O | 60.000 60.000 0.0
Look up/Retrieve | User time (seconds) €.023 0.013 | +769
CPU time (seconds) 0.068 0.083 -18.1
Elapsed time (seconds) 0.095 0097 -21
"Page Fuults without I/O | 134.500 134.000 +0.4
Sequential User time (seconds) 4.200 0.641 | +555.2
Scan (With Output | CPU time (seconds) 30.295 14.576 | +107.8
to Screen) Elapsed time (seconds) 181.928 144643 | +25.8
Page Faults without I/O | 265.667 267.875 -0.8
Sequential User time (seconds) 0.046 0.029 | +58.6
Scan (Without CPU time (seconds) 0..46 0.175 -16.6
Output To Elapsed time (seconds) 0.195 6.203 -3.9
Screen) Page Faults without 1/O | 265.000 265.375 -0.1

Table 4.4. Benchmark performance results for adaobj.a and adaobj.c

Criteria Tested Resource Application Programs | Percent
Measured adacol.a adacol.c | Change

Initialize User time (seconds) 2.771 2.633 +5.2
(10,000 CPU time (seconds) 0.254 0.419 -394
Objects Flapsed time (seconds) 6.671 7.464 -10.6
inserted) Page Faults without I/O | 347.000 360.000 -2.6
Open & Close User time (seconds) 0.076 6070 ; +8.6
CPU time (seconds) 0.06 0.145 -68.6

Elapsed ti:ne (seconds) 0.289 0.285 +1.4

Page Faults without I/O | 60.000 60.000 0.0

Look up/Retrieve | User time (seconds) 0.277 0.266 +4.1
CPU time (seconds) 0.202 0.186 +8.6

Elapsed time (seconds) 0.476 0.451 +5.5

Page Faults without I/0 286 236 0.0

[Sequential User time (seconds) 4.520 1.035 | +336.7 |

Scan (With Output | CPU time (seconds) 30.625 13.305 | +130.2
to Screen) Elapsed time (seconds) | 191779 | 128181 | +49.6
- Page Faults without I/O | 299.833 299.500 +0.1
Sequential User time (seconds) 0.113 0.106 +6.6
Scan (Without CPU time (seconds) 0.033 0.026 | +26.9
Qutput To Elapsed time (seconds) 0.149 0133 | +120
Screen) Page Faults without I/O | 37.260 34.000 +9.6

Table 4.5. Benchmark pérform&nce results for adacol.a and adacol.c

43

Criteria Tested Resource Application Programs | Percent
Measured | purobj.a | purobj.c | Change

[nitialize User time (seconds) | 0.267 | 0195] +36.9
(10,000 CPU time (seconds) 0.147 0.218 -32.6

-| Objects Elapsed time (seconds) 0.414 0.412] 405
inserted) Page Faults without I/O 0,000 0.000 0.0
Look up/Retrieve | User time (seconds) 0.007 0.005 | +40.0
CPU time (seconds) 0.005 0.005 0.0

Elapsed time (seconds) 0.012 0.011 +9.1

Page Faults without I/O 0.000 0.000 0.0

Sequential User time (seconds) 4.267 1.397 | +205.4
Scan (With Output | CPU time (seconds) 34.204 9.206 | +273.6
to Screen) Elapsed time (seconds) 335.349 141.660 | +136.7
Page Faults without 7/O | 205500 | 306.000 | -3.4

Sequential User time (seconds) 0.015 0.015 0.0
Scan (Without - CPU time (seconds) 0.033 0.038 -13.2
QOutput To Elapsed time (seconds) 0.050 0053} -5.7
Screen) Page Faults without I/O | 294.000 295.000 | ~ -0.3

_Table 4.6. Benchmark performance results for purobj.a and purobj.c

Criteria Tested Resource Application Programs | Percent

: Measured adaob).a purobj.a { Change

Initialize User time (seconds) 1.235 0.267 | +361.8

(10,000 CPU time (seconds) 0.351 0.147 | +118.4

| Objects . Elapeed time (seconds) | 6502 | 0414 | +1470.5

inserted) Fage Faults without I/O | 290.500 0.000 0.0

Look up/Retrieve | User time (seconds) 0.023 0.007 | +228.6

CPU time (seconds) 0.068 0.005 | +1260.0

Elapsed time (seconds) 0.095 0.012 | +691.7

Page Faults without I/O | 134.500 0.000 0.0

Sequential User time (seconds) 4.200 4.267 -1.6

Scan (With Output | CFU time (seconds) 30.295 34.394 -11.9

to Screen) Elapeed time (seconds) 181.928 335.349 -45.7

o *R Page Faults without 1/O | 265.667 | 205500 | -10.1
Sequential User time (seconds) 0.046 0.015 | +206.7 |

| Scan {Without CPU time (seconds) 0.146 0.033 | +342.4

Output To Elapsed time (seconds) 0.195 0.050 { +290.0

Screen) Page Faults without I/O | 265.000 294.000 -9.9

Table 4.7. Benchmark performance results for adaobj.a and purobj.a

4-4

Y

S AR At Lo ot

iR (8 o S g A - S

Criteria Tested Resource Application Programs [Percen? |
Measured adaobj.c | purobj.c | Change
Initialize User time (seconds) 0.966 0.195 | +395.4
(10,000 CPU time (seconds) 0.330 0.218 | +51.4
Objects Elapsed time (seconds) 4.760 0.412 | +1055.3
inserted) Page Faults without I/0 | 319.000 319.000 0.0
Look up/Retrieve | User time (seconds) 0.013 0.005 | +160.0
CPU time (seconds) 0.083 0.065 | +1560.0
Elapsed time (seconds) 0.097 0.011 | +781.7
Page Faults without I/O | 134.000 0.000 0.0
Sequential User tir:: {second:) 0.641 1.397 -54.1
Scan (With Output | CPU time {zeconds) 14.576 9.206 +58.3
to Screen) Elapsed ir« (seconds) 144.643 141.660 +2.1
Page Fauits without I/O | 267.875 306.000 -12.5
Sequential User time (seconds) 0.029 0.015 -80.7
Scan (Withovt CPU time (seconds) 0.175 0.038 | +360.5
Output To Elapsed time (seconds) 0.203 0.053 -61.7
Screen) Page Fanlts without I/O | 265.375 295.000 -10.0

Table 4.8. Benchmark performance results for adaobj.c and purebj.c

cation and handling a pointer; the CPU time of Ada/ObjectStoreis faster than C/ObjectStore. The
sequential scan consistently shows that moving a pointer along the linked list of Ada/ObjectStore
is indeed faster than what C/ObjectStore does. The pérforma.nce that varies most significantly
in both Tables is in sequential scan. CPU time and User time of Ada/ObjectStore are over 2
times slower than that of C/ObjectStore. In the testing subprogram of sequential.scan, timing
is measured from traversing the link list and printing every note when it is traversed. In order
to find out why the performance varies so significantly, a small change in testing subprogram of
sequential scan was made. The testing only let processes traverse notes, but ~very note traversed
does not have to be printed out to the rcreen. The results of the performance tests are shown in
Table 4.4 and Table 4.5. It shows the performance is not much different between Ada/ObjectStore
and C/ObjectStore. The main %actors affecting the result of performance still depends on the two
languages’ own abilities. The performance of TEXT.IO in Ada is slower than the performance of
printf in C,

Tables 4.6 - 4.8 show the different performance of Ada and C in manipulating transient and
persistent data. Table 4.6 shows the test of a transient object only. Ada still does well in storage
allocation. The pointer moving along the linked list is good, tco. Consistently this shows that
Ada is indeed good at handling the pointer movirg. Both Ada and C performances decrease in
order to provide data persistence. However, Table 4.7 and Table 4.8 show that the performance
degradation is not much different between Ada and C when accessing ObjectStore.

4-5

, Size in Kbytes Percent
Files Written in Ada | Written in C | Change (%)
[Hello.ost Source file 1.5 10} +50.0

| ‘ Excutable file 1,518.5 1,327.1 +14.2

| Adaobj Source file . 85 85 0

¥ (Excutable file) 15483 13435 | +15.2]

Adacol _ Source file - 9.6 88 4017
(Excutable file) 2,400.2 2,195.5 +9.3

Table 4.9. Comparison of file size written in Ada and C (static binding)

Space usage is worthy of some examination. Source programs, executable programs and
databases are observed. As we understand, source files are heavily depeﬁdent on the programming
behavior of programmers. The size of executable programs are dependent on compilers used. Due
to compiler limitations, we needed to use static binding when perforiaing the link. Table 4.9 shows
that both application programs’ sizes and executable progra.xﬁs’ sizes in Ada are larger than C's.
Strong type checking and the interface programs added overhead can pfobably explain this.

4.8 Problems Encountered

One of the objectives was to expand ObjectStore functions in Ada/ObjectStore as much
as possible. Some difficulties arose because of the quite different syntax of the two languages.
Most problems are categorized by understanding ObjectStore C library functions, limitations of
the interface between Ada aud C, and losing the ability of the programuﬁng tool-the debugger.

481 Debugger. Mosi programs have errors in syntax and semantics. Ada is a strongly

typed language. It can find syntactic problems at compile time. However, at run time, semantic
errors need a debugger to trace out. The debugger can detect and report on a wide variety of
problems, including variables that are used before they;ré set and a.ﬁ‘er, and arguments in functions
changed after functions are called. Verdix has a debugger, a.db, but it seems that it can not debug
programs written in Ada./Obje_ctStore. When the debugger was executed, it would stop at statement
“DATABASE.OPEN” and give an error message as follows:

‘‘Segmentation fault’’ I/C error: trying to read u.u_code [Unix errmo: 5]
==> Segmentation Violation (SIGSEGV) code: 255 (u_code: -1)

All the Ada/ObjectStore programs I wrote are small test programs. Usually they are not
over 300 lines. However, in a practical application system, progra;ms are commonly over several

/ . AR . - B o N . :

R
LAl
R

thousand lines. Without s debugger, a big obstacle lays in the way of developing a system using
Ada/ObjectStore.

4.3.£ Underataﬁding ObjectStore. ObjectStore’s documentation mainly describes C++
library fﬁnctions, and some of them have examples shown in the User Guide. C library functions
are listed in the Reference Manual and the reader is referred to see the C++ analogous functions

for detailed information. Theoietically, C++ and C are analogous. However, there are some cases

where C is not quite compatible with C++ (11:41). Casting is used heavily in C, but not in C++

because C++ has a stronger type checking ability. O0S_.CURSOR is another example. In tie C++
Lbrary, OS_.CURSOR is declared a class and a constructor OS.CURSOR. To create a OS.CURSOR
is to initialize the class OS_CURSOR with the |tequired argument, OS_COLLECTION. An example
is “os_cursor cur(os_collection). There are njo pointer values returned. However, OS.CURSOR.
CREATE in the C library has guite a differentj syntax in which it will simply refurn a pointer that

points to one element associated with its collection.
i

Database_create and database_).ookup do not work with static binding. To remedy this, a
program was implemented to perform only one‘; job, creating a dat: »ase. After the program created

the database, the perfoirmance testing was then continued.
» i
Error messages indicated what errors o_écurred, but the specific information related to the

i -
error is not fully explained. As previously staté}‘d, database_create does not work in static binding;
the error message indicates “some kinds of ini?ialization needed to be done”, but it does not show
what kinds of initialization and how to initialize.

4.3.8 Interface Limitations. Besides the limitation of ‘Ada/C interface for handling pro-
cedure variables, the Query facility in ObjectStore has a pre-analyzed query. To use this facility,
it requires three steps (17:150):

1. analysis of the query expression,
2. binding of the free variable and function references in the query, and

3. actual interpretation of the bound query

The problem happens at the os_keyword.arg 1ist* when processes go to the actual interpretation
of the bound query. The function os_bound_query takes two arguments: a pre-analyzed query, aad
& keyword.arg list. It is defined as follows:

extern os_bound_query* os_bound_gnery_create(
0s_coll_query*,/+ the query to bind »/

47

os_keyvord_arg_liste
/* the argument list with binding for free vars */

)

The os_keyword.arg_ list is expressed in the following form:

(
keyvord_arg-expression,

seeyp

keyvord_arg-~expression

)
Because the arguments, consisting by keyword.args of keyword.arg list is not fixed, to simulate

the same functionality in Ada may be corhplicated and inefficient.

4.4 Summary

Performance tests were performed for two kinds of areas using the Ada/ObjectStore and
the functions of ObjectStore C library. A simple data structure was implemented to measure the
performance. The result shows that there is not much difference when comparing the two languages
that interface with ObjectStore; the difference still depends on the languages own properties. Some
problems were encountered in the interfacing limitation that exists between the two language. Some
problems were related to inadequacies in ObjectStore documentation. These difficulties affect the

effort of implementing Ada/ObjectStore functions.

V. Conclusions and Recommendations

5.1 Overview

This chapter summarizes the activities in Ada accessing the ObjectStore daﬁabase manage-
ment system. Most basic and collection functions of the ObjectStore were implemented in several
packages written in Ada, called Ada/ObjectStore. The functionality of Ada/ObjectStore are ana-
lyzed. Some advantages and disadvantage are discussed in the conclusions. Finally, recommenda-

tions are presented for future research to complete the interface,

5.2 Summary of Reaearch:

In the activities of this thesis, the ObjectStore funciions were first familiarized. Secondly,
parallel data types in Verdix Ada and in ObjectStore were examined. Finally, the initial pro-
totype Ada/ObjectStore created by Object Design, Inc., was extended by using functions in the
ObjectStore C library. ’

The packages of Ada/ObjectStore are implemented in a cori*espondihg way to the functions in
the ObjectStore C library. Most fuactions in the ObjectStore C library can be directly accessed from
Ada without any change, but some of them require an intermediate level to handle incompatible
types. However, the limitation of the interface impiemented from Ada to C still strictly depen‘ds on
the both languages’ properties. For example, C provides procedure variables and shift operators,
but Ada does not. C provides simple bitwise binary logical opcrators, but standard Ada does
neither. Verdix Ada provides a bitwise function in a package, but it is implementation-defined and

its binary operations are limited by Ada’s syntax can not be expressed as gimply as C does.

To compare the performance of Ada/ObjectStore with C/ObjectStore, several test programs
were written in Ada and in C. Timing routines werc instrumented in the code to measure the time
required to access the ObjectStore commands called from Ada and C. The test programs designed
were based on testing database functionality.

5.8 Conclusions

The objectives of this thesis were to implement an interface that has functional completeness.
Moreover, the performance of Ada/ObjectStore should not be much different than C/ObjectStore.
Some problems arose and these problems may affect functional completeness. The following dis-

cussion points out the advantages and disadvantages of this interface.

5-1

5.3.1 Data Persistence. The objective of data persistence is achieved in the interface. As

described in Chapter 2, Ada does not support data persiatence. However, ObjectStore, a DBMS

. using a C/C++ library interface, provides the ability to handle persistent data. Ada/ObjectStore
accesses the database, t.hich is managed by the ObjectStore, in exactly the same way as the
C/ObjectStore does; the subprogram in the programming language can handle persistent and
transient data without difference. All persistent data are mauaged by ObjectS.tore, which provides
data management abilities. | ' '

Data persistence gives Ada programmers great benefits. First, they do not need to write
program I/O statements. Second, they do not need to write a lot of statements for mapping
values between transient and persistent data. Third, because program sizes are decreased, software

productivity and maintainability are increased.

5.3.2 Reliability, Maintenance, and Efficiency. The Ada reference manual (1) points out
“Ada was designed with three overriding concerns: program reliability and maintenance, program-
ming as a human activity, and eﬁcié_ncy”.

Ada is a strongly fyped language. This is based on the design goal “program reliability and
maintenance”(1). In order to achieve the reliability of the interface, certain rules must applly to
ensure type safety that are described in aection 3.3.2. For example, all variables need to be explicitly
declared and their type specified. The compilers can then check to see that operations on these
variables are compatible with the properties of their type. Because variables are safely manipulated
in Ada, program reliability is maintained.

Ada is proud of the standard coding format and this is acknowledged by all who have ever

seen the Ada program. In contrast, C/C++ features ease of writing rather than ea.se of reading.

The data persistence, whxch allows programming in clarity and simplicity, increases the advantages

of the maintenance of the Ada programs.

To achieve efficiency, Ada was constructed and carefully examined in the-light of present
implementation techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected (1). This can be demonstrated from Table 474 in
which the CPU time of Ada is faster than that of C. However, in order to add the ability of data
persistence, which is provided by a database, some trade offs in efficiency must be faced. But the
efficiency in Ada is not much worse than in C when they access ObjectStore. '

5..9.9 Data Abstraction. Adais not truly an OOPL, but the Ada contains most OOPL con-
cepts, namely the encapsulation (package), information hiding (private types and package bodies),

§-2

A
s

and concurrent processing (task). In the interface, any type declared in Ada can be implemented

with a corresponding base type in C. The Ada programmer has almost no limit to model the
real world objects using Ada’s data abstraction. Information hidiag is achieved via private fypez.
Because data type is needed to be persistent in ObjectStore, the data l.:ype defined in Ada must
be converted to an os.typespec before it can accompany its object stored to and retrieved from
ObjectStore. The pragma INTERFACE statement for accessing os_typespec is allowed at the place
after the data type are fully defined, and, if a private data type is defined, the pragma INTERFACE
must appear in the same package specification after the type is fully declared. .

5.4 Recommendations for Future Research

This thesis extended the prototype of the Ada/ObjectStore, extending its functional complete-
ness. But the goal was not completely achieved. Most functions of collection in the ObjectStore
C library can be accessed by the Adz now, but still a lot of works necd to be done. These are the

transparent interface to Ada programmers, exception handling, and version mansgement.

5.4.1 Transparency. Ada/ObjeciStore is not completely transparent to Ada program-
mers. In on'er to generaté a parallel data structure in the ObjectStore a m;mual schema must be
generated; a C macro facility is currently provided. Moreover, an INTERFACE call must be put in the
main procedure before calling any function that is associated with os_typespec. The query facility
of Ada/ObjectStore is another example. The query string, for example “strcmp(name,“Mike”) ==
0)” for querying a string type or “age == 35" for qﬁerying a scalar type, is still the C language’s
syntax, “strcmp” and ¥==" in this example. To achieve the transparency, some intermediate

subprogram needs to be created and act as preprocessor or translator.

5.4.2 Ezception Handling. Both Ada and the ObjectStore C library provide abilities
for handling exceptione. The exception facility is very important for dealing with errors or other
exceptional situations during program execution. An exception can be raised by a raise statement
or operations that propagate the exception. When an exception arises, control can kue transferred
to a user-provided exception handler. The interface of declaring exceptions is not completely

implemented.

5.4.8 Version Management. Version tnanagement is very important in the area of
computer-aided design applications today. These applications need to increasingly support co-

operative work by a number of engineers on the same design. Ada/ObjectStore does not yet

5-3

provide version management facilities. That means Ada/ObjectStore is not currently good in CAD
applications or other applications that need data checked out for extended periods of time.

5.4.4 Variant Records. Ada contains most of the concepts of the object oriented phi-
losophy as described in 5.3.3. These features make Ada very close to an OOPL. However, the
only major object oriented concepts not supported by Ada are dynamic binding and inheritance
(15). anﬁaugh (19) and Leopold >(15) pointed out fhat using variant records, Ada can have the
ability of single inheritance. A variant récord is a record structure and contains a discrin.inant that

distinguishes the alternate forms of the record. C does not prdvide variant records in the s: me way.

However, the union type in C can perform the same capability in Ada. Therefore, the ability of

variant records should be maintained in this interface.
5. 5 Summary
|
} Although Ada/ObjectStore is not completely mplemented the results that what have been
developed are satisfactory. The performance of Ada/ObjectStore does not differ much with respect
|
to C/ObjectStore, but the enbancement of abilities to manipulate persistent data is a great advan-
tage3for Ada. Many problems remain. Some of them are the completeness of functionality, and
aome are limitations of the languages. Ada has been acknowledged as a good language in maintain-
abxley Binding to the OODBMS gives Ada great potential in the d-velopment and maintenance

of complex, data intensive, engineering applications.

!

54

C o G SR

’
)

T

Appendiz A. Raw Performance Test Results
Test Program: hello_ost.a (C library interface)

User CPU Elapsed Page Faults Disk Blocks
| Command || Time Time Time [withI/O [w/oI/O [In | Out

Run Once || 0.030 0.360 0.786 0 2131 0 0
0.040 0.370 0.768 0 2141 0 0
0.040 0.290 0.728 0 214| 0 0
0.030 0.380 0.816 0 2131 0 0
0.040 0320 0.800 0 227] 0 0
0.010 0350 0.767 0 214 © 0
Run 100 || 0.700 1.820 11.936 0 1605 | 0 0
‘Times 0.580 1.860 13.940 0 1005 | 0 0
0.700 1970 14.480 0 1005 | O 0
0.660 1.830 13.652 0 1017] 0 0
0.710 1.790 13.764 0 1006 | 0 0
0.730 1.670 13.892 0 1006 | 0 0

Test Program: hello_ost.a (C++ library interface)

User CPU_ Elapsed Page Faults Disk Blocks

Command || Time Time _ Time with}_E)J w{o I{O _In__ Out
Run Once || 0.040 0.210 0.631 0 221] 0| 0
0.020 0.180 0.585 0 200| o 0
0.060 0.250 0.776 0 209! 0 0
0.040 0.190 0523 0 209 0 0
0.050 0.190 0.475 0 209| 0 0
0.050 0.150 0.482 0 209{ 0 0
Run 100 || 0.700 1.650 11.893 0 1001 | 0 0
Times 0.640 1.716 13.207 0 1001 0 (]
0.730 1.680 13.508 (i} 1001 0 0
0.730 1.680 13.500 0 1013} 0 0
0.590 1.830 13.505 0 1001 0 0
0.670 1.730 14.037 0 1001]| 0 0

Test Program: hello_ost.c

User CPU Elapsed Page Faults Disk Blocks

- Command || Time Time Time with [/O | w/o1/O | In Out
Run Once [| 0.040 0.130 0.439 0 142] 0 0
0.030 0.110 0.313 0 142] ©]

0.030 0.140 0.289 0 142] 0 0

0.060 0.100 0.298 0 142 0 0

0.040 0.070 0.331 0 1421 0 0

0.030 0100 0.319 0 142 0 0

Run 100 || 0.710 1.390 11.416 0 950 [0 0
Times 0.580 1.620 13.762 0 9241 0 0
0.480 1.660 13.826 0 934| 0 0

0600 1.670 14.624 ()} 88t] 0 (]

0.620 1.480 12.356 0 934 | 0 0

0.660 1.530 11.884 0 947 0 0

A-1

Test Program: adaobj.a

. User CPU Elapsed Page Faults Disk Blocks
Command Time Time Time | withI/O | w/o /O {In | Out
" Initialize 1.270 0.290 8.104 0 291 0 0
(10,000 1.230 0.350 9.144 0 2841 0 0
Objects 1.270 0.350 5.733 0 2011 0 0
inserted) 1170 0.190 . 3.695 0 2011 0 0
1.200 0.260 6.560 0 29110 0
1.150 0.160 6.845 0 2021 0 -0
1.440 0.490 6.086 0 2031 O -0
1.130 0.480 5.846 0 2011 0 0
Open & 0.060 0.090 0.241. 0 601 0 0
Close 0.100 0.060 - 0.246 0 60| 0 0
0.060 0.090 0.308 0 60| 0 0
0.070 0.080 0.425 0 60| 0 0
0.080 0.090 0.581 0 60{ 0 0
0.090 0.050 0.770 0 60| 0 0
0.080 0.050 0.277 0 60! 0 0
0.070 0.050 0.258 0 60| 0 0
Lookup/ 0.020 . 0.080 0.092 0 134 0 0
Retrieve 0.020 0.070 0.095 0 134 0 0
0.030 0.060 0.097 0 134 0 0
0.020 0.070 0.100 0 134 0 0
0.040 0.050 0.095 0 1341 0 0
0.010 0.080 0.094 0 1341 0 0
Sequential 4.150 32.730 185.071 0 266 0 0
Scan (With 3.940 29.450 184.750 0 2681 0 0
Output 4.270 29.570 185.649 0 265} 0 0
to Screen) 4220 29.490 190.724 0 2661 0]
4.530 29.700 187.444 0 265 | 0 0
4.090 30.830 157.928 0 265] 0 0
Sequential 0.040 0.140 0.180 0 265 | 0 0
Scan (Without || 0.070 0.200 0.264 0 2651 0 0
Output 0.040 0.140 0.180 0 265 | 0 0
to Screen) 0.010 0.170 0.184 0 265 | 0 0
0.060 0.120 0.181 0 265 0 0
0.050 0.140 0.191 0 265] 0 0
0.040 0.140 0.185 0 265 | 0 0
0.030 0.150 0.184 0 265] 0 0

A-2

iy - ORI D B 3 3 o WP N R

Test Program: adaobj.c

User CPU Elapsed Page Faults Disk Blocks

Command " Time Time Time | with I/O [w/oI/O | In | Out
Initialize 0.960 0.270 4.880 0 3191 0 0
(10,000 0.980 0.350 4.518 0 319 0 0
Objects 0.980 0.380 5.783 0 319| 0 0
inserted) 0.270 0.230 4.344 0 39| 0 0
9.850 0.260 5.102 0 319| 0 0

0.980 0.220 4.331 0 3191 0 0

| 0.970 0.680 4.845 0 3191 0 0
j 0.940 0.250 4.280 0 3191 0 0
'1 Open & 0.040 0.130 0.263 0 601 0 0
Close 0.060 0.060 0.276 0 60| 0 0
0.040 0.160 0.271 0 60] 0 0

0.060 0.160 -0.266 0 60 0 0

0.070 0.130 0.282 0 60| 0 0

0.070 0.070 0.256 0 60| 0 0

0.070 0.120 0.274 0 60| 0 0

0.060 €.120 0.265 0 60| 0 0

Lookup/ 0.00¢ 0.090 0.092 0 134 ¢ 1}
Retrieve 0.010 0.080 0.095 0 134] 0 0
0.010 0.090 0.097 0 134] 0 0

0.000 0.090 0.100 0 134 0 0

0.020 0.070 0.095 0 134 0 0

0.010 0.080 0.093 0 134] 0 0

0.030 0.070 0.105 0 1341 0 0

0.020 0.090 0.102 0 134 0 0

Sequential 0.620 14.520 162.831 0 265§ 0 0
Scan (With 0.550 13.850- 151.141 0 2691 0 0
Output 0.720 13.260 170.305 0 28| 0 ¢
to Screen) 0.640 16.480 148.934 0 2681 0 0
0.550 14.280 149.505 0 268 0 0

0.750 13.300 109.313 0 2681 0 0

T 0.750 17.070 113.976 0 268 0 0
" 0.550 13.850 151.141 0 2691 0 0
Sequential 0.030 0.140 0.174 0 267 0 0
Scan (Without || 0.020 0.200 0.218 0 266 | 0 0
Output 0.050 0.160 0.214 0 265 0 0
to Screen) 0.040 0.160 0.203 0 265 0 0
0.010 0.190 0.200 0 265} 0 0

0.020 0.200 0.215 0 265 | 0 0

0.030 0.180 0.205 0 265 0 0

0.030 0.170 0.195 0 2651 0 0

A3

Test Program: adacol.a

‘User CPU Elapsed Page Faults Disk Blocks
| Command Time Time Time | withI/O | w/oI/O [In] Out
[Initialize J] 2.750 0.240 6.101 0 M7 0 0
(19,000 2.810 0.160 6.107 0 3471 0 0
Objects 2.810 0.290 6.698 o] 34r] o0 0
inserted) 2.720 0.350 6.484 0 47 0 0

2.790 0.270 6.580 0 47) 0 0

2.880 0.270 6.564 0 7| o0 0

2.690 0.220 8.436 (1] 471 0 0

: 2.720 0.230 6.401 0 M7l o 0
Open & 0.070 0.080 0.368 0 60] 0 0
Close 0.070 0.030 0.344 0 60| 0 0

0.070 0.070 0.307 0 60] O 0

0.080 0.050 0.264 0 60| 0 0

0.060 0080 0.263 0 60] 0 0

0.090 0.050 0.253 0 60| 0 0

0.070 0.060 0.252 0 60] 0 0

: Il 0.100 0.050 0.262 0 60| 0 0
Lookup/ 0.240 0.210 0.450 0 286 | 0 0
Retrieve 0.300 0.190 0.483 0 2861 0 0

0.320 0.150 0.463 0 286 | 0 0

0.300 0.200 0.493 o] 286} 0 0

0.230 0.260 0.490 0 286 | 0 0

0.270 0.200 0.476 0 286 | 0 0
Sequential 4550 29.380 193.678 0 300 0 0
Scan (With 4.870 30.730 196.403 0 30| 0 0
Output 4950 30930 196.693 0| 30| 0 0
to Screen) 4460 30910 172.602 0 208| 0 0

4.650 30130 195.%1 2 30| 0 0

3.640 31.670 196.176 0 1] 0 0
Sequential 0.120 0.030 0.148 0 471 0 0
Scan (Without [0.120 0.050 0.179 0 47] 0 0
Output 0.110 0.040 0.i50 0 Mlo 0
to Screen) 0.120 0.020 0.141 0 4]0 0

0.120 0.040 0.152 0 “io 0

0.100 0.050 0.145 0)0 0

0.100 0.030 0.138 0 M| o0 0

0.110 0.030 0.140 0 4]0 0

A4

ZTCUCR U= Y S S,

Test Program: adacol.c

User CPU Elapsed Page Faulis Disk Blocks
| Command Time Time Time | with I/O | w/o1/U | In Out
[Initialize 2.770 0.740 7.295 0 3601 0 0

(10,000 2.590 0.390 8.026 0 360 0 0
Objects 2.650 0.420 7.769 0 360 0 0
inserted) 2.560 0.400 6.554 0 3601 0 0

‘ 2.580 0.330 6.748 0 360| 0 0

2.650 0.400 8.062 0 360] 0 0

2,700 0.420 7.218 0 30| o -0

2.560 0.250 8.036 0 360 0 0

Open & 0.080 0.160 0.313 0 60| O 0
Close 0.060 0.150 0.266 0 60| 0 0

0.080 0.110 0.263 0 60| 0 0

0.030 0.190 0.288 0 601 0 0

0.070 0.160 0.280 0 60| O 0

0.070 0.130 0.272 0 60| O 0

0.090 0.100 0.303 0 601 O 0

0.080 0.160 0.297 0 60} 0 0

Lookup/ 0.300 0.150 0.450 0 23] O 0
Retrieve 0.250 0.200 0.446 0 286 0 0

0.210 0.240 0.453 0 28] 0 0

0.300 0.150 0.445 0 2861 0 0

0.280 0.170 0.450 0 286 | 0 0

0.260 0.210 0.464 0 286 | O 0

0.280 0.170 0.449 0 286] 0 0

0.250 0.200 0.451 0 286 | O 0
" Sequential 0910 11.650 125.425 0 - 2091 0 .0

Scan (With 1.110 11.670 125.996 0 299 | 0 0
Output 1.020 14.970 126.669 0 31} 0 0
to Screen) 1,120 11910 127.711 0 299 O 0
0.900 13.020 130.031 0 30| 0 -0
0.940 12.860 123.460 0 2091 0 0
1.160 14.910 130.299 0 2991 0 0
1.120 15450 129.907 0 3001 0 0
Sequential 0.110 0.010 0.127 0 461 0 0
Scan (Without || 0.100 . 0.040 0.135 0 4| 0 0
Outpnt 0.130 0.010 0.140 0 341 0 0
to Screen) 0.116 0.020 0.128 0 41 0 0
0.100 0.010 0.116 0 Ml 0 0
0.100 0.930 0.125 0 4| 0 0
0.100 0.059 0.149 0 461 0 0
0.100 0.040 0.145 0 4]0 0

e Wb ke L e o s

Test Program: purobj.a

User CPU Elapsed _Page Faults Disk Blocks
| Command " Time Time Time | with1/O [w/o1/O [In | Out
[Initialize 0.260 0.150 0.408 o] 0] 0 0
(10,000 ‘0.300 0.110 0.410 0 ol o 0
Objects 0.280 0.140 0.419 0 ol o 0
inserted) 0.270 0.140 0.417 0 of o 0

0.230 0.180 0.417 0 o] o 0

0.260 0.160 0.424 0 ofj o 0
Lookup & 0.010 0.010 0.013 0 0f 0 0
Retrieve 0.010 0.000 0.015 0 ol o 0

0.000 0.010 0.011 0 ol o 0

0.010 0.000 0.011 0 0fj 0 0

0.010 0.000 0.012 ¢ o 0 0

~ {1 0.000 0.010 0.011 0 of o 0

Sequential . 3.73G. 37.324 337.607 0 296 |. 0 0
Scan (With 4190 27.853 314.580 0 206 0 0
Output 4.330 27.003 426.015 0 206 0 0
to Screen) 3.460 48.485 355.470 0 2051 0 0
’ 5.061 32.873 33R.379 0 205] 0 0
- 4830 32.823 240.044 0 205 0 0
Sequential 0.010 0.060 0.071 0 204 | 0 0
Scan (Without || 0.020 0.020 0.042 0 204] 0 0
Output 0.020 0.040 0.059 0 204) 0 0
to Screen) 0.010 0.030 0.043 0 204 0 0
0.020 0.020 0.042 0 204} 0 0

0.010 0.030 0.043 0 204] 0 0

A-6

Test Program: purobj.c

User CPU Elapsed Page Faults Disk Blocks
Command Time Time Time with I/O [w/o1/O{In | Out |
[Tnitialize 0.210 0200 0.405 0 0] 0 0|
(10,000 0.200 0.210 0.408 0 0| 0 0
Objects 0.210 0.200 0.412 0 0; 0 0
inserted) 0.180 0.250 0.408 0 6| 0 0
0.190 0.230 0.418 0 0] 0 0
0.180 0.240 0.421 0 0] 0 0
Lookup & 0.010 0.200 0.010 0 0 0 0
Retrieve 6.000 0.010 0.010 0 0} o0 0
0.010 1.000 0.011 0 0l 0 0
0.000 0.010 0.010 -0 6] 0 0
0.010 0.000 0.011 0 o 0 0
0.000 0.010 0.011 0 0 0 0
Sequential 1.420 8.681 126.503 0 306 | 0 0
Scan (With 1.15%0 9.171 109.603 0 306 0 0
Output 1.57 8.541 107.530 0 306] 0 0
to Screen) 1410 9.261 162.788 0 06| 0 0
1.610 9.131 144.604 0 306] 0 0
1.270 10.451 198.931 0 306 | 0 0
Sequential 0.010 0.040 0.050 0 295! 0 0
Scan (Without || 0.020 0.040 0.057 0 2051 0 0
Output 0.020 0.020 0.047 0 2051 O 0
to Screen) 0.020 0.030 0.047 0 295 0 0
0.020 0.030 0.048 0 2951 0 0
0.000 0.070 0.071 0 2051 0 0

A-7

Appendix B. Test Programs

B-1

B.1 Test Program: adaobj.mk (for adacbj.a)

include $(0S_ROOTDIR)/etc/ost re.lib.mk

LDLIE3 = -los -losc -loscol

LIB_PATH = /tmp_mnt/home/cub2/lchou/dovork/osfilec
0S_COMPILATION_SCHEMX _DB_PATH = /lchou/test/acnote.csdb
O0S_APPLICATION_SCHEMA_DB_PATH = /lchou/ter</acnote.asdb
EXCUTABLE = adaobj

OBJECTS = .os_schema.o adaobj.o statis.o CormandStats.o
SCHEMA_SQURCE = adaobj.cc ‘

CPPFLAGS = -gx -I..

SCHEMA = schema_adaobj

adaobj: $(OBJECTS)

a.make -L .. STATIS_ADA -f statis_ada.a
a.make -L .. adaobj -f adaobj.a

av a.out adaobj

$(0S_ROOTDIR)/1ib/patch adaobj

CommandStats.o: CommandStats.c
cc $(CPPFLAGS) $(CFLAGS) -c¢ CommandStats.c

statis.o: statis.c
¢ $(CPPFLAGS) $(CFLAGS) -c statis.c

clean_obj:

osrm -f $(0S_COMPILATION_SCHEMA_DB_PATH)
osrm ~f $(0S_APPLICATION_SCHEMA_DB_PATH)
rm ~f $(EXCUTABLE) $(OBJECTS) $(SCHEMA)

include ../ada_nev.mk

B-2

L

~ B.2 Test Program: adaobj.a

with OS_TYPES; use O0S_TYPES;
wvith OSTORE; use OSTORE;
with OSTORE_GENERICS;

with TEXT_IO; use TEXT_IO;
with LANGUAGE; use LANGUAGE;
vith STATIS_ADA;

procedure ADAOBJ is
pragma LINK_WITH("-Batatic .os_schema.o ../libosada.a adaobj.o statis.o
CommandStats.o -L/usr/local/objectstore/sun4/lib -los -losc");
subtype NOTE_STRING is STRING(1..20);
type LINK_NOTE;
type LINK_NCTE_PTR is access LINK_NOTE;
type LINK_NOTE is
record
priority: INTEGER;
name : NOTE_STRING;
note : string(1..80);
next : link_note_ptr;
end record; ’

package INT_IO is new integer_io(INTEGER);
use INT_ IO;

subtype CHCICE_TYPE is integer range 0 .. 5;
package CHOICE_IO is new integer_io(CHOICE_TYPE);

function ¢_link_note_typespec return 0S_TYPESPEC;
pragma INTERFACE(C, c.link_nota_typespec);
pragma INTERFACE_NAME(c_link_note_typespec,

C_SUBP_PREFIX & "c_link_note_typespec");
package PERS_NOTE is new OSTORE_GENERICS(LINK_NOTE, LINK_KOTE_PTR,
e -~ ©.link_note_typespec); -

ROOT + DATABASE_ROOT; -

DB : DATABASE;
T : TRANSACTION;
n_IN : INTEGER;

MYCHOICE : CHOICE_TYPE;

procedure STRCPY(NAME : out string;
NOTE_NAME : in string) is
LEN : patural := NOTE_NAME’LENGTH;
begin
NAME(1.. LEN) := NOTE_NAME(1..LEN);
end STRCPY;

B-3

Pl

function DATABASE_RETRIEVE(NUMBER : integer;

HEAD : LINK_NOTE_PTR) return LINK_NOTE_PTR is

TEMP : LINK_NOTE_PTR;
begin
TEMP := HEAD;

while (NUMBER /= TEMP.PRIORITY) and thenm (TEMP /= NULL)

- loop
TEMP := TEMP.NEXT;
end loop;
return TEMP;
end DATABASE_RETRIEVE;

function INSERT(HEAD : LINK_NOTE_PTR;

N : LINK_NOTE_PTR) return LINK_NOTE_PIR is

begin

N.NEXT := HEAD;
return N;
end INSERT;

procedure DISPLAY_NOTE(N : LINK_NOTE_PTR) is

begin
put (N.PRIORITY);
put_line(" " & N.NAME);
put_line(N.NOTE);
nev_line;

end DISPLAY_NOTE;

procedure TRAVERSE(HEAD : LINK_NOTE_PTR;

I0 : integer) is
TEMP : LINK_NOTE_PTR;
begin
TEMP := HEAD;

shile TEMP /= null loop
if I0 /= 0 then
DISPLAY_NOTE{(TEMP) ;
end if;
TEMP := TEMP.NEXT;
end loop;
ond TRAVERSE;

procedure DATA_SCAN is
HEAD : LINK_NOTE_PTR;
begin

DB := DATABASE.OPEN("/lchou/test/abnote.db", FALSE, 8#664#);

TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahead", DB);
HEAD := PERS_NOTE.DATABASE_ROOT_GET_VALUE(ROOT);

B-4

== start time
STATIS_ADA.COMMANDSTATS(1);
TRAVERSE(HEAD, 1) ;

-- stop time
STATIS_ADA.COMMANDSTATS{0);
TRANSACTION_COMMIT(TX);

DATABASE_CLOSE(DB);
end DATA_SCAN;

procedure DATA_SCAN_NIO is
HEAD : LINK_NOTE_PIR;
begin
DB := DATABASE_OPEN("/lchou/test/abnote.db", FALSE, 8#664#);
TX := TRANSACTION_BEGIN; ‘
ROOT := DATABASE_ROOT_FIND("ahead", DB);
HEAD := PERS_NOTE.DATABASE_ROOT_GET.VALUE(ROOT);
-~ start time
STATIS_ADA.COMMANDSTATS(1);
TRAVERSE(HEAD,0) ;
-~ stop time
STATIS_ADA.COMMANDSTATS(0);
TRANSACTION_COMMIT(TX);
DATABASE_CLOSE(DB);
end DATA_SCAN_NIO;

PROCEDURE DATA_RETRIEVE is
INPUT_NUMBER : integer;
BASIC_NOTE,
HEAD : LINK_NOTE_PTR;
begin ‘
put_line("Retrive a record, the priority is 5000");
INPUT_NUMBER := 5000;
DB := DATABASE_OPEN("/lchou/test/abnote.db", FALSE, 8#664#);
TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahead", DB); :
HEAD := PERS_NOTE.DATABASE_ROOT_GET_VALUE(ROOT);
-- start time
STATIS_ADA.COMMANDSTATS(1);
BASIC_NOTE := DATABASE_RETRIEVE(INPUT_NUMBER, HEAD);
DISPLAY_NOTE(BASIC_NOTE);
== atop time
STATIS_ADA.COMMANDSTATS(0);
TRANSACTION_COMMIT(TX);
DATABASE_CLOSE(DB) ;
end data_retrieve;

procedure DATABASY_OPEN_CLOSE is
HEAD : LINK_NOTE_PIR;

B-5

. COUNT : integer;

begin
COUNT := §;
-- start time
STATIS_ADA.COMMANDSTATS(1);
-- repeat opening and closing a database 10 times
while count <= 10 loop
DB := DATABASE_OPEN("/lchou/test/abnote.db”, FALSE, 8#664#);
TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahezd", DB);
HEAD := PERS_NOTE.DATABASE_ROOT.GET_VALUE(ROOT);
TRANSACTION_COMMIT(TX);
DATABASE_CLOSE(DB) ;
COUNT := COUNT + {;
end loop;
~= stop time
STATIS_ADA.COMMANDSTATS(0) ;
oend DATABASE_OPEN_CLOSE;

procedure INITIAL_ DB is
BASIC_NOTE,

~ READ : LINK_NOTE_PTR;

COUNTER : integer := 1;
begin

DB := DATABASE_ OPEN("/lchou/test/abnoto db", FALSE, B#664%);
-- gtart time
STATIS_ADA.COMMANDSTATS(1);
TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahead", DB);
if invalid(ROOT) then
ROOT := DATABASE_CREATE_ROOT(DB, "ahead");
HEAD := PERS_NOTE.DATABASE_ROOT_GET_VALUE(ROOT);
for COUNTER in 1 .. 10000 loop
BASIC_NOTE := PERS_NOTE.PERSISTENT_NEW(DB);
case (COUNTER mod 10) is
vhen 0 =>
BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Danile”);

STRCPY{BASIC_NOTE.NOTE ,"you need meet your friend tomorrow");

vhen { =>
BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Susan");

STRCPY(BASIC_NOTE.NOTE ,"you need meet Course commitee at 9:00");

when 2 =>
BASIC_NOTE.PRICRITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Li");

B-6

.
.

STRCPY(BASIC_NOTE.NOTE

when 3 => .
BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhen 4 =>
BASIC_NOTE.PRIORITY :=
StRCPY(BASIC_NDTE.NAHE
STRCPY(BASIC_NOTE.NOTE

vhen b =>
" BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

_ when 6 =>
BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

when 7 =>

BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhen 8 =>

BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhen 8 =>

" BASIC_NOTE.PRIORITY :=
. STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhen others => null;
end case;

,"Enjoy the silent night in Lab");

counter ;
»'"Chars");
,"You may meet me at 11:00");

counter ;
. "Mike u) H
»"We have an appointment with principle”);

counter ;
, ncoann);
,"We found a book you lost");

counter ;
,"Nancy");
,"Study Chapter 10 of 0S");

counter ; .
,"Patric");
»"Please collect class addresses.");

counter 3
, " Jenny") ;
»"Happy New Year");

counter ;
."lmy");
,"Merry Christmas®);

HEAD := INSERT(HEAD, BASIC_NOTE);

end loop;

PERS_NOTE.DATABASE_ROOT_SET_VALUE(ROOT, HEAD);

else

put_line("DATABASE abnote.db already exist !!, osrm it 11!");

end if;
TRANSACTION_COMMIT(TX);
DATABASE_CLOSE(DB) ;

-- stop time
STATIS_ADA.COMMANDSTATS(0);

end INITIAL_DB;

B-7

kAl e e e A s 4 s - e L S e

begin -- NOTE
INIT_ADA_INTERFACE;
" loop
loop
begin ,
put_line("s* TESTING MENU ##");
put_line(" 0. INITIAL DATABASE : ABNOTE.DB");
put_line(" 1. TESTING THE OPENING(CLOSING) DATABASE");
put_line(" 2. TESTING THE LOOKUP AND RETRIEVE");
put_line(" 3. TESTING THE SEQUENTIAL SCANING");
put_line(" 4. TESTING THE SEQUENTIAL SCANING (WITHOUT OUTPUT)");
put_line(" 5. BYE !!");
PUT("INPUT ~> ");

choice_io.get (MYCHOICE);
text_io.skip_ iine;
exit;
exception
vhen data_error | constraint_error =>
text_io.skip_line;
text_io.put_line("Your choice must be betwsen O and 5");
text_io.new_line;
end;
end loop;

-- do differeut tasks from here
case MYCHOICE is
vhea 0 =>
INITIAL_DB;
vhen | =>
DATABASE_CPEN_CLOSE;
vhen 2 =>
DATA_RETRIEVE;
“ o s when 3 =>
DATA_SCAN;
vhen 4 =>
DATA_SCAN_NIO;
vhen 5 =>
exit;
vhen others => null;
end case;
end loop;
end ADAOBJ;

B-8

. EXCUTABLE = adacol :
. OBJECTS = .os_schema.o adacol.c statis.o CommandStats.o I

B.3 Test Program: adacol.mk (for adacol.a)

include $(0S_ROOTDIR)/etc/ostore.lib.mk '
LDLIBS = -los -losc -loscol . ’ i
LIB_PATH = /tmp_mnt/homo/cub2/1chon/dowork/osfilec :)
0S_COMPILATION_SCHEMA_DB_PATH = /lchou/test/acnote.csdb

0S_APPLICATION_SCHEMA_DB_PATH = /lchou/test/acnote.asdb .

SCHEMA_SOURCE = adacol.cc
CPPFLAGS = -gx -I..
SCEEMA = schema_adacol

adacol: S(OBJEC’I‘S) 4
a.make -L .. STATIS_ADA -f statis ada.a , o
a.make -L .. adacol -f adacol.a : ‘
mv a.out adacol ‘
$(0S_ROOTDIR)/1ib/patch adacol

CommandStats.o: CommandStats.c
cc $(CPPFLAGS) $(CFLAGS) -¢ CommandStats.c

statis.o: statis.c
cc $(CPPFLAGS) $(CFLAGS) -c statis.c

clean_col: . |
osrm - $(0S_COMPILATION_SCHENA_DB_PATH) ‘

osrm - $(0S_APPLYICATION_SCHEMA_DB_PATH)
m ~f $(EXCUTABLE) $(OBJECTS) $(SCHEMA)

include ../ada_new.mk

B-9

R et e RS AT e A R s S RN B

»*

B.4 Test Program: adacol.a

with OS_TYPES; uee OS_TYPES;
with OSTORE; use OSTORE;
wvith OSTORE_GENERICS;

. with OS_COLLECTION_PKG;

with OS_CURSOR_PKG;

with TEXT_IO; use TEXT_IO;
with LANGUAGE; uss LANGUAGE;
with STATIS_ADA;

procadure ADACOL is _
pragma LINK_WITH("-Bstatic .os_schema.o ../libosada.a adacol.o statis.o
CommandStats.o -L/usr/local/cbjectstore/sun4/lidb ~los -losc -loscol");
subtype NOTE_STRING is STRING(1..20);
type NOTE_COL;
type NOTE.COL_PTR is access NOTE_COL;
type NOTE.COL is
record
priority: INTEGER;
name : NOTE_STRING;
note : string(1..80);
next : note_col_ptr;
end record;

package INT_I0 is new integer_io(INTEGER);
use INT_IO;

subtype CHOICE .TYPE is integer range 0 .. 5;
package CHOICE_10 is new integer_io(CHOICE_TYPE);

function c_note_col_typespec return 0S_TYPESPEC;
pragma INTERFACE(C, c_note_col_typespec);
pragma INTERFACE_NAME(c_note. .col_typespec,
C_SUBP_PREFIX & “c_note_col_typespec");
package PERS_NOTE is new OSTORE_GENERICS(NOTE_COL, KOTE_COL_PTR,
c.note_col _typespec);

-=- os_collection’s type
function c.os_collection_typespec zeturn 0S_TVPESPEC;
pragma INTERFACE(C, c_os_collection_typespec);
pragma INTERFACE_NAME(c_os.collection_typespec,
C_SUBP_PREFIX & "c_os_collection_typaspec");

package COLL_NOTES is new OSTORE_GENERICS(U_TYPE => NOTE_COL,
U_TYPEPTR => NOTE_COL_PTR,

GET_US_TYPESPEC => c_cs_collection_typespec);

B-10

package 0S_COLL is new 0S_COLLECTION_PKG(U.TYPE => NOTE_COL,
' : U_TYPEPTR => NOTE_COL_PIR,
GET_0S_TYPESPEC =>¢_os_collection_typespec);

packags OS_CURSORS is new O0S_CURSOR_PKG(U_TYPE => NOTE_COL,
U_TYPEPTR => NOTE_COL_PTR);

ROOT : DATABASE_ROOT;
DB + DATABASE;

¥ S : TRANSACTION;
N_IN : INTEGER;

MYCHOICE : CHOICE_TYPE;

procedure STRCPY(NAME : out string;
NOTE_NAME : in string) is
LEN : natural := NOTE_NAME’LENGTH;
begin
NAME(1.. LEN) := KOTE_NAME(1..LEN); :
end STRCPY; : : 1

procedure DISPLAY_NOTE(N : NOTE_COL_PIR) is
begin ‘
put(M.PRIORITY);
put_line(" " & N.NAME);
put_line(N.KCTE);
new_line; i
end DISPLAY_NOTE;

proéodnn DATA_.SCAN is
- HEAD ': OS_COLLECTION;

P ¢ NOTE_COL_PTR;
CUR : OS_CURSOR;
begin :

DB := DATABASE_OPEN("/lchou/test/acnote.db", FALSE, B#664#);
TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahead", DB);
HEAD := COLL_NOTES.DATABASE_ROCT_GET_VALUE(ROOT);
~= gtart time ’
STATIS_ADA .COMMANDSTATS(1);
-- jteration
CUR := 0S_CURSORS.0S_CURSOR_CREATE(HEAD);
P := NOTE_COL-PTR(OS_CURSORS;OS_CURSOR_FIRST(CUR));
vhile (0S_CURSORS.0S_CURSOR.MORE(CUR)) loop
DISPLAY_NOTE(P);
P:=0S_CURSORS. 0S_CURSDR_NEXT(CUR) ;

B-11

R

.
.

P

end loop;
0S_CUBSURS .0S_CURSOR_DELETE(CUR) ;
~= stop time o
STATIS_ADA.COMMANDSTATS(0);
TRANSACTION_ZOMMIT(TX);
DATABASE_CLOSE(DB) ;
end DATA_SCAN;

nrocedure DATA_SCAN_NIO is
HEAD : OS_COLLECTION;

| 4 : NOTE_COL_PTR;
CUR : OS_CURSOR;
begin

DB := DATABASE_OPEN("/lchou/test/acnots.db", FALSE, 8#664#);
TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahead", DB);
HEAD := COLL_NOTES.DATABASE_ROOT_GET_VALUE(ROOT);
-~ atart time
STATIS_ADA.COMMANDSTATS(1);
~= iteration
CUR := (0OS_CURSORS.0S_CURSOR_CREATE(HEAD);
P := NOTE_COL_PTR(OS_CURSORS.0S_CURSOR_FIRST(CUR));
while (OS_CURSORS.0S_CURSOR.MORE(CUR)) loop
P:=0S_CURSORS .0S_CURSOR_NEXT(CUR) ;
end loop;
0S_CURSORS . 0S_~ZURSOR_DELETE{CUR) ;
~- atop time :
STATIS_ADA.COMMANDSTATS(0);
TRANSACTION_COMMIT(TX);
DATABASE_CLOSE(DB) ;
end DATA_SCAN_NIO;

PROCEDURE DATA_RETRIEVE is
INPUT_STRING : STRING(1 .. 130) :=(others => ’ ’);

QUERIED_NOTE,

READ : 0S_COLLECTION;
+ NOTE_COL_PIR;

CUR : 0S_CURSOR;

begin

put_line("Retrive a record, the priority is 5000");
DB := DATABASE_OPEN("/lchou/test/acnote.db", FALSE, 8#664#);
TX := TRANSACTION_BEGIN;
ROOT := DATABASE_ROOT_FIND("ahead", DB);
HEAD := COLL_NOTES.DATABASE_ROOT_GFT_VALUE(ROOT);
== gtart time
STATIS_ADA.COMMANDSTATS(1);

B-12

STRCPY(INPUT_STRING, "priority == 5000");
QUERIED_NOTE := 0S_COLL.0S_COLLECTION_QUERY(EEAD,"note_cols"
,INPUT_STRING,DB);

-~ iteration . .
- CUR := OS_CURSORS.0S_CURSOR_CREATE(QUERIED_NOTE);
P := NOTE_COL_PTR(OS_CURSORS.0S_CURSOR_FIRST(CUR));
vhile (OS_CURSORS.DS_CURSOR_MORE(CUR)) loop
DISPLAY_NOTE(P);
P:=0S_CURSORS.0S_CURSOR_NEXT(CUR) ;
end loop;
0S_CURSORS . 0S_CURSOR_DELETE(CUR) ;
-- stop time
STATIS_ADA.COMMANDSTATS(0);
TRANSACTION_COMMIT(TX);
DATABASE_CLOSE(DB);
end data_retrieve;

procedure DATABASE_OPEN_CLOSE is
HEAD : 0S_COLLECTION;
COUNT : integer;

begin
COUNT := 1;
-~ start time
STATIS_ADA. COHMANDSTLTS(i),
- repeat opening and closing a database 10 times
while count <= 10 loop
DB := DATABASE_OPEN("/lchou/test/acnote.db™, FALSE, 8#664#);
TX := TRANSACTION_BEGIN;
ROOT :» DATABASE_ROCT.FIND{"ahead", DB);
HEAD := COLL_NOTES.DATABASE_ RDOT GET VALUE(BDDT).
TRANSAG fION_COMMIT(TX);
DATABASE. .CLOSE(DB) ;
~ COUNT := COUNT + {;
end loop;
-- stop time
" STATIS_ADA.COMMANDSTATS(0); -
end DATABASE_OPEN_CLOSE;

procedure INITIAL_ DB is
BASIC_NOTE : NOTE_COL_PTR;

HEAD : 0OS_COLLECTION;
COUNTER : integer := 1;
begin

DB := DATABASE_OPEN("/lchou/test/acnote.db", FALSE, 8#664#);
~-=- start time .
STATIS_ADA.COMMANDSTATS(1);
TX := TRANSACTION_BEGIN;

B-13

ROOT := DATABASE_ROOT_FIND("ahead", DB);
if invalid(ROOT) then
ROOT := DATABASE_CREATE_ROOT(DB, "ahead");
HEAD := 0S_COLL.0S_COLLECTION_CREATE(DB,
" "majintain_cursors | maintain_order",10);
for COUNTER in 1 .. 10000 loop
BASIC_NOTE := PERS_NOTE.PERSISTENT_NEW(DB); ,
case (COUNTER mod 10) is S 3
vhen 0 => : ’
BASIC_NCTE.PRICRITY := counter °
STRCPY(BASIC_NOTE.NAME ,"Danile");
STRCPY(BASIC_NOTE.NOTE ,"you need meet your friend tomorrow");

vhen 1 =>

‘BASIC_NOTE.PRIORITY := counter ;

STRCPY(BASIC.. NOTE‘NAME ,"Susan");

STRCPY(BASIC. NDTE NOTE ,"you need meet Course commitee at 9:00");

vhen 2 => ‘i

BASIC_NOTE.PRIORITY := counter ;

STRCPY(BASIC_NOTE.NAME ,"Li");

STRCPY(BASIC_NOTE.NOTE ,"Enjoy the silent night in Lab");
|

vhen 3 => i

BASIC_NOTE.PRIORITY := counter ;

STRCPY(BASIC_NOTE.NAME ,"Chars");

STRCPY(BASIC_NCTE.NOTE ,"You may meet me at 11:00");

when 4 => l

BASIC_NOTE. PRIORITY = counter ;

STRCPY(BASIC. NOTE NAME ,"Mike");

STRCPY(BASIC_NOTE%NOTE "We have an appointment with principle“)

|

vhen 5 => ‘

BASIC_NOTE.PRIORITY := counter ;

STRCPY(BASIC_NOTE.NAME ,"Coan");

STRCPY (BASIC_NOTE.NOTE ,"We found a book you lost");

vhen 6 =>

BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Nancy");
STRCPY(BASIC_NOTE.NOTE ,"Study Chapter 10 of 0S");

vhen 7 =>

BASIC_NOTE.PRIORITY := courter ;

STRCPY(BASIC_NOTE.NAME ,"Patric");

STRCPY(BASIC_NOTE.NOTE ,"Please collect class addresses.”);

vhen 8 =>

BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Jenny");

B-14

STRCPY(BASIC_NCTE.NOTE ,"Happy New Year");

when 8§ =>
BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Amy");
STRCPY(BASIC_NOTE.NOTE ,"Merry Christmas");

when others => null;

end caas;

0S_COLL.0S_ COLLECTION INSERT(HEAD, BASIC_NOTE);
end loop;
COLL_NOTES.DATABASE_ROOT_SET_VALUR(ROOT, HEAD);

else
put_line("DATABASE acnote.db already exist !!, osrm it !!1");
end if;
TRANSACTION_ COHHIT(T').
DATABASE_CLOSE{DB);
=~ stop time
STATIS_ADA.COMMANDSTATS(0);

end INITIAL_DB;
begin .-~ NOTE
INIT_ADA_INTERFACE;
0S_COLL.0S_COLLECTION_INITIALIZE;
loop
loop -
begin
put_line("*= TESTING MENU ") ;
put_line(" 0. INITIAL DATABASE : ACNOTE. DB")

put_line(" 1. TESTING THE OPENING(CLOSING) DATABASE");
put_line(" 2. TESTING THE LOOKUP AND RETRIEVE");
put_line(" 3. TESTING TEE SEQUENTIAL SCANING");
~ put_lize(" 4. TESTING THE SEQUENTIAL SCANING (WITHOUT OUTPUT)")
) put_line(" B. BYE 11%);

PUT("INPUT -> “);
choice_io.get (MYCHOICE);
text_io.skip.line;
oxit;
exception
vhen data_error | constraint_erro. =>
text_io.skip_line;
text_io.put_line("Your choice must be between 0 and 5");
text_io.new_line;
end;
end loop;

-= do different tasks from here

‘case MYCBOICE is
vhen 0 =>

B-13

INITIAL_DB;
vheu 1 =>
DATABASE_OPEN_CLOSE;
vhen 2 =>
DATA_RETRIEVE;
vhen 3 =>
DATA_SCAN;
when 4 =>
" DATA_SCAN_NIO;
vhen 5 =>
exit;
vhen others => null;
end case;
end loop;
end ADACOL;

B-16

B.5 Test Program: aduobj.mk (for adaobj.c)

include $(0S_ROOTDIR)/etc/ostore.lib.mk
0S_COMPILATION_SCHEMA_DB_PATH= /$(USER)/test/bnote.cadb
0S_APPLICATION_SCHEMA_DB_ PA’I‘H" /$(USER) /test/bnote. andb
LDLIBS = -los -loac

SOURCES = adaobj.c CommandStats.c skm_adao.cc ct_bnote.c
OBJECTS = adaobj.o CommandStats.o skm_adao.o c¢t_bnote.o
EXECUTABLES = adaobj ct_bnote ' .

CPPFLAGS = ~I$(0S_ROOTDIR)/include

CFLAGS = -gx .

CC = cc

LIB_PATH = -L/usr/local/objectstore/sun4/lid

all: $(EXECUTABLES)

adaobj: adaobj.o CommandStats.o schema_standin_Adac
$(0S_PRELINK) .os_schema.cc \
$(0S_COMPILATION_SCHEMA_DB_PATH) $(0S_APPLICATION_SCHEMA_DB_PATH) \
adaocbj.o $(LDLIBS)
0SCC -c .os_schema.cc
$(LINK.c) -o adaobj -Bstatic adaobj o \
CommandStats.o .os_schema.o $(LDLIBS)
$(0S_POSTLINK) adacbj

ct_bnote: ct_bnote.o schema_standin_ ldao
$(0S_PRELINK) .os_schema.cc \
$(0S_COMPILATION_SCHEMA_DB_PATH) $(0S_APPLICATION_SCHEMA_DB_PATH) \
ct_bnote.o C(LDLIBS)
0SCC -c .os_schema.cc
$(LINK.c) -o ct_bnote ct_bnote.o .os_schema.n $(LDLIBS)
${0S_POSTLINK) ct_bnote '

adaobj.o: adaobj.c¢
$(CC) $(CPPFLAGS) $(CFLAGS) -c adaodbj.c e s e

CommandStats.o: CommandStats.c
$(CC) $(CPPFLAGS) $(CFLAGS) ~-c CommandStats.c

schema_standin_Adao: skm_adao.cc
0SCC $(CPPFLAGS) -batch_schema $(0S_COMPILATION_SCHEMA_DB_PATH) skm_adao.cc
touch schema_standin_Adao

clean:

osrn -f $(0S_COMPILATION_SCHENA_DB_PATH)

osrm -f $(0S_APPLICATION_SCHEMA_DB_PATH)

ra -f $(EXECUTABLES) $(OBJECTS) schema_standin_Adao
depend: .depend_B

.depend_B:

osmakedep .depend_B S(CPPFLAGS\ ~files $(SOURCES)

B-17

- ad o o

RS V.

L

includes .dopend_B

B-18

FL

B.6 Test Program: adaobj.c

/* f£ile : adaobj.c program - main file
ObjectStore C library
implemented by Li Chou, in Jan 1993.
]
#include <stdio.h>
#include <ostore/ostore.h>

. #include <strings.h>

#include <sys/time.h>
#include <sys/resource.h>

#include "adaobj.h"

extern FILE sbasic_file;

void initial_db();

void database_open_close();

void data_retrieve();

void data_scan();

void data_scan_nio();

struct link_note *database rotriovo().
void display_note();

void traverse();

void exit();

/* global timing variables for CommandStats -- Jacobs 18/09/91 */

static struct timeval elapsed;

static struct rusage exec;
database *db;
database_root *root;

/* allocat os_typespec &/
os_typespec *note_pad_type;

main()

{
char choose;

start_objectstore();
note_pad_type = alloc_typespec("link_note",0);

/¢-- main loop -~
drive manual
== choose input by user =/
vhile (1) {
printf("es Testing Menu *a\n");
print£(" 0. Initial database : bnote.db\n");
print2(" 1. Testing the opening(closing) database\n");
printf(" 2. Testing the lookup and retrieve\n");
printf(" 3. Testing the sequential scaning\n");

B-19

AR

printf(" 4. Testing the sequential scaning (without output to screen)\n");
printf(" 5. Bye !!\n"); ‘
printf("Input -> ");
vhile (scanf("%c" , &kchoose) ==1) {
if (choose <= ’5’ &k choose >= ’0?)
- break;
}
if (choose == ’5’) exit(1);

svitch (choose) {
case ‘0’ :
initial_db();
break;
case ’1’ :
database_open_close();
break;
case 27 :
data_retrieve();
break;
case '3’ :
data_scan();
break;
. case ‘4’ :
1 . data_scan_nio();
break;

}
}
}

void database_open_close()
{

struct link_note shead;
int count;

count = 1;
/* Start time commandstat =/
o CommandStats(1l, stdout, &elapsed, &exec);
- © /* repeat opening and closing a database 10 times =/
while (count <= 10) {
db = database_lookup_open("/lchou/test/bnote.db", 0, 0664);
OS_BEGIN_TXN(tx1,0,transaction_update) {
root = database_root_find("ahead", db);
head = database_root_get_value(root, note_pad_typse);
} OS_END_TXN(tx1);
database_close(db);
++count;
}
/% Stop time commandstat »/
CommandStats(0, stdout, kelapsed, kexec);

}

B-20

g

void data_retrieve()
{

int input_number;
struct link_note *basic_note, shead; '

printf("Retrive a record, the priority is 5000\n");
/* if (scanf("%d", kinput_number) == 1) =/
. input_number = 5000;) _
db = database_lookup_open("/lchou/test/bnote.db", 0, 0664);
OS_BEGIN_TXN(tx1,0,transaction_update) {
root = database_root_find("ahead", db);
head = database_root_get_value(root, note_pad type);
/* Start tims commandstat =»/
CommandStats(1, stdout, kelapsed, &exec);
basic_note = database_retrieve(input_number, head);
display_note(basic_note);
/® Stop time commandstat =/
CommandStats(0, stdout, &elapsed, kexec);
} OS_END_TIN(tx1);
database_closa(db);
} .

- void data_scan() {

struct link_note shead;

db = database_lookup_open("/lchou/test/bnote.db", 0, 0664);
0S_BEGIN_TXN(tx1,0,transaction_update) {
zroot = database_root_find("ahead", db);
head = database_root_get_valus(root, noto_pnd_typo).
/* Start time commandstat =/
CozmandStats(1, stdout, &elapsed, &exec);
traverse(head,1);
/* Stop time commandstat s/
CommandStats(0, stdout, kelapsed, Rexec);
} OS_END_TXN(tx1);
database_close(dd); -
}

void data_scan_nio() {
struct link _note #shead;
void traverse();

db = database_lookup_open("/lchou/test/bnote.db", 0, 0664);
0S_BEGIN_TXN(tx1,0,transaction_updats) {

Troot = database_root_find("ahead", db);

head = database_root_get_value{root, note_pad_type);

/% Start time commandstat =/

CommandStats(1i, stdout, Xelapsed, Rexec);

traverse(head,0);

B-21

N

. B iomi e e :

/* Stop time commandstat %/
CommandStats(0, stdout, &elapsed, &exec);
} OS_END_TaN(tx1);
databr se_close(db);}

/* retrieve & note »/

struct link_note sdatabase_retrieve(numb, link_hcad)
int aumdb; : .

struct link_note #link_head;

{

struct liak_note stemp;

texp = link head;

vkile ((numb != temp -> priority) && (temp != NULL)){
temp = temp-> next;
}

return temp;

}

/t Print out to the specifisd stream this note #/
void display_note(n)
struct link note *n;

{
printf("priority (%d) name %s \n", n->priority, n->name);
printf("note J¥s\n", n -> note); '

}

/% Inser: a node #»/
struct link_note sinsert(p, q)

_ strret link _note »p;

struct link _note =q;
{
q =-> next= p;
' return q;

}

/* Saquancial scaning s/
void traverso(anote,io)
NOTE anote;

int io;

{

NOTE temp;

tenp = anots;
vhile (temp != NULL) {
it (40 1= 0) {
display_note(temp);

B-22

P

\
}
temp = temp -> next;
}
}

void initial_db()

{ .
/* global timing variables for CommandStats -- Jacobs 18/09/91 */

static struct timeval elapsed;

static struct rusags exec;

database =*db;

database_root *root;

struct link_note =head, tbasic note;
int counter;

dv = database_lookup_open("/lchou/test/bnote.db", 0, 0664);
/* Start time commandstat */
CommandStats(1l, stdout, &elapsed, kexec);
'0S_BEGIN_TXN(tx1,0,transaction_update) {
root = database_root_find(“ahead", db);
if (troot) {
root = database_create _root{db, "ahead");

}
else
{ ' : :
printf("The databano exist !! osrm it first 1!!\n");
oxit{(); .
¥
head = database_root_get_value(root, note_pad_type);
for (counter = 1; counter <= 10000; ++counter){
basic_note = (struct link_note*) objectstore_alloc(note_pad_type, 1, db);
switch (counter - ((int)(counter/10)) = 10) {
case 0 : '
basic_note -> priority = counter ;
strepy(basic. Eoto -> name ,"Danile");
strcpy(basic_note -> note ,"you need meet your friend tomorrow");
break;
case 1 :
basic_note -> priority = counter ;
strcpy(basic_note -> name ,"Susan”);
strcpy(basic_note -> note ."you need meet Course commitee at 9:00");
-break;

case 2:

~ basic_note -> priority = counter ;
atrcpy(basic_note ~> name ,"Li");
strcpy(basic_note -> note ,"Enjoy the silent night in Lab");
break;

cate 3 :
basic_note ~> priority = counter ;

B-23

B i i ot

strcpy(basic_note - name ,"Chars”);

strcpy(basic_note -> vote ,"You may meet me at 11:00");
break;

case 4 :

basic_note -> priority = courter ;

stropy(basic_note -> name ,"Mike");

strcpy(basic_ncte -> note ,"We have an appointment with principle");
break;

case b :

basic_note -> priority = counter ;

strcpy(basic_pote -> name ,"Coan");

strcpy(basic_note -> note ,"We found a book you lost");
break;

case 6 :

basic_note -> priority = counter ;

strcpy(basic_note -> name ,"Nancy");

strepy(basic_note -> note ,"Study Chapter 10 of 03");
break;

case 7 :

basic_note -> priority = counter ;

strcpy(basic_note -> name ,"Patric");

strcpy(basic_rote -> note ,"Please collect class addresses.");
break; '
case 8 :

basic_note -> pricrity = counter ;

strcpy(basic_note -> name ,"Jenny");

strcpy(basic_note -> note ,"Happy New Year");

break;
case 9 :

basic_note => priority = counter ;

strcpy(banic_note =-> nawe ,"Amy");

strcpy(basic_note -> note ,"Merry Christmas");

break;

o) : .
head = insert(head, basic_note);

} .

database_root_set_value(root, head, note_pad_type);
} OS_END_TIN(tx1);
database_close(db);

/% Stop time commandstat #/ .
CommandStats(0, stdout, kelapsed, dexec);

} .

B-24

B.7 Test Program: adacol.mk (for adacol.c)

include $(0S_ROOTDIR)/etc/ostore.lib.mk
0S_COMPILATION_SCHEMA_DB_PATH= /$(USER)/test/cnote.csdd
0S_APPLICATION_SCHEMA_DB_PATH= /$(USER)/test/cnote. asdb
LDLIBS = -los -losc -loscol

SOURCES = adacol.c CommandStats.c skm_adac.cc ct_cnote.c
OBJECTS = adacol.o CommandStats.o skm_adac.o ct_cantoe.o
EXECUTABLES = adacol c¢t_cnote

CPPFLAGS = -IS(OS,ROOTDIR)/includo)

CFLAGS = -gx

CC = cc ‘

LIB_PATH = -L/usr/local/objectstore/sun4/lib

all: $(EXECUTABLES)

adacol:. adacol.o CommandStats.o schema_standii_Adacol

$(0S_PRELINK) .os_schema.cc \
$(0S_COMPILATION_SCHEMA_TWB_PATH) $(0S_APPLICATION_SCHEMA_DB_PATH) \

adacol.o $(LDLIBS) -

0SCC ~c .os_schema.cc :
$(LINK.c) -o adacol -Bstatic adacol.oc CommandStats.o .os_schema.o \

$(LDLIBS)
$(0S_POSTLINK) adacol

ct_cnote: ct_cnote.o schema_standin_Adacol

$(OS_PRELINK) .os_schema.cc \
$(0S_COMPILATION_SCHEMA_DB_PATH) $(0S_APPLICATION_SCREMA_ DB _PATH) \

ct_cnote.o $(LDLIBS)
0SCC -c .os_schema.cc '
$(LINK.c) -o ct_cnote ct_cnote.o .os_schema.o $(LDLIBS)

$(0S_POSTLINK) ct_cnote

ct_cnote.o: ct_cnote.c 7
$(CC) $(CPPFLAGS) $(CFLAGS) -c ct_cnote.c

adacol.o: adacol.c
$(CC) $(CPPFLAGS) $(CFLAGS) -c adacol.c

CommandStata.o: CommandStats.c
$(CC) $(CPPFLAGS) $(CFLAGZ) -c¢ CommandStats.c

schema_s‘andin_Adacol: skm_adac.cc
0SCC $(CPPFLAGS) -batch_schema $(0S_COMPILATION_SCHEMA_DB_PATH) \

skm_adac.cc

touch schema_standin_ddacol

clean:

osrm -f $(0S_COMPILATION_SChTMA_DB_PATH)

osrm ~f $(OS_APPLICATIUN_SCHLMA_DB_PATH)

m -2 S(EIECUTABLES)iO(OBJECTS) schema_standin_Adacol

B-25

P U

o
F b ko mcatiria i,

o

depend: .depend_ C

.depend _C:
osmakedep .depend_C $(CPPFLAGS) -files $(SQURCES)

include .depend C

B-26

v

D R

B.8 Test Program: adacol.c
/% file : adacol.c program - mair file
ObjectStore C library - collection tunctions

implemented by Li Chou, in Jan 1993.
s/

#include <stdio.h>
#include <ostore/ostore.h>

"~ #include <ontors/coll.h>

#include <stxings.h>
#include <sys/time.>>

. #include <sys/resource.h>

'inglude “adacol.h"

extern FILE sbasic_file;
void initial_col();

void database_open_close();
void data_rstrieve();

void data_scan();

void data_scan_nio();

void display_note();

void exit();

/% global timing variables for CommandStats -- Jacohs 18/09/91 s/
static struct timeval elapsed; '

static struct rusage exec; '

database #*db; '

database_root #root;

os_typespec *note_type, *os_coll typo, e S i

pain()

{
char choose;

start_objectstore();

os_collection_ initialize();

/* allocat os_typespec =/
note_type = alloc_typespec("note_col",0);
os_coll_type = alloc_typespec("os_ collection".O).

/*-- main loop -~ :
drive manual

-= choose input by user ¢/

while (1) {
printf("es Testing Menu **\n");
printf(" 0. Initial database : cnote.db\n");
printf(" 1. Testing the opening(closing) database\n");

B-27

e A B i3 DA e e N RS e R N S A

printf(" 2. Testing the lookup and retrieve\n");

printf£(" 3. Testing the sequential scaning\n");

printf(" 4. Testing the sequential scaning (without output to screen)\n™);
printf(" 5. Bye !!\n"); ' , ‘

printf("Input -> ");
while (scanf("}c" , &choose) ==1) {
if (choose <= 5’ gk choose >= ’0’)
break;
}
if (choose == ’5?) exit(1);

switch (choose) {

case ‘0’
initial_col();
break;

case ‘1’ :

' database_open_close();
break;

case 2’ :
data_retrieve();
break;

case 1’3’ :
data_scan();
break;

case ‘&’
data_scan_nio();
break;

}
}
}

void database_oper_close()
{

os_collection sbhead;

int count;

count = 1;
/* Start time commandstat =/
CommandStats(1i, stdout, &elapsed, &exec);
/* repeat opening and closing a database 10 times =/
vhile (count <= 10) {
db = database_lookup_open("/lchou/test/cnote.db", 0, 0664);
0S_BEGIN_TXN(tz1,0,transaction_update) {
root = database_root_find("ahead”, db); .
head = (os_collection®) database_root_get_value(root, os_coll_type);
} OS_END_TXN(tx1);
database_close(db);
++comunt;
)}
/* Stop time commandatat =/

B-28

ot

CommandStats(0, stdout, kelapssd, kexsc);

}

wvaid Aata _retrieve() '
<
os_collection *head, *queried_note;
OS_CUrsoxr #cur;
struct note_col #*p;
char *input_string;

printf("Retrive a record, the priority is 5000\n")§
/* if (scanf("¥d", &input_number) == 1) /

db = database_lookup_open("/lchou/test/cnote.db", 0, 0664);
0S_BEGIN_TXN(tx1,0,transaction_update) {

Toot = database_root_find(“"ahead", db);

head = (oa_collection®) database_rcot_get_value(root, os_coll typo),

/* Start time commandstat #/

CommandStats(1, stdout, &elapsed, &exec);

strepy(input_string,"priority == 5000");

queried_note = os_collection_query(head, "note_cols", input_string,

db,0 ,0); :
cur = os_cursor_create(cueried_note, 0);
for (p = (struct note_cols) os_cursor_tirst(cur); os_cursor_more(cur);
P = (struct note_cols) os_cursor_next(car))
display_note(p) ;

v os_cursor_delete(cur);
/* Stop time commandstat »/
CommandStats(0, stdout, kelapsed, &kexec);
} 0S_END_TIN(tz1);
database_close(dd); .

void data_scan()
{ .
os_collection shead;
08_CUrsor *cur;

struct note_col #p;

db = database_lookup_opun("/lchou/test/cnote.db", 0, 0664);
0S_BEGIN_TXN(tx1,0,transaction_update) {

root = database_root_find("ahead”, db);

head = (os_collection®) database_root_get. valuo(root, os_coll_type);

/* Start time commandstat =/

CommandStats(3, stdout, &elapsed, kexec);

cur = os_cursor_create(head, 0);
for (p = (struct note_cols) os_cursor. first(cuz); os_cursor_more(cur);

p = (struct note_cols) os_cursor_next(cur))
display_note(p) ;

/

L-29

RN

P

red

os_cursor_delete(cur);
/* Stop time commandstat */
CommandStats(0, stdout, kelapsed, kexec);
} OS_END_TXN(tx1);
~ database_close(db);
}

void data_scan_nio()
{

os_collection #head;
08_Cursor *cur;
struct note_col *p;

db = database_lookup_open("/lchou/test/cnote.db", 0, 0664);
0S_BEGIN.TXN(tx1,0,transaction_update) {

root = database_root_find("ahead”, db);
head = (os_collection*) database_root_get_value(root, os_coll_type);
/* Start time commandstat =/

CommandStata(1, stdout, &elapsed, &exec);
cur = os_cursor_create(head, 0);

for (p = (struct note_cols) os_cursor._first(cur); os_cursor_more(cur);
p = (struct note_col*) os_cursor_next(cur));

os_cursor_delete(cur);
/* Stop time commandstat */
CommandStata(0, stdout, Zelapsed, kexec);
} OS_END_TXN(tx1);
database_close(db);
}

/% Print out to the specified stream this note %/

void display_note(n)

struct note_col #*n;

{
printf("priority (%d) name %s \n", n->priority, n->name);
printf("note ¥%s\n", n -> note);

}

void initial_col() {

struct note_col shead, sbasic_note;
int counter;

db = database_lookup_open("/lchou/test/cnote.dd", 0, 0664);
/* Start time commandstat =/
CommandStata(1, stdout, Xelapsed, &kexec);
0S_BEGIN_TXN(tx1,0,transacticn_update) {
root = database_root_find("ahead”, db);
if ('root) {
root = database_create_root(db, "ahead");
head = os_collection_create(db,

! . I Ml SR I ,) N~ i

®

os_collection maintain_cursors |
os_collection_maintain_orxder,10,0,0);

databass_root_set_value(root, head, os_coll_typs);

}

else

{ _

printf("Ths database exist !! osrm it first {!!\n");
exit(); ' ' :

)}

head = database_root_get_value(root, os_coll_type);

for (counter = 1; counter <= 10000; ++counter){ _
basic_note = (struct note_col®*) objectstore_allcc(note_type, 1, db);
svitch (counter - ((int)(counter/10)) = 10) {

case 0 :

basic_note -> priority = counter ;

strepy(basic_note -> name ,"Danile");

stxcpy(basic_note -> note ,"you need meet your friend tomorrow");

break;

case 1 :
basic_note -> priority = counter ;
strcpy(basi:_note -> name ,"Susan");

strcpy(basic_note ~-> note ,"you need meet Course commitee at 9:00");

break;

case 2: «

basic_note -> priority = counter ;

strepy(basic_note -> name ,"Li");

strcpy(basic_note -> note ,"Enjoy the silent night in Ladb");
dbreak; .

case 3 :

- basic_note -> priority = counter ;

strcpy(basic_note ~> name ,"Chars");

- strepy(basic_note -> note ,"You may meet me at 11:00");

break; -

case 4 : :
basic_note -> priority = counter ;

strcpy(basic_note ~> name ,"Mike");

strcpy(basic_note -> note ,"We have an appointment with principle”);
break; » '
case 5 : .

basic_note -> priority = counter ;

strcpy(basic_note -> name ,"Coan");

strcpy(basic_note ~> note ,"¥We found & book you lost");
breakr;
cane 8 :

basic_note -> priority = counter ;

strcpy(basic_note ~> name ,"Nancy");

B-31

e —— o ittt <o 2

strcpy(basic_note -> note ,"Study Chapter 10 of 0S");
bresk; e
cose 7
basic_note -> priority = counter ;
strcpy{basic_note -> name ,"Patric");
strcpy(basic_nots -> note ,"Please collect class addresses.");
break;
cace 8 :
basic_note -> priority = counter ;
strcpy(basic_note -> name ,"Jenny");
strcpy(basic_nots -> note ,"Bappy New Year");
break;
case 9
basic_note -> priority = counter ;
strcpy(basic_note -> nams ,"Amy");
strcpy(basic_note -> note ,"Merry Christmas");
break; '
}
os_collection_insert(head, basic_note);
}
} OS_END_TXN(tx!);
" database_close(db);
/* Stop time commwandstat =/
CommandStats(0, stdout, kelapsed, &exec);
}

B-32

 LEN : natural :» KOTE_NAME’LENGTH;

B.9 Test Program: purobj.a

=~ a pure Ada program which without accessing DBMS
with TEXT_I0; use TEXT_10;
vith STATIS_ADA;

~ ‘procedure PUROBJ is
- pragma LINK_WITE("-Bstatic statis.o CommandStats.o");
subtype NOTE_STRING is STRING(1..20);

type LINK_IOTE;
type LINK_NOTE_PTR is access LINK_NOTE;

type LINK_NOTE io

record
priority: INTEGER;

- .name : NOTE_STRING;

note string(1..80);
_ next ¢ link_note_ptr;
end record;

package INI_I0 is nev integer_ io(INTEGER);
use INT_I0;

subtype CHOICE_TYPE is integer range 0 .. 5;
package CHOICE_ IO is nev integer_1o0(CHOICE_TYPE);

HZAD : LINK_NOTE_PTBR;
N_IN : INTEGER;
MYCHROICE : CROICE_TYPE;

procedurs STRCPY(NAME : out string;
NOTE_NAME : in string) is

begin '
NAME(1.. LEN) := NOTE_NAME(1..LEN);
ond STRCPY;

function DATABASE _RETRIEVE(NUMBER : integer;
HEAD : LINK_NOTE_PTR) return LINK_NOTE_PTR is
TEMP : LINK_NOTE_PIR;
begin
TEMP := HEAD; _
while (NUMEZR /= TFMP.PRIORITY) and then (TEMP /= KULL)
loop
TEMP := TEMP.NEXT;
end loop;
return TEMP;
ond DATABASE_RETRIEVE;

B-33

function INSERT(HEAD : LINK_KOTE_PTR;

N ¢ LINK_ROTE_PTR) retura LINK_ROTE_PIR is
begin '
N.NEXT := HEAD,
return N;
end INSERT;

vrocedure DISPLAY_NOTE(N : LINK_NOTE.PTR) is
begin .
put (R.PRICRITY);
put_line(" " & N.NAME);
put_line(N.NOTE);
nev_line;
end DISPLAY_NOTE;

procedure TRAVERSE(EEAD : LINK_KOTE_PIR;
10 : integer) is

TEMP : LINK_NOTE_PTR;
begin
TEMP := HEAD;
while T2¢P /= nnll loop
i¢ . /=0 then
VISPLAY_NOTE(TEMP);
end if;
TENP := TEMP.NEXT;
end loop;
end TRAVERSE;

procedure DATA “CAN_IO(HEAD : LINK_NOTE_PTR) is

begin
-~ start time }
_ STATIS_ADA.COMMANDSTATS(1);
TRAVERSE(HEAD, 1) ;
== stop time
STATIS_ADA.COMMANDSTATS(O) ;
end DATA_SCAN_I10;

procedure DATA_SCAN(EEAD : LINK_NOTE_PTR) is

begin

~= start time
STATIS_ADA .COMMANDSTATS(1);
TRAVERSE(HEAD,0);

~= stop time
STATIS_ADA.COMMANDSTATS(0);

end DATA_SCAN;

B-34

R ORE

o

PROCEDURE DATA,RETRIEVE(TEHP : LINK_NOTE_PTR) is
INPUT_NUMBER : integer;
BASIC_NOTE ¢ LINK_NOQTE_PIR;
begin .
put_line("Retrive a record, the priority is 5000");
INPUT_NUMBER := 5000;
-- start time '
STATIS_ADA.COMKANDSTATS(1);
BASIC_KOTE :n~ DATABASE_RETRIEVE(INPUT_NUMBER, TEMF);
DISPLAY_NOTE(BASIC_NOTE);
== stop time
STATIS_ADA.COMMANDSTATS(0);
end data_retrieve;

function INITIAL_DB return LINK_NOTE_PTR ia

HEAD,
BASIC_NOTE : LINK_NOTE_PTR;
COUNTER : integer := 1;
begin

~= start time
" STATIS_ADA.COMMANDSTATS(1);
for COUNTER in 1 .. 10000 1lcop

BASIC_NOTE := new LINK_NOTE;

case (COUNTER mod 10) is

vhen 0 =>
BASIC_NOTE.PRIORITY := counter ;

~ STRCPY(BASIUL_NOTE.NAME ,"Danile");
STRCPY(BASIC_NOTE.NOTE ,"you need meet your friend tomorrow");

vhen 1 =>
BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Susan");
STRCPY(BASIC_NOTE.NOTE »"you need meet Course commitee at 9:00"); -

vhen 2 =>
BASIC_NOTE.PRIORITY := counter ;
STRCPY(BASIC_NOTE.NAME ,"Li");
STRCPY(BASIC_NOTE.NOTE ,"Enjoy the silent night in Ladb");

vhen 3 =>
BASIC_NOTE.PRIORITY := counter ;
STRTPY(BASIC_FOTE.NAME ,"Chars");
STRCPY(BASIC_NOTE.NOTE ,"You may meet me nt 11:00");

when 4 =>
- BASIC_NOTE.PRIORITY := counter ;

B-35

R TN -Ta

STRCPY(BASIC_NOTE.NANE
STRCPY(BASIC_NOTE.NOTE

vhen 6 =>
BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NJME
STRCPY (BASIC_NOTE.NOTE

when 6 =>
BASIC_KOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhon 7 =>

BASIC_NOTE.PRIORITY :=

STRCPY(BASIC_NOTE.NAME
.- STRCPY(BASIC_NOTE.NOTE

when 8 =>

BASIC_NOTE.PRIORITY :=
STRCPY(BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhen 9 =>

BASIC_NOTE.PRIORITY :=
STRCPY (BASIC_NOTE.NAME
STRCPY(BASIC_NOTE.NOTE

vhen others => null;
ond case;

,"Mike");
,"We have an appointment with principle");

counter ;
. ncouu) ;
,"We found a book you lost");

counter ;
. unmcyu) ;
,"Study Chapter 10 of 0S");

counter ;
,"Patric"); ,
,"Pleass collect class addresses.");

counter ;
, "Jenny") :
,"Happy New Year");

counter ;
’n‘myn);
,"Mexrry Christmas");

HEAD := INSERT(HEAD, BASIC_NUTE);

end loop;
-~ stop time
STATIS_ADA.COMMANDSTATS(0);
return HEAD;
end INITIAL_DB;

begin

puat_line("s* TESTING MENU »s");

put_line("
put_line("
put_line("
put_line(”
put_line(" 4. BYE !1%);
PUT("INPUT -> ");
choice_io.get (WYCROICE);
text_io.skip_line;

oxit;

» W= o

INITIAL DATABASE; TRANSIENT ONLY");

TESTIAG TEE LOOKUP AND RETRIEVE");

TESTING TEE SEQUENTIAL SCANING W I/0 *);
TESTING THE SEQUENTIAL SCANING WITHOUT 1/0");

B-36

exception
when data_error | constraint_error =>
text_io.skip_line;
text_io.put_line("Your choice must be betveen 0 an' 5");
text_io.nevw_line;
end;
end loop;

-~ do different tasks from here

case MYCHOICE is
vhen 0 =>
HEAD := INITIAL_DB;
vhen 1 =>
DATA_RETRII'VE(Y..AD);
vhen 2 =>
DATA_SCAN_IO(HEAD);
vhen 3 =>
DATA_SCAN(HEAD) ;
vhen 4 =>
oxit;
when others => null;
end case;
end loop;
erd PUROBJ;

B-37

B.10 Test Program: purobj.c

/* C purcbj.c program ~ main file
A pure C program but perform the same functionality of
adaobj.c except no persistent objects
./ :
#include <atdio.h>
#include <strings.h>
#include <sys/time.h>
#include <sys/resource.h>

ot TR ek L e Wb

#include "purohj.h"

extern FILE sbasic_file;

NOTE initial_db();

void data_retrieve();

void data_scan_io();

void data_scan();

NOTE database_raetrieve();

void display_note(); 1

void traverse(); j

void exit(); i

int is_empty(); !
i

#
%\&
&
3
g
|
b
=
%

/* global timing variables for CommandStats ~- Jacobs 18/09/91 #/
static struct timeval elapsed;
static struct rusage exec;!
main() ']
{
© char choose; (
static NOTE head;

head = NULL; l
/*=- main loop -- :
drive manual
== choose input by user =/
vhile (1) {
printf(“s» Testing Menu =:\n");
printf(" 0. Initial database : transient oaly\n");
printf(" 1. Testing the lookup and retriuve\n");
printf(" 2. Testing the sequential scaning i/o\n");
print£(" 3. Testing the sequential scaning without i/o\n");
printf(" 4. Bye !!\n");
printf("Input -> ");
vhile (scanf("%c" , &choose) ==1) {
if (choose <= ’4’ gk choose >= ?0’)
break;
}
if (choose == ?4’) oxit(1);

B-38

suitch (choose) {
case 0’ :
head = initial_db();
break;

- case ’1? :
data_retrieve(head);
break; '

case ’2’ :
data_scan_io(head);
break;

case '3’ :
data_scan(head);
break;

¥
}
}

int is_smpty(temp)
NOTE temp;
{
int empty;
" if (temp == NULL)
empty = 1;
else

empty = 0;

return empty;

void data_retrieve(temp)
NOTE tenmp;
o

int d4nput_number;
NOTE basic_note;

printf("Retrive a record, the priority is 5000\a");
/¢ if (scanf("Yd", Riuput_number) == 1) =/
it (is_empty(temp))
printf(*\n¥s\n","... LIRK LIST IS EMPTY ...");
1se {
input_number = 5000;
/* Start time commandstat =/
CommandStats(1, atdout, kelapsed, kexec);
basic_note = database-rotriove(input_numbor, temp);
display.note(basic_note);
/* Stop time commandstat »/
CormandStats(0, stdout, elapsed, &exec);

}

B-39

void data_scan_io(temp)
NOTE temp;
{
it (is_empty(temp))
printf("\n%s\n","... LINK LIST IS EMPTY ...");
else : '
{ .
/+ Start %ime commandstat @/
© CommandStats(i, stdout, &elapsed, &exec);
traverse(temp,1);
/% Stop time commandstat =/ ‘
CommandStats(0, stdout, telapsod, kexec);

}
}

void data_scan(temp)
KOTE temp;
{

if (is_empty(temp))
printf(*\n¥%s\a","... LINK LIST IS EMPTY ...");
else
{
/* Stmit time commandstat »/
CoxmardStats(1l, stdout, Relapsed, &axec);
traverse(tamp,0);
/% Stop time commendstat */
CommandStats(0, stdout, &elapsed, kexec);

}

/* retrieve a note */

NOTE database_retrieve(numb, anote)
int pumb;

NCTE anota;

{

NOTE temp;

temp = anote;
vhile ((numb != temp -> priority) &k (temp != NULL))
temp = temp-> next;

return temp;

}

B-40

- /# Print out to the specified stream this note »/

void display_note(n)

NOTE n; :

{ ‘ ' .

printf("priority (%d) name %¢ \n", n->priority, n->name);
printf("note ¥%s\n", n -> note);

/* Insert a node s/
NOTE inmert{p, q)
NOTE p;
NOTE q;
{
q => next= p;
return q;
}

/* Sequencial scaning »/
void traverse(anote,io)
NOTE anote;

int io;

{ . -

ROTE tomp;

temp = anote;
vhile (temp != NULL) {
if (io0 !'= 0) {
display_note(temp);

texp = temp ~> next;
}

NOTE initial_db()

{ 1
/* global timing variables for CommandStats -~ Jacobs 18/09/91 */

head. basic_note; ‘ :

comnter;

for (cbunter = 1; countor <= 10000; ++counter){
basic.note = (NOTE) malloc(sizeof(struct link_note));
svitch (counter - ((int)(counter/i0)) » 10) {
case 0 :
basic_note -> priority = counter ;

B-41

strepy’ uote => name ,"Danile');

strcpy(uasic_nvte -> note ,"you need meet your friend <omorrow");
brezk;

case 1 :

basic_note -> priority = counter ;

strcpy(basic_note -> name ,"Susan");

strcpy(basic_note -> note ,"you need meet Course commitee at 3:00");
break;

case 2:

basic_note -> priority = counter ;

strcpy(basic_note -> name ,"Li");

strcpy(basic_note -> note ,"Enjoy the silent night in Lab"};
break;

case 3 :

basic_note -> priority = counter ;

strcpy(vasic_note -> name ,"Chars");

strcpy(basic_ncte -> note ,"You may meet me at 11:00");
break; : :
case 4 :

basic_note -> priority = counter ;

strcpy(basiz_note -> name ,"Mike");

strcpy(Lasic_note -> note ,"We have an appointment with principlo")
break;

case b :

basic_note -> priority = counter ;
strcpy(basiz_note -> name ,"Coan");

strcpy(basic_note -> note ,"Ue found a book you lost");.
break;

case 6 :

basic_note -> priosity = counter ;

strcpy(basic_ncte -> name ,"Nancy");

strcpy(basic_note -> note ,"Study Chapter 10 of 0S");
break;

case 7 :

tasic_note ~> priority = counter ;

strcpy(basic_note -> name ,"Patric");

strcpy(basic_note -> note ,"Please collect class adriresses.");
break:
case 8 :

basic_note -> priority = counter ;

strcpy(basic_note -> name ,"Jenny");

strcpy(basic_note -> note ,"Happy New Year");

break;
case 9 :

basic_note -> priority = counter ;

strcpy(oasic_note -> name ,"Amy");

strcpy(basic_note -> note ,"Merry Christmas");

break;

}

[

}

head = insert(head, basic_note);

}
/* Stop time commundatat ¢/
CommandStats(0, stdout, &elapsed, &cxoc).

Teturn head;

B-43

B.11 Test Program: hello_cat.mk (for hello_nst.a)

include $(0S_ROOTDIR)/etc/ostore.lib.ink

0S_COMPILATION_SCHTEMA _DB_PATH = /lchou/hello.csdd
OS_APPLICATION_SCHIMA_DB_PATE = /lchou/hello.asdd
SCHENA_SOURCE = hello_os.cc

LDLIBS = -los -loac

CPPFLAGS = -gx -I..

EXCUTABLE = hello_ost

OBJECTS = .os_schean.o hello_ost.o

hello_ost: .os_schema.o
a.make -L .. he lo_ost -f hello_ost.a

mv a.out hello_ost
$(03_ROOTDIR)/1ib/patch hello_ost

include ../ada.xk -

B-44

1
g
!
{
i
E
|
!

o o et

 TX := TRANSACTION_BEGIN;

B.12 Test Program: hello_ost.a

with 0S_TYPES; use OS_TYPES;
with OSTORE; use OSTORE;
with PERS_SCALARS;

with STATIS_ADA; '
vith TEXT_I0; use TEXT_I0;

procoduro hello_ost is

pragma LINK_WITH("-Bstatic .os_schema.o ../libOIada a statis.o CommandStats.o
~L/usr/local/objectstore/sun4/lidb -los ~losc");

packege INT_ID is nev integer. 1o(INTEGEn).

ure INT_I0;

-- add check the performance

package time_io is new fixed_io(duvation);

use Time _Io;

A_Number : Integer;

Count ¢t Integer;

The_Choice : Character;

ROOT: DATABASE_ROOT;
IP: PERS_SCALARS.INTEGER_PTR;
DB: DATABASE;
TX: TRANSACTION;
begin
put(" The nuzbers loop to perform -> ");
got (A_number);
-=- start time
STATIS_ADA.COMMANDSTATS(1);
INIT.ADA_INTERFACE; :
DB := DATABASE_OPEN("/lchou/ada.db", FALSE, 8#664#);
for Count in 1 .. A_number loop ‘

ROOT := DATABASE_ROOT_FiND("counter", DB);

if invalid(ROOT) then ‘ -

ROOT := DATABASE_CREATE_ROOT(DB, "counter"); - » —

IP := PERS_SCALARS.PERS_INTEGER.PERSISTENT_NEW(DB); '

PERS_SCALARS . PERS_INTEGER.DATABASE_ROOT_SET_VALUE(ROOT, IP);

erd if;

IP := PERS_SCALARS.PERS_INTEGER.DATABASE_ROUT_GET VALUE(RODT)

IP.all := IP.all + 1;

put_line("Hello World!");

put("Progran run now is ")

put(IP.all); ’

put.line(" times.");

put("Program xun from this .xocti.on is");

put(Count);

put_line(" times.");

TRANSACTIOK_COMMIT(TX) ; ;
end loop; . 4

-= stop time
STATIS_ADA.COMMANDSTATS(0);

put("=** For perferming ");
put (A_number,1);

put_line(" times s#s");
new_line;

end HELLO_OST;

Pl o s s

o

B.18 Test Program: hello_ost.mk (for hello_ost.c)

include ${0S_ROOTDIR)/etc/ostore.lib.mk
OS_COMPILATION_SCHEMA_DB_PATH= /$(USER)/helloc.comp_schema
0S_APPLICATION_SCHEMA_DB_PATH= /3(USER)/halloc app_schema
LDLIBS = -los -losc

SOURCES = hello2at.c CommandStats.c schema.cc

OBJECTS = hello2at.o hello2atb.o CommandStats.o schema.o
EXECUTABLES = hello2at hello2atd

CPPFLAGS = ~I$(0S_ROOTDIR)/include

CFLAGS = -g

CC = cc-

LIB_PATH = -L/uar/local/objoctstoro/sun4/11b

all: $(EXECUTABLES)
##% using static binding ###

hello2at: hello2at.o CommandStats.o schema_standin_B

$(OS_PRELINK) .os_schema.cc \
$(0S_COMPILATION_SCHEMA_DB_PATH) ‘(US lPPI’"ATION SCHEMA_DB_PATH) \

hello2at.o $(LDLIBS)

0SCC ~¢ .os_schema.cc
$(LINK.c) -0 hello2at -Bstatic hello2at.o CommandStats.o .os_schema.o \

$(LDLIBS)
$(0S_POSTLINK) hello2at

hello2at.o: hello2at.c
$(CC) $(CPPFLAGS) $(CFLAGS) -¢ hello2at.c

CommandStats.o: CommandStats.c
cc ${CPPFLAGS) $(CFLAGS) ~c CommandStata.c

schema_standin B: schema.cc
0SCC $(CPPFLAGS) -batch_schema $(0S_COMPILATION_SCHEMA_DB_PATH) schema.cc

touch schema_standin 8 . . I

clean:

" osrm -2 $(0S_COMPILATION_SCHEMA_DB_PATH)

m ~f $(EXECUTABLES) $(OBJECTS) schema_standin B
depend: .depend B

.depend _B:
osmakedep .depend_B t(CPPFLLGS) ~files $(SOURCES)

include .depend B

B.14 Test Program: helio-oat.c

#include <stdio.h>
#iaclude <ostore/cstore.h>
#include <sys/time.h>
#include <sys/resource.h>

/* global timing variables for CommandStats -- Jacobs 18/09/91 /
static struct timeval elapsed; ‘
static struct rusage exec;

main()
{
database *dbi;
database_root ®count_root;
int scountp, counter, i;
extern double get_clock();
double start_time, calculation_time;
" start_objectstore();

printf(" The numbers loop to psrform -> ");
if (scanf("¥%d", &counter) == 1) {
/% Start time commandstat =/
CommandStats(1l, stdout, &elapsed, kexec);
dbi = database_lookup_open("/lchou/dbi", 0, 0664);
for (1 = 1; 4 <= counter; ++i) {
OS_BEGIN_TXK(tx1,0,transaction_update) {
count_root = datatase_root_find("count", dbi);
countp = (int s)database_root._get_value(count_root, 0);

printf("Hello, world.\n"); .
printf("Program run %d times\n", ++scountp);
printf("Run from this execution %d times\n", i);

} OS_END.TXN(tx1);
}
/# Stop time commandstat =/
CommandStats(0, stdout, &elapsed, kexec);
printf(" for performing %d times \n", counter);

B-48

b A A s A bk 101

iy Y e aa

A i o Rt

o,

2

Appendiz C. Interface Programs

C'l] -

C.1 Interface Program: Makefile

include $(0S_RCOTDIR)/atc/ostore.lidb.mk

SOURCES = glue.cc glue_pti.cc
OBJECTS = glue.o glue_pti.o

set CC to your C++ compiler commund
" # unset TFLAGS (+0STD is an USCC flag to allow only standard C++)
TFLAGS=

CC=0SCC
~ CPPFLAGS = -gx
CTLAGS = -g

CDEPEND = -I$(0S_ROOTDIR)/include -
all: libosada.a ada_objects

clean:
osrm -f ${0S_COMPILATION_SCHEMA_DB_PATH}
rm -f ${EXECUTABLES} ${0OBJECTS} schema_standin

glue.o: glue.cc
${CC} $(CPPFLAGS) $(TFLAGS) -c glue.cc

glue_pti.o: glue_pti.cc
$(CC) $(CPPFLAGS) $(TFLAGS) ~-c glue_pti.cc

libosada.a: glue.o glue_pti.o
ar rc libosada.a glue.o glue_pti.o
ranlib libosada.a

ada_objects:

a.make 0S_TYPES -f os_types.a os_typ.b.a
a.make OS_EXCEPTIONS -f except.a except b.a
a.make OSTORE -f ostore.a ostors_b.a
a.make OSTORE_GENERICS -f ostore_g.a ostorg b.a
a.make OS_CNLLECTION_PKG -f os_coll.a os_coll b.a
a.make O0S_CURSOR_PKG -f os_cur.a os_cur_b.a
a.make PERS_SCALARS -f pscalr.a

.depend:
osmakedep .depend $(CDEPEND) -files $(SOURCES)

include .depend

c2

i
=
¥
3
r
5
5
A
%
£

C.2 Interface Program: os.types.a

T --Definitions for objsctstore’s portable types

" with UNSIGNED_TYPLS;
" package 0S_TYPES is

subtype OS_UNSIGNED_INTS is UNSIGNED_TYPES.UNSIGNED_TINY_INTEGER;
; . subtype OS_SIGNED_INTS is TINY_INTEGER;
: _ wubtype OS_UNSIGNED_INT16 is UNSIGNED_TYPES.UNSIGNED_SHORT.INTEGER;
i subtype OS_INT16 is SHORT.INTEGER;
' subtype OS_UNSIGNED_INT32 is UNSIGNED_TYPES.UNSIGNED INTEGER;
subtype OS_INT32 is INTEGER;

g o subtype OS_BOOLEAN is INTEGER;
o subtype OS_UNIXTIME_T is UNSIGNED_TYPES.UNSIGNED_INTEGER;
a , ~ subtype OS_COMPARE_RESULT is INTEGER; |
‘ subtype OS_BITF is UNSIGNED_TYPES.UNSIGNED_INTEGER

S ~ type OSTORE_OPAQUE is private; ﬂ'r

o type OS_STRING is new STRING(1..150);

type 0S_COLLECTION_BEHAVIOR is (MAINTAIN_CURSORS, ALLOW_DUPLICATES,

- o SIGNAL_DUPLICATES, ALLOW_NULLS, MAINTAIN_ORDER);
T for 0S_COLLECTION_BEHAVIOR’SIZE use 32;
o function valid(0BJ: OSTORE_OPAQUE) return BOOLEAN;

L function invalid(0BJ: OSTORE_OPAQUE) return BOOLEAN;

S :& private

TR type OSTORE_OPAQUE is new INTEGER;

L end 0S_TYPES;

e

R C-3 :

C.8 Interface Program: os_typ_b.a

== Implementation for os types
package body O5_TYPES is

function valid(OBJ: OSTORE_OPAQUE) return BOOLEAN is
begin
return 0BJ /= 0;

"end valid;

pragma INLINE(valid);

function invalid(0BJ: OSTORE_OPAQUE) return BOOLEAN is
begin

retucn O0BJ = 0;

end invalid;

pragma INLINE(invalid);

end 0S_TYPES;

C.4 Interface Program: ostore.u

~=- Basi: interface to ObjectStore from the Ada programming language
-= Prototpe design and implementation by Dave Rocenberg cf Objoct
==~ Denign, Inc.

~=Functions are oxtended and binding is cha.ngcd to C library interface
--by Li Chou. Nov, 1992.

with SYSTEM; use SYSTENM;
with US_TYPES; use OS_TYPES;
p-~xage OSTORE is

== Public Types
type STRPTR is access STRING;
type DATABASE is new OSTORE_CPAQUE;
type DATABASE _ROOT is new OSTORE_OPAQUE;
=-=collections
type CS_COLLECTION is new GSTORE OPAQUE,
type OS_COLL_REP_DSCPR is new OSTORE_OPAQUE;
type OS_CURSOR is nevw USTGRE_OPAQUE;
type SEGMENT is nevw OSTORE_OPAQUE;
type OS_TYPESPEC is new OSTORE_OPAQUE;

-- transactions
type TRANSACTION is mew OSTORE_OPAQUE;
type CONFIGURATION is new OSTORE_OPAQUE;
type TRANSACTION_TYPE is (NONE, UPDATE, PEAD_ONLY);
for TRANSACTION_TYPE’SIZE use 32;
for TRANSACTION_TYPE use (NONE => 0, UPDATE => 1, PEAD_ONLY => 2).
type REFERENCE is private;
subtype U_MODE is OS_INT32 range O .. 8#777#;

== Databass Operations
procedure DATABAS.:_CLOSE(DB: DATABASE);

-~ Raise ERR_DATABASE_EXISTS _
function DATABASE_CREATE(PATH: STRING; MCDE: U_MODE := 8#664#;
OVERWRITE: BOOLEAN := FALSE) return DATABASE;

== Raise ERR_DATABASE_NOT_FOUND
function DATABASE_LOOKOUP(PATH: STRING; MODE: U_MODE := 0) return DATABASE;

== Raise ERR_DATABASE_NOT_FOUND
function DATABASE_OPEN(PATH: STRING; READ_ONLY: BOOLEAN := FALSE;
MODE: U_MODE := 0) return DATABASE;
== function DATABASE_GET_TRANSIENT_DATABASE return DATABASE;

== <function DATABASE_OF(LOC: ADDRESS) return DATABASE;

Cs

-- Objectstore Oporations
procedure INIT_ADA_INTERFACE;

procedure START_OBJECTSTORE;

-- function OBJECTSTORE_IS_PERSISTENT(LOC: ADDRESS) return BOOLEAN;
-- procedure OBJECTSTORE_CHMOD(PATH: STRING; MODE: NATURAL);

-- procedure OBJECTSTORE_SET.BUFFER_SIZE(BYTES: POSITIVE);

-- Transaction Opsrations
function TRANSACTION_GET_CURRENT ret rn TRANSACTION;

procedure TRANSACTION_ABORT(TX: TRANSACTION := TRANSACTION_GET_CURRENT);
function TRANSACTION_GET_MAX_RETRIES return OS.INT32;
procedure TRANSACTION_SET_.MAX_RETRIES(COUNT: NATURAL := 10);

function TRANSACTION_TOP_LEVEL(TX: TRANSACTION := TRANSACTION_GET_CURHENT)
return BOOLEAN;

s R R S e S

y

function TRANSACTION.GET_TYPE(TX: TRANSACTION := TRANSACTION_GET.CURRENT)
retarn TRANSACTION_TYPE;

procedura TRANSACTION_COMMIT(TX: TRANSACTION := TRANSACTION_GET_CURRENT);
procedure TRANSACTION_ABORT_TOP_LEVEL;

function TRANSACTION_BEGIN(T_TYPE: TRANSACTION_TYPZ := UPDATE)
return TRANSACTION;

== transaction_get_parent is mot provided in C library
== function TRANSACTION_GET_PARENT(TX: TRANSACTION := TRANSACTION_GET_CURRENT)
- return TRANSACTION;

== Utility functions
functior B_TO_0SB(V: BOOLEAN) retura OS_BOOLEAN;

== Database Root Operationa
==~ Returns null if root not found!
function DATABASE_ROOT_FIMD(NAME: STRINKG; DB: DATABASE)
return DATABASE_ROOCT;

== Raise ERR_ROOT_EXISTS and ERR_DATABASE_NOT_FOUND

C6

function DATABASE_CHEATE_ROUT(DB: DATABASE; NAME: sTRING)

return DATABASE_ROCT;

function DATABASE_BGOT-GET_NAHE(BDOT: DATABASE_ROOT) return STRING;

function ALLOC_TYPESPEC(NAME: STRING) return OS_TYPESPEC ;

private
type RRFERENCE is

record)
SEGID: OS_INT32;
OFFSET: 0S_INT32;
WORDO: OS_INT32;
WORD1: OS_INT32;
WORD2: 0S_INT32;

end record;

end OSTORE;

C-7

C.5 Interface Program: ostore.b.a

--Body implementation for a prototype Ubjec:Store/Ada interface
~-Uesign and implementation by Dave Rossnberg, Object Design, Inc,
--performsd under contract to PRC, Dec-Jan, 1991-32.

‘~-Functions are extended and binding is changed to C library iuterface
--by Li Chou. Nov, 1982.

with SYSTEM; use SYSTEM;

with LANGUAGE; use LANGUAGE;

with OS_EXCEPTIONS;

with C_Strings;

with A_Strings;

package body OSTORE is

~-Utility C strirg conversion

function c_ada_to_c(S: SYSTEM.ADDRESS; L:INTEGER) return SYSTEM.ADDRESS;
pragma INTERFACE(C, c.ada_to_c);

pragma INTERFACE_NAME(c.ada_to_c, C_SUBP_PREFIX & "c_ada_to_c");

_ ==DATABASE_OPEN
function c_database_open(PATH: ADDRESS; OVERWRITE: 0S_BOOLEAN;
MODE: U_MODE) return DATABASE;
pragma INTERFACE(C, c_database_open);
pragma INTERFACE_NAME(c_database_open,
C_SUBP_PREFIX & "database_lookup_open");

function DATABASE_OPEN(PATH: STRING; READ_ONLY: BOOLEAN := FALSE;
MODE: U_MODE := 0) return DATABASE is

begin '

return c¢_database_open(c_ada_to_c(PATE(PATH’FIRST) *ADDRESS,

: PATH’LENGTH), B_TO_OSB(READ_ONLY), MODE);

end DATABASE_OPEN;

pragma INLINE(DATABASE_OPEN);

-=-DATABASE_CLOSE :
procedure c_database_close(DB : DATABASE);
pragma INTERFACE(C, c_database_close);
rrzgma INTERFACE_NAME(c_datzbase_close,
C_SUBP_PREFIX & "database_close");

procedure DATABASE_CLOSE(DB : DATABASE) is
begin .
.c_database_close(DB);
end DATABASE _CLOSE;
pragma INLINE(DATABASE_CLOSE);

~=DATABASE_CREATE
function c_database_create(PATH: ADDRESS; MODE: U_MODE;
OVERWRITE: OS_BOOLEAN) return DATABASE;

C8

prigmn INTERFACE(C, c_database_create);
pragma INTERFACE_NAME(c_database_create,
C_SUBP_FREFIX & "dttabant create®);

function DATABASE_CREAYE(PATH: STRING; MODE: U_MODE := 882664#%;
OVERWRITE: BOOLEAN := FALSE) return DATABASE is

begin »

return c_databalo_croato(c,ada_to-c(PATR(PATB'FiRST)’ADDRESS,

PATH’LENGTH), MODE, B_T0,0SB(DVERVRITE));

ond DATABASE_CREATE;)

pragma INLINE(DATABASE_CREATE);

-~DATABASE_LOCKUP
function c_databass_lookup(P."H: ADDRESS; MODE: U_MODE) return DATABASE;

pragma INTERFACE(C, c_database_lookup);

pragma INTERFACE_NAME(c_databr -~ locl up,
~ C.SUBP_PREFIX & "database_lookup");

function DATABASE_LOOKUP(PATH: STRING; MODE: U_MODE := O) return DATABAS! is
begin .

return c.database_lookup(c_ada_to_c(PATE(PATH'FIRST)’ADDRESS,PATH’LENGTH),
MODE) ;

ond DATABASE_LOOXUP;
pragaa INLINE(DATABASE_LOOKUP);

==Initialization

- procedure c_init_ada_interface;
" pragma INTERFACE(C, c_init_ada_interface);

pragma INTERFACE_NAME(c.init_ada_interface,

C_SUBP_PREFIX & “c_init_ada_interface”);

procedure INIT_ADA_ INTERFACE is
“degin .

c.init_ada_interfacs;

end INIT_ADA_INTERFACE;

pragrma INLINE(INIT_ADA_INTERFACE);

=~Initialization
procedure c_start_objectstore;
pregma INTERFACE(C, c_start_obiectstore);

pragaa INTERFACE _NAME(c_start_objectstore,

C_SUBP_PREFIX & "start_objectstore");

procedure START-DBJECTSTORE is
_begin
c.start_odjectstore;
end START_OBJECTSTORE;
pragea INLINE(START, OBJECTSTORE);

=-Transaction get current

c9

N

2

e

function ¢_transaction_get_current return TRAKSACTION;
pragma INTERFACE(C, c_transaction_get_current);
pragma INTERFACE NAME(c_ transaction_get_current,
C_SUBP_PREFIX & "transaction_get_current”);
function TRANSACTION_GET_CURRENT return TRANSACTION is
begin -
return ¢_transaction_get_current;
ond TRANSACTION_GET_CURRENT;
pragma INLINE(TRANSACTION_GET_CURRENT);

=~Transaction begin
function c_traneaction_begin(T: TRANSACTION_TYPE) return TRANSACTION;
pragoa INTERFACE(C, c_transaction_begin);
pragma INTERFACE_NAME(c_transaction begin,
C.SUBP_PREFIX & "transaction_begin");
function TRANSACTION_BEGIN(T_TYPE: TRANSACTIOW_TYPE := UPDATE)
return TRAKSACTICN is
begin
return c_transaction_begin(T _TYPE);
end TRANSACTION_BEGIN;
pragma INLINE(TRANSACTION_BEGIN);

-=-Transaction commit
procedure c_transaction_commit(T: TRANSACTION);
pragma INTERFACE(C, c.transaction_commit);
pragna INTERFACE_NAME(c_transaction_commit,
C_SUBP_PREFIX & "transaction_commit");

procedure TPANSACTION_COMMIT(TX: TRANSACTION := TRANSACTION_CET_CURRENT) is

begin

c.transaction_commit(TX);

oend TRANSACTION_COMMIT;

pragma INLINE(TRANSACTION_COMNIT);

procedure c_transaction_abort_top_level;
pragma INTERFACE(C, c.transaction_abort_top.level);
pragma INTERFACE_NAME(c_transaction_abort_top_level,
C_SUBP_PREFIX & "transaction_abort_top_level");
procedure TRANSACTION_ABORT_TOP_LEVEL is o
begin
c.transaction_abort_top_level;
ond TRANSACTION_ABORT.TOP_LEVEL;
pragma INLINE(TRANSACTION_ABORT_TOP_LEVEL);

procedure c_transaction_abort(T: TRANSACTION);
pragma INTERFACE(C, ¢_transaction.abort);
pragza INTERFACE_NAME(c_transaction_abort,
C_SUBP_PREFIX & “transaction_abort");

procedure TRANSACTION_ABORT(TX: TRANSACTION :« TRANSACTION_GET.CURRENT) is

begin

C10

ettt i e e A AN et b el e 8y e b e N Sk AR Y e

_c._transaction_abort(TX);
end TRANSACTION_ABORT;
pragma INLINE(TRANSACTION_ABORT);

function c_transaction_get_type(T: TRANSACTION) return mns.\c'rmn TYPE;

pragma INTERFACE(C, c_transaction_get_type);

pragma INTERFACE_NAME(c_transaction_get_type,
C_SUBP_PREFIX & "transaction_get_type");

fnnCtion TRANSACTION_GET_TYPE(TX: TBANSACTION

return TRANSACTION_TYPE &
bogin
return c_transaction_get_type(TX);
. end TRANSACTION_GET_TYPE;
pragma INLINE(TRANSACTION_GET_TYPE);

:= TRANSACTION_GET_CURRENT)

.fnnction c.transaction_get_max_retries return OS_INT32;

 pragma INTERFACE(C, c_trensaction_get_max_retries);
pragma INTERFACE_NAME(c_transaction_get_max_retries,

C.SUBP_PREFIX & "transaction_get_max_retries");
function TRANSACTION_GET_MAX_RETRIES return OS_INT32 is

begin

return c_transsction_get_max_retries;

end TRANSACTION_GET_MAX_RETRIES;

pragma INLINE(TRANSACTION_GET_MAX_RETRIES);

procedure c_transaction_set_max_retries(C
pragma INTERFACE(C, c_transaction_set_max_retries);
pragma INTERFACE_NAME(c_transaction_set_max_retries,

C.SUBP_PREFIX & "transaction_set_max_retries");
procedure TRANSACTION_SET_MAX_RETRIES(CCUNT: NATURAL := 10) is

begin

. ww*cattanlaction_-ot_nax_rotriol(COUNT); .

end TRANSACTION_SET_MAX_RETRIES;

pragma INLINE(TRANSACTION_SET_MAX_RETRIES);

t NATURAL);

function c_transaction_top_level(T: TRANSACTION) return BOOLEAN;
pragma INTERFACE(C, c._transaction_top_level);

pragma INTERFACE_NAME(c_transaction_top_level,

C.SUBP_PREFIX & "transaction_top_level");
function TRANSACTION_TOP_LEVEL(TX: TRANSACTION := TRANSACTION_GET_CURRENT)

return BOOLEAN is
begin

return c_transaction_top_level(IX);

end TRANSACTION_TCP_LEVEL;
pragma INLINE(TRANSACTION_TOP_LEVEL);

==Utility functions

C-11

function B_TO_0SB(V: BOOLEAR) raturn 0S_BOOLEAN is
begin

if V then

return 1;

else

retura 0;

end if;

end B_TO_0SB;

pragma INLINE(B_TO OSB).

function 0SB_TO_B(I: integer) return BOCLEAN is
begin :
if£ I > 0 then

return true;

else

return false;

end if;

end 0SB_TO_B;

pragma INLINE(OSB_TO_B);

==DATABASE ROOT FUNCTIONS

-~DATABASE ROOT FIND

function c_database_root_find(A: ADDRESS; D: DATABASE)
return DATABASE_ROOT;
pragma INTERFACE(C, c_database_root_find);
pragma INTERFACE_NAME(c_database_root_find,
C_SUBP_PREFIX & "database_root_find");

function DATABASE_ROOT_FIND(NAME: STRING; DB: DATABASE)
return DATABASE_ROOT is
begin

return c_database_root_find(c_ada_to_c(NAME(NAME’FIRST)’ADDRESS,
NAME’LENGTH), DB);
end DATLBASE_RODT_FIHD; -

pragma INLINE(DATABASE_ROOT_FIND);

-=-DATABASE CREATE ROOT

function c_database_create_root(D: DATABASE; A: ADDRESS)
return DATABASE_ROOT;

pragma INTERFACE(C, c.database_create_root);

pragma INTERFACE_NAME(c_database_create_root,

C.SUBP_PREFIX & "database_create_root");
function DATABASE_CREATE_ROOT(DB: DATABASE; NAME: STRINU)
return DATABASE_ROOT is
begin
return c¢_database_create_root(DB,

c_ada_to_c(NAME(NAME’FIRST) *ADDRESS, NAME’LENGTH));

end DATABASE_CREATE_ROOT;

C-12

d
”

™~
AN

pragza INLINE(DATABASE_CREATE_ROOT) ;

--DATABASE_ROOT_GET_NAME

function c_database -root_get_name(R : DATABASE_ROOT) return SYSTEM.ADDRESS;
pragma IKTERFACE(C, c_datebase_root_get_name);
pragna INTERFACE NAME(c_database_root_get_nane,

C.SUBP_PREFIX & "database_root_get namo").

function DATABASE_RGOT_GET_NAME(ROOT : DATABASE_ROOT) return STRIKG is
ROOT_ADDRESS : SYSTEM.ADDAESS;
ROOT_NAME : A_STRINGS.A_STRING;

NAME : STRING(1..254) :=(others => * *);
. LEN : natural := 0; '
begin

ROOT_ADDRESS :mc_database_root_get_name(ROOT);

ROOT_NAME := C_Sttings;CONVERT_C_TD_A(C-IttingI.to_C(BDOT_ADDRESS)) H
LEN s= ROOT_NAME.S’LENGTH;
NAME(1.. LEN) := ROOT_NAME.S(1..LEN);
return NAME(1.. LEN);
ond DATABASE_ROOT_GET_NAME;

-- create nev os_types
function C_ALLOC_TYPESPEC(A: address; I: integer) return O0S_TYPESPEC;
pragma INTERFACE(C, c_alloc_typespec);
pragma INTERFACE_NAME(c_alloc_typespec ,
C_SUBP_PREFIX & "alloc_typespec");

function ALLOC.TYPESPEC(NAME: STRING) retura 0S_TYPESPEC is
begin

return C_ALLOC_TYPESPEC(c.ada_to c(NlHE(HIHE’FIBST)’ADDRESS NAME’LENGTH) ,0);

end ALLOC_TYPESPEC;
pragma INLINE(ALLOC_TYPESPEC);

end OSTORE;

C13

C.6 Interface Program: ostore.g.a

-- Basic interface to ObjectStore from the Ada programming‘language

-~ Prototype design and implementation by Dave Rosenberg of Ubject

-- Design, Inc. This file provides suitable generic definitomns.
-~Punctions are extended and binding is changed to C library interface
=~by Li Chou. Nov, 1992. '

with OS_TYPES; use OS_TYPES;
with OSTORE; use OSTORE;
with SYSTEM; use SYSTEM;
generic
type U_TYPE is private;
type U_TYPEPTR is access U_TYPE;
with function GET_OS_TYPESPEC return 0S_TYPESPEC;
package OSTORE_GENERICS is

-= Databaze Roots
function DATABASE_ROOT_GET_VALUE(ROOT: DATABASE_ROOT) return U_TYPEPIR;

-=- for collections -by Li Chou 92-11-06
function DATABASE_ROOT_GET_VALUE(ROOT: DATABASE_ROOT) retura 0S_COLLECTION;

procedure DATABASE_ROOT_SET.VALUE(ROOT: DATABASE_ROOT; VALUE: U_TYPEPTR);
--for collecitons -by Li Chou 92-11-06

procedure DATABASE_ROOT.SET_VALUE(ROOT: DATABASE_ROOT; VALUE:

0S_COLLECTION) ; o :

~= Persistent Allocation
function PERSISTENT_NEW(DB: DATABASE) return U_TYPEPTR;

end OSTORE_GENERICS;

et Biarin wln oAk er s

C-14

C.7 Interface Program: ostorg_b.a
--Ada implementation for generic components of the UbjectStore interface

with OSTORE; use OSTORE;
with SYSTEM; use S{STEM;
with LANGUAGE; use LANGUAGE;
with OS_TYPES; use OS_TYPES;
with 0S_EXCEPTIONS;

package body OSTORE_GENERICS is
EXCEPTIUN_INX : OS_EXCEFTIONS.0S_EXCEPTION_INDEX;

--DATABASE ROOT GET VALUE
-= for os_collsction. Li Chon 92-11-06
function c_database_root_get_value(R: DATABASE_RGOT; T: OS TYPESPEC)

return 0S_COLLECTION;

function c_database_root_get_value(R: DATABASE_ROOT; T: O0S_TYPESPEC)
return U_TYPEPTR;
pragma INTERFACE(C, c.dstabase_root_get_value);
pragma INTERFACE_NAME(c_database_root_get_value,
' C_SUBP_PREFIX & "database_root_get_value™);

function DATABASE_ROOT_GET_VALUE(ROOT: DATABASE_ROOT)
return U_TYPEPIR is.
begin

return c_database_root_get_value(R0OOT,GET_OS_TYPESPEC);
end DATABASE_ROOT_GET_VALUE;
pragma INLINE(DATABASE_ROOT_GET_VALUE);

- for collections -by Li Chou 92-11-06
function DATABASE_ROOT_GET_VALUE(ROOT: DATABASE_ROOT) return OS_COLLECTION is
begin .
return c_database_root_get_value(ROOT,GET_0S_TYPESPEC);
end DATABASE_ROOT_GET_VALUE;

-=DATABASE ROOT SET VALUE

--for collecitons =-by Li Chou 92-11-06

procedure c_database_root_set_veiue(R: DATABASE_ROCT; V: 0S_COLLECTION;
T: 0S_TYPESPEC);

procedure c_database_root_set_value(R: DATABASE_ROOT; V: U_TYPEPIR;

T: OS_TYPESPEC);
pragma INTERFACE(C, c_database_root_set_value);
pragma INTERFACE_NAME(c_database_rost_set_value,

C._SUBP_PREFIX & "database_root_sot_value");

procedure DATABASE_ROOT_SET_VALUE(ROOT: DATABASE_ROUT; VALUE: U_TYPEPTR) is
begin
c._database_root_set_value(RCOT, VALUE, GET_0S_TYPESPEC);
end DATABASE_ROOT_SET_VALUE;
pragma INLINE(DATABASE_ROOT_SET_VALUE);

C-15

Wi et ok

~-for collecitons <-by Li Chou 92-11-06
procedure DATABASE_ROOT_SET_VALUE(ROOT: DATABASE_ROOT; VALUE: OS_COLLECTION) is

begin

c.database_root_set_value(ROOT, VALUE, GET_OS_TYPESPEC);

~end DATABASE_ROOT_SET_VALUE;

-- Persistent nevw
function c_persistent_new(T: OS_TYPESPEC; N: OS_INT32; DB: DATABASE)
return U_TYPEPTR;
pragma INTERFACE(C, c_persistent_new);
pragma INTERFACE_NAME(c_persistent_new,
C_SUBP_PREFIX & "objsctstore_allec");
function PERSISTENT_NEW(DB: DATABASE) return U_TYPEPTR is
begin
return c_persistent_new(GET_0S_TYPESPEC, 1, DB);
end PERSISTENT_NEVW;
pragma INLINE(PERS"ISTENT_NEW H

end OSTORE_GENERICS;

i
i

|

C-16

e

™

C.8 Interface Program: os.coll.a

-- Basic collection interiace to ObjectStore from the Ada programming
-- language prototype implementation by Li Chou '
with SYSTEM; use SYSTENM;
with OSTORE; use OSTORE;
with OS_TYPES; use OS_TYPES;
generic
type U_TYPE is private;
type U.TYPEPTR is access U_TYPE;
with functior GET_OS_TYPESPEC return 0S_TYPESPEC;

package 0S_COLLECTION_PKG is

FUNCTION OS_COLLECTION_CHANGE_BEHAVIOR(0S_COL : OS_COLLECTION;
' BEHV '+ STRING;
VERIFY : BOOLEAN :=TRUE)
XETURN 05_COLLECTION; '

Colloci:ion Operations

. paraneters of os_coll_rep_descriptor and int (retain policy descriptor)

-= are not allowed in this function

- create collection with behavior

-- 92-11-16.
function 0S_COLLECTION_CREATE(DB ¢ DATABASE;
BERV : STRING;
" SIZR : 0S_INT32 := 0;
RETAIN : BOOLEAN:= false
) return 0S_COLLECTION;
function 0S_COLLECTION CP.EATE(DB : DATABASE;
© SIZE : OS_INT32 := 0

) return 0S_COLLECTION;

procedure 0S_COLLECTION_DELETE(0S_COL : OS_COLLECTION);

function 0S_COLLECTION CLllDINALITY(OS COL : 08 COLLECI'ION) return
0S_UNSIGNED_INT32;

procedure 0S_COLLECTION_CLEAR(0S_COL : OS-C‘OLI.ECTIDN);

function 0S_COLLECTION_CONTAINS(0S_COL
VALUE

procedure 0S_COLLECTION_COPY(0S_COL_A
0S_COL_B

function 0S_COLLECTION_COUNT(0S.COL

0S_COLLECTION;
U_TYPEPTR) return BOOLEAN;

: 0S.COLLECTION;

0S_COLLECTIGON) ;

0S_COLLECTION;

C-17

LEeeet L s

.function 0S_COLLECTION_GET_PEHAVIOR(DS_COL : O0S_COLLECTION)

“function OS_COLLECTION_GREATER_TEAN(CS_COL_4 : OS_COLLECTION;

YALUE ¢ U_TYPEPTR) return 0S_UNSIGNED_INT32;

procedure 0S_COLLECTION_DIFFERENCE(OS_COL_A : OS_COLLECTION;
0S_COL_B : O0S_COLLECTION);

function 0S_COLLECTION_EMPTY(0S_COL : OS_CTLLECTION) return BOOLEAN;
function OS_COLLECTION_EQUAL(OS_COL_A : OS_COLLECTION;
. 03_COL_B : 0S_COLLECTION) return BOOLEAN;

return 0S_UNSIGNED_INT32;

0S_COL_B : OS_COLLECTION) return BOOLEAN;

function 0S_COLLECTION_GREATER.TEAN_OR_EQUAL(
0S_COL_A : OS_COLLECTION;
0S.COL_B : OS_COLLECTION) return BOOLEAN;

-- os_collections
procedure 0S_COLLECTION_INITIALIZE;

==~ the functicns of insert
procedure 0S_COLLECTION_INSERT(OS_COL : OS_COLLECTION;
VALUE : U_TYPEPTR) ;

procedure 0S_COLLECTION_INSERT_FIRST(0S_COL : OS_COLLECTION;
VALUE : U_TYPEPTR) ;

procedure 0S_COLLECTION_INSERT_LAST(0S_COL : 0S_COLLECTION;
VALUE : U_TYPEPTIR) ;

procedure 0S_COLLECTION_INTERSECT(0S_COL_A : OS_COLLECTION;
0S_COL_B : OS_COLLECTION);

function 0S_COLLECTION_LESS_THAN(OS_COL_A : GS_COLLECTION;
0S_COL_B : 0S_COLLECTION) return BOOLEAN;

fanction 0S_COLLECTION_LESS_THAN_OR_EQUAL(OS_COL_A : CS_COLLECTION:
0S_COL_P : OS_COLLECTION)
return BOO. 2AN;

function 0S_COLLECTION_NOT_EQUAL(OS_COL_A : GS_COLLECTION:
0S_COL_B : 0S_COLLECTION) rsturn BOOLEAN;

.

~= the functions of remove
function OS_CNLLECTION_REMOVE(OS_COL : O0S_COLLECTION;
VALUE ¢ U_TYPEPTR) return BOOLEAN;

function 0S_COLLECTION_REKOVE_FIRST(0S_COL : 0S_COLLECTION) return U_TYPEPTR;

C18

it
'

function DS_(.‘OLLECTION_RBEDVE_UST(DS_COL : OS_COLLECTION) return U_TYPEPIR;
function 0S_COLLECTION_ONLY(0S_COL : OS_COLLECTION) return U "YPEPTR;
function OS_COLLECTION_OBDERED_EQUAL(OS_COL_A : OS_COLLECTICN,

0S_COL_B : OS_COLLECTICN)
return BOOLEAN;

. == the functions of pick ‘

function 0S_COLLECTICN_PICK(0S_COL : OS_COLLECTION) return U_TYPEPTR ;

function 0S_COLLECTION_QUERY(0S_COL .t OS_COLLECTION;
: : ELEMENT_TYPE : STRING;
EXPRESS_STRING : STRING;
DB : DATABASE) RETURN 0S.COLLECTION;

function 0S_COLLECTION_QUERY_EXISTS(OS_COL : OS_COLLECTION;
ELEMENT_IYPE : STRING;
EXPRESS_STRING : STRING; :
DB " DATABASE) RETURN BOOLEAN;

o

function 0S_COLLECTION_QUERY_PICK(0S_COL : 0S_COLLECTION;

ELEMENT_TYPE : STRING;

EXPRESS_STRING : STRING;

DB : DATABASE) RETURN U_TYPEPTR;
procsdure 0S_COLLECTION_UNION(OS_COL.A : OS_COLLECTICN;

: 0S_.COL_B : 0S_COLLECTION);
end 0S_COLLECTION_PKG;
1
C-19

ERIWEIORIN

L AT A SRR SIRP I

C.9 Interface Program: o#-coll.b.a

-~ Basic collection interface to ObjectStore from the Ada programming
== language prototype implementztiocn by Li Chou

vith UNSIGNED_TYPES; use UNSIGNED. (PES;

with LANGUAGE; use LANGUAGE;

with OSTORE; use OSTORE;

wvith OS_TYPES; use OS_TYPES;

with SYSTEM; use SYSTEXM;

=~ library provide by VERDIX ADA.

with A_STRINGS;

. R SR TR N it Sl

package body OS_COLLECTION PKG is

SUBTYPE Uppercase_Character IS CHARACTER RANGE ’A’ .. ’Z%;
SUBTYPE Lowsrcase_Character IS CHARACTER RANGE ’a’ .. ’z2?;

FUNCTION Is_Alphabetic (The_Character : IN Character) RETURN BOOLEAN IS

BEGIN
IF The_Character IN Uppercase _Chorest~xr THEN
'RETURN 1TRUE;
ELSIF The_Character IN Lowercase_Character THEN
RETURN TRUE;
ELSE
RETUIRN FALSE;
END IF; ’
ERD Is_Alphabetic;

== Collection Operations
-- parameters of oz_ccll_rep_descriptor and int {retain policy descriptor)
-~ are not allowed in this function

-- create collection with behavior

92-11-16

function ADA_OS_BREHAVIOR(BEHV : STRIEG) return 0S_UNSIGNED_INT32 is
position_counter : natur»l := %; \
behavior_counter : natvral;

os_string_length : natv.al := 0;

os_behavior ! os_ursigped _int32 := 0;
temp_string : string(1..30);
temp_behavior : os_cc’lection behavior;
begin

os_string length := *shv’length;
vhile position_counter <= os_string_length loop
it Is_Alphabdetic(behv(position_counter)) then
temp.string(1..30) :=(others => ’ ?);
behavior_counter := i; '
vhile POSITION_COUNTER <= OS_STRING_LENGTHE and then
BEHV(POSITION.COUNTER) /= * ?
loop

C-20

TEMP_STRING(BEHAVIOR_COUNTER) := BERV(PCSITION_COUNTER);
POSITION_COUNTER := POSITION_COUNTER + 1;
BEHAVIOR_.COUNTER := BEHAVIOR_COUNTER + 1;
end loop; -- get behavior
TEMP_BEHAVIOR := 0S_COLLECTION BEBAVIOR’VALUE(TEHP STRING
(1..texp_string’length));
if temp_behavior in os_collection_behavior then
os_behavior := os_behavior + 2 »*
os_collection_behavior’pos(temp_behavior);

end if;

-- get ride of symbol ’|’ and space
else
position_counter := position_counter + 1 ;
end if;
end locp; :
return os_behavior;
end ADA_OS_BEEAVIOR;
FUNCTION C_OS_COLLECTION_CHANGE_BEHAVIOR(0OS_.COL : OS_COLLECTION;
BEHAVIOR : 0S_UNSIGNED_INT32;
VERIFY : OS.BOOLEAN) RETURN 0S COLLECTIDN;

PEAGHA INTERFACE(C, c_os_ collection _change_ bohavior).
PRAGMA INTERFACE_NAME(c_os.collection_change_bshavior,
. C.SUBP_PREFIX & "os_collection_change_behavior");

. FUNCTION 0S_CCLLECTION_CHANGE BEHAVIDR(OS COL : 0S_COLLECTION;

BERV STRING;
VERIFY : BOOLEAN :=TRUE) RETURN
0S_COLLECTION IS

> we

COLL_BHV : OS_UNSIGNED_INT32 :=0;
BEGIN)
it BEHV’length /= 0 then
"COLL_BHV := ADA_OS_BEHAVIOR(BEHV(1..BEHV’length));
end if;
RETURN C_0S_COLLECTION_CEAKGE_BEHAVIOR(0S_COL,COLL_BHV,B_TO_OSB(VERIFY));
END 0S_COLLECTION_CHANGE_BEHAVIOR; .
PRAGMA INLINE(OS_COLLECTION_CHANGE_BEHAVIOR);
function C_0S_COLLECTION_CREATE(DB : DATABASE;
BEHAVIOR : 0S_UNSIGNED_INT32;
SIZE : 0S_IKT32;
DESCRIPTOR :0S_INT32; ’ .
RETAIN : 0S_BOOLEAN) return 0S_COLLECTICN;

pragma INTERFACE(C, c_os_collection_creats);
pragma INTERFACE_NAME(~_cs_collection_create,
, C_SUBP_PREFIX & "os_collection_create");

function 0S_COLLECTION_CREATE(DB : DATABASE;

c21

, SIZE : OS_INT32 := 0) return 0S_COLLECTION is
~= behavor bitwise operation
~= os_collection_allow_nulls =1
~-- 08_collection_allow_duplicates => 2
-- os_collection_signal_duplicates => 4
-- os_collection_maintain_order = 8
' -- os_collection_maintain_cursors => 16
-- this sample default that the behavor is maintain_order and cursors (24)

COLL_BAV : OS_UNSIGNED_INT32 := 24;
RETAIN : BOOLEAN:= false;
begin

return C_0S_COLLECTION_CREATE(DB,COLL_BHV,SIZE,0,B_TO_OSB(RETAIN));
end 0S_COLLECTION_CREATE; '
pragma INLINE(OS_COLLECIION_CREATE);

-- create collection vith behavior

-- 92-11~16

function 0S_COLLECTION.CREATE(DB ¢ DATABASE;
BEHV : STRING;
SIZE : 0S_INT32 := 0;

RETAIN : BOOLEAN:= false) return

, 0OS.COLLECTICN is
COLL_BHV : OS.UNSIGNED_INT32 := 0
begin

if BEHV’length /= 0 then

COLL_BHV := ADA_OS_BEHAVIOR(BEHV(1..BEHV'length));

end if;

return C_0S_COLLECTION_CREATE{DB,COLL_BHV,SIZE,J,B_TO.O0SB(RETAIN));
er! 0S_COLLECTION_CRELTE;

procedure C_0S_COLLECTION_DELETE(0S_COL : OS_COLLECTION);
pragma INTERFACE(C, c_os_collection_delete);
pragma INTERFACE_NAME(c_os_.collection_delete,
————— C_SUBP_PREFIX & "os_collection_delete");

procedure O0S_COLLECTION_DELETE(DS_COL : OS_COLLECTION) is
begin
C_0S_COLLECTION_DELETE(0S_COL);
end 0S_COLLECTION_DELETE;
function c_os_collection_cardinality(0S.COL : OS_COLLECTION) return
0S_UNSIGNED_INT32;
pragma INTERFACE(C, c_os_collection_cardinality);
prejua INTERFACE_NAME(c_os_collection_cardinality,
C.SUBP_PREFIX & "os_collection, cardinality”);

fanction 0S_COLLECTION_CARDINALITY(OS_COL : OS_COLLECTICN) return
0S_UNSIGKED_INT32 is

Cc22

begin
return c_os_collection_ cnrdinality(os coL);

end 0S_COLLECTION_CARDINALITY;

pragma INLINE(OS_COLLECTICN_CARDINALITY);

procedure C_0S_COLLECTION_CLEAR(D3._COL :

08_COLLECTION) ;

pragma INTERFACE(C, c.os.collection_clear);
pragma INTERPACE NIME(c_os_collection_clear,
C_SUBP_PREFIX & “ol colloction clear");

procedurse 0S_COLLECTICN_CLEAR{0S_COL : OS_COLLECTIOH) 1:

begin
C_0S_C.LLECTION_CLEAR(OS COL).
end OS_COLLECTION_CLEAR;

-= os_collection_contains

function C_OS~COLLECTION_CDNTAINS(OS;COL ¢ 0S_COLLECTION;

VALUE

: U_TYPEPTR) return BCOLEAN;

pragma INTERFACE(C, c_os_collection_contains);
pragma INTERFACE_NAME(c_os_collection_contains,
C.SUBP_PREFIX & “on collection_contains");

function 0S_COLLECTION_CONTAINS(O0S.COL :
VALUE :
begin

0S_COLLECTION; .
U_TYPEPTR) return BOOLEA! is

return C_0S_COLLECTION CDNTAIUS(OS COL, VALUZ);

end 0S_COLLECTION_CONTAINS;

pragma INLINE(0S_COLLECTION. CONTAINS);

procodur. C_0S_COLLECTION_CCPY(0S_COL_A
0S_COL_B

0S_COLLECTION;
08.COLLECTION);

pragna INTERFACE(C, c_os. colloction copy) i
p:agnl INTERFACE_NAME(c_os_collection.copy,
C.SUBP_PREFIX & "os_collection_copy™);

procedure 03_COLLECTION_COPY(0S_COL.A :
05.COL_B :

begin

0S_CO!LECTION;
0S_COLLECTION) is -

C.0S_COLLECTION_COPY(0S_COL_A,0S_COL_B);

end 0S_COLLECTION_COPY;

pragma INLINE(OS_COLLECTION_COPY);

function C_0S_COLLECTION_COUNT(0S.COL
VALUR

08_COLLECTION;
U_TYPEPTR) return 0S_UMSIGNED_INT332;

pragma INT!RPACE(C. c.os_collection_count);
pragma INTERFACE_NAKE(c_os_collection_count,
C.8SUBP_PREFIX & “os.collection_count®);

function 0S_COLLECTION_COUNT(0OS_.COL
VALUR H

08_CCLLECTION;
U_TYPEPTR) return 0S_UNSIGNED_INT32 s

Cc-23

begin
return c¢_os_collection_count(0S_ COL ,VALUE) ;
oend OS_COLLECTION_COUNT;
pragma INLINE(O3_COLLECTION_COUNT);
pracedure C_0S_COLLECTION_DIFFERENCE(0S_COL_A : OS_COLLECTION;
0S_COL_B : OS_COLLECTION);

pragma INTERFACE(C, c_os_collaction_difference);
pragea INTERFACE_NAME(c_os_collection_difference, _
C_SUBP_PREFIX & "os_collection_difZerence");

procedure DS_COLLECTION_DIFFERENCE(OS.COL.A : OS_COLLECTION;

0S_COL_B : OS_COLLECTION) is

begin ‘
C.0S_COLLECTION _DIFFERENCE((OS_COL_A,0S_COL_B);

end 0S_COLLECTION_DIFFERENCE;

pragma INLINE(DS_COLLECTION_DIFFERENCE);

== os_collection_empty :
function C_0S_COLLECTION_EMPTY(OS_COL : OS_COLLECTION) return BJOLEAN;

pragma INTERFACE(C, c_os_collaction_empty);
pragma INTERFACE_NAME(c_.os_collection_empty,
C_SUBP_PREFIX & "os_collection_ ompty").

function 03_COLLECTION.EMPTY(0S_ COL : O0S .COLLECTION) roturn BDOLEAX is
begin
retura C_OS_COLLECTION_EMPTY(0S.COL);
ond OS_COLLECTION_EMPTY;
pragma INLINE(OS.COLLECTION_EMPTY);

== os_collection_equsl
function C_0S_COLLECTION_EQUAL(OS_COL_A : 0S_COLLECTION;
08_COLL_B : OS_COLLECTION) retura BOOLEAN;

pragma INTERFACE(C, c_os_collection_equal);
pragma INTERFACE_NAKE(c_os_collection_equal,
C_SUBP_PREFIX & "os_collection_equal")

function 0S_COLLECTION_EQUAL(OS_COL_A : 0S_COLLECTION;
0S_COL_B : 0S_COLLECTION) return BOOLEAN is
begin
retura C_03_CCLLECTION_EQUAL(0S.COL.A,08_COL_B);
end 03_COLLECTION_EQUAL;
pragma INLINE(OS_COLLECTION_EQUAL);

C2

-~ os_collection_gst_behavior
function c¢_os_collection_get behavier(0S_COL : OS_COLLECTION
) return 0S_UNSIGNED_INT32;
pragma INTERFACE(C, c.os_collection_get behavior);
pragma INTERFACE_NAME(c_os_collection_get behavior,
C_SUBP_PREFIX & "os_collection_get behavior“),
#anction 0S_COLLECTION_GET.BERAVIOR(OS_COL : OS_COLLECTION
) return 0S_UNSIGNED_INT32 is
begin
return c¢_os_collaction_get_behavior(0S_COL);
end 0S_COLLECTION_GET.BEHAVIOR;
pragma INLINE(OS_COLLECTION_GET_BEHAVIOR);
-- o0s_collection_greater_tian
function C_0S_COLLECTION_GREATER_THAN(OS_COL_A : OS_COLLECTION;
0S_COLL_B : OS_COLLECTION) return BOOLEAN.

pragma INTERFACE(C, c_os _collection_greater_than);

pragma INTERFACE_NAME(c_os.colloction_greater_than,
C_SUBP_PREFIX & “"os_collection_greater. than"),

0S.COLLECTION;
0S_COLLECTION) return BOOLEAX is

function OS,COLLECTION_GREATER_THAN(OS_COL_A :
0S.COL_B :

begin

return C_0S_COLLECTION_GREATER_TEAN(0S_COL_4,0S_COL_B);

end 0S_COLLECTION_GREATER_THAN;

pragma INLINE(OS_COLLECTION_GREATER_THAN);

-~ o8 colloction_groator than_or _equal

function C_0S_COLLECTION_GREATER_THAN_OR_EQUAL(0S_COL.A : OS COLLECTIDN,

0S_COLL_B : UOS_COLLECTION) return BOOLEAN;

prigna INTERFACE(C, c_os_collection_greater_ than_cr -equal);
-~ pragma INTERFACE_NAME(c_os_collection_greater_than_or_equal,

C_SUBP_PREFIX & "os.collection_greater_than_or oqual").

function OS. COLLECTION_GREATER_THAN_OR_EQUAL(OS_COL_A : OS_COLLECTION;
0s.coL_B : 08 COLLECTION) return BOOLEAN is
begin
return C_0S_COLLECTION._ GBEATER _THAN_OR_EQUAL(0S_COL_A,0S_COL_B);
end OS_COLLECTION_GREATER_THAN_OR_EQUAL;
pragoa INLINE(0S_COLLECTION_GREATER_THAN_OR_EQUAL);

~« implemented by Li Chou. 92-11-04

== os_collections

procedure C_0S_COLLECTION_INITIALIZE;
pragma INTERFACE(C, c_os_collection. initialize);
pragua INTERPACE_NAME(c_os_collection_initialire,

C-25

C_SUBP_PREFIX & "os_collection_initialize");
procedure OS_COLLECTION_INITIALIZE is
begin
C.0S_COLLECTION_INITIALIZE;
end 0S_COLLECTION_INITIALIZE;
pragma INLINE(OS_COLLECTION_INITIALIZE);

«= the functions of insert
procedure C_0S_COLLECTION_INSERT(0S_COL : OS_COLLECTION;
VALUE ¢ U_TYPEPIR);
pragma INTERFACE(C, c_os_collection_insert);
pragma INTERFACE_NAME(c_os_collection_insert,
' C_SUBP_PREFIX & "os_collection_insert");

procedure OS_COLLECTION_INSERT(0S.COL : OS_COLLECTION;
VALUE ¢ U_TYPEPTR) is
begin
C_0S_COLLECTION_INSERT(US_COL,VALUE);
end 0S_COLLECTION_INSERT;
pragma INLINE(OS_COLLECTION_INSERT);
-~ 0S_COLLECTION_INSERT_FIRST
procedure C_0S_COLLECTION_INSERT_FIRST(OS_COL : 0S_COLLECTION;
VALUE : U_TYPEPTR);
pragma INTERFACZ(C, c¢_os_collection_insert_first);
. pragma INTERFACE_NAME(c_os_collection_insert_first,
C_SUBP_PREFIX & "os_collection_insert_first");

procedure 0S_COLLECTION_INSERT_FIRST(0OS_COL : OS_COLLECTION;
' VALUE : U_TYPEPTR) is
begin
C.0S_COLLECTION_INSERT_FIRST(0S_COL,VALUE) ; o
end 0S_COLLECTION_INSERT_FIRST; e
pragma INLINE(0S.COLLECTION_INSERT_FIRST); -

«= os_collection_insert_last
procedure C_0S_COLLECTION_INSERT_LAST(0S_.COL : OS_COLLECTION;
. VALUE : U_TYPEPTR);
pragna INTERFACE(C, c¢_os_collection_insert_last);
pragma INTERFACE_NAME(c.os_collection_insert_last,
C_SUEP_PREFIX & "os_collection_insert_last");

procedure OS_COLLECTIDN_INSERT_LAST(OS_COL : 0S_COLLECTION;
VALUE : U_TYPEPIR) is

begin
C_0S_COLLECTION_INWSERT_LAST(0S_COL,VALUE);

C-26

il o

end 0S_COLLECTION_INSERT_LAST;
pragma INLINE(GS_COLLECTION.INSERT_LAST);

procedure C_0S_COLLECTION_ INTERSECT(0S_COL_A : 0S_COLLECTION;
0S.COL_B : OS_COLLECTION);

pragma INTERFACE(C, c_os_collection_intersect);
pragma INTERFACE_NAME(c_os_collection_intersect, .
C_SUBP_PREFIX & "os_collection_intersect");

procedure 0S_COLLECTYON_INTERSECT(LS_COL_A : OS_COLLECTION;
0S_COL_B : OS_COLLECTION) is
begin
C_0S_COLLECTION_INTERSECT(0S_COL_A, OS _COL_B); -
end 0S_COLLECTION_INTERSECT;
pragma IKLINE(OS_COLLECTION_INTERSECT);
== 08_collection_less_than
function C_0S_COLLECTION_LESS_THAN(OS_COL_A : 03_COLLECTIOY;
OS-COLL_B 0S_COLLECTION) returm BOOLEAN,

pragma INTERFACE(C, c_os_collection_less_than);
pragma INTERFACE_NAME(c_os_collection_less_than,
C_SUBP_PREFIX & "os_collection_less thln“)

function OS_COLLECTION_LESS_THAN(OS_COL.A : OS_COLLECTION;
0S_COL_B : 0S_COLLECTION) return BOOLEAN is
begin R
returan C_0S_COLLECTION_LESS_THAN(0S.COL_A,0S_COL_B);
end OS_COLLECTION_LESS_THAN;
pragna IFLINE(0S_COLLECTION_LESS_THAN);

== os_collection_laas_than_or_ oqnal
furction C_0S_COLLECTION_LESS_THAN_OR_EQUAL(0S_COL_ A : os COLLECTIDN~
0S_COLL_B : OS_COLLECTION) return BOOLEAN;

pragma IETERPACE(C, c-ou-ccllaction_loss-than_or_oqunl);
pragma IRTERFACE_WAME(c.os_collection_less_than_or_equal,
C_SUEP_PREFIZ & "os_collectiou_less_than_or_equal®™)

function 0S_COLLECTION_LESS_THAN_OR_EQUAL(OS_COL_A : 0S_COLLECTION;
0S_COL_B : 0S_COLLECTION) return BOOLEAN is
begin
return C_0S_COLLECTION_LESS_THAN_OR_EQUAL(0S_COL_A,0S_COL_B);
end 0S_COLLECTION.LESS_THAN_OR_EQUAL;
pragma INLINE(CS_COLLECTION_LESS_THAN_OR_EQUAL);

C-27

s

RN T

-- os_collection_not_squal
function C_0S_COLLECTION_NOT_EQUAL(OS_COL_A : OS_COLLECTION;
0S_COLL_B : OS_COLLECTION) return BOOLEAN;

pragma INTERFACE(C, c_os_collection_not_equal);
pragma INTERFACE_NAME(c_.os_collection_not_equal,
C_SUBP_PREFIX & "os_collection_not_equal®);

function 0S_COLLECTION_NOT_EQUAL(O0S_COL_A : OS_COLLECTION;
' ‘ 0S_COL_B : OS_COLLECTION) return BOOLEAN is
begin
return C_0S_COLLECTION_NOT_EQUAL(0S_COL.A,0S_COL_B);
end 0S_CCLLECTION.NOT_EQUAL;
pragma INLINE(OS_COLLECTION_NOT_EQUAL);

«= the functions of remove

function C_0S_COLLECTION_REMOVE(0S_COL : OS_COLLECTION;
: VALUE : U_TYPEPTR) retura BOOLEAN;
pragma INTERFACE(C, c_os_collection_remove);
pragma INTERFACE_NAME(c_os_collection_remove,
C_SUBP_PREFIX & "os_collection_remove");

fuaction 0S_COLLECTION_REMOVE(OS_COL : OS_COLLECTION;

VALUE ¢ U_TYPEPTR) return BOOLEAN is

degin '
" return C_0S_COLLECTION_REMOVE(OS_COL,VALUE);

end 0S_COLLECTION_REMOVE;

pragma INLINE(OS_COLLECTION_REMOVE);

=~ 0S_COLLECTION_REMOVE_FIRST

function C_OS_COLLECTION_REYOVE_FIRST(0S_COL : 0S_COLLECTION) return U_TYPEPIR;

pragma INTERFACE(C, c.os_collection_removs_tirst);
pragma INTERFACE_NAME(c_os_collecticn_remove_first, _
C_SUBP_PKEFIX & "os_collection_remove_first");

function 0S_COLLECTION_REMOVE_FIRST(0S.COL : OS_COLLECTION) return U_TYPEPIR is
begin
return C_0S_COLLECTION_REMOVE_FIRST(CS_COL);
end 0S_COLLECTION_REMOVE_FIRST;
pragma INLINE(OS_COLLECTIGK_REMOVE_FIRST);

== 0S_COLLECTION_REMOVE_LAST
function C_0S_COLLECTION_REMOVE_LAST(0S_COL : 0S_.COLLECTION) return U_TYPEPTR;

C-28

St i vt o e

b
[T N

pragma INTERFACE(C, c.os_collection_remove_last);
pragma INTERFACE_NAME(c_os_collection_renuve_last,
C_SUBP_PREFIX & "os_collection_remove_last");

function 0S_COLLECT.ON_REMOVE_LAST(0S_COL :AOS_COLLECTION) return U_TYPEPTR is
begin
return C_0S_COLLECTION_REMOVE_LAST(0S_COL);
end 0S_COLLECTION_REMOVE_LAST;
pragua INLINE(OS_COLLECTION_REMOVE_LAST);

== 0S_COLLECTION_ONLY
function C_0S_COLLECTION_ONLY(0OS.COL : OS.COLLECTION) return U_TYPEPIR;

pragme INTERFACE(C, c.os_collection.only);
pragma INTERFACE_NAME(c_os_collection_only,
- C_.SUBP_PREFIX & “os_collection_only");

function 0S_COLLECTION_ONLY(OS_COL : OS_COLLECTION) return U_TYPEPIR is
begin
retvrn C_OS_COLLECTION_ ONLY(OS C0L) 5
end 0S_COLLECTION_ONLY;
~= 0S_COLLECTION_ORDERED_EQUAL
function C_0S_COLLECTION_ORDERED_EQUAL(0S_COL_ A : 0S_COLLECTION;
0S_COLL_B : OS_COLLECTION) return sOOLEAN;

|
pragma INTERFACE(C, c_os_collection_ordered_equal);

pragma INTERFACE_NAME(c.os_collection. brdorod -squal,
C_SUBP_. PREFIX & "os_collection_ordered_equal”);

function 0S_COLLECTION_ORDERED_EQUAL(OS_COL_A : 0S_COLLECTION;
m%on B : OS_COLLECTION) return BOOLEAL is

begin

return C_0S_COLLECTION_ORDERED_EQUAL(DS_COL_A,08_COL_B);

end 0S_COLLECTION_ORDERED_EQUAL;

pragna INLINE(OS_COLLECTION_ORDERED_EQUAL);

== the functiona of pick

-- 0S_COLLECTINH_PICK

function C_0S_COLLECTION_PICK(0S_COL : 0S_COLLECTION) return U_TYPEPTR;

pragma INTERFACE(C, c-o._eollcction.pick);
pragma INTERFACE_NAME(c_os_collection_pick,
C_SUBP_PREFIX & "os_collection_pick");

functisn OS_COLLECTION_PICK(0S_COL : 0S_COLLECTION) return U.TYPEPTR is

begin '
return C_0S_COLLECTION_PICK(0S.COL);

eud 0S_COLLECTION_PICK;

C-29

b

pragma INLINE(OS_COLLECTION pmx).

FUNCTION C_0S_COLLECTION_QUERY(CS_CCL ¢+ 0S_COLLECTIOR;
ELEMENT s SYSTEM.ADDRESS;
EXPRESSION : SYSTEM.ADDRESS;
DB -+ DATABASE;
FILE_NAME : OS_INT32;
-LINE_NUMBER: OS_UNSIGNED_INT32)
RETURN 0S_COLLECTION;

PRAGMA INTERFACE(C , €_os_collection_query);
PRAGMA INTERFACE_MAHE(c_os_collection_query,
C_SUBP_PREFIX & "os_collection_query");

FUNCTION OS_COLLECTION._QUERY(GS_COL ¢ OS_COLLECTION;
ELEMENT TYPE : STRING;
EXPRESS_STRING : STRING;
DB : DATABASE) RETURN 0S_COLLECTION IS

-~ THIS SAMPLE DEFAULT THAT THE FILE NAME AND LINE NUMBER ARE 0

-~ FILE_NAME : INTEGER := 0;

-~ LINE_NUMBER : OS_UNSIGN_INT32 := 0;

ELEMENT_ADDRESS : SYSTEM.ADDRESS :=
A_STRINGS.TO_C(A_STRINGS.TO_A(ELEMENT_TYPE(1..ELEKENT _TYPE’LEHGTH)));

EXPRESSION_ADDRESS : SYSTEM.ADDRESS :=

A_STRINGS.TO_.C(A_STRINGS.TO_A(EXPRESS_STRING(1..EXPRESS_STRING’LENGTH)));

BEGIN

RETURN C_0S_COLLECTION_QUERY
(0S_COL ,ELEMENT _ADDRESS , EXPRESSION_ADDRESS,DB,0,0);
END 0S_COLLECTION_QUERY;
PRAGMA INLINE(OS_COLLECTION_QUERY);

FUNCTION C.0S_COLLECTION_QUERY_EXIST3(0S_COL : 0S_COLLECTION;
- ELEMENT + SYSTEM.ADDRESS;
EXPRESSION : SYSTEM.ADDRESS;
DB : DATABASE;
FILE_NAME : 0S_IHT32;
LINE_NUMBZR: 0S_UNSIGNED_INT32)
RETURN BOCLEAN;

PRAGMA INTERFACE(C, C_0S_COLLECTION_QUERY_EXISTS);
PRAGMA INTERFACE_NAME(C_0S_COLLECTION_QUERY_EXISTS,
C.SUBP_PREFIX & “os_collection_query_exists");

FUNCTION 0S_COLLECTION_QUERY_EXISTS(0S_COL + 0S_COLLECTION;
ELEMENT TYPE : STRING;
EXPRESS_STRING : STRING;
DB + DATABASE) RETURN BOCLEAN IS

e

=S
\

i bt S s

FUNCTION OS_COLLECTION_QUERY_PICK(OS_cOL

== THIS SAMPLE DEFAULT TEAT THE FILE KAME AND LIKE NUMBER ARE 0
=~ FILE_NAME : INTEGER := 0;
-- LINE_NUMBER : OS_UNSIGN_INT32 := 0,

ELEMENT_ADDRESS : SYSTEM.ADDRESS :
A_STRINGS.TO C(A STRINGS.TO A(ELEHENT TYPE(1. .ELEMENT. 1'YPE’LENGTH))).

EXPRESSION_ADDRESS : SYSJ/EM.ADDRESS :=

A_STRINGS.TO_C(A. STRINGS TO_A(EXPRESS_STRING(1..EXPRESS STRING’LE!!GTR))).

BEGIN

RETURN C_0S_COLLECTYON_QUERY_EXISTS
(0S_COL,ELEMENT _ADDRESS , EXPRESSION_ADDRESS,DB,0,0);
END 0S_COLLECTION_QUERY_EXISTS;
PRAGMA INLINE(OS_COLLECTIOR_QUERY_EXISTS);

FUNCTION C_0S_.COLLECTIUN_QUERY_PICK(DS_COL ¢ 0S_COLLECTION;

ELEMENT + SYSTEM.ADDRESS;
EXPRESSION : SYSTEM.ADDRESS;
DB : : DATABASE;

FILE_NAME : 0S_INT32;
LINE_NUMBER: 0S_UNSIGNED_INT32)
RETURN U_TYPEPTR;

PRAGMA INTERFACE(C, C_0S_COLLECTION_QUERY_PICK);
PRAGMA INTERFACE_NAME(C_0S.COLLECTION_QUERY_PICK,
C_SUBP_PREFIX & "os_collection_query_pick®);

+ 0S_COLLECTION;
ELEMENT_TYPE : STRING;

EXPRESS_STRING : STRING;

DB ¢ DATABASE) RETURN U TYPEPIR 1S

«= THIS SAMPLE DEFAULT THAT THE FILE NAME AND LINE HUHBEPL ARE 0

-- FILE_NAME : INTEGER := 0;

-- LINE_NUMBER : OS_UNSIGN_INT32 := O;

ELEMENT_ADDRESS : SYSTEM.ADDRESS :=
A_STRINGS.TO_C(A_STRINGS.TO_A(ELEMENT_TYPE(!..ELEMENT_TYPE’LENGTH)));

EXPRESSION_ADDRESS : SYSTEX.ADDRESS :=

A_.({INGS.TO_C(A_STRINGS .TO_A(EXPRESS_STRING(1..EXFRESS_STRING’LENGTE)));

BEGIN

RETURN C_0S_COLLECTION_QUERY_PICK
(0S_COL ,ELENERT _ADDRESS, EXPRESSION_ADDRESS,DB,0,0);
END 0S_COLLECTION_QUERY_PICK;
PRACMA INLINE(OS_COLLECTION_QUERY_PICK);

D e T L Tt TP A

- S

yroceduro C_0S_COLLECTION_UNION(OS_COL_A : OS_COLLECTION;
0S.COL_B : OS_COLLECTION);

pragma INTERFACE(C, c_os_collection_union);
pragma IHTERFACE KAME(c_os_collection_union,
C_SUBP_PREFIX & "os_collection_union");

procedure 0S_COLLECTION_UNION(0S.COI._A : OS_COLLECTION;
0S_COL_B : OS_COLLECTION) is
begin
C_0S_COLLECTION_UNION(0S_COL_A,0S_COL_B);
end 0S_COLLECTION_UNION;
pragma INLINE(OS.COLLECTION_UNION);

== 08_.CUrsors

function C_0S_CURSOR_CREATE(OS_COLL : OS_COLLECTION; B:0S_BOOLEAN)
return O0S_CURSOR;
pragma INTERFACE(C, c_os_cursor_create);
pragma INTERFACE_NAME(c_os_cursor_create,
C_SUBP_PREFIX & "os_cursor._create™);

function 0S_CURSOR_CREATE(OS_COLL : OS_COLLECTIOE) return OS_CURSOR is
UPDATED : boolean := false;
begin
return C_0S_CURSCR CREATE(OS COLL, B_TO_CSE(UPDATED));
end 0S_CURSOR_CREATE;
pragba INLINE(OS_CURSOR_CREATE);

procedure C_0S_CURSOR_DELETE(OS_CUR : OS.CURSOR);

pragma INTERFACE(C, c.os_cursor_delets);

pragma INTERFACE_NAME(c_os_cursor_delets,

C_SUBP_PREFIX &k “os_cursor_delete");
procedure 0S_CURSOR_DELETE(OS_CUR : OS_CURSOR) is
begin
C_0S_CURSOR_DELETE(0S_CUR) ;

ond 0S_CURSOR_DELETE;
pragma INLINE(OS_CURSOR_DELETE);

function C_0S_CURSOR_FIRST(0S_CUR : OS_CURSOR) return U_TYPEPTR;
pragma INTERFACE(C, c_os_cursor_first);
pragma INTERFACE_NANE(c_os_cursor_first,

C_SUBP_PREFIX & "os_cursor_first");
function OS_CURSOR_FIRST(0S_CUR : OS_CURSOR) return U_TYPEPIR is
begin

return C_0S_CURSOR_FIRST(0S_CUR);
end 0S_CURSOR_FIRST;

R T N N I S DU UV P VIV A TR AT) NI KA 5 PRI Y AT SRUIRS NS AP AT T 8 S J0% S S TR PO

et W b

b &

st Al i e+ At e i ot

‘pragma INLINE(OS_CURSOR_FIRST);

function C_0S_CURSOR_MORE(OS_CUR : OS_CURSOR) return BOOLEAN;
pragma INTERFACE(C, c.os_cursor_more);

pragua INTERFACE_NAME(c_os_cursor_more,
C_SUBP_PREFIX & "os_cursor_more");

function 0S_CURSOR_MORE(OS_CUR : OS_CURSOR) return boolean is
begin
roturn C_0S_CURSOR_ HORE(OS .CUR);
end 0S_CURSOR_MORE;
pragma INLINE(OS_CURSOR_MORE);

function C_OS_CURSOR_NEXT(OS_CUR : OS_CURSOR) return U_TYPEPIR;
pragma INTERFACE(C, c_os_cursor_next);

prqm INTERFACE_NAME(c_os_cursor_next,
C_SUBP_PREFIX & "os_cursor_next");

rnnction 0S_CURSOR_NEXT(0S._CUR : DS_CURSOR) return U. 'I'YPEPTB is

begin
return C_0S_CURSOR mr(os CUR);

end 0S_CURSOR_NEXT;
pragma INLINE(OS_CURSOR, m'r).

end 0S_COLLECTION_PKG;

c3s

N B Y AT TSNP« U or P I AN L SR R S O ERAEENEY
- - N o
e . / o ;
. K R _7/‘/ ; /
x - . 7 - - T, N e L
, R e

C.10 Interface P}oymm: oa.cﬁr;a

-- Basic cursor interface to ObjectStore from tha Ada programming
-- language prototype implementation by Li Chou

B vith OSTORE; use OSTORE;
REAN vith OS_TYPES; use O0S_TYPES;
generic

typs U_TYPE is private;

type U_TYPEPTR is access U_TYPE;

package 0OS_CURSOR_PXG is
== cursor’s functions

function O0S_CURSOR_CREATE(DS_COLL : OS_COLLECTION;
UPDATED : BOOLEAN := false) return 0S_CURSOR;

" procedure 0S_CURSOR_COPY(OS_CUR_A : OS_CURSOR;
0S_CUR_B : OS_CURSOR);

procedure 0S_CURSOR_DELETE(OS_CUR : 0S_CURSCR);

function OS_CURSOR_FIRST(O0S.CUR : OS_CURSOR) return U_TYPEPIR;

procedurs 0S_CURSOR_INSERT_AFTER(0S_COL : 0S_CURSOR;
‘ VALUE : U_TYPEPIR);

o procedure 0S_CURSOR_INSERT_BEFORE(0S_COL :
&) VALUE : U_TYPEPTR);

function 0S_CURSOR_LAST(0S_CUR : OS_CURSOR) return U_TYPEPTR;
function 0S_CURSOR_STREOS_CUR : 0S_CURSOR) return BOOLEAN;
function 0S_CURSOR_NEXT(OS_CUR : OS_CURSOR) return U_TYPEPTR;
h;”f function OS_CURSOR_NULL{GS_CUR : 0S_CURSOR) return boolsan;
, j; function 0S_CURSOR_PREVIQUS(CS_CUR : 0S_CURSOR) return U_TYPEPIR;
TR procedure 0S_CURSOR_REMOVE.AT(0S.CUR : 0S_CURSOR);
function OS_CURSOR_RETRIEVE(OS_CUR : 0S_CURSOR) return U_TYPEPIR;
function 03_CURSOR_VALID(OS_CUR : OS_CURSOR) retura boolean;

end 0S_CURSOR_PKG;

C-34

st SAEEL TR R e ST T 0 A b e v e e i ¢ il Radhe s de el

C.11 Interface Program: os.cur.b.a

== Basic collection interface to ObjectStore from the Ada programming
== language prototype implementation by Li Chou

with LANGUAGZ; use LANGUAGE;
vith OSTORE; use OSTORE;
with OS_TYPES; use OS_TYPES;

package body 0S_CURSOR_PKG is

== 0s_cursors

function C_OS_CURSOR_CREATE(OS_COLL : 0S_COLLECTION;
B : 0S.BOOLEAN) return O0S C’URSOR,
pragma INTERFACE(C. c_o8_cursor_create);
pragma IHTERFACE NAME(c_os_cursor_create,
C_SUBP.. PREI-‘IX & “os_cursor creato")

function 0S_CURSOR_CREATE(OS_COLL : OS_COLI.EC‘I'ION; ,
UPDATED : boolean := false) return OS_CURSOR is

begin

‘return C_0S_CURSOR_CREATE(0S_COLL, B_TO OSB(UPDATE:D)).
end 0S_CURSOR_CREAMTE;
pragma INLINE(OS_CURSOR_CREATE);

procoduro C.08_ CURSDR .COPY(OS_CUR_A : OS_CURSOR;
0S.CUR_B : 0S_CURSOR);
pragma INTERFACE(C, c.os_cursor.copy);
pngm INTERFACE_RAME(c_os_cursor_copy,
C_SUBP_PREFIX & “os_cursor_copy");

ptocoduro 0S_CURSOR_COPY(0S_.CUR.A : OS_CURSOR;

~0S.CUR_B : OS_CURSOR) is
begin
C_0S_CURSOR_COPY(0S_CUR_A, OS_CUR_B);
end 0S_CURSDR_COPY;
pragna INLINE(OS_CURSOR_COPY);

procedure C_0S_CURSOR_DELETE(OS_CUR : 0S.CURSOR);
pragaa INTERFACE(C, c_os_cursor_delets);
" pragma INTERPACE_NAME(c_os_cuzser._delets,
. C.SUBP_PREFIX & "os_cursor_delete");
procedure OS_CURSOR.DELETE(OS_CUR : 0S_CURSOR) is
begin <
C_0S_CURSOR_DELETE(OS_CUR) ;
end 0S_CURSOR_DELETE;

.

pragma INLINE(0DS_CURSOR.DELETE);

function C_0S_CURSOR_FIRST(OS_.CUR : OS_CURSOR) return U_TYPEPTR;
pragma IRTERFACE(C, c_os_cursor_first);
pragma INTERFACE_NAME(c_os_cursor_first,

C_SUBP_PREFIX &k "os_cursor_first");
function 0S_CURSOR_FIRST(CS_CUR : OS_CURSOR) return U_TYPEPTR is
begin

return C_0S_CURSOR_FIRST(DS_CUR);
end OS_CURSOR_FIRST;
prajma INLINE(OS_CURSOR.FIRST);

procedure C_0S_CURSOR_INSERT_AFTER(OS_COL : OS_CURSOR;
‘ VALUE : U_TYPEPIR);
pragma INTERFACE(C, c_os_cursor_insert_after);
pragoa INTERFACE_NAME(c_os_curcor_insert_after,
C_SUBP_PREFIX & "os_cursor_insert_after");

procedure OS_CURSOR_IHSERT_AFTER(DS_COL : DS_CURSOR;
VALUE : U_TYPEPTR) is
begin '
C_0S_CURSOR_INSERT_AFTER(0S_COL,VALUE);
end OS_CURSOR_INSERT_AFTER;
pragma INLINE(OS_CURSOR_INSERT_.AFTER);

procedurs C_0S_CURSOR_INSERT.BEFORE(OS_COL : OS_CURSOR;
VALUE : U_TYPEPTR);

pragma INTERFACE(C, c_os_cursor_insert_before);

pragma INTERFACE_NAME(c_os_cursor_insert_before,

C_SUBP_PREFIX & "os_;urao:_inaort_beroro");

procedure 0S_CURSOR_INSERT_BEFORE(CS_COL : OS_CURSOR;
VALUE : U_TYPEPTR) is

_ begin -~
C_0S_CURSOR_INSERT_BEFORE{0S_COL,VALUE);

end 0S_CURSOR_INSERT.BEFORE;
pragma INLINE(DS_CURSOR_INSERT_BEFORE);

function C_03_CURSOR_LAST(OS_CUR : QOS_CURSOR) return U_TYPEPTR;
pragma INTERFACE(C, c_os.cursor_last);
pragma INTERFACE_NAME(c_os_cursor_last,

C_SUBP_PREFIX & "os_cursor_last");
function OS_CURSOR_LAST(OS_CUR : OS_CURSOR) return U_TYPEPTR is
begin
* yeturn C_0S_CURSOR_LAST(0S_CUR);
end OS_CURSOR_LAST;
pragma INLINE(CS_CURSOR_LAST);

C-36

function C_OS_CURSOR_HMORE(OS_CUR : 0S_CURSOR) return BOOLEAN,
pragma INTERFACE(C, c_os_cursor_more); .
pragma INTERFACE_NAME(c_os_cursor_mere,

C_SUBP_PREFIX & "os_cursor_more");
function OS_CURSOR_MORE(OS_CUR : 0S_CURSOR) ‘Teturn booloan is
begin

return C_0S_CURSOR_MORE(OS_CUR);
ond 0S_CURSOR_MORE;
pragma INLINE(OS_CURSOR_MORE);

function C_OS_CURSOR_NEXT(OS_CUR : OS_CURSOR) return U.TYPEPTR;
pragma INTERFACE(C, c_os_cursor_next);

pragna INTERFACE_NAME(c_os_cursor_next,
C_SUBP_PREFIX & "os_cursor_naxt");

function O0S_CURSOR_KEXT(O0S.CUR : OS_CURSOR) retura U_TYPEPTR is -
begin
return C_0S_CURSOR_NEXT(OS_CUR);
end 0S_CURSOR_NEXT;
pragma INLINE(OS_CURSOR_NEXT);

function C_0S_CURSOR_NULL(OS_CUR : 0S_CURSOR) roturn BOOLEAN;
pragea INTERFACE(C, c_os_cursor_null);
pragma INTERFACE_NAME(c_os_cursor_null,

C_SUBP_PREFIX & "os_cursor_null®);
function 0S_CURSOR_NULL(OS_CUR : 0S_CURSOR) return boolean is
begin ‘

return C_0S_CURSOR_NULL(0S_CUR); . o
end 0S_CURSOR_NULL; ‘
pragea INLINE(OS_CURSOR_NULL); '

function C_0S_CURSOR_PREVIOUS(OS_CUR : OS_CURSOR) return U_TYPEPTR;
pragma INTERFACE(C, ¢_os_cursor_previous);
pragma INTERFACE_NAME(c_os_cursor_previous,
C_SUBP_PREFIX & "os_cursor_previous”); (
function 0S_CURSOR_PREVIOUS(OS_CUR : OS_CURSOR) return U_TYPEPTR is
begin i
return C_0S_CURSOR_PREVIOUS(0S_CUR);
end 0S_CURSOR_PREVIOUS;
pragma INLINE(OS_CURSOR_PREVIOUS):

procedure C_0S_CURSOR_REMOVE_AT(0S.CUR : 08_CURSOR);
pragas INTERFACE(C, c_os_cursor_remove_st);
pragaa INTERFACE NAME(c_os_cursor.remove_at,
C_SUBP_PREFIX & “os_cursor.remove_at");

C.37

SNV LSS

procedure 0S_CURSOR _REMOVE_AT(05_CUR : OS_CURSOR) is
begin
C_.0S_CURSOR_REMOVE_AT(0S_CUR);
end OS_CURSOR_REMOVE_AT,;
pragme INLINE(OS_CURSOR_REMIVE_AT);

- - - - - - - - -

function C_0S_CURSOR_RETPIEVE(OS_CUR : OS_CURSOR) return U_TYPEPTR;
pragma INTERFACE(C, c¢_os_cursor_retrieve);

pragma INTERFACE_NAME(c_os_curuor_retrieve,

' C_.SUBP_PREFIX & "os_cursor_ratrieve");
function 03_CURSOR_RETRIEVE(OS.CUR : OS_CURSOR) return U_TYPEPIR is
begin

return C_0S_CURSOR_RETRIEVE(OS. CUR)
end 0S_CURSOR_RETRIEVE; -
pragma INLINE(OS_CURSOR_RETRICVE);

function C_0NS_CURSOR_VALID(OS_CUR : OS_CURSDR) return BOCLEAN
pragma INTERFACE(C, c_os_cursor.valid);
pragma INTERFACE_NAME(c_os_cursor_valid,

C.SUBP_FREFIX & "os_cursor_valid");
function 0S_CURSOR_VALIS(OS_CUR : OS_CURSOR) return boolean is
begin

return C_0S_CURSOR_VALID(OS_CUR};
end 0S_CURSOR_VALID;
pragma INLINE(OS_CURSOR_VALID);

end 0S_CURSOR_PXG;

C-38

et R SNSRI R S R i e A T L e A B :

Cc.12 'Intevfacc Program: except.a

--Ercoptionl for DbjoctStoto/lda interface.

== Basic interface to DbjectStore from the Ada prognmming language
-= Prototype design and implementation by Dave Rosenberg of Object
== Design, Inc.

with SYSTEM; use SYSTENM;
with LANGUAGE; use LANGUAGE;
with OS_TYPES; use 0S_TYPES;
package NS_EXCEPTIONS is

LAST_EXCEPTION: constant INTEGER := 0;
subtype OS_EXCEPTION_INDEX is OS_INT32 range O .. LAST_EXCEPTION;
procedure 0S_ADA_EXCEPTION(ERR: OS_EXCEPTION_INDEX);
pragma EXTERNAL_NAME(OS_ADA_EXCEPTION,
C_SUBP_PREFIX & "os_ada_sexception");

ERR_ADDRESS_SPACE_FULL: EXCEPTION;

end OS_EXCEPTIONS;

s e A

iim 2 e Rl

C.13 Interface Program: ezcept.b.a

--Exceptions for ObjectStore/Ada interface.

== Basic interface to UbjectStores from the Ada programming language
== Prototype design and implementation by Dave Rosenberg of Ubject
== Design, Inc.

package body OS_EXCEPTIONS is

procedure 0S_ADA_EXCEPTION(ERR: 0S_EXCEPTION_INDEX) is
begin
case ERR is
vhen 0 => raise ERR_ADDRESS_SPACE_FULL;
vhen others => null;
end case;
end 0S_ADA_EXCEPTION;

end 0S_EXCEPTIONS:

C-40

Bibliography

Ada Joint Porgram Office, DoD. Ada Reference Manual, ANJSI/MIL-STD-1815A, January
1983.

. Atkinson, M. P., et al. “An Approach to Persmtent Programming,” The Computer Joumal

26(4):360-365 (1983).

. Atkinson, M. P., et al. Data Types and Persistence. Berlin: Springer-Verlag, 1988.
. AT&T. Uniz System V ATET C++ Language System, 1989. selected Code 307-144.
. Berre, Arne J. and T. Lougenia Anderson. “The HyperModel Benchmark for Evaluating

Object-Oriented Databases.” Object-Oriented Databases with Applications to CASE, Networks,

" and VLSI CAD chapter 5, 75-91, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1991. -

10.

11,

12.

13.

14.

15.

16.
17.
18.

19.
20.

21.

. Booch, Grady. Software Enginecring with Ada. Benjamin/Cummings Publishing Company,

Inc., 1986.

. Booch, Grady. ObJrct Oriented Design with apphcahom Ben,)a.mm/Cummmgs Publishing

Company, Inc., 1991.

. Cardelli, Luca and David MacQueen. “Persistence and Type Abstraction.” Data prca and

Persistence edited by M. P. Atkinson, et al., Berlin: Springer-Verlag, 1988,

. Cattel, R.G.G. “Object-Orieated DBMS Performance Measurement.” Proceedings of the &nd

Workshop on OODBS. 364-367. 1988.

Harper, Robert. “Modules and Persistence in Standart ML.” Dats Types and Perwtence
edited by M. P. Atkinson, et al., Berlin: Spnnger—Verlag, 1988,

Jacobs, Captain Timothy M. An Object-Oriented Database Implementation of The Magic
VSLI Layout Design System. MS thesis, School of Engineering, Au- Force Institute of Tech-
nology, Wright-Patterson AFB OH, December 1991.

Johnson, Eric F. and Kevin Reichard. “The X window Application Programmmg,” Portland:
MIS Press (1989).

Klabunde, Gary Wayne. An Animated Graphical Postprocessor for the Saber Wargame. MS
thesis, AFIT/GCS/ENG/91D-10, Schoo! of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH, December 1991.

Lamb, Charles, et al. “The ObjectStore Database System,” Communications of the ACM,
4 (10):50-64 (1989).

Leopold, Vince. “Object-Oriented Programmingin Ada, A Viable Method,” IEEE, NAECON
89, 2:549-552 (1989).

Neville, Donna and Dit Morse. Pro*Ada User’s Guide. Oracle Corporation, November 1986.
Object Design, Inc., Burlington, Massachusetts. ObjectStore User Guide (1.1 Edition), 1991.

Rosenberg, Dave. ObjectStore and Ada. Object Design, Inc., Burlington, Massachusetts,
January 1992

Rumbaugh, James, et al. Object-Oriented Modeling and Design. Prentice Hall, 1991.
Scheifier, Robert W. and Gettys Jim. “The X window system,” ACM Transaction on Graphics,
5:79-109 (April 1986).

Schonberg, Edmond. “Contrasts : Ada 9X and C++,” CrossTalk (September 1992).

BIB-1

Wit & o s e ihocs omos i o

22. Thatte, Satish. “Persistent Memory: Merging Al-knowledge and Databases.” Readings in
Object Oriented Database Systems edited by Stanley B. Zdonik and David Maier, 242-250,
Morgan Kaufmann Publishers, 1990.

23. Unisys Corporation, 12010 Sunrise Valley Drive. Ada Interfaces to X Window System, March
1989. Contract No. F19628-88-D-1031.

24. Verdix Corporation. Verdiz Ada Development System, 1991.

BIB-2

Vita

Lt Col Li Chou (ROCAF, Taiwan) was born on 28 October 1957 in I-Lan, Taiwan, Republic
of China. He graduated from high school in I-Lan in June, 1975. He then entered the National
Defense Medical Center from which he graduated in 1980 with a Bachelor Degree in Pharmacy
and a commission as a Lieutenant in the Republic of China Air Force (ROCAF). His first duty
assignment was at the Fifth Medical Corps, Tau-Yan, Taiwan as a phafma.cy officer. In eariy 1983
he transferred to the 816th Regional]Hbspital as a pharmacy officer. He received his promotion to
Captain in August, 1983. In the middle of 1984 he relocated to the S_u-geon General, Headquarters,
ROCAPF, and joined the Medical ‘Administration Staff. While thére, he entered Central University

- for & training course in Computer Science in August, 1987. He got his promotion to Major during his

training, in January 1988. He entered the School of Engineering, Air Force Institute of Technology
in May, 1991. During his staying here, he received his promotion to Lt Col in January, 1992.

Permanent address: 4F, No. 15-2, Ln 89, Shih-Tong Rd,
Shih-Ling, Taipei, Taiwan, R.0.C.

VITA-1

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Pubhic reporting burden tor thr coitection of information « cstimated 10 average 1 hour per response, including the time for reviewing instructions. searching existing data sources,
gathen:ng and maintaining the data needed, and completing and reviewing the ¢ollection of information Send comments regarding this burden esumate of any other aspect of this
cotection tinformation, including sugqgestions tor reducing this burden to Washington He-dguarters Services, Directorate for information Operations and Reports, 1215 jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. ard 0 the Otfice of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

March 1993 Master’s Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

) WJECT-ORIENTED DATABASE ACCESS FROM ADA

6. AUTHOR(S)

Li Chou

7. PERFORMING ONGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

. : ' F g
Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/93M-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

Capt PLil Lienert AGENCY REPORT NUMBER

ASD/RWWW Wright-Patterson AFB, OH 45433 x53969
Mr. Joseph V. Giordano ‘ .
Rome Laboratory RL/C3AB, Griffiss AFB, NY 13441-5700 (DSN) 587-2805

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACLT (Maximum 200 words)

Ada embodies many modern software engineering principles, namely, modifiability, efficiency, reliability, and
enderstandability. Its powerful data abstraction allows programmers to easily model objects in the real world.
A database management system (DBMS) provides long term storage. It provides a convenient and efficient
environment to manipulate data. Currently, with Ada access to a DBMS is typically done through the use of
a language extension and a preprocessor to convert the extensions to library calls appropriate for the DBMS.
However, these systems are lirnited on more complex applications, such as computer-aided engineering design.
Object-oriented design (OOD) is a new way of thinking about problems using models organized around real-
wotld concepts. Object-oriented database management systeras (GODBMS), include most benefits of relational
DBMS (RDBMS) and, in addition, provide the capality to manipulate complex, heterogeneous data. Ob-
jectStore is an OODBMS. This thesis describes an interface from Ada to ObjectStore which could fulfill the
requirements of complex applications. Qur Ada/ObjectStore interface performed better ir. CPU time than the
supplied C/ObjectStore interface. However, overall there is not much difference between Ada/ObjectStore and
C/ObjectStore. It is clear that Ada/ObjectStore provides the capability of data persistence to Ada. This
result favorably affects program iength, program development time, program maintainability, and application
reliability,

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada, C, Object-oriented database manageinent system, ObjectStore /58

16. PRICE COGE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED - UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) ,
Prescribed by ANSI Std. 739-18
298-102
v ,‘/,/
\ . e
- “/_’// g)

[P

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Caocumentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and titie page.
instructions for filling in each block of the form follow. It is important to stay within the lines to meet

optical scanning requirements.

Block 1. Agency Use Only (Leate b;"a'nk).

Block 2. Report Date. Full publication date
including day, month, and year, if available (e.g. 1
Jan 88). Must cite at least the year. :

Block 3. Type of Report and Dates Covered.
State whether reportisinterim, final, etc. If

" applicable, enter inclusive report dates (e.g. 10
Jun 87-30Jun 88).

Block 4. Title and Subtitle. A titleistaken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. Toinclude contract
and grant numbers; may include nrogram
element number(s), project number(s), task
number(s), and work unit number(s). Use the
fotlowing labels:

C -~ Contract PR - Project
G - Grant - TA - Task
PE - Program WU - Work Unit

Element Accession No.

Block 6. Author(s). Name(s) of person(s)

. responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory. '

i
Block 8. Performing Organization Report
Mumber. Entar the unique alphanumeric report
nuE‘. ber(s) assigned by the .organization
perSorming the report.

Block 9. Soonsoring/Monitoring Agency Name(s)
and \Address{es). Self-explanatory.

Block 10. Sponsoring/Monitoring Agency
Report Number. (if known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of...; To be
published in.... When a reportisrevised, include
astatement whether the new report supersedes
or supplements the older report.

. 'NOFORN, REL, ITAR).

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cte any
availability to the public. Enter additicnal
limitations or special markings in all capitals (e.g.

" DOD - SeeDoDD 5230.24, "Distribution
Statements on Technical
Documents.”

DOE - See authorities.
NASA - See Handbook NHB 2200.2.
NTIS - Leaveblank.

Block 12b. Distribution Code.

DOD - Leaveblank. :

DOE - Enter DOE distribution categeries
from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

NASA - Leave blank.

NTIS - Leaveblank.

Block 13. Abstract. Include a brief {Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14, Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.- 19. Secunty Ciassifications. Self-
explanatory. Enter U.S. Security Classificationin
accordance with U.S. Security Regulations (ie.,
UNCLASSIFIED). If form contains classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. 1his biock must
be completed to assign a iimitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

e Seirha i

+4 5 GPO:168Y0-0-273-271

Standard Form 298 Back (Rev. 2-89)

1
t
i
3
5
'

Ty S

|
|

S bt s e b . e i ks 79

