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The Speckle Holography technique uses a series of short exposure images and associated wave front sensor

measurements to reconstruct astronomical images. The reconstruction technique effectively boosts the amplitude

of higb spatial frequencies to allow for finer resolution of astronomical objects. A simulation package that

calculates the optical transfer function (OTF) of a telescopic system was previously developed for the Phillips

Laboratory. This software was modified slightly to provide the Speckle Holography system transfer function

(STF) for a telescopic system under varying seeing conditions as specified by the ratio of the subaperture

separation (Las) to the Fried parameter (r,), and by the photon count per subaperture per short exposure

image. The thesis analyzes two different approaches to the STF. In addition to generating STF curves for

varying seeing conditions, the signal-to-noise ratio (SNR) for a single sampling of short exposure image and wave

front measurements is calculated according to the formula SNR = STF/Vrv-7, where var is the variance of the

STF. The thesis results indicate the STF ix severely degraded by a bias that originates from the estimate of

the OTF, which is used in the STF calculation. The problem is found to be increasingly severe for improved

wave front sensor sampling (denser wave front measurements) and low photon counts. An attempt is made to

characterize non-biased regions of the STF.
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T''he Speckle Hlolography tecthniqipie uses a series of short exposure ihttagps and associate.d wave

front sensor invmieremtrent.S to reconstruict astronoomical imiages. I'lt, reconstruction tec'hn'i fiij eftf'c-

Il v ,ly boosts I hie ampllitude of hig•i sp:atial freque.ncies to allow for finter resolut ion of asl ro•tomtticac

obtjects. A sinnilation package thiat cal culates Ithe opt ical t ransfer fuictiin (OTF') of a ele'scopic

system was previously developed for the Phillips Lahoratory. This software was miodiied slightly

to provide the Speckle holography system transfer function (STF) for a telescopic syst, ti under

varying seing, condit ions as specified by the rat io of the sui)ap,'rt ure separation (/.,, ') to tihe lri'd

paIramet er ( ',,) anid by thhe photon coilnt per sit haperture per short ex posure intage'. Thie' the.sis

analyzes two dilfre'nt approaches to thei STF. In addition to genterating STF curves for varying

se'ing conditions, t lie signal-to-noise ratio (SNhI) for a single samnpling of short exposure iltiag,, and

wave front tIeasutremttents is calculated according to the formula:

SNR T r,

where var is the variance of the STF. The tthesis resu!ts indicate the STF is severely degraded

by a bias that originates from the estimtate of the OTF, which is used in the STF calculation.

The problem is found to be increasingly severe for improved w'Ive fronti sensor sampling (denser

wave front measurements) and low photon counts. An attempt is itade to characterize non-biased

regions of the STF.
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SELF-REFER•NCEI). SPEI( 1'E HOIOG ARAPHY (SRS11)

IMAGE RE(ONSTRiw(.CTION PERIFORMANCE

I. Atinosph eric Tutrbunlclc( and tle SRSH! Tclhnique.

1.1 Introduction.

Prior to the space-based Hlubble telescope, grou; A based telescopes were the only means for

observing distant stars. Although a space based telescolpe has the advantageof not having to "look"

through the atmosphere, maintenance costs and size limitations for spaced based systems ensure

that ground-based telescopes will continue to remain a vital tool for exploring the universe.

From a diffraction theory perspective, a grouvid based telescope should be built as large as

possible since the larger the telescope diameter, the finer the angular resolution of the telescope and

the smaller the object the telescope can image. It turns out that the resolution of large diameter

telescopes is limited by the effects of atmospheric turbulence. The turbulence induces random

spatial and temporal fluctuations on wave fronts prior to imaging by the telescope, blurring the

image and decreasing the angular resolution from the theoretical limit.

Wave front measurements and signal processing can be used to partially overcome the effects

of turbulence on images. In this thesis, a FORTRAN computer simulation is used to examine

the imaging performance of the self-referenced speckle holography (SRSH) image reconstruction

technique. This technique shows great promise, with imaging results approaching the theoretical

angular resolution limit of large diameter telescopes to which it is applied [1:1]. In this chapter,

the reader is introduced to the problem of imaging through atmospheric turbulence, followed by an

introduction to the SRSII technique, and general thesis objectives. In Chapter II, the general theory

of the SRSII technique is -'esented along with assumptions and defining equations for the thesis.

The FORTRAN computer simulation is described in some detail in Chapter Il. The results for

1-1
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this thesis effort are presented in Chapter IV and conclusions and recommendations are presented

in Chapter V.

1.2 Ahmospheric Turbulence.

1.2.1 Turbulent eddies. Atmospheric turbulence is generated by uneven heating and

cooling of the earth's atmosphere. This process results in randomly generated pockets of turbulence

or eddies, each of wiAch has an index of refraction defined by [2:56]:

c
n = -, (1.1)

V

where n is the index of refraction, c (m/s) is the speed of light in a vacuum, and v (in/s) is the

velocity of propagation of light in the medium. Each pocket of turbulence can have a different

index of refraction from other pockets of turbulence. These pockets occur randomly in a temporal

and spatial sense, and so induce random temporal and spatial fluctuations on wave fronts passing

through the turbulent region, causing image distortions [3:4527].

Figure 1.1 shows a wave front prior to and after encountering turbulence while enroute to a

ground based telescope. Light fiom a star is essentially planar by the time it reaches the earth's

atmosphere due to the distance of propagation. In traveling through the atmosphere to a ground

based telescope, the planar wave front encounters the randomly distributed turbulent eddies. The

overall delay experienced by a specific point on the wave front will depend on which turbulent

eddies that point encounters as it passes through the turbulent atmosphere.

1.2.2 Minimum angular resolution in turbulent conditions. The net effect of this tur-

bulence is to reduce the angular resolution of a large telescope. In theory, the diffraction limited

1-2
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Figure 1.1. Wave front degradation due to atmospheric turbulence.

angular resolution of a telescope is given by [2:422]:

Amin = 1.22 , (1.2)

where AOmin (rad) is the angular resolution of the telescope, A (m) is the wavelength of the incident

light, and D (m) is the telescope diameter. Equation (1.2) implies the angular resolution imp-oves

with increasing telescope diameter.

Fried derived a parameter in 1966 to describe the point at which increasing atmospheric

distortion limits the resolution performance of a telescope [4:33]. The so-called Fried coherence

diameter or Fried parameter, re,, is a measure of the lateral spatial coherence properties of incident

wave fronts [5:10-131. The Fried parameter is roughly on the order of the size of the sloped regions

induced on a wave front. The Fried parameter is a function of the wavelength of the light, the

propagation path length through the turbulence, the zenith angle (angle with the vertical), and the

1-3
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st~rength of the turbulence. If the telescope diameter is less than the Fried parameter, the telescope

operates with essentially diffraction limited performance. When the telescope diameter exceeds the

Fried parameter (as is generally the case for large diameter telescopes at visible wavelengths), the

angular resolution achievable is approxinmated by replacing D in equation (1.2) by r,, to give [6:14]:

Aomin 1 .22. (1.3)

Tfhe minimum angular resolution of large diameter ground based telescopes is generally limited to

around I arcsecond at visible wavelengths [7:1-2]. For example, the 2.4 meter diameter Ilubble

telescope has a diffraction limit of 0.03 arcsecond in space. On the ground, this same telescope

would be limited to angular resolutions on the order of 0.5 to 1.0 arcseconds [6:1,14], which is 16

to 30 times worse than the theoretical limit.

The Fried parameter, r., typically ranges from 3 centimeters for poor seeing conditions to 20

or 30 centimeters for good seeing conditions. Its value is site dependent, since the altitude of an

observatory site determines how much of the atmosphere the light propagates through. Its value is

also weather dependent [6:14]. Typically, atmospheric turbulence* limits large diameter telescopes to

the same angular resolution as smaller telescopes on the order of 10 to 20 centimeters in diameter.

1.3 Historical Development of the SRSH Technique.

Several image recovery techniques have been developed that involve computer post processing

of a series of short exposure images to recover an improved image of the original object. The

reason for using short exposure images is, according to Goodman, to "'freeze' the atmospheric

degradations, thus eliminating any time averaging effects [8:402]." A long exposure image is blurred

by the changing atmospheric conditions causing the image to move around during the exposure.

These image changes occur on the order of milliseconds [6]. An example of a long exposure image

is shown in Figure 1.2 (a). A short exposure image, see Figure 1.2 (b), contains diff~raction limited

1-4



spots or speckles. These speckles result "from interference of a signal with itself or with part of

the actual imaging or optical system [1:1]." A series of short exposure images can be processed

to reconstruct a near diffraction limited image as evidenced by Labeyrie's Speckle Interferometry

technique, the Knox-Thompson algorithm technique, and the Triple Correlation technique. All of

these image post processing techniques can effectively reconstruct images out to near the diffraction

limit of the telescope. The problem with these techniques is they can require thousands of short

exposure images [9:64].

An alternative to post processing is what Hardy calls active optics or adaptive optics com-

pensation [10:654]. For this technique, distorted wave fronts are compensated real time by use of

a controllable corrective surface whose refractive or reflective properties are changed to cancel the

incident wave front distortion. The technique consists of measuring the phase distortion along the

wave front and then applying the appropriate controls to the refractive or reflective surface. The

three parts to such a system are the controllable corrective surface, wave front sensor device, and

information processing device required to generate control signals for the corrective surface.

One type of commonly used wave front sensor device is the Shack-Hartmann wave front

sensor (WFS), which has the ideal capability of detecting local wave front slopes at low light levels

[1:11]. Figure 1.3 shows an array of subapertures in a Shack-Hartman WFS. The telescope aperture

of length D is subdivided into smaller apertures of dimension L. Each of these small apertures,

or subapertures, has a lens that focuses that portion of the wave incident on the subaperture

onto a detector. The local slope of the incident wave front is sensed separately in the x and y

directions by measuring the distance the light is focused off axis as shown in Figure 1.4. The Shack-

Hartman WFS provides the key capability of local tilt measurements for the SRSIt technique, and

its development resulted in practical application of the SRSH technique in image reconstruction.

Fontanella first proposed enhancing post processing image reconstruction performance through

a new technique that used simultaneous monochromatic short exposure speckled images and wave

1-5
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Figure 1.2. Examples of (a) long and (b) short exposure images. [8:403]
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Figure 1.3. Shack-Hartman wave front sensor (WFS) subaperture configuration.

front measurements using the Shack-Hartman sensor [9:641. This new hybrid approach combined

short exposure image post processing with the adaptive optics WFS measurements to remove the

effect of the turbulent atmosphere. This technique is called Speckle Holography due to the use of

speckled short exposure images such as that shown in Figure 1.2 (b), and the use of a reference wave

front (similar to holography recordings) from a point source for phase measurements [11:4527]. The

SRSH technique differs only from Speckle Holn-aphy in that for the SRSH technique, the object

itself acts as its own reference for phase measurements.

1.4 General Thesis Objectives.

This thesis will address the performance of the SRSH technique by first investigating the

validity of results from earlier work by VonNiederhausern that characterized the ensemble average

Fourier domain system transfer function (STF) for the SRSH technique [16]. The STF is the Fourier

domain transfer function for the inversion from the degraded image spectrum to the estimated

object spectrum. The SRSH technique removes turbulence degradations in the image by filtering in

1-7
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Figure 1.4. Side view of Shack-llartman wave front sensor (WFS) lens and detector array.

the Fourier domain. The STF results from this earlier work were characterized for variations in the

Fried parameter (r.) and the strength of the incident light (average photon count per subaperture

per short exposure image). This thesis uses a FORTRAN simulation to generate STF results by

performing calculations on a limited numbers of short exposure images and WFS measurements.

* This thesis will consider two different approaches to calculating the STF as defined in Chapter 11.

* Additionally, this thesis presents results for a signal to noise ratio (SNR) analysis that characterizes

the single frame STF imaging performance as a function of spatial frequency. An unexpected STF

bias problem is also investigated and characterized for this thesis.

A discussion of the hardware required, the basic theory of the SRSH technique, and assump-

tions and defining equations for the thesis appears in the next chapter.

1-8
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H. General Theory of the SRSII Technique.

2.1 Introduction.

This thesis presents results from a FORTRAN computer simulation of a telescope configured

with the hardware shown in Figure 2.1. As background for the SRSH simulation, the basic Fourier

theory for a simple lens equivalent model is presented. This simple system configuration is basicly

the optical system used by the simulation. Next, the defining equation of the SRSII technique, tile

system transfer function (STF), is derived using the simple lens model. Finally, the assumptions

and defining equations for the thesis are presented.

2.2 Hardware Configuration for the SRSH Technique.

As shown in Figure 2.1, the SRSH technique requires a fast shutter to control exposure times,

a beam splitter to split an incident wave front for simultaneous short exposure image and wave

front measurements, a wave front sensor for wave front measurements (Shack-Hartman sensor), a

filter to pass quasimonochromatic light, a camera for recording the short exposure images, and

a computer to construct an estimate of the original object using wave front measurement and

short exposure image data [11:4528]. The image is a two dimensional intensity distribution, i(x, y),

while the wave front measurements are actually slope measurements that are used to construct an

estimate, 4(z, y), of the phase of the incident wave front phase, O(z, y). The simulation uses an

adaptive optics control law to construct the phase estimate, ý(x, y). An estimate of the object, being

imaged, 6(z, y), is obtained by applying the SRSH algorithm over many frames of simultaneous

phase estimates and short exposure images.

2.3 Lens Equivalent Model.

For most astronomical scenarios involving large diameter telescopes, and good "seeing" con-

ditions where clouds and other aerosols are not present, the atmospheric distortion induces mainly

2-1
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Figure 2.2. Greyscale diagram for wave front encountering turbulence.

at infinite distance away. The atmospheric turbulence is accounted for by a random phase screen,

and the telescope by a limiting aperture and imaging lens. The star produces a planar wave front

incident on thL phase screen. As discussed previously, the phase screen introduces different phase

delays along the wave front in the same fashion as would random turbulence to a planar wave front

from a star. This degraded wavefront passes through the aperture, and is focused by the lens onto

the image plane. For the SRSH hardware shown in Figure 2.1, the wave front sensor is effectively

located in the aperture plane where the wave front is sampled prior to imaging.

2.4 System Transform Function (STF).

"2.4.1 Spatial domain image formation - instantaneous point &pread function (IPSF). The

goal is to find an expression for the impulse response of the optical system shown in Figure 2.4.

Using Fourier system concepts, the short exposure image can be related to the original object by a

2-3
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Figure 2.3. Effect on plane wave front encountering turbulence.

convolution relationship:

i(0) = s() * o(), (2.1)

where ;F is a two-dimensional vector in the image plane, i is the short exposure image, o is the

object (star), * stands for a convolution operation, and s is a function called the instantaneous

point spread function (IPSF) resulting from the combined effect of the optics and the atmosphere.

For a single star in the field-of-view, the IPSF represents ihe short exposure image.
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Figure 2.4. Lens equivalent model for telescopic imaging system.

2.4.2 Frequency domain image formation - system transfer function (STF). Tile conve-

lution relationship in equation (2.1) can be Fourier transformed into the spatial frequency domain

to give [11:4527]:

I(P) = S(pUO(p (2.2)

where I, S, and 0 are the Fourier transforms of i, s, and o respectively, and )F is the spatial

frequency vector. For the case of a star, o(;) is effectively a point source an infinite distance, and

O(p-) 1. This reduces equation (2.2) to:

I(p") =S(A). (2.3)

The function S in equation (2.2), which is known as the optical transfer function (OTF), is deter-

mined by the expression [11"4527], [13:113-125]:

( [P(AFp-)exp {j27r0(ArFp"] ® [P*(AFp) exp {-j2ir0(AFp)}]
[P(AFp)•® P*(AFp-)] (2.4)

where P is the pupil funtion which defines the spatial extent, of the aperture of the telescope, b

is the wave front, phase induced by the phase screen, * indicates the complex conjugate. F is the

distance from the pupil plane (aperture in Figure 2.4) to the image plane, and ® indicates an

autocorrelation operation.
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.lThe overall obJect ire of any reconst ruct ion technique is to go frotn II te t urbIhiuce degraded

imnage spectr 'tin. I, in equation (2.2). to the best estimate achievable (0) of the original object

spectrumni, 0. Aln estimnate of tlie original .)bject is then obtahined by an inversie fourier transform

of this esttimated object spectrum. 'Thw apiproach used for the S1SIS1 teclImique involves using an

estimate of the OTF to invert equation (2.2). 'Fit- problem at hand is to in some way estimate S("(J.

Since t he at mo.spheric turbulence effects are se'en in the wave front phase of the incident wave, wave

front sensor mleasuremnents are utsed to est i•inte the phase in the pupil so that the estimate for the

OTF is given by [11:4527]:

[P(AFp1 exp {j2-,r(AFpJ)] P*Ap exp {-j2-xoA~p)}J
[P(Al"'o-) P•3] (AF7p)] (2.5)

where S is thle estinmate for the OTF, an;d 0 is the estimate for thie phase screen as determined from

the wave front. meastir tlnelwts.

Equation (2.2) implies the original object spectrum can be recovered by simply dividing

through by the OTF estimate. S. The problem is that. S, as an estimate of S, generally will not

contain all the information in S. S will most likely contain "zeros" at some spatial freqt:encies,

indicating lost imaging information. A much better approach is to invert equation (2.3) through a

Wiener filter type approach so as to minimize the mean square error of the estimate. This esttimate

of the object spectrum is given as [11 :4527]: ........-

O(P =() P)S() , (2.6)

'Wiener typi filter

where 0 is the estimate of the object spectrum and ( is a parametric constant that prevents

sigularities in the estimator. Since the single frame OTF estimate, S, in equation (2.6) will, on

average, contain zeros at. some spatial frequencies, the estimate of the object spectrum given by

equation (2.6) will be inco|iiplet e [14:29].

2-6

, \



The SRISll approach to image reconstruction is to average a Wiener type filter estimnator

over many frames so that, the estimate of the object spectruin (0) includes all spatial frequencies

out to the diffraction limit of the telescope. There are two possible methods of averaging for the

SRSH technique, and both will be considered in this thesis. For the first method considered, the

system transfer function (STF) that characterizes the SRSII reconstruction approach, is derived

from equation (2.6) by averaging the numerator and denominator to give: [15:2]:

STFi(p" = O(p" = (S(P1S)•()) (2.7)
(IS(p); 2 )

where STF1 (p) represents an ensemble average STF, and the image spectrum !(p") has been replaced

by S(p") since, as previously stated, the object is a star. The notation (.) represents averaging over

an ensemble of a large number of short exposure realizati(.ns of S(-J and S(pj. This equation is

used to characterize the performance of the SRStt technique under varying seeing conditions for

spatial frequencies out to the diffraction limit of the telescope. Alternately, the STF could be
/

defined by averaging the ratio of numerator and denominator to give:

STF 2(p-) = 6(pi= ( pl , (2.8)

where STF 2(p) represents an ensemble average STF.

These two STF estimators, STF1 and STF2 , represent, different approaches to image re-

construction. The magnitude of a STF represents the spatial frequency response of the SRSH

technique for the case of a point source object. The results for both SRSH methods are presented

in Chapter IV.

2-7

r . .



/

2.5 Assumptions and Defining Equations for the Thesis.

This thesis is a follow-on to earlier work that involved characterizing the ensemble average

performance of the STF1 algorithm for varying telescope parameters and "seeing" conditions [16].

"I his thesis uses limited numbers of random phase screens and wave front measurements to estimate

the performance of STF and STF2 algorithms. Additionally, this thesis presents results for STF1

and STF2 signal-to-noise ratios (SNRs) that characterize the single frame STF imaging performance

as a function of spatial frequency of the two STFs. The assumptions and defining equations for the

simulation results are presented in this section.

2.5.1 Assumptions.

"2.5.1.1 Required sampling. Simulation runs of 2000 frames were assumed sufficient

to characterize the performance of the estimator. In general, the SRSH technique requires less

frames for image reconstruction.

U£.5.2. Assumed turbulence characteristics. In modeling the atmospheric turbu-

lence by a phase screen, the assumption is that the amplitude of the incident wave front is not

significantly perturbed by the turbulence. This turbulence condition is commonly referred to as

near-field turbulence. For astronomical applications, this is a reasonable approximation. The soft-

ware generated random screens are strictly phase screens and as such do not take into account any

amplitude fluctuations.

2.5.2 Defining equations.

2.5.2.1 Phase reconstruction. In a practical system, slope measurements are used to

reconstruct an estimate of the incident wave front phase 0(.F) through a linear combination of zonal

interpolation functions. For this thesis, the zonal interpolation functions used were two-dimensional
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gaussian functions specified by:

gi()= exp { 7L- (2.9)Ltas

where g, is the ith function centered at Fi, and Las is the radius of the • width of gi. Recall from

Figure 1.3 that the wave front sensor divides the aperture up into smaller subapertures over which

slope measurements are taken. When reconstructing the wave front from slope measurements, the

zonal interpolation functions are located at the corners of the sensors and are weighted appropriately

for a best fit of the slope data.

2.5.2.2 Performance related equations and parameters. Both STFI and STF,, and

their respective variances were calculated for simulation runs consisting of 2000 frames of simul-

taneous wave front sensor measurements and short exposure images. The STF results are plotted

with respect to a normalized spatial frequency defined by:

n= - , (2.10)
Pdiff

where n is the normalized spatial frequency, ; is the unnormalized spatial frequency, and Pdiff is

the magnitude of the maximum or diffraction limited spatial frequency.

An additional way to characterize the STF is through the use of a signal-to-noise ratio (SNR)

measure. A single frame SNR is calculated for STF1 and STF2 in slightly different fashions. For

STFI, we note that the purpose of the denominator is just to boost the high spatial frequencies.

This could be accomplished by a deterministic denominator. All the Fourier phase correction is in

the numerator, and so the SNR ratio for STF! can be defined by:

SN RI(J -8 st fn umi(pI•)(.1
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where SNR1 is the single frame SNR for STFI, frum is the variance in the numerator of STF1 ,

and stfil.rn is the ith realization of the numerator of STF1 . For STF2 , tile SNR ratio is defined

by:

SNR2 (p=<l (2.12)

where SNR 2 is the single frame SNR for STF2 and ,is, the variance of STF.

"The SNR.s and STFs described above are two dimensional equations. For this thesis, these

two dimensional functions are reduced to one dimensional functions for presentation purposes.

The reduction is accomplished by angularly averaging as shown in the following reduction of the

two-dimensional function g(F,) to the single dimensional function g'(Ip'):

g'(I 5n1) = -J g(tVn1,O)dO, (2.13)

where Ij and 0 are the polar coordinate representation of fn. These angularly averaged results

are presented in Chapter IV.

//
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III. SRSH Computetr Simrulation.

3.1 Introduction.

The simulation approach to generating SIISIl transfer functions STF1 and ST"F2 and their

respective SNRs avoids the rather intensive computations required for an analytical approach. In

a prior thesis, the analytic derivation of the transfer function STF1 involved a four dimensional

numerical integration [16:3.61. For the variance calculations required in the SNR analysis, aii eight

dimensional integration would have to be numerically evaluated.

The SRSH simulation is a modified version of an existing adaptive optics FORTRAN simu-

lation written by Dr. Mik1 Roggemann while at the Phillips Laboratory, Kirtland AFB, NM. The

SRS1l simulation uses a least squares phase reconstruction algorithm to produce the phase front

estimate 0. Additionally, the SRSH simulation uses existing tilt and piston correction, phase screen

creation, and OTF calculation algorithms. This chapter first gives a description of simulation steps

taker, to model a SRSH equiped telescope, and second introduces pertinent analytical equations

used in the simulation.
0i

3.2 Simulation of an SRSH Equiped Telescope.

The SRSH technique involves manipulation of the telescope OTF (S) and its estimate (S)

over many frames. The sequence of operations performed by the SRSHI simulation to calculate

OTFs is shown in Figure 3.1, and will be described in this section. The simulation applies three

different templates to the incident wave front 0. A WFS template and an associated artificial pupil

P•(i) are used for WFS measurements. This artificial pupil (P') allows for WFS subapertures

with corners extending outside the telescope pupil P(s) to still be used for WFS measurements.

The third template is the telescope pupil P(F) which defines the aperture of the telescope and is

used for calculating S and S. These templates will be described in this section for the sequence of

simulation steps required for a single short exposure frame calculation of S and S.
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For a single short exposure frame, the simulation generates a random phase screen or wave

front, O(F), incident on the telescope. The next step is to prepare O(F) for wave front sensor(WFS)

slope measurements by applying an artificial pupil P' to 0(.F) prior to application of the WVFS

sensor template. This is done because the slope in a WFS subaperture is actually determined by

sampling wave front 0(i) at points along the \VFS subaperture edges. As shown in Figure 3.2, the

WFS has subaperture corners which extend outside the telescope' pupil P(-"). The artificial pupil

dcfines the extent of 0(i) for the WFS according to the equation:

1 if Ij.F < (k + L andP1(.0 2 (3.1)

0 otherwise,

where L., defines both the separation between adjacent actuators, and the center-to-center spacing

of adjacent subapertures on the WFS.

Since the WFS uses phase differences for slope measurements, it is convenient to remove

piston from the incident phase front prior to the WFS measurement. Additionally, the overall tilt

can be corrected in the wave front prior to WFS measurements.) Tilt is removed only to study

possible STF and SNR benefits for tilt correction. The piston and tilt are corrected in the artificial

pupil, P', using measurements accross the actual telescope pupil, P, defined by:

P(z) I if-I2,and (3.2)

0 otherwise,

where D is the telescope or aperture diameter. Both pupils are shown in the contour plot in

Figure 3.3. This corrected wave front is now used to determine both the OTF and it's estimate by

the two separate paths shown in Figure 3.1.

For the OTF estimate (S), the first step is to apply the wave front sensor template to the

corrected wave front. The result, as shown in Figure 3.1, is a wave front sampled along the
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defining edges of the wave front sensor subapertures. The reason for this is the simulation uses

phase differences across a subaperture to calculate the slope within that, subaperture. The wave

front sensor template is shown in Figure 3.2, along with the centers of the Gaussian interpolation

functions. The estimate of the phase front 0 is obtained by summing the spatial response of the

interpolation functions, each of which is weighted by a factor determined from a linear combination

of the slope measurements. The telescope pupil, P, is applied to the phase estimate, and tilt. and

piston are removed from the phase estimate before calculating S.

For S(p), the first step is to apply the pupil P to the wave front previously corrected for

WFS measurements. Next, piston and tilt (if tilt has not been removed prior to the WFS) are

removed. The OTF is then calculated from the resulting corrected phase screen. S(p-) is actually

the frequency domain result, of a single frame short exposure image for a single star. Figure 3.4

shows the simulated image plane result. The result is similar to the speckled short exposure image

shown in Chapter I.

3.3 Analytical Equations Used in the Simulation.

3.3.1 Flowchart for the SRSH simulation. The SRSH computer simulation follows the

flowchart shown in Figure 3.5. The three main sections are Setup, Iterations, and Output. A brief

overview of the simulation is presented in this section.

3.3.2 Setup. The first step in the simulation involves specification of arrays and variables,

and initialization of simulation parameters. Data is read in to specify the number frames M to

process, number of subapertures accross the pupil P, telescope diameter D, Fried parameter ro,

flag for tilt removal (ITILT in Figure 3.5), average photon count per subaperture per exposure

N, a small parametric constant to prevent singularities in the STF estimator c, and filenames for

simulation output.
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Figure 3.1. Sequence of events for OTF and OTF estimate calculations.
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Figure 3.2. Wave front sensor template, with actuator function locations and pupil P shown.

Next, Karhunen-Love-Fast-Fourier-Transform (KL-FFT) parameters and arraS s required

for random phase screens are set-up. This method of constructinig random phase screens is summa-

rized briefly in Appendix A [17:5]. The phase screer. generationl is discussed later in the iterations

section.

Next, the physical system is specified by creating three ten late arrays, two of which are the

pupil functions, P and P', and the other of which is the Shack-H rtman wave front sensor(WFS).

Additionally, gaussian interpolation functions used for the phase estimate are placed in the pupil,

with one located at each corner of a subaperture on the wave front sensor. The locations in the
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Figure 3.3. Contour plot showing size of actual pupil, P, and artificial pupil, P'.

telescope pupil P for the 208 wave front sensor subapertures and for the centers of the 241 gaussian

reconstruction functions are shown in Figure 3.2. Gaussian reconstruction functions are specified

by:

g = exp 2-[2&]}, (3.3)

where gi is the ith function centered at Zi, ; is the position vector in the pupil, and La, is the

distance between adjacent reconstruction functions.

In addition to the WFS used template to model the spatial extent of the subapertures, the

simulation also adds in random noise to phase measurements. The accuracy of phase reconstruction

is affected by both the signal level in each subaperture of the wave front sensor, and the strength

of atmospheric turbulence. Low light levels lead to noisier measurements. Additionally, the Fried

parameter, r., is a measure of turbulence that relates to the spot side and so must also be considered.

By modeling the focused spot of a subaperture lens as gaussian in shape, the standard deviat,'n
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Figure 3.4. Examr-le of simulation short exposure image.

for phase tilt measureinents in the x or y directions is given as [18:1919]:

J L>r., and
= o(3.4)

07 L <T L ,

where On (rad/m) is the standard deviation of the tilt me%,,urement and Y7 is a dimensionless

parameter accounting for imperfections in the subaperture focal plane detector. This standard

deviation is used to generate random numbers which are added into phase front measurements as

noise.

The final step prior to entering the iterative loop of the simulation is to derive a least-

squares recoistructic i matrix, R", which is used for converting wave front slope measurements into

weight'ngs for the phase interpolation functions. The resulting wei-;htings are used to construct a

phase estimate by summing the responses of the 241 appropriately scaled Gaussian interpolation
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functions according to the equation:

241

OV kg(F (3-5)
k=1

where 9k is the kth numbered Gaussian interpolation function located at a corner of a subaperture,

and ck is its associated weighting. The least squares approach is used to solve for the required

weighting factors by inverting the linear equation:

S = HC, (3.6)

where C is a vector containing the required weightings (ck), S is a vector containing slope mea-

suremer, (s' or Y,), and H is a Jacobian matrix whose elements are define. ')y " [19:457-458]

[20:19-20]. For the particular geometry considered here, 241 weightingb are determined from 416

slope measurements. The linear system described by equation (3.6) is what Tyson describes as

"overdetermined [4:237]," having fewer unknowns (required weightings) than linear equations to

solve. A "best fit" to the data (slope measurements) that minimizes the mean square error between

the left and right sides of equation (3.6) gives the required weightings as:

C = (HTH)-SHTS, (3.7)

where Rt' is defined as the least squares reconstruction matrix used to map slope measurements

into actuator commands for phase estimate construction.

3.3.3 Iterations. The simulation produces results for M short exposure frames. Each pass

of the iteration loop involves phase screen generation, tilt and piston correction, phase estimation,

S and S calculations, and summation of STF results with those from previous frames.
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.I. PhAase serr(n gcncration. The KL-F411' (4Thn~iiqiie is us(,d to generate ranidonil

phase screens. 'The technique' involves the creatioin of anl FF1 screen by thle inverse transformn of

appropriately filtered complex Gauissian randoni variables. Tlhis FF1 scee~n is corrected by two

low order KL fu'nct ions, producing the complex KL- FF1' screen 4
'fftAjq, which is scaled for the

turbulence Et~renjgth (multiply by ).'1he random phase screen 0 is taken from the real or

imaginary part, of *hijjgkj. The real pa~rt is used onl oddl and tine imaginary part onl even numbered

frames. The details of this technique are discussed in Appendix A.

3.3.3.2 Tilt and pistoni corrcrtion. Next, the piston error of the random phase

screen, 0, is measured in thbe telescope Pupil, P, and removed over the larger pupil, P', as follows

[15:3--4]:

O )= [O )- Jd2ip(iN)]O P'(.?), (3.8)

where 0' is the piston corrected wave front. For no--tilt simulations, the tilt in xr and yj directions

is calculated over the pupil P as follows [21:253-255]:

In fd .j)O2 PMF (3.9)

where In, is the tilt, in is a unit vector in the x or y direction. Ini preparation for wave front sensor

measurements, the tilt is removed over l

= 4/")- + 1Y!. Z)]} P'(;F), (3. 10)

where 46' is the tilt corrected wave front, 1,. and 1., are tilts, and irand if are unit vectors in the zr

and y directions.

3.3.3.3 Phase rcconstruction. Since most of the results for this thesis are for the

case of tilt correction prior to WVFS measurements, the remaining simulation description will be
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for the tilt, corrected wave front, 0". Slope measurements are now made on the wave front, 0", by

applying the wave front sensor template. For the nth subaperture, the measured slope is given by

[18:1914]:

s, i ,'d¶V" .l) d+ ± °. (3.11)

where indicates a dot product, sn, is the slope measurement. (radians per meter), V is the two-',
dimensional spatial gradient, 4 is a unit vector in the direction of the sensitivity (x or y) of the

nth sensor, and a, is the slope measurement error in radians per meter. Additionally, IV,, (units

of m-1) is defined as a weighting function for the uth subaperture such that:

(Jj
= Jd~~1V 7 (.F)= 1.(3.12)

The slope is calculated in the simulation from a slightly modified version of equation (3.11) that

expresses the integral in in terms of phase differences along the edges of a particular subaperture.

To get the phase difference version for slope, equation (3.11) is first rewritten using integration

by parts to give [18:1914]:

, = Jd ([+ <, (3.13)

/

where the integral is now expressed in terms of the gradient, of the weighting function for the nth

subaperture, VWn(•). For the subaperture shown in Figure 3.6, this gradient can be expressed as:

used to calculate slope in y direction

VW"(i) = dxIIV.(x, yg)6(x,y- I) - Wn(x,yr)6(x,y- yr)}+
yIJ dy{ IV,.(Xr, y)6((x - x,, y) - W.(x1, y)6(x - x1, y)}, (3.14)

used to calculate slope in Z direction

3-11

- . / , , ,/ ,/.
) /-



s. -d., . /, /•.

xl 
ryI)

* "0 0

Fig urx 3.6 L o Subapertureside. 5 pixels

* 0. 0 0

Figure 3.6. Location of points on nth subaperture.

where 6(z, y) is an impulse function, and (xi, yj) is the coordinate of the upper left corner and

(xr, yr) the lower right corner of the nth subaperture as shown in Figure 3.6. Using the "sifting"

property of an impulse function [22:56-57] equation (3.13) can be rewritten in terms of line integral

phase differences along the subaperture edge. For example, the y slope for the nth subaperture is

given by:

By= dz "@y 1 ) Wn(x, yj) - dxO(x, yr) W.(x, y) + a, (3.15)
/!

where sy is the y slope for the nth subaperture, and ay is a the additive random noise term of zero

mean and standard deviation determined by Equation (3.4).

The reconstruction matrix, R'", is used to map the vector of slope measurements onto weight-

ing commands for phase reconstruction. The vector of weighting commands is determined by:

C= R"S, (3.16)

where C is the vector containing 241 actuator commands for scaling 241 gaussian functions, $

is the vector containing z and y slope measurements (416, two measurements for each of 208

subapertures), and* R" is the reconstruction matrix (241 rows by 2 x 208 = 416 columns). The
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phase estimate is then constructed by summing the scaled gaussian funiction responses at. each point

in the pupil to give:

= exp (3.17)k=l Las

where 0 is the phase estimate, Ck is the kth weighting command or scaling for the kth gaussian

function located at ii.

3.3.3.4 Calculating centered OTFs for S and S. For the SRSH technique, tile

simulation calculates centered OTFs for S and S. Centering the OTF is accomplished by removing

tilt from tile phase fronts. Since this discussion is for tilt removed prior to WFS measurements,

0" is the corrected wave front for calculating S, and as such already has tilt removed. For 5, the

phase estimate • does require tilt correction. Additionally, the telescope pupil P is applied to •"

and ý in preparation for OTF calculations.

S(p) is calculated directly from a forward Fourier transform of the magnitude squared of the

coherent impulse response [13:114]:

Si -(I {Ih=(i)PI) (3.18)

where .'{.} indicates a forward Fourier transform, and hi is the coherent impulse response for the

ith frame as defined by [13:111]:

h,(i)= F" {P(AFpl exp {-27ro'(AFp-} }, (3.19)

where A is the wavelength, and F is the telescope focal length. The estimate of the OTF, S', is

obtained if 4, is used instead of 4,[' in equation (3.19).
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Next, STF quantities are calculated. For STFI, the single frame numerator and denominator

are calculated by:

stfnur(I si(p)Si (p, (3.20)

and:
stfden(" = IS1(p'I 2 + , (3.21)

where £ is an arbitrarily small number to prevent divide by zero, stfnu"" is the ith frame numerator,

and stfden is the ith frame denominator. For STF2 , the single frame result is calculated as:

stsden=p_), (3.22)
stfden (pj)

where stfi is ith frame result.

3.3.4 Results of simulation run. The STF's are calculated by averaging the single frames

results over M frames. So, STF1 is calculated as follows:

S•st fpum(pl))
STF,(p") = (. (3.23)

(stfden (p)

Finally, STF2 is found by:

STF2(p' = (stfi(p"), (3.24)

where stfi(p) is the ith single frame result.

The SNR for a single frame of the image can be defined in the spatial frequency domain as

[19:452]:

SNR(p") = tP (3.25)
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where I is the Fourier transform of the image and ar(p" is the image variance. For SNR calculations,

the variance is calculated for functions according to the equation [23:244]:

01 = ([f,(P-] 2- -(i(p•)- , (3.26)

where ut(p is the variance of tile random process f(p), and fj(p" is ith frame realization of the

function. Instead of an image, this thesis is interested in the SNR of the STF estimators. For

STF1 , the SNR is defined in terms of the complex numerator, slfnum. The single frame SNR for

STFi is defined by:

SNR( st n " (3.27)

where anum(P') is the variance of the STFj(p') numerator. For STF2 , the single frame SNR is

defined in a more straightforward fashion as:

SNR2 (pI = t( (3.28)

where ot,2(f" is the variance of stfi(p". The results for SNRs and STFs are presented in the next

chapter.
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IV. Simulation Results.

4.1 Introduction.

This chapter presents simulation results of the system transfer function (STF) and associated

signal-to-noise ratio (SNR) measures defined in Chapter 11. This chapter will begin with a review

of previous analytic results for the SRSII technique found in Reference [24]. These analytic results

characterize the STF, and as such, serve as the basis for this thesis effort. General analytic STF

trends will be used for discussing the validity of simulation STF results.

Next, STF1 and STF2 results are presented. The simulation results weregenerated using

2000 randomly generated phase screens and the conditions summarized in Table 4.1. The telescope

diameter (D) was set at two meters. Also, the parametric constant (f) to prevent, divide by zero

in STF calculations was set at 1 x 10-9. Only selected results from these runs are presented in

this thesis. Individual STF simulation runs are characterized by a subaperture light level (average

photons per subaperture per short exposure image, N), possibility of tilt correction, and ratio

of center-to-center subaperture separation to Fried parameter, • This ratio, defines the

adequacy of the wave front sampling in detecting the turbulence characteristics of the incident

wave front. Although correcting tilt prior to the WFS is optional, the majority of the results

discussed will be for the case of tilt corrected phase fronts. Not removing tilt leads to a higher

error in the phase estimate. The effect of no-tilt removal will be briefly examined for STF1 .

This chapter also presents an analysis of the non-zero mean bias terms in the numerator and

denominator of the STF. The results indicate the OTT estimate, S, contains a negative bias. The

bias problem is particularly significant under the combined conditions of low incident light levels

and good WFS sampling (sampling ratio 4 less than one).

The final simulation results presented are selected frequency domain SNRs which characterize,

as a function of spatial frequency, the single frame STF image reconstruction performance. The

SNRs can be used to determine the number of short exposure frames of data to obtain a required
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PARAMETER VALUES USED

PHOTONS PER SUBAPERTURE 10. 20. 50, 100. 200. 400.
PER SHORT EXPOSURE IMAGE 800. 1000

RATIO OF SUBAPERTURE SIZE 0.25, 0.5, 1.0.2.0
TO FRIED PARAMETER. L/ro

PHASE CORRECTIONS PRIOR NONE. OR CORRErT TILT
TO WAVE FRONT SENSOR

CONTROL LAW USED FOR MINIMUM MEAN
CONSTRUCTING ESTIMATE SQUARE ERROR
OF THE PHASE

Table 4.1. Scenarios considered for thesis research.

SNR level out to a given spatial frequency. The analytic consideration of Reference [24] did not

include any SNR results due to the required eight-dimensional numeric integration for the STF

variance. The ratio SNR, is presented to discuss the comparative advantages of STFt and STF2 .SNR 2

4.2 Summary of Previous Analytic Results [24:15-16].

The analytic results presented in this section are for a numeric integration of a derived four

dimensional integral expression for tile STF in terms of the OTF (S) and its estimate (S) [24:10].

Due to the complexity of this integration, the analytic results are for case of a simple square

aperture telescope and a small num~ber of WFS subapertures. The WFS used has a maximum of

five subapertures accross the telescope pupil as shown in Figure 4.1. Analytic results are presented

for variations in both the average photon count per subaperture per short exposure image N,

and the WFS sampling ratio, t Analytic result trends are used for discussing the validity of

simulation STF results in the next section. The comparison is not rigorous since analytic STF

results are for a different phase estimate construction control law (minimum variance), and are for

a square telescope pupil.
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The analytic STF is characterized for variations in the both the the average photon count

per subaperture per short exposure image (N) and the sampling ratio In general, WFS

measurements improve with increasing signal strength of the incident light as specified by increasing

N. The other important parameter concerns how dense the WFS measurements are compared to the

Fried parameter r,,. The slopes are measured in WFS subapertures with center-to-center spacings of

La,. The ratio of t.L is used to compare the slope measurement spacing to the turbulence conditions

indicated by the Fried parameter. Smaller L. values signify mre dense WFS measurements with

respect to the size of turbulence induced distortions on the incident wave front since r, characterizes

the approximate size of significant wave front distortions. If the sampling ratio is less than unity,

most of the turbulence characteristics along the incident wave front are being accurately measured

since La, is smaller than r.. Poor sampling is characterized by sampling ratios greater than unity.

For the analytic results, N ranges from 10 to 400, and ' from 0.1 to 2.

The analytic results, which are from a paper by VonNiederhausen and Welsh, are summarized

in Figures 4.2 and 4.3 [24:15-16]. The STF results are plotted versus a one-dimensional normal-

-ized spatial frequency, f-k, where f, represents the x-component of the two-dimensional spatial

frequency vector , and F is the focal length of the telescope.

The STF is a measure of the spatial frequency response of the SRSH reconstruction technique.

Ideally, the STF would be unity out to the diffraction limit of the telescope. For a sampling ratio

of unit§, Figure 4.2 shows how the SRSH technique performance improves toward ideal behavior

with in easing light intensity (N increases). The curves asymptotically approach an upper limit

im' -sediby the sampling ratio.

Fig re 4.3 illustrates the positive result on STF performance obtained by decreasing the

sampling latio. For these results, the average photon count is held at N = 50, while the sampling

ratio rang s from 0.1 to 2. The STF curves indicate that the technique is extremely sensitive to

the sampling ratio.
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/ interpolation Function Centers

Sensor Suhapcrlures
y slopslp

xx

Aperture

Figure 4.1. Telescope aperture and wave front sensor geomnetry for analytic rest !Is [24:13].

In summary, both light intensity level (N) and sampling ratio (!_LL) are importat parameters

for characterizing expected STF image estimator performance. The simulation STF 1;ehavior will

now be examined for variations in these two parameters.

0.a N =400 200 OO0

0.6

0.20
10

0.2 OTF for no imane icconstructon
L/,,, r= 1

0 0.2 0.4 0.6 0.8

fIFID

Figure 4.2. System transfer function (STF) results for square aperture and WFS shown in Fig-

ure 4.1 and L± = 1 [24:15].
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Figure 4.3. System transfer function (STF) results for square aperture and WFS shown in Fig-

ure 4.1 and N = 50 [24:16].

4.3 STF Results.

The simulation STF results will be examined in terms of the general trends noted for the

analytic STF results in the previous section [16:4.8-4-15]. Specifically, STF curves should approach

asymptotic behavior with increasing photon count. This asymptotic value must be equal to or

less than unity. The STF curves should also improve with an improved sampling ratio, again

approaching but not exceeding unity. Deviations from the trends established by the analytic results

will be explained in the next section which investigates a negative noise bias problem originating

with the OTF estimate, S. This section presents a summary of STF results for the case of tilt

removed prior to WFS measurements. This is the baseline case for this thesis. To examine the

benefit of tilt removal, STF1 results for tilt removed and tilt not removed are presented for a photon

count of 100, and sampling ratios varying from 0.25 to 2.

Figures 4.4 and 4.5 show the tilt removed STF curves for photon counts of 10 and 800, with

sampling ratios varying from 0.25 to 2. STF1 and STF2 are characterized by non-zero valued image

reconstruction out to the diffraction limit of the telescope for all sampling conditions considered.

Except for a sampling ratio of 0.25, both STF1 and STF2 show improved performance for increasing

the photon count while holding the sampling ratio fixed. Improving the sampling ratio also generally

improves the STF.
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The problem with the simulation results is that both STF1 and STF2 curves exceed unity

at some point for most photon counts and all sampling ratios considered. This d&-iation from the

previously predicted results [24] is due to a non-zero bias in the OTF estimate S. The bias appears

to get worse as the sampling varies from poor ( LL > 1.0) to good (-L < 1.0) for both STF

estimator methods. For each sampling ratio, the problem gets successively worst for decreasing

photon counts, indicating the S bias is increased with increased noise in the slope measurements

since the standard deviation of the additive noise in slope measurements is proportional to IN
The best example of this trend is shown in Figures 4.4 and 4.5 for a sampling ratio of L_ = 0.25,

where the STF curve for the low photon count of 10 stays well above unity, except for spatial

frequencies out near the diffraction limit (p, * 1). The STF curve for the high photon count of

800 is closer to unity for out to the diffraction limit. These results imply the spatial frequencies

of the image are being amplified to give better than the theoretical maximum.. This is clearly an

unphysical result which has not been previously noted in the literature. The next section traces

this result to the bias in Sý. The bias is shown to get progressively worse as sampling improves

(smaller sampling ratio) and the photon count, remains low.

Figure 4.6 shows the effect tilt removal has on STF1 for a photon rount of 100, and varying

sampling conditions. At unity and low sampling ratios, removing tilt prior to the WFS boosts the

STF1 estimator curves slightly in magnitude. This effect is most noticeable at spatial frequencies

near the diffraction limit. As WFS sampling is improved (sampling ratio drops below one), removing

tilt gives some improvement at higher spatial frequencies, with negligible results at lower spatial

frequencies.

4.4 Noise characteristics of the simulation STF estimator.

The goal of this section is to characterize the bias terms in the STF. To investigate the

problem, the single frame OTF (S) is expressed as a ratidom complex quantity and the OTF
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SiFigure 4.4. Tilt removed STFI curves for different wave front sampling conditions as specified by

estimate (') as noisy version of S. The noise, g, is then determined from the difference between

., and S (5" - S = k). The complex expressions for S and S are used to derive expressions for the

numerator and denominator of the STF estimator. An investigation of the noise terms in both the

numerator and denominator shows the source of the problem is the negative mean of the real part

of .R in S. An attempt will be made to identify, from the bias results, spatial frequency ranges

which yield valid simulation STF results (small bias regions).

The first goal of this analysis is to isolate the complex valued additive noise term contained

"-.... * in S. To do this, S is first expressed as a complex quantity:
/

,' i S(• %( +jz(3 (4.1)

where S•. and Szm are the real and imaginary parts of the S, and j indicates the imaginary part.

An expression for S is found by adding real and imaginary noise compoilents to S in equation (4.1)

to give:

-(P) S-,(PI) + JVIZ (PI +j {SZm(PI + ViZm(pI)}, (4.2)
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Figure 4.5. Tilt removed STF2 curves for different, wave front sampling conditions as specified by
A.

where AR, and Arz,, are the real and imaginary parts of the additive noise in S. To isolate the

noise in S, equation (4.1) is subtracted from equation (4.2) to give:

S(p ") - S(p ") A= . (p -+ jA~z1 , (f-) = (p) (4.3)

where " is the complex noise portion of S. The bias problem originates from a negative mean real

noise term in R:

(R(pl) = (ARe(PI) < 0, (4.4)

with the imaginary noise part, ,Vzm, having zero mean.

The next step in the noise analysis is to derive complex expressions for the numerator (SS")

and denominatoi (1.512) terms of the STF, and average t~he expressions to determine significant

noise terms. The complex numerator is expressed as:

s(P)S(p) = se(A5) + Sr,(pP)R, (P,) + Si,,,(P)KiV(1)+ (P m(PI
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Figure 4.6. STFI curves for different wave front. sampling conditions ms specified by -L, and for

tilt and no tilt renloved.

+j {Im(")K•(p" - sAm,(p"). (4.5)

As will he shown later, the only significant noise term contributing to an STF numerator bias is

.R,(j.,. So, (S(p")S*) can be written as:

(S(p)S (PI) (S.L) + (SR (pj3rRA%(,7) + (S~.(4.6)

The Complex STF denominator term (1S1 2) ds derived by taking the squared magnitude of equa-

tion (4.2) to give:

IS(p)"12 = S.,(I,) + 25,(p"K.V (p' + Y'2 (11) + S,2,,i(t" + 2,`;z,., (p1X)o ,,,(p') + i,,, (p). (4.7)

''l'h, significant bias terms in the denominator are 2S'RAn, and Vj, so that (IS(P(l 2) call be

written as:

1(•,")I•2 ( -. 5, (t( ) + 2(.R, (pj1.V•,1-)) + 1".rp1A) + (.ni,,)) (.1.8)
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A comparison of equations (4.6) and (4.8) leads to a convenient figure of merit k -'n-biased STF

performance as those spatial frequencies over which the numerator bias term is eq; or less than

the denominator bias terms. This approach yields the following inequality:

(-57, (p")Vr,,(pl)) !5 2 .SR., ,(P-)AR, (M,) + (Arý, (PI) (4.9)

numerator bias term denominator bias term

The range for a non-biased estimator is easily determined by plotting (A2 (pj)/I2(SR.,(p-').z, (p-)I

and noting where the ratio goes above 0.5.

The mean valued results (,-RNe) and (,i,) are plotted in Figure 4.7 for a photon count of

10, and a sampling ratio of 0.25. Notice that, only the real part (YVR,) is significant. The results

show the real noise term is negatively biased. The imaginary part is many orders of magnitude

less, appearing as a straight line in Figure 4.7.

The noise bias problem in the denominator is shown in Figure 4.8. Since the real part of

the complex noise is negatively biased, the 2(SrAf') noise ternm in equation (4.7) is the most

significant since it involves the cross product between the negatively biased noise term and the

larger and positive real part of S (SR,). 2(S.RA',Y) is easily identified as the noise term most

responsible i'br decreasing the magnitude of the STF denominator. This is easily seen in Figure 4.8,

where 2('9,RA'ne) is plotted versus all denomoinator noise terms (terms with V'R, or AT,,, in

them) in equation (4.7). The (,VK,) term is the dominant term that causes the denominator bias

to decrease slightly.

For the numerator, the complex portion of equation (4.5) essentially averages to zero. Of the

rea.l numerator noise terms, only the (SpAeK) term is significant as shown in Figure 4.9. The

curve for all real numerator noise terms and just (SR,..r) are almost overlapping. A comparison

of Figures 4.9 and 4.8 shows the numerator noise terms contribute slightly over half the negative

bias as the denominator noise terms for these photon and sampling con(ditions. Since both noise
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Figure 4.7. OTF estimate (S) real and imaginary noise content, at a samping ratio of -L 0.25
and a photon count of 10.

term contributions are negative, this difference between the numerator and denominator is what

makes the STF estimate go above one.

The last part of the noise analysis is to define valid unbiased regions for simulation STF

results. The ratio T2-"S is plotted in Figure 4.10. Where this ratio goes above 0.5resuts. he rtio 2ls.OT).VR eUO)il

is where the denominator bias is less than the numerator bias. This will define the non-biased

estimator for this thesis. For a sampling ratio of -L = 2,the criterion used indicates the STF will

be unbiased from a normalized spatial frequencey of 0.05 out to the diffraction limit. At a unity

sampling ratio (-L-& = 1), the unbiased STF is defined from approximately a normalized spatial

frequency of 0.09 out to the diffraction limit. At a sampling ratio of -L = 0.5, the estimator is

unbiased from about. 0.3 on out to the diffraction limit. This sampling ratio is right on the edge

of being biased out to the diffraction limit as seen by how close the ratio , stays to

the value of 0.5. For the sampling ratio of 0.25, the STF essentially remains biased out, to near the

diffraction limit.

Thesis conclusions and recommendations are discussed in the next chapter.
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Figure 4.8. STF denominator noise terms versus just 2SReKAR,, at a samping ratio of L = 0.25

and a photon count of 10.

4.5 SNR Results.

The second goal of this thesis is to present single frame SNR results for the two STF's under

varying seeing conditions. These single frame SNR estimates characterize, as a function of spatial

frequency, the required number of fr•mes of short exposure images and WFS measurements to

overcome image reconstruction noise. Only the results for SNR1 for the case of tilt removed prior

to WFS measurements are presented since the samne trends were noted whether tilt was or was

not removed. SNR2 behavior is represented by curves for the ratio SNR, No SNR results are
SNR 2  N

presented for the sampling ratio of 0.25 due to the previously discussed noise bias problem for the

STF estimator at that sample ratio. The results are presented in subsections for the sampling

ratio conditions of unity sampling (-L = 1.0), undersampling (-L-s = 2.0), and oversampling

r.o( =0.5).

4.5.1 Unity sampling, L - 1.0. Estimated single frame SNR1 results for unity sampling

are shown in Figure 4.11. The SNR approaches asymptotic behavior above photon counts of 50,

indicating STF1 is increasingly susceptible to noise at or below this photon count. From the ratio
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Figure 4.9. STF numerator real noise terms versus julst S-egi-, at a sampling ratio of - - 0.25
and a photon count of 10.

SNR. curves shown in Figure 4.12, it is evident STFI has better SNR characteristics than STF2

as indicated by the ratio value exceeding one for normalized spatial frequencies above roughly 0.1.

There is roughly a factor of 2 difference between S.N) 1 R and SNR 2 almost out to the diffraction

limit of the telescope (normalized spatial frequency of 1.0). One interesting point to note is that

the advantage of STF, over STF2 , as indicated by th SNR ratio, decreases 'with increasing photon

count. This result indicates that STF2 is more suscept ble to the the higher WFS noise encountered

for lower photon counts.

4.5.2 Under sampling, L = 2.0. Figure 4.13 shows results for SNR, for the case

of under sampling. The undersampled SNR approaches asymptotic behavior at a photon count

exceeding appoximately 100. The asymptotic behavior for the undersampled SNR1 occurs at

higher photon counts than the previously discussed unity sampling case. The undersampled WFS

rtquires higher signal levels to overcome the noise inherent in poorer sampling. The ratio SNIR2

curves in Figure 4.14 show that, except for low photon counts and high spatial frequencies, STF1

is the better method for image reconstruction than STF 2. The advantage of SNRI over SNR2

4-13



VALUES, OF PARAMrEIE!S
Pbotom Cotmt - 10
Vsh, oL* ~l/ re:

-0- 0.2 8 -- 1.0-- 0o.50 -2_ .0o

0 .o .5.•0 . .

NORMALIZED SPATIAL FREQUENCY.,pn

Figur 4.1. Raio crvesfor for a photon count of 10, and varying sampling.

begins at around a normalized spatial frequency of 0.05, with SNR approaching 3 for photonS~SNR 2

counts above 10. For the low photon count of 10 and normalized spatial frequencies approachinig

• unity, the two STF SNRs are roughly equal. The STF1 image estimator approach is increasingly

preferred over STF2 as the photon counts increases.

4.5.3 Over sampling, L. = 0.5. Only SNR results for a sampling ratio of 0.5 are

presented due to the significant STF noise bias STF at a sampling ratio of 0.'25. The SNR results

for a sampling ratio of 0.5 are shown in Figure 4.15 for SN)?1 . As expected, the SNR1 curves

are higher than the previously considered under (L_•L = 2) and unity ( r-L = 1) sampling ca~ses.

The better results are due to a more accurate phla~se estimate, leading to better STF estimator

performance, particularly at higher spatial frequencies. Additionally, the advantage of the STF1

over the STF2 estimator decreases with increasing photon count, as evidenced by • curves

approaching unity for higher photon count~s in Figure 4.16. What this essentially means is that the

STF1 and STF2 estimators are equally good for image reconstruction for an adequat~e signal, and

a good sampling ratio.
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Figure 4.11. Tilt removed SNRI curves for wave front sampling conditions at -L 1.0.

VAJAM OF PAIML ME~R;

4NOTh: Photon count. r
flued on3 Curv

-- 50. 1 00. 200.. 400. 800

0
0.0 0.2 0,4 0.6 0.8 1.0

NORMALIZED SPATIAL FREQUENCY. P.

Figure 4.12. Tilt removed "ý" curves for wave front sampling conditions at -L 1.0.
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Figure 4.13. Tilt removed SNRI curves for wave front sampling conditions at -L 2.0.
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V. Conclusions and Rccomin endalions.

5.1 Conclusions.

This thesis is a follow-on to a previous analytic investigation of the STF for the SRSII im-

age reconstruction technique. The thesis objective was to characterize two different estimator

approaches, STF1 and STF 2, and to compare the signal-to-noise ratios (SNPts) to determine which

technique was most advantageous for image reconstruction. The simulation SNRs were also included

to provide a means to determine frame requirements to achieve a desired image reconstruction SNR.

"The most significant result for this thesis, however, was the isolation of a noise bias in the OTF

estimate, S.

Ignoring for a moment the bias problem encounted in the simulation, the non-biased results

followed trends established by earlier analytic results [24]. In general, the STF can be improved

with increased signal strength (characterized by the average photon count per subaperture per short,

exposure image,N) up to an asymptotic limit determined by the wave front sensor (WVFS) sampling

ratio (L•) Some additional are the STF is extremely sensitive to variations in the sampling ratio

for a fixed signal strength, and can be significantly boosted by improving the sampling ratio. Finally,

tilt removal prior to WFS measurements made a slight improvement on image reconstruction, but

was not as significant as improving the signal strength or the sampling ratio.

In zomparing the two approaches to image reconstruction, STF1 is easily the better method as

shown by t~he S curves remaining more or less above unity value for most conditions considered.

The advantage of STF1 is greatest for under (L--A. = 2) and unity ( L = 1) sampling conditions

as seen by S curves remaining above unity for much of the spatial frequency range out, to

the diffraction limit. Under good sampling (--1 = 0.5), STF' approached STF1 performance.

particularly at higher photon counts (N > 200). Because of the significant bias problem at the

sampling ratio of 0.25, it was n)t determined at which point STF 2 actually outperforms ST'F1

under very good sampling conditions.
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Perhaps the most important conclusion for this thesis is that the SR.SII method is degraded by

a bias. In toying to isolate and characterize an apparent bias problem with STF curves, a careful

analysis of the OTF estimate (,) showed the problem of STF curves exceeding the theoretical

maximum result of unity, was due to a negative bias ((.VAz)) in S. By carefully examining noise

terms in both the STF numerator (SS*) and denominator (IS-), a useful noise bias figure of merit

was developed for determining non biased ranges for the STF curves. The figure of merit is the

ratio of the positive numerator bias term to the absolute value of the dominant denominator bias

term (I2(A"' (mp) ).This ratio was used to characterize regions of minimal bias. Basically, the

threshold value for this figure of merit occurs when the numerator and denominator bias terms are

identical (value of 0.5 for p

5.2 Recommendations.

The results from this thesis clearly point toward the need to develop a non-biased estimator.

The bias problem can be minimalized by subtracting off appropriately calculated bias terms at the

end. However, a better approach would be to develop a non-biased OTF estimate, or modify the

filtering (Wiener filter). As a first step, the negatively biased noise in S should be studied further

to characterize the influence of photon count and sampling ratio values on STF bias levels.

As a final note, some SRSH simulation runs should be done using the minimum variance

control law for phase reconstruction, since this was the control law used for the previous analytic

approach [24].
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.4ppendixr A. Sclected Numerical M11thods From the Simulation.

A.) Karhuncn-.Loiiie-Fast-Fouricr- Transform (KL-FFT) Method of Phase Screen Gencration.

This section summarizes pertinent information from all unpublished report by Cochran [17].

The technique used by the simulation to generate random phase screens involves an inverse Fourier

transform of filtered complex Gaussian random variables, followed by correction of low order spatial

frequenies wit h a limited number of orthogonal Karhunen -Lo've functions. This technique is called

the Karhunen-Lo~ve- Fast-Fourier-Transform (KL-FFT) Method of Phase Screen Generation. For

the simulation, the FFT portion creates a 128 x 128 pixel array as represented by the solid lined

outer box in Figure A.1. The x-y axes are centered at row and column location (65, 65), and is

oriented as shown. KL corrections occur over a circular region with a diameter encompassing 129

pixeis. A dotted line on the lower and right sides of the outer box of Figure A.1 indicates this

circle of correction extends one row or column beyond the defined boundaries of the FFT array.

The random phase screens used for individual frames of the simulation originate from the center

81 x 81 pixels as indicated by the inner solid lined box. The KL--FFT method generates a complex

screen, of which the real portion is used on odd frames, and the imaginary portion on even frames.

A.1.1 FFT g9nerated phase screen. Complex phase screen generation begins with the

128 x 128 pixel array being loaded with box-muller transform (see Section A.2) generated complex

gaussian numbers, _(E) = :u(V)+j:.(2). The real and imaginary parts of Z- are zero mean Gaussian

random variables with a standard deviation of one. The resulting random array is then filtered by

the spatial filter defined by [17:2]:

S( [0.i)7(Vx j if Ij > 0, and=(A.1)

0 otherwise,
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Figure A.I. Location of phase corrections.

where W is the spatia, filter, and ; is the spatial position. The FFT estimate of a complex phase

screen is gene-rated by the inverse Fourier transform of this filtered array:

where *ij represents the complex FFT phase screen. The next step is to boost the low frequency

components of this screen through addition of appropriately scaled Kb functions.

A.1.2 KL correction to FFT generated phase scrren. Two low order KL functions are

used to correct tilt in the FFT phase screens. First, a random strength is generated for each Kb

functinn to be added to the FFT estimate of the phase screen. The box-muller transform generates

a gaussian random number, Pi = Y1 +jY2, with zero mean and variance determined by the Zernike

covariance matrix method, for scaling the ith KL function. The amount of correction required for
I,,/

th AI.h KL fun rction is toun FFT subtracting th se no rrmaiediner prodc lof order KL functions with

, uedtocoret il i te FTphsescees.Firta anomstenthisgeerte frAa-2K

LLJ



the phase screen from this complex number:

"E." = Ei... *f , ,)iV (A.3)

E= -{ ,, [K<,(.)]A

where j'/ is the complex scaler strength of the correction required for the ith KL function. The

correction of the wave front, lIfp, for the KL functions is then given by:

ýkl-ff(-) = ff1f(i) + Z iiKi•'), (A.4)

where ikki-ftq is the KL-FFT cornplex phase screen.

Next, the real (odd fi.ne numbers) or imaginary (even frame numbers) part. of the center

81 x 81 pixels of iykl-fft is scaled for turbu, .ce strength through use of the Fried parameter, r0.

The resulting real random phase screen is given by:

1=[28.0Ax] ot
[18.)~ [Re or Ilifl{i'kifft(F)] (A.5)

L ro S

center 81 x 81 pixels

where Rc signifies the real and "ma the imaginary part of 'l-t-flt, Ax is the distance between

pixels in the aperture. This phase screen, €, is used in the simulation as the uncorrected phase

front.

A.2 Bor-Muller transform.

The box-muller transform generates two gaussian random numbers of zero mean and standard

deviation ar. The transform is defined as:

.1(F) = .To-2.0lnC1 cos(2r(72 ) (A.6)

z(z) = o'-2.ln sin(2r( 2 ), (A.7)

A-3
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where C aid (2 are random ,imb1ders between zero and one., and :l and :.2 are fite zero invan

gauss.ian random lnnumbers.

.4.3 K'rhuif ii.- r(• (h'l.) Ih pi(.mnhaton of a Handomt Pha Sc• r ,•.

Tile KI. correction to the IFH" phase screen origi inates from the techniqte of tising a series

rep)resen ntation0 for a rainom piha,,,se screen. The expression for the random phase frontr in a circular

apertlire is given as [17:3]:

= ~ImK~(F).(A.8)

where *A.1 is KL generated phase screen, Ki is tile ilt orthogonal K L function, and Yij is tihe

expansion coefficient that contains the turbulence statistics.

A.. . Bis fun ~Iiott for a hL erpanston. This section suinmmarizes pert inent inforimiat ion

from an unpublished ruport by (Cochran [17]. In order to correct.y construct a random phase

screen, the basis functions used imist be orthogonal. One l)ossil)le set of basis functions for use in

constructing random phase aberralions in a pupil are the so-called zero-mean normalized Zeritik,'

polynomials. These functions are defined by:

,f + I )R'(Z) cos (ir), 1) odd, and m . 0,

7 )= j \/2n+ )R?1(+ ) sin (imr), p even., and m $ 0, (A9)

-+ 'R0°, in = 0,

where ! signifies a factorial operation, in and n are indices of tile Zernike polynomials, 1) is ilhe

identification number of thle polyniomutial according to Noll's system [25:207 208], and 'R"' is d(efi•ied

by:

(; r ( (-'l)'(m - l)!(II)"-2i1 (A. 10)
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where ti < ni, and (i - Imn is even. The piroblem %i wt h Zernike polynomials is they are not orthogonal

functions, with iion-zero correlations existing bht ween various polynomnials. So although they are

ideal for describing phase ablerrations, they cannot he used as basis functions for a random phase

screen.

The KIL technique uses ain expansion of the Zernike, polynomials to form orthogonal KL

functions. Each KL function contains correlated Zernike polynomials. The technique involves

first. finding the eigenvectors and eigenvi lies of the covariance matrix for a basis set of Zernike

polynomials. A KL function is constructed from a single eigenvector, whose elements are used

to scale the appropriate Zernike polynomials. The eigenvalue determines the variance of the K L

function.

The Zernike expansion for the ith KI, fiunction is determined from the normalized covariance

niatrix as follows:

i= #j, (A. 11)

where C' is the normalized Zernik, covariance matrix for the basis set of zernike polynomials, ej is

the ith eigenvector of C, and a72 is tile ith eigeii1value. The elements of tlte covariance nilatrix are

calculated as follows [26:1175], [17:12]:

)0.15337(-1" m" V(,7 + -)(1,' + fI)y('
C'-'= . ,j , +., +4, -2 6 W1a+a-, (A.12)

2 2 2 i.

where C',,p, is t lie covariance bet ween numbered Zernike polynoimials p and p' [25:207 -208], it and

in are indices used for aIcaiculating t he Zernike polynoinials, Ft.) is t he gamina function defilfnd by

[27:386]:

F(n) = j ex) (-4')•. dr., (A.1:3)
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and &aw,, and 6 , are Kron'cker delta functions defined as [28:153]:

I if a = a'
6,, = (A.14)

0 otherwise.

The ith K L function is constructed from the ith cigienvector t by the following expansion:

/ = ~ 7, ,(.F), (A.,15)
p

where p is the designator for a particular Zernike polynomial Z,,, and cip is the pth comp)onent

of the eigenvector ej. The phase screen is found by summing over all appropriately scaled KL

functions considered:

where D is the diameter of the pupil, and yj is a zero mean Gaussian random variable with variance

tf (eigenvalue for ith KL function). For the simulation, the two lowest order KL functions arid

their associated variances (eigenvalues) are calculated as part of the setup portion of the simulation.

The correction is applied on odd iterations since screens are created two at a time.
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