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The Speckle Holography technique uses a series of short exposure images and associated wave front sensor
measurements to reconstruct astronomical images. The reconstruction technique effectively boosts the amplitude
of high spatial frequencies to allow for finer resolution of astronomical objects. A simulation package that
calculates the optical transfer function (OTF) of a telescopic system was previously developed for the Phillips -
Laboratory. This software was modified slightly to provide the Speckle Holography system transfer function
(STF) for a telescopic system under varying seeing conditions as specified by the ratio of the subaperture
separation (Lg,) to the Fried parameter (r;), and by the photon count per subaperture per short exposure
image. The thesis analyzes two different approaches to the STF. In addition to generating STF curves for
varying seeing conditions, the signal-to-noise ratio (SNR) for a single sampling of short exposure image and wave
front measurements is calculated according to the formula SNR = STF/+/var, where var is the variance of the
STF. The thesis results indicate the STF ic severely degraded by a bias that originates from the estimate of
the OTF, which is used in the STF calculation. The problem is found to be increasingly severe for improved
wave front sensor sampling (denser wave front measurements) and low photon counts. An attempt is made to
characterize non-biased regions of the STF.
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_regions of the STF.

The Speckle Holography technique uses a series of short exposure pnages and associated wave
front sensor measurements to reconstruct astronomical imz;gvs. I'he reconstruction technique offee-
li\'c‘i)’ hoosts the amplitude of high spatial frequencies to allow for finer resolution of astronomical
ul)j«*ds. A simulation package that calculates the oplirﬁl transfer function (OTF) of a telescopic
system was previously developed for the Phillips Laboratory., 'This software was medified slightly
to provide the Speckle Holography s_;'st.vm transfer function (STF) for a h'lvsmpir system under
varying seeing conditions as specificd by the r;;li() of the subaperture separation (Lay) to the Fried
parameter (r,). and by the photon count per subaperture per short exposure image. The thesis
analyzes two diflzrent approaches to the STFE. In addition to generating STF curves for varyving
sering conditions, the vsignaho—noisv ratio (SNR) for a single sampling of short exposure image and
wave front measurements is calculated according to the formula:

ST.F
Vvar’

SNR =

where var is the variance of the STF. The thesis results indicate the STF is severely degraded
by a bias that originates from the estimate of the OTF, which is used in the STF calculation.
The problem is found to be increasingly severe for improved wave front sensor sampling (denser

wave front measurements) and low photon counts. An attempt is made to characterize non-biared
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SELF-REFERENCED SPECKLE HOLOGRAPHY (SRSIH)
IMAGE RECONSTRUCTION PERFORMANCE

1. Atmospheric Turbulence and the SRSII Technique.
1.1 Introduction.

Prior to the space-based Hubble telescope, growi d based telescopes were the only means for
ohserving distant stars. Although a space based telescope has the advantage of not having to “look”
through the atmosphere, maintenance costs and size limitations for spaced based systems ensure

that ground-based telescopes will continue to remain a vital tool for exploring the universe.

bFrom a diffraction theory perspective, a ground based telescope shoula_ be built as large as
possible since the larger the telescope diameter, the finer the angular resolution of the telescope and
the smaller the object the telescope can image. It turns out that the resolution of iarge diameter
telescopes is limited by the effects of atmospheric turbﬁlence. The turbulence indnces random
spatial and temporal fluctuations on wave fronts prior to imaging by the telescope, blurring the

image and decreasing the angular resolution from the theoreuical limit.

Wave front measurements and signal processing can be used to paftially overcome Fll\? effects
of turbulence on images. In this thesis, a FORTRAN computer simulafion’ is used to examine
the imaging performance of the self-referenced speckle holograph); (SRSH) image reconstruction
technique. This technique shows great promise, wi‘th imaging results approaching the theoretical
angular resolution limit of large diameter telescopes to which it is applied [1:1]. In this chapter,
the reader is introduced to the problem of imaging through atmospheric turbulence, followed by an
introduction to the SRSH technique, and general thesis objectives. In Chapter 11, the general theory
of the SRSH technique is r esented along with assumptions and defining equations for the thesis.

The FORTRAN computer simulation is described in some detail in Chapter I1l. The results for
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this thesis effort are presented in Chapter IV and conclusions and recommendations are presented

in Chapter V.

1.2 Atmospheric Turbulence.

1.2.1 Turbulent cddies. Atmospheric turbulence is generated by uncven heating and
cooling of the earth’s atmosphere. This process results in randomly generated pockets of turbulence

or eddies, each of wlich has an index of refraction defined by [2:56]:
. :
n=-, _ : ‘(1.1)

where n is the index _Qf refraction, ¢ (m/s) is the speed of light in a vacuum, and v (m/s) is the
velocity of propagation of light in the medium. Each pocket of turbulence can have a different
index of refraction from other pockets of turbulence. These pockets occur randomly in a temporal
and spatial sense, and so induce random temporal and spatial fluctuations on wave fronts passing

through the turbulent region, causing image distortions [3:4527].

Figure 1.1 shows a wave front prior to and after encountering turbulence while enroute to a
ground based telescope. Light fiom a star is essentially planar by the time it reaches the earth’s
. atmosphere due to the distance of propagation. In traveling through the atmosphere to a ground
based telescope, the planar wave front encounters the randomly distributed turbulent eddies. The
overall delay experienced by a specific point on the wave front will depend on which turbulent

eddies that point encounters as it passes through the turbulent atmosphsre.

1.2.2 Minimum angular resolution in turbulent conditions. The net effect of this tur-

bulence is to reduce the angular resolution of a large telescope. In theory, the diffraction limited

1-2
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Figure 1.1. Wave front degradation due to atmospheric turbulence.

angular resolution of a telescope is given by [2:422]: -

Al = 1.221, (1.2)

min D
where A8, i, (rad) is the angular resolution of the telescope, A (m) is the wavelength of the incident
light, and D (m) is the telescope diameter. Equation (1.2) implies the angular resolution improves

with increasing telescope diameter.

Fried derived a parameter in 1966 to describe the point at which increasing atmospheric
distortion limits the resolution performance of a telescope [4:33]. The so—called Fried coherence
diameter or Fried parameter, r,, i; a measure of the lateral spatial coherence properties of incident
wave fronts [5:10-13]. The Fried parameter is roughly on the ordef of the size of the sloped regions
induced on a wave front. The Fried barameter is a function of the wavelength of the light, the

propagation path length through the turbulence, the zenith angle (angle with the vertical), and the
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strength of the turbulence. If the telescope diameter is less than the Fried parameter, the telescope
operates with essentially diffraction limited performance. When the telescope diameter exceeds the
Fried parameter (as is generally the case for large diameter telescopes at visible wavelengths). the

angular resolution achievable is approximated by replacing D in equation (1.2) by r, to give [6:14]:

A ‘ o
Abpjin = 1.22-;-. (1.3)
o ..
The minimum angular resolution of large diameter ground based telescopes is generally limited to
around 1 arcsecond at visible wavelengths [7:1-2]. For example, the 2.4 meter diameter Hubble
telescope has a diffraction limit of 0.03 arcsecond in space. On the ground, this same telescope

would be limited to angular resolutions on the order of 0.5 to 1.0 arcseconds [6:1,14], which is 16

to 30 times worse than the theoretical limit.

The Fried paiameter, To, typically ranges from 3 centimeters for poor seeing conditions to 20
or 30 centimeters for good seeing conditions. Its value is site dependent, since the altitude of an
observatory site determines how much of the atmosphere the light propagates through. Its value is
also weather dependent [6:14]. Typically, atmospheric turbulence limits large diameter telescopes to

the same angular resolution as smaller telescopes on the order of 10 to 20 centimeters in diameter.

1.3 Historical Development of the SRSH Technique.

Several image recovery techniques have been developed that involve computer post processing
of a series of short exposure images to recover an improved image of the original object. The
reason for using short exposure images is, according to Goodman, to “‘freeze’ the atmospheric
degradations, thus eliminating any time averaging effects [8:402].” A long‘ exposure image is blurred
by the changing atmospheric conditions causing the image to move around during the exposure.
These image changes occur on the order of milliseconds [6]. An example of a long exposure image

is shown in Figure 1.2 (a). A short exposure image, see Figure 1.2 (b), contains diffraction limited
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épots or speckles. These speckles result “from interference of a signal with itself or with part of
the actual imaging or optical system [l:l].”l A series ‘of short exposure images can be processed
tc; reconstruct a near diffraction limited image as evidenced by Labeyrie’s Speckle Intefferpmetry
technique, the Knox-Thompson algorithm technique, and the Triple Correlation technique. All of
these image post processing techniques can effectively reconstruct images out to near the diffraction
limit of the telescope. The' problem with these techniques is they can require thousands of short

exposure images [9:64].

An alternative to ppst processing is what Hardy calls active optics or adaptive optics com-
pensation [10:654]. For this technique, distorted wave fronts are compensated real time by use of
a controllable corrective surface whose tefractive or reflective properties arve changed to cancel the
incident wave front distortion. The techniquel consists of measuring the phase distortion along the
wave front and then applying the appropriafe controls to the refractive or reflective surface. The
three pvarts to such a system are the controllable corrective surface, wave front sensor device, and

information processing device required to generate control signals for the corrective surface.

One type of commonly used wave front sensor device is the Shack-Hartmann wave front
sensor (WFS), which has the ideal capability of detecting local wave front slopes at low light levels
(1:11]). Figure i.3 shows an array of subapertures in a Shack-Hartman WFS. The telescope aperture
of length D is subdivided into smaller apertures of dimension L. Each of these small apertures,
or subapertures, has a lens that focuses that portion of the wave incident on the subaperture
onto a detector. The local slope of the incident wave front is sensed separately in the r and y
directions by measuring the distance the light is focused off axis as shown in Figure 1.4. The Shack-
Hartman WFS provides the key capability of local tilt measurements for the SRSH technique, and

its development resulted in practical application of the SRSH technique in image reconstruction.

Fontanella first proposed enhancing post processing image reconstruction performance through

a new technique that used simultaneous monochromatic short exposure speckled images and wave

1-5
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Figure 1.3. Shack-Hartman wave front sensor (WTI'S) subaperture configuration.

front measurements using the Shack-Hartman sensor [9:64]. This new hybrid approach combined
short exposure image post processing with the adaptive optics WFS measurements to remove the
effect of the turbulent atmosphere. This techniqué is called Speckle Hologra.lphy _duebto the use of
speckled short exposure images such as that shown in Figure 1.2 (b), and the use of a reference wave
front (similar to holography recordings) from a point source for hhase measurements [11:4527]. The
SRSH technique differs only from Speckle Holooraphy in that for the SRSH technique, the object

itself acts as its own reference for phase measurements.

1.4 General Thesis Objectives.

This thesis will address the performance of the SRSH technique by first investigating the
validity of results from earlier work by VonNiederhausern that characterized the ensemble average
Fourier domain system transfer function (STF) for the SRSH techniqué [16]. The STF is the Fourier
domain transfer function for the inversion from the degraded image spectrum to the estimated

object spectrum. The SRSH technique removes turbulence degradations in the image by filtering in

1-7
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WAVE
FRONT

Figure 1.4. Side view of Shack-Hartman wave front sensor (WFS) lens and detector array.

the Fourier domain. The STF results from this ea}lier work were characterized for variations in the
Fried parameter (r,) and the strength of the incident light (average photon count pér subaperture
per short exposure image). This thesis uses a FORTRAN simulation to generate STF Aresults by
performing calculations on a limited numbers of short exposure irnages and WFS measurements.
This thesis will consider two different approaches‘ to calculating the STF as defined in Chapterr 1L
Additionally, this thesis presents results for a signal to noise ratio (SNR) analysis that characterizes
the single frame STF imaging performance as a function of spatial freguency. An unexpeeted STF

bias problem is also investigated and characterized for this thesis.

A discussion of the hardware required, the basic theory of the SRSH technique, and assump-

tions.and defining equations for the thesis appears in the next chapter.

1-8
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II. General Theory of the SRSH Technique.
2.1 Introduction.

This thesis presents-results from a FORTRAN computer simulation of a telescope configured
with the hardware shown in Figure 2.1. As background for the SRSH simulation, the basic Fourier
t'heory for a simple lens equivalent model is presented. This simple system configuration is basicly
the optical system used by the simulation. Next, the deﬁrﬁng equation of the SRSH technique, t,hé

system transfer function (STF), is derived using the simple lens model. Finally, the assumptions

and defining equations for the thesis are presented.

2.2 Hardware Configuration for the SRSH Technigue.

As shown in Figlllre 2.1, the SRSH technique requires a fast shutter to control exposure times,

a beam splitter to split an incident wave front for siinultaneous short exposure image an(i wave

front measurements, a wave front sensor for wave front measurements (Shack-Hartman sensor), a

filter to pass quasimonochromatic light, a camera for recording the short exposure images, and

a computer to construct an estimate of the originé.l object using wave front measurement and

short exposure image data [11:4528]. The image is a two dimensional intensity distribution, i(z, y),

while the wave front measurements are actually slope measurements that are used to construct an

estimate, é(.r,y), of the phase of the incident wave front phase, ¢(z,y). The simulation uses an

! adaptive optics control law to construct the phase estimate, ¢(z, y). An estimate of the object being
imaged, 6(z,y), is obtained by applying the SRSH algorithm over many frames of simultaneous

phase estimates and short exposure images.

2.9 Lens Equivalent Model.

For most astronomical scenarios involving large diameter telescopes, and good “seeing™ con-

ditions where clouds and other aerosols are not present, the atmospheric distortion induces mainly

2-1
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Fighre 2.1. Typical SRSH Lardware configuration.

phase distortions [8:362]. This.result occurs when the turbulence through which the telescope is
viewing the object is constrained to what is called the near field. For zenith angles close to zero and
a large diameter telescope, one can expect less than a 4 percent error in calculations due to neglect-
ing the amplitude distortions [12:588-589]. The near field assumption holds for the FORTRAN
simulation since the telescope diameter is sufficiently large an;i the zenith angle is zero. So, the
turbulent atmosphere for short exposure image formation can be modeled by a single phase screen
that introduces delays across the incident wave front [11:4527]. A sample wave front coming from
such a phase screen ib shown in the greyscale plot (81 by 81 pixels) in Figure 2.2 with bright pixels
corresponding to sma\l delays and dark pixels to large del_ays. Figure 2.3 shows a three-dimensional
view of a plane wave ‘prior to and after encountering atmospherfc turbulence. Notice that one of
the types of phase distortion introduced by the atmosphere is an overall average slope or “tilt” to

the wave front.

For the simulation| the telescopic imaging system will be modeled by the simple lens equivalent

model shown in Figure 2.4. The object of interest is a star, which is modeled by a point source




Figure 2.2. Greyscale diagram for wave front encountering turbulence.

at infinite distance away. The atmospheric turbulence is accounted for by a random phase screen,
and the telescope by a limiting aperture and imaging lens. The star produces a planar wave front
incident on the phase screen. As discussed previously, the phase screen introduces different phase

delayé along the wave front in the same fashion as would random turbulence to a planar wave front

from a star. This degraded wavefront passes through the aperture, and is focused by the lens onto
the image plane. For the SRSH hardware shown in Figure 2.1, the wave frrontr sensor is effectively

located in the aperture plane where the wave front is sampled prior to imaging.

2.4 System Transform Function (STF).

2.4.1 Spatial domain image formation - instantaneous point spread function (IPSF). The
goal is to find an expression for the impulse response of the optical system shown in Figure 2.4.

Using Fourier system concepts, the short exposure image can be related to the original object by &
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Figure 2.3. Effect on plane wave front encountering turbulence.

convalution relationship:

@=sdro®d  @n

where & is a two-dimensional vector in the image plane, { is the short exposure image, o is the
object (star), * stands for a convolution operation, and s is a function called the instantanecus
point spread function (IPSF) resulting from the combined effect of the optics and the atmosphere.

For a single star in the field-of-view, the IPSF represents ithe short exposure image.
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Figure 2.4. Lens equivalent model for telescopic imaging system.

2.4.2  Frequency domain image formation - system transfer function (STF). The conve-
lution relationship in equation (2.1) can be Fourier transformed into the spatial frequency domain
to give [11:4527):

1(5) = S(HOWE) - (2.2)

where I, S, and O are the Fourier transforms of i, s, and o respectively, and § is the spatial
frequency vector. For the case of a star, o(Z) is effectively a point source an infinite distance, and

O(p) = 1. This reduces equation (2.2) to:
1(5) = S(p). - (2.3)

The function S in equation (2.2), which is known as the optical transfer function (OTF), is deter-

mined by the expression [11-4527], [13:113-125):

[P(AF§)exp {j2r8(AF D)} @ [P*(AF ) exp {—i27m¢(AF )]

Ste) = [P(AF)® P~(AFp)] ’

(2.4)

where P is the pupil funtion which defines the spatial extent of the aperture of the telescope, ¢
is the wave front phase induced by the phase screen, * indicates the complex conjugate, F is the
distance {rom the pupil plane (aperture in Figure 2.4) to the image plane, and ® indicates an

autocorrelation operation.
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The overall objective of any reconstruction technique is to go from the turbulence degraded

image spm'"lrum. 1. in equation {2.2). 1o the best estimate achievable (O) of the original object

spectrum, Q. An estimate of the original shject is then obtained by an inverse fourier transform

" of this estimated object spectrum. The approach used for the SRSI techrique involves using an

estimvnte of the OTF to invert (.-qna(ion {2.2). The problem at hand is to in some way est i.mat.v S,
Since the atmospherie turbulence effects are seen in the wave front plms'vvofllw incident wave, wave
front sensor measurements are used to estimate the phase in the pupil so that 'lhv estimate for the
OTF is given by [11:4527):

_|PoFRexp (2ro0F )] & [PrOAFR exp (= 2r0 A F )]
S(p) = S [PAFD) ¢ PH(AFP)) '

(2.5)

where S is the estimate for the OTF, and & is the estimate for the phase screen as determined from
the wave front measur ‘mepts.
Equation (2.2) implies the original object spectrum can be recovered by simply dividing

through by the OTF estimate, S. The problem is that S, as an estimate of S, generally will not

* contain all the information in S. § will most likely contain “zeros™ at some spatial frequencies,

indicating lost imaging information. A much better approach is to invert equation (2.3) through a
Wiener filter type approach so as to minimize the mean square error of the estimate. This estimate

of the object spectrum is given as [l'.:452‘7]: R e

IS(A)I? + ¢
| .
‘Wiener type filter

o) = 1I(5) [__2(_’3_] ‘ O (28)

where O is the estimate of the object spectrum and ¢ is a parametric constant that prevents
sigularities in the estimator. Since the single frame OTF estimate, S, in equation (2.6) will, on
average, contain zeros at some spatial frequencies, the estimate of the object spectrum given by

equation (2.6) will be incomplete [14:29).
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The SRSH approach to image reconstruction is to average a Wiener type filter estimator
over many frames so that the estimnate of the object spectrum (0) includes all spatial frequencies
out to the diffraction limit of the telescope. There are two possible methods of averaging for the
SRSH technique, and both will be considered in this thesis. For the first method considered, the
system transfer function (STF) that characterizes the SRSH reconstruction approach, is derived

from equation (2.6) by averaging the numerator and denominator to give: [15:2]:

STR(7) = () = EDI) @.7)

RECEN
where STFI(;Sj represents an ensemble average STF, and the image spectrum I(§) has been replaced
by S(p) since, as previously stated. the object is a star. The not,at,iox; () represents averaging over
an eﬁsemble of a large number of short exposure realizaticns of ;Sf(ﬁ') and S(5). This equation is
used to characterize the performance of the SRSH technique under varying seeing conditions for
spatial frequencies out to the diffraction limit of the telescope. Alternately, the STF could be

defined by averaging the ratio of numerator and denominator to give:

STFy(7) = O(5) = <§(‘£%> , o (238)

where ST F,(p) represents an ensemble average STF.

These two STF estimators, STF|, and STF5, represent different approaches to image re-
construction. The magnitude of a STF represents the spatial frequency response of the SRSH
technique for the case of a point source object. The results for both SRSH methods are presented

in Chapter 1V,
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2.5 Assumptions and Defining Equations for the Thesis.

This thesis is a follow-ou to earlier work that involved characterizing the ensemble average
performance of the STF; algorithm for varying telescope parameters and “seeing” conditions [15).

L his thesis uses limited numbers of random phase screens and wave front measurements to estimate

the performance of STF; and STF, algorithms. Additionally, this thesis presents results for ST Fy

and ST F, signal-to-noise ratios (SNRs) that characterize the single frame STF imaging performance
as a function of spatial frequency of the two STFs. The assumptions and defining equations for the

simulation results are presented in this section.

2.5.1 Assumptions.

2.5.1.1 Required sampling.  Simulation runs of 2000 frames were assumed sufficient
to characterize the performance of the estimator. In general, the SRSH technique requires less

frames for image reconstruction.

L

£.5.1.2 Assumed turbulence characteristics. In modeling the atmospheric turbu-
lence by a phase screen, the assumption is that the amplitude of the incident wave front is not
significantly perturbed by the turbulence. This turbulence condition is commonly referred to as

near-field turbulence. For astronomical applications, this is a reasonable approximation. The soft-

ware generated random screens are strictly phase screens and as such do not take into account any

amplitude fluctuations.
2.5.2 Defining equations.

'2.5.2.1 Phase reconstruction.  In a'practical system, slope measurements are used to
reconstruct an estimate of the incident wave front phase ¢(Z) through a linear combination of zonal

interpolation functions. For this thesis, the zonal interpolation functions used were two-dimensional
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gaussian functions specified by:
- —[F-#)? o
gi(£) = exp {—————[ T3 d } (2.9)
as

where g; is the ith function centered at I;, and L, is the radius of the % width of g;. Recall from
Figure 1.3 that the wave front sensor divides the aperture up into sinaller subapertures over which
slope measurements are taken. When reconstructing the wave front from slope measurements, the

zonal interpolation functions are located at the corners of the sensors and are weighted appropriately

for a best fit of the slope data.

2.5.2.2 Performance relaled equations and parameters.  Both ST'F} and STF. and
their respective variances were calculated for simulation runs consisting of 2000 frames of simul-
taneous wave front sensor measurements and short exposure images. The STF results are plotted

with respect to a normalized spatial frequency defined by:

Fa = ——, (2.10)
Pdift
where gy is the normalized spatial frequency, 7 is the unnormalized spatial frequency, and p ;g is

the magnitude of the maximum or diffraction limited spatial frequency.

An additional way to characterize the STF is through the use of a signal-to-noise ratio (SNR)
measure. A single frame SNR is calculated for STF; and STF, in slightly different fashions. For
STF), we note that the purpose of the denominator is just to boost the high spatial frequencies.
This could be accomplished by a deterministic denominator. All the Fourier phase correction is in

the numerator, and so the SNR ratio for STF; can be defined by:

{stfMM(5) '
SNR =t 2.11
12 \/"’i’mm(ﬁ) ( )
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where SN R, is the single frame SNR for STF;, eiym is the variance in the numerator of STF,

and st fPU'M is the ith realization of the numerator of STFy. For STF,, the SNR ratio is defined
by: ‘

. (st ‘
SNRa(f) = \/_"T_—(;’:) | (2.12)

where SN Rj is the single frame SNR for STF, and uf,j. is the variance of ST Fy.

The SNRs and STFs described above are two dimensional‘equations. For this thesis, these
two dimensional functions are reduced to one dimensional functions for presentation purposes.

The reduction is accomplished by angularly averaging as shown in the following reduction of the

two-dimensional function g(g,) to the single dimensional function ¢'(|4}):

- 1 2 .
g'imh) = 5 / g(|An, 8)d0, (2.13)
4 0

where |pn| and @ are the polar coordinate representation of 5. These angularly averaged results
are presented in Chapter IV.
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III. SRSH Computer Simulation.
3.1 Introduction.

The simulation approach to generating SRSH transfer functions STF; and ST F2 and their
respective SNRs avoids the rather intensive computations required for an analytical approach. In
a prior thesis, the analytic derivation of the transfer function STF; involved a four dimensional
numerical integration [16:3.6]. I;‘or the variance calculations required in the SNR analysis, an eight

dimensional integration would have to be numerically evaluated.

The SRSH simulation is a modified version of an existing adaptive optics FORTRAN simu-
lation written by Dr. Mikdé Roggemann while at the Phillips Laboratory, Kirtland AFB, NM. The
SRSH simulation uses a least squares phase reconstruction algorithm to produce the phase front

|
estimate ¢. Additionally, the SRSH simulation uses existing tilt and piston correction, phase screen

creation, and OTF calculation algorithms. This chapter first gives a description of simulation steps

taker to model a SRSH e:qu_iped telescope, and second introduces pertinent analytical equations
|
used in the simulation.

|
° |
3.2 Simulation of an SR.:S'H Equiped Telescope.

|

The SRSH technique involves manipulation of the telescope OTF (S) and its estimate (S)
|

over many frames. The séquence of operations performed by the SRSH simulation to calculate
OTFs is shown in Figure 3.1, and will be described in this section. The simulation applies three
o different templates to the incident wave front ¢. A WFS template and an associated artificial pupil
P'(£) are used for WFS measurements. This artificial pupil (P’) allows for WFS subapertures
with corners extending outside the telescope pupil P(Z) to still be used for WF'S measurements.
The third template is the telescope pupil P(Z) which defines the aperture of the telescope and is
used for calculating S and S. These templates will be described in this section for the sequence of

simulation steps required for a single short exposure frame calculation of S and S.




For a single short exposure frame, the simulation generates a random phase screen or wave
front, ¢(%), incident on the tclescope. The next step is to prepare ¢(Z) for wave front sensor(WFS)
slope measurements by applying an artificial pupil P’ to ¢(¥) prior to application of the WFS
sensor template. This is done because the slope in a WFS subaperture is actually determined h_\,
sampling wave front ¢(Z) at points along the WFS subaperture edges. As shown in Figure 3.2, the
WFS has subaperture corners which extend outside the telescope pupil P(Z). The artificial pupil

defines the extent of ¢(F) for the WFS according to the equation:

1 |7 < (5 +54) and
where Lga, defines both the separation between adjacent actuators, and the center-to-center spacing

|

of adjacent subapertures on the WFS., |

PF) = (3.1)

0 otherwise,

Since the WFS uses phase differences for slope measurements, it is convenient to remove
piston from the incident phase front prior to the WF$ measuremejnt. Additionally, the overall tilt
can be corrected in the wave front prior to WFS measurements.! Tilt is removed only to study
possible STF and SNR benefits for tilt correction. The piston and tilt are corrected in the artificial
pupil, P/, using measurements accross the actual telescope pupil, r, defined by:

1 if|f] < 2, and ‘
P@&@) = : (3.2)
0 otherwise,
whete D is the telescope or aperture diameter. Both pupils are shown in the contour plot in
Figure 3.3. This corrected wave front is now used to determine both the OTF and it's estimate by

the two separate paths shown in Figure 3.1.

For the OTF estimate (S), the first step is to apply the wave front sensor template to the

cotrected wave front. The result, as shown in Figure 3.1, is a wave front sampled along the




defining edges of the wave front sensor subapertures. The reason for this is the simulation uses
phas; differences across a subaperture to calculate the slope within that subaperture. The wave
front sensor template is shown in Figure 3.2, along with the centers of the Gaussian interpolation
functions. The estimate of the phase front ¢ is obtained by‘summing the spatial response of the
interpq]ation functions, each of which is weighted by 4 factor determined from a linear combination
of the slopg measurements. The telescope pupil, P, is applied to the phase estimate, and tilt and

piston are removed from the phase estimate before calculating S.

For S(p), the first step is to apply the_ pupil P to the wave front previously corrected for
WFS measurements. Next, piston and tilt (if tilt has not been removed prior to the WFS) are
removed. The OTF is then calculated from the resulting corrected phase screen. S(5) is actually
the frequency domain result of a single frame short exposure image for a single star. Figure 3.4
shows the simulated image plane result. The result is similar to the speckled short exposure image

shown in Chapter I.

3.3 Analytical Equations Used in the Simulation.

3.3.1 Flowchart for the SRSH simulation. =~ The SRSH computer simulation follows the
flowchart shown in Figure 3.5. The three main sections are Setup, Iterations, and Qutput. A brief

overview of the simulation is presented in this section.

3.3.2 Sctup.  The first step in the simulation involves specification of arrays and variables,
and initialization of simulation parameters. Data is read in to specify the number frames M to
process, number of subapertures accross the pupil P, telescope diameter D, Fried parameter r,,
flag for tilt removal (ITILT in Figure 3.5), average photon count per subaperture per exposure
N, a small parametric constant to prevent singula;rities in the STF estimator ¢, and filenames for

simulation output.
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Figure 3.1. Sequence of events for OTF and OTF estimate calculations.
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Figure 3.2. Wave front sensor template, with actuator function locations and pupil P shown.

Next, Karhunen-Loéve-Fast-Fourier—Transform (KL-FFT) parameters and arra;s required
for random phase screens are set-up. This method of constructing random phase screens is summa-
rized briefly in Appendix A [17:5]. The phase screer. generation|is discussed later in the iterations

section.
Next, the physical system is specified by creating three template arrays, two of which are the
pupil functions, P and P’, and the other of which is the Shack-Hartman wave front sensor(WFS).

Additionally, gaussian interpolation functions used for the phase estimate are placed in the pupil,

with one loczted at each corner of a subaperture on the wave front sensor. The locations in the
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Figure 3.3. Contour plot showing size of actual pupil, P, and artificial pupil, P’.

telescope pupil P for the 208 wave front sensor subapertures and for the centers of the 241 gaussian

reconstruction functions are shown in Figure 3.2. Caussian reconstruction functions are specified
by: .

gi(%) = exp {——_—[?L—E’—fﬁ}, (3.3)
where g; is the ith function centered at F;, £ is the position vector in the pupil, and L, is the

distance between adjacent reconstruction functions.

In addition to the WFS used template to model the spatial extent of the subapertures, the
simulation also adds in random noise to phase n;e;a.;urements. The accuracy of phase reconstruction
is affected by both the signal level in each subaperture of the wave front sensor, and the strength
of atmospheric turbulence. Low light levels lead to noisier measurements. Additionally, the Fried
parameter, r,, is a measure of turbulence that relates to the spot size and so must also be considered.

By modeling the focused spot of a subaperture lens as gaussian in shape, the standard deviavion
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Figure 3.4. Examrle of simulation short exposure image.

for phase tilt measurements in the z or y directions is given as [18:1919]:

%j%—"- L>r, and
047I4VILH L S o,

On = (3.4)
where 0, (rad/m) is the standard deviation of the tilt meacurement and n is a dimensionless
parameter accounting for imperfections in the subaperture focal plane detector. This standard
deviation is used to generate random numbers which are added into phase front measurements as
noise.

The final step prior to entering the iterative loop of the simulation is to derive a least-
squares reconstructic 1 matrix, R'”, which is used for converting wave front slope measurements into
weight ngs for the phase interpolation functions. The resulting weishtings are used to construct a

phase estimate by summing the responses of the 241 appropriately scaled Gaussian interpolation
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functions according to the equation:
é(F) = ) _ gl _ (3.5)

where g;. is the kth numbered Gaussian interpolation function located at a corner of a subaperture,

and c; is its associated weighting. The least squares approach is used to solve for the required

weighting factors by inverting the linear equation:
S = HC, (3.6)

where C is a vector containing the required weightings (¢i), S is a vector containing slope mea-
suremer . (s Or ¥y, and H is a Jacobian matrix whose elements are defined hy g—:—: [19:457-458]
[20:19-20]. For the particular geometry considered here, 241 weightings are determined from 416
slope measurements. The linear system described by equation (3.6) is what Tyson describes as
“overdetermined [4:237]," having fewer unknowns (required weightings) than linear equations to
solve. A “best fit” to the data (slope measurements) that minimizes the mean. square error between

the left and right sides of equation (3.6) gives the required weightings as:

C=(HTH)'HT S, (3.7)
e e v
Ris
where R" is defined as the least squares reconstruction matrix used to map slope measurements

into actuator commands for phase estimate construction.

3.3.3 Herations. The simulation produces results for M short exposure frames. Each pass
of the iteration loop involves phase screen generation, tilt and piston correction, phase estimation,

S and S calculations, and summation of STF results with those from previous frames.
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3.3.3.1  Phasc sereen gencration.  The KL-FFT technique is used to generate random

phase screens. The technique involves the ereation of an FFT screen by the inverse transform of

appropriately filtered complex Gaussian random variables. This FFT sceen is corrected by two

low order KL functions, producing the complex KL-FFT screen Wyge_p, which is scaled for the
o . R - -

turbulence streugth (multiply by |=| ). The random phase screen ¢ is taken from the real or

imaginary part of Wysi-ii. The real part is used on odd and the imaginary part on even numbered

frames. The details of this technique are discussed in Appendix A.

©3.3.3.2 Tt and piston correction. Next, the piston error of the random phase
screen, @, is measured in the telescope pupil, P, and removed over the larger pupil, P, as follows
[15:3-4]: _ . .
| () = [¢(f) -/ d’fP(f)as(f)] P(#), G

where ¢' is the piston corrected wave front. For no-tilt simulations, the tilt in r and y directions

is calculated over the pupil P as follows [21:253-255]:

_ [#8(d, HedPE) - o
"= TEnd FPE) @.9)

where t, is the tilt, d,, is a unit vector in the z or y direction. In preparation for wave front sensor

_measurements, the tilt is removed over P’:

¢"() = {¢(@) ~ 7 D)+ 4,7 2} (D), (3.10)

where ¢” is the tilt corrected wave front, ¢, and t, are tilts, and 7 and fa.re unit vectors in the r

and y directions.

3.8.3.8 Phase reconstruction. Since most of the results for this thesis are for the

case of tilt correction prior to WFS measurements, the remaining simulation description will be
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for the tilt corrected wave front, ¢”. Slope measurements are now made on the wave front, ¢”, by
applying the wave front sensor template. For the rth subaperture, the measured slope is given by
[18:1914]:

o = /d"’i’W,,(i’)[V¢”(E)~(T,,] + an, (3.11)

where - indicates a dot product, s, is the slope measurement (radians per meter), V is the two-
dimensional spatial gradient, d,, is a unit vector in the direction of the sensitivity (z or y) of the
nth sensor, and a,, is the slope measurement error in radians per meter. Additionally, W, (units

of m~}) is defined as a weighting function for the nth subaperture such that:
Wa(F) = /(Fi’w,,(i’) =1 (3.12)

The slope is calculated in the simulation from a slightly modified version of equation {3.11) that

expresses the integral in in terms of phase differences along the edges of a particular subaperture.

To get the phase difference version for slope, equation (3.11) is first rewritten using integration

by parts to give [18:1914):
8y = _/dzj’qs"(i-')[VH’"(f) . Jn} + an, (3.13)

where the integral is now expressed in terms of the gradient of the weighting function for the nth

subaperture, VW, (7). For the subaperture shown in Figure 3.6, this gradient can be expressed as:

used to calculate slope in y direction

N

VWo(3) = / " dr (Walz, 1)8(2,y = u1) = Wal(z, 9)8(z,y — 30)} +

Yt .
dy{Wa(z,, 9)8(z — z¢,y) — Walzi, 9)8(z - 21,9)}, (3.14)

Yr
~ v/

used to calculate slope in r direction
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Figure 3.6. Location of points on nth subaperture.

where 8(z,y) is an impulse funcfion, and (z;,y) is the coordinate of the upper left corner and
(zr,yr) the lower right corner of the nth subaperture as shown in Figure 3.6. Using the “sifting”
property of an impulse function [22:56-57] equation (3.13) can be rewritten in terms of line integral

phase differences along the subaperture edge. For example, the y slope for the nth subaperture is

given by:

Ty . Ty
= [ de g @ uWale,m) - [ dz 6,0 Wa(z, ) + o, (3.15)
E 1] L]

where s}, is the y slope for the nth subaperture, and of is a the additive random noise term of zero

mean and standard deviation determined by Equation (3.4).

The reconstruction matrix, R, is used to map the vector of slope measurements onto weight-

ing commands for phase reconstruction. The vector of weighting commands is determined by:
C=R"S, (3.16)

where C is the vector containing 241 actuator commands for scaling 241 gaussian functions, S
is the vector containing z and y slope measurcments (416, two measurements for each of 208

subapertures), and'R“ is the reconstruction matrix (241 rows by 2 x 208 = 416 columns). The
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phase estimate is then constructed by summing the scaled gaussian function responses at each point
in the pupil to give:
X 241 ‘_[5 _ f]"’ .
#(F) =Y crexp {_‘——'L? . } (3.17)
k=1 as

where ¢ is the phase estimate, ¢k is the kth weighting command or scaling for the kth gaussian

function located at ;.

3.3.3.4 Calculating ceﬁfered OTFs for S and S. For the SRSH technique, the
simulation calculates centered OTFs for S and S. Centering the OTF is accomplished by removing
tilt from the phase fronts. Since this discussion is for tilt removed prior to WFS measurements,
¢'' is the corrected wave front for calculating S, and as such already has tilt removed. For S, the
phase estimate ¢ does require .tilt correction. Additionally,the telescope pupil P is épplied to ¢"

and ¢ in preparation for OTF calculations.

S(p) is calculated directly from a forward Fourier transform of the magnitude squared of the

coherent impulse response {13:114]:

_ F{h(D1Y)

i) = F R 5o

(3.18)

where F{-} indicates a forward Fourier transform, and h; is the coherent impulse response for the

ith frame as defined by [13:111]:
hi(3) = F{P(AF ) exp {~27¢/(AF)}}, (3.19)

where A is the wavelength, and F is the telescope focal length. The estimate of the OTF, Si, is

obtained if ¢; is used instead of ¢/ in equation (3.19).
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Next, STF quantities are calculated. For ST F}, the single frame numerator and denominator

are calculated by:

st {PU(7) = S5, (3.20)

and:

s_tf.de“(b‘) = |SiA)I* +e, ' (3.21)

where ¢ is an arbitrarily small number to prevent divide by zero, st f™!™ is the ith frame numerator,

and st f,-de" is the ith frame denominator. For ST'F5, the single frame result is calculated as:

num i
stfi(p) = %%&n—((’g, (3.22)

where st f; is ith frame result.

3.3.4 Results of simulation run.  The STF’s are calculated by averaging the single frames

results over M frames. So, STF 1 is calculated as follows:

(stfMM(5))
STF(p) = ——-——"L. (3.23)
O fasiio)
Finally, STF?2 is found by:
STF2(p) = (stfi(D)), (3.24)

where st fi(7) is the ith single frame result.

The SNR for a single frame of the image can be defined in the spatial frequency domain as
{19:452]:
; .
SNR(p) = {1(7) {3.25)

NGIOK

3-14




where I is the Fourier transform of the image and o7(p) is the image variance. For SNR calculations,

" the variance is calculated for functions according to the equation [23:244):

a9 = ((fi A7) - (:(»)* ! . (3.26)

where cr}(ﬁ') is the variance of the random process f(p), and f;(p) is ith frame realization of the
function. Instecad of an image, this thesis is intcrested} in the SNR of the STF estimators. For
STFy, the SNR is defined in terms of the complex numerator, st fUM. The single frame SNR for
STF} is defined by:

SNRy(p) = LA | (3.27)

.V ohum(P) ,

where afym(p) is the variance of the STF;(p5) numerator. For STF3, the single frame SNR is

defined in a more straightforward fashion as:

SNRy(p) = 20N - (328)

V"'Eg].(ﬁ) '

where o2, 1.(F) is the variance of stf;(5). The results for SNRs and STFs are presented in the next

chapter.
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IV, Simulation Results.

4.1 Introduction.

This chapter presents simulation resuits of the system transfer function (STF) and associated

signal-to-noise ratio (SNR) measures defined in Chapter II. This chapter will begin with a review

of previous analytic results for the SRSH technique found in Reference [24]. These analytic results

characterize the STF, and as such, serve as the baéis for this thesis eflort. General analytic STF

trends will be used for discussing the validity of simulation STF results.

Next, STFy and STF; results are presented. The simulation results were generated using
2000 randomly generated phase screens and the conditions summarized in Table 4.1, The telescope

diameter (D) was set at two meters. Also, the parametric constant (¢) to prevent. divide by zero

_in STF calculations was set at 1 x 10~°. Only selected results from these runs are presented in

this thesis. Individual STF simulation runs are characterized by a subaperture light level (average
photons per subaperture per short exposure image, N), possibility of tilt correction, and ratio
of center-to-center subaperture separation to Fried parameter, !‘;:* This ratio, -[ﬁ:*, defines the

adequacy of the wave front sampling in detccting the turbulence characteristics of the incident

~ wave front. Although correcting tilt prior to the WFS is optional, the majority of the results

discussed will be for the case of tilt corrected phase fronts. Not removing tilt leads to a higher

error in the phase estimate. The eflect of no-tilt removal will be briefly examined for ST'F;.

This chapter also presents an analysis of the non-zero mean bias terms in the numerator and
denominator of the STF. The results indicate the OTF estimate, S, contains a negative bias. The
bias problem is particularly significant under the combined conditions of low incident light levels

and good WFS sampling (sampling ratio %:‘- less than one).

The final simulation results presented are selected frequency domain SNRs which characterize,
as a function of spatial frequency, the single frame STF image reconstruction performance. The

SNRs can be used to determine the number of short exposure frames of data to obtain a required
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PARAMETER VALUES USED

PHOTONS PER SUBAPERTURE 10, 20, 50. 100, 200, 400,
~ PER SHORT EXPOSURE IMAGE 800. 1000
RATIO OF SUBAPERTURE SIZE 025,05, 1.0.2.0

TO FRIED PARAMETER. L/t

PHASE CORRECTIONS PRIOR NONE. OR CORRECT TILT
TO WAVE FRONT SENSOR

CONTROL LAW USED FOR MINIMUM MEAN
CONSTRUCTING ESTIMATE SQUARE ERROR

OF THE PHASE '

Table 4.1. Scenarios considered for thesis research.

SNR level out to a given spatial frequency. The analytic consideration of Reference [24] did not
include any SNR results due to the required eight-dimensional numeric integration for the STF
variance. The ratio S¥&1 g presented to discuss the comparative advantages of STF, L and ST Fs.

SNR;

4-2 Summary of Previous Analytic Resulls [24:15-16].

The analytic results presented in this section are for a numeric integration of a derived four
dimensional integral expression for the STF in terms of the OTF (S) and its estimate (S) [24:10].
Due to the complexity of this integration, the analytic results are for case of a simple square
aperture telescope and a small nuriber of WFS subapertures. The WFS used has a maximum of
five subapertures accross the telescope pupil as shown in Figure 4.1. Analytic results are presented
for variations in both the average photon count per subaperture per short exposure image N,
and the WFS sampling ratio, %‘:1 Analytic result trends are used for discussing the validity of
simulation STF results in the next section. The comparison is not rigorous since analytic STF

results are for a different phase estimate construction control law (minimum variance), and are for

a square telescope pupil.




The analytic STF is characterized for yariat.iéns in the both the the average photon count
per subaperture per short exposure image (N) and the sampling ratio (%_:‘-). In general, WFS
measurements improve with increasing signal strength'of the incident light as specified by increasing
N. The other important parameter concerns how dense the W FS meastrements are compared to the
Fried parameter r,. The slopes are measured in WFS subapertures with center-to-center spacings of
L,,. The ratio of %:* is used to compare the slope measurement spacing to the turbulence conditions
indicated by the Fried pérameter. Smaller !‘;,‘:1 values signify more dense WFS measurements with
respect to the size of furbulence induced distortions on tl‘1e incident wave front since r, characterizes
the approximatei size of significant wave front distortions. If the sampling ratio is less than unity,
most of the turbulence éharacteristics alohg the incident wave front are being accurately measured |
since Lg, is smaller than r,. Poor sampling is characterized by sampling ratios greater than unity.

For the analytic results, N ranges from 10 to 400; and L;::* from 0.1 to 2.

The analytic results, which are from a paper by VonNiederhausen and Welsh, are summarized
in Figures 4.2 and 4.3 [24:15-16]. The STF results are plotted versus a one-dimensional normal-
ized spatial frequency, 1‘—5\3, where f, represents the x-component of the two-dimensional spatial

frequency vector g, and F is the focal length of the telescope.

The STF is a measure of the spatial frequency response of the SRSH reconstruction technique.
Ideally, the STF would be unity out to the diffraction limit of the telescope. For a sampling ratio
of unit)&, Figure 4.2 shows how the SRSH technique performance improves toward ideal behavior
with increasing light intensity (N increases). The curves asymptotically approach an upper limit
im' ~sediby the sampling ratio. |

Figure 4.3 illustrates the positive result on STF performance obtained by decreasing the
sampling tatio. For these résults, the average photon count is held at N = 50, while the sampling
ratio ranges from 0.1 to 2. ‘The STF cur.ves indicate that the technique is extfemely sensitive to

the sampling ratio.
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Figure 4.1. Telescope aperture and wave front sensor geometry for analytic resi I*s [‘24&13].

In summary, both light intensity level (¥) and sampling ratio (%:L) are importaat parameters
for characterizing expected STF image estimator performance. The simulation STF ‘ehavior will

now be examined for variations in these two parameters.

LAFID

Figure 4.2. System transfer function (STF) results for square aperture and WFS shown in Fig-
ure 4.1 and Lax = 1 [24:15].
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Figure 4.3. System fransfer function (STF) results for square aperture and WFS shown in Fig-
ure 4.1 and N = 50 [24:16).

4.3 STF Results.

The simulation STF results will be examined in terms of the general trends noted for the

‘analytic STF results in the previous section [16:4.8-4.15]. Specifically, STF curves should approach

asymptotic behavior with increasing photon count. This asymptotic value must be equal to or -

less than unity. The STF curves should also improve with an improved sampling ratio, again
‘approaching but not éxceeding unity. Deviations from the trends established by the analytic results
will be vexplained in the next section which investigates a negative noise bias problem originating
with the OTF estimate, S. This section presents a summary of STF results for the case of tilt

removed prior to WFS measurements. This is the baseline case for this thesis. To examine the

benefit of tilt removal, ST F} results for tilt removed and tilt not removed are presented for a photon

coﬁnt of 100, and sampling ratios varying from 0.25 to 2.

Figures 4.4 and 4.5 show the tilt removed S’i‘F curves for photon counts of 10 and 800, with
sampling ratios varying from 0.25 to 2. STF; and STF; are characterized by non-zero valued image
reconstruction out to the diffraction limit of the telescope for all sampling con‘ditions considered.
Except for a sampling ratio of 0.25, both STF; and ST F» show improved performance for increasing
the photon counf. while holding the sampling ratio ﬁxed. Improving the sampling ratio also generally

improves the STF.
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The problem with the simulation results is that both STF; and STFg curves exceed unity
at some point for most photon counts and all sampling ratios considered. This deviation from the
previously predicted results [24] is due to a non-zero bias in the OTF estimate S. The bias appears

> 1.0) to good (a2 < 1.0) for both STF

. . R . L
to get worse as the sampling varies from poor (%

estimator methods. For each sampling ratio, the problem gets successively worst for decreasing
photon counts, indicat.ing the S bias is increased with increased noise in the slope measurements
since the standard deviation of the additive noise in slope measurements is proportional to 71W
The best example of this trend is shown in Figures 4.4 and 4.5 for a sampling ratio of Lr:* =0.25,
where the STF cﬁrve for the low photon count of 10 stays well above unity, except for spatial
frequencies out near the diffraction limit {p, =>‘ 1). The STF curve for the high photon count of
800 is closer to unity for out to the diffraction limit. These results imply the spatial frequencies
of the image are being amplified to give better than the theoretical m.aximum.. This is clearly an
unphysical result which has not been previously noted in the literature. The next section traces
this result to the bias in S. The bias is shown to get progressively worse as sampling improves

(smaller sampling ratio) and the photon count remains low.

Figure 4.6 shows the effect tilt removal has on STF, for a photon ~ount of 100, and varying
sampling conditions. At unity and low sampling ratios, removing tilt prior to the WFS boosts the

STF estimator curves slightly in magnitude. This effect is most noticeable at spatial frequencies

near the diffraction limit. As ngéémpling is improved (sampling ratio drops below one), removing

tilt gives some improvement at higher spatial frequencies, with negligible results at lower spatial

frequencies.

4.4 Noise characteristics of the simulation STF estimator.

The goal of this section is to characterize the bias terms in the STF. To investigate the

problem, the single frame OTF (S) is expressed as a random complex quantity and the OTF
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Figure 4.4. Tilt removed STF] curves for different wave front sampling conditions as specified by

Ly
rs °

estimate (S) as noisy version of S. The noise, A, is then det.e;rﬁined from the difference between
S and S (§ ~ S = N). The complex expressions for S and S are used to derive expressions for the
numerator and denominator of the STF estimator. An investigation of the noise terms in both the
numerator and denom‘inator shows the lséurce of the problem is the negative mean of the real part
of N in S. An attempt will be made to identify, from the bias results, spatial frequency ranges

which yield vé]id simulation STF results (small bias regions).

The first goal of this analysis is to isolate the complex valued additive noise term contained

in . To do thié, S is first expressed as a complex quantity:
S() = Sre(P) + jSzm(P), @D

where Sz, and Sz, are the real and imaginary parts of the S, and j indicates the imaginary part.
An expression for § is found by adding real and imaginary noise compcaents to S in equation (4.1)
to give:

5(5) = Sre(B) + Nrel) + j {S1m(P) + N1m(P)} (4.2)
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Figure 4.5. Tilt removed ST F, curves for different wave front sampling conditions as specified by

Loy
To

where Mg, and Nz, are the real and imaginary parts of the additive noise in S. To isolate the

noise in S, equation (4.1) is subtracted from equation (4.2) to give:

S(8) = S(B) = Nre(p) + jNzm(P) = N(5) (4.3)

where A is the complex noise portion of S. The bias problem originates from a negative mean real
noise term in N:

W(B) = (Vre(A)) <0, (4.4)
with the imaginary noise part, Az, having zero mean.

The next step in the noise analysis is to derive complex expressions for the numerator (SS*)
and denominatoi (]S|?) terms of the STF, and average the expressions to determine significant

noise terms. The complex numerator is expressed as:

S(p").é" (m = S;Jze(ﬁ) + SRe(mMRt(/T) + SIm(ﬁ.)NIm(m + S%m(i’)
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tilt and no tilt renmoved.

As will be shown later, the only significant noise term contributing to an STF numerator bias is

+J {Szm(PNRAP) = SR N1m(P)} .

SrAMNNR.. So, (S(/T)S") can be written as:

The complex STF denominator ,,‘,"-”',‘,,(JS',?_) is derived by taking the squared magnitude of equa-

tion (4.2) to give:

Is(i")l2 = S%'([T) + 'ZSRC(m'vRt(m + i\/'v%‘(ﬂ) + S}m(/") + '25'1,..(17)-’\’111;(17) + -Vf,m(ﬁ)-

(S(A)S*(P) = (S&.) 4} (SRAPINRAP) + (SEn)-

(4.5)

(4.6)

{4.7)

The significant bias terms in the denominator are 2Sg A=, and AE, so that (|S(F)}*) can be

written as:

(SN = (SR (M) + 2SR AANRAD) + (N"}'é,v(ﬁ)) + {57 (A).
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A comparison of equations (4.6) and (4.8) leads to a convenient figure of merit ft  ~n-biased STF

performance as those spatial frequencies over which the numerator bias term is eq:  or less than

the denominator bias terms. This approach yields the following inequality:

(Sre(ANRAD) < 2(SRADNRAP) + (VE(D) (4.9)
[ LA N -~ v
numerator bias term denominator bias term

The range for a non-biased estimator is casily determined by plotting (Nz . (7))/12{Sre(ANr ()]

and noting where the ratio goes ahove 0.5.

The mean valued results {(AM'z.) and (Nzm) are plotted in Figure 4.7 for a photon count of
10, and a sampling ratio of 0.25. Notice that only the real part (Mg.) is significant. The results
show the real noise term is negatively biased. The imaginary part is many orders of magnitude

less, appearing as a straight line in Figure 4.7.

The noise bias problem in the denominator is shown in Figure 4.8. Since the real part of
the complex noise is negatively biased, the 2(Sg.Ng.) noise term in equation (4.7) is the most
significant since it involves the cross product between the negatively biased noise term and the
larger and positive real part of S (Sre). 2(Sr.NRr.) is casily identified as the noise term most
responsible 1or decreasing the magnitude of the STF denominator. This is easily seen in Figure 4.8,

where 2(5r.NRr.) is plotted versus all denomoinator noise terms (terms with Nre or Nzm in

them) in equation (4.7). The (M3,) term is the dominant term that causes the denominator bias .

to decrease slightly.

For the numerator, the complex portion of equation (4.5) essentially averages to zero. AOf the
rexl numerator noise terms, only the (Sre.Ngr.) term is significant as shown in Figure 4.9. The
curve for all real numerator noise terms and just (Sg.Ngr.) are almost overlapping. A comparison
of Figures 4.9 and 4.8 shows the numerator noise terms contribute slightly over half the negative

bias as the denominator noise terms for these photon and sampling conditions. Since hoth noise
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Figure 4.7. OTF estimate (5‘) real and imaginary noise content, at a samping ratio of %:* =0.25

and a photon count of 10.

term contributions are negative, this difference between the numerator and denominator is what

makes the STF estimate go above one.

The last part of the noise analysis is to define valid unbiased regioné for simulation STF
results. The ratio m?é%%ﬂ is plotted in Figure 4.10. Where this ratio goes above 0.5
is where the denominator bias is less than the numerator bias. This will define the non-biased
estimator for this thesis. For a sampling ratio of Lr:'- = 2,the criterion used indicates the STF will
be unbiased from a normalized spatial frequencey of 0.05 out to the diffraction limit. At a unity
sampling ratio (Lr:* = 1), the unbiased STF is defined from approximatel'y a normalized spatial
frequency of 0.09 out to the diffraction limit. At a sampling ratio of 5":* = 0.5, the estimator is
unbiased from about 0.3 on out to the diffraction limit. This sampling ratio is right on the .edge
of being biased out to the diffraction limit as seen by how close the ratio W’g{%%m stays to
the value of 0.5. For the sampling ratio of 0.25, the STF essentially remains biased out to near the

diffraction limit.

Thesis conclusions and recommendations are discussed in the next chapter.
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Figure 4.8. | STF denominator noise terms versus just 25g . N'r., at a samping ratio of !‘;:‘» =0.25
' and a photon count of 10.

4.5 SNR Results.

i ‘
The st;cond goal of this thesis is to present single frame SNR results for the two STF's under

{
i

varying seeihg conditions. These single frame SNR estimates characterize, as a function of spatial

frequency, tixe required number of fromes of short exposure images and WFS measurements to

overcome in;age reconstruction noise. Only the results for SN R, for the case of tilt removed prior
|

to WFS mei‘asurements are presented since the same trends were noted whether tilt was or was

not removed. SN R, behavior is represented by curves for the ratio %. No SNR results are
presented for the sampling ratio of 0.25 due to the previously discussed noise bias problem for the
STF estimator at that sample ratio. The results are presented in subsections for the sampling

ratio conditions of unity sampling (%:* = 1.0), undersampling (L‘r-:t = 2.0), and oversampling

(Lr:‘- = 0.5).

4.5.1  Unity sampling, -";:* = 1.0. Estimated single frame SN R; results for unity sampling
are shown in Figure 4.11. The SNR approaches asymptotic behavior above photon counts of 50,

indicating STF) is increasingly susceptible to noise at or below this photon count. From the ratio
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Figure 4.9. STF numerator real noise terms versus j:ust SreNRe, at a sampling ratio of %:4 =0.25
and a photon count of 10.

%ﬁ—% curves shown in Figure 4.12, it is evident STF) has better SNR characteristics than ST Fy

as indicated by the ratio value exceeding one for normalized spatial frequencies above roughly 0.1.

There is roughly a factor of 2 diﬁ'erence between S.’\[’ R, and SN R, almost out to the diffraction
limit of the telescope (normalized spatial frequency %)f 1.0). One interesting point to note is that
the advanvtagevof STPF, over STF,, as indicated by the SN R.ratiq, decreases with increasing photon
count. This result indicates that STF; is more susceptiblé to the the higher WFS noise encountered

for lower photon counts. l

4.5.2 Under sampling, %‘: = 2.0. Figure 4.13 shows results for SNR; for the case
of under sampling. The undersampled SNR approaches asymptotic behavior at a photbn count
exceeding appoximately 100. The asymptotic behavior for the undersampled SN R, occurs at
higher photon counts than the previously discussed unity éampling case. The undersampled WFS
fcquires higher signal levels to overcome the noise inherent in poorer sampling. The ratio g—f\\;—ﬁj

curves in Figure 4.14 show that, except for low photon counts and high spatial frequencies, ST F,

is the better method for image reconstruction than STF,. The advantage of SN Ri over SNR,
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Figure 4.10. Ratio curves for 3 SR‘X‘,)“’M(M) for a photon count of 10, and varying sampling.

begins at around a normalized spatial frequency of 0.05, with :‘—Q,';% approaching 3 for photon
counts above 10. For the low photon count of 10 and normalized spatial frequencies approaching

unity, the two STF SNRs are roughly equal. The ST F; image estimator approach is increasingly

preferred over ST F, as the photon counts increases.

4.5.83 Over sampling, !;:‘- = 0.5. Only SNR results for a sampling ratio of 0.5 are
presented due to the significant STF noise bias STF.at a sampling ratio of 0.25. The SNR results
for a sampling ratio of 0.5 are shown in Figure 4.15 for SNR;. As expected, the SN Ry curves
are higher than the previously considered under (!‘;:* = 2) and unity (%:1 = 1) sampling cases.
The better results are due to a more accurate phase estimate, leading to better STF est.imato;'
performance, particularly at higher spatial frequencies. Additionally, the advantage of the STF)
over the STF; estimator decreases with increasing photon count, as evidenced by % curves
approaching unity for higher photon counts in Figure 4.16. What this essentially means is that the

STF, and STF; estimators are equally good for image reconstruction for an adcquate signal, and

a good sampling ratio.
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V. Conclusions and Recommendations.

5.1 Conclusions.

This thesis is a follow-on to a previous analytic investigation of the STF for the SRSIi im-
age reconstruction technique. The thesis objective was to characterize two different estimator
approaches, STF) and ST Fa, and to compare the signal-to-noise ratios (SN Rs) to determine which
technique was most advantageous for image reconstruction. The simulation SNRs were also included
to provide a means to determine frame requirements to achieve é desired image reconstruction SNR.

The most significant result for this thesis, however, was the isolation of a noise bias in the OTF

estimate, S.

Ignoring for a momex;t the bias problem encounted in the simulation, the noﬁ-bizmed results
followed trends established by earlier analytic results [24]. In general, the STF can be improved
with increased signal strength (characterized by the average photon count per subaperture per short
exposure image,N) up to an asymptotic limit determined by the wave front sensor (WFS) sampling
ratio (Lr:*). Some additional arei the STF is extremely sensitivé to variations in the sampling ratio
for a fixed signal strength, and can be significantly boosted by improving the sampling ratio. Finally,
tilt removal prior to WFS measurements made a slight improvement on image reconstruction, but

was not as significant as improving the signal strength or the sampling ratio.

In comparing the two approaches to image reconstruction, ST Fj is easily the better method as
shown by the %—x—gl; curves remaining more or less above unity value for most conditions considered.
The advantage of STF) is greatest for under (L;,:* = 2) and unity (—L,-.:* = 1) sampling conditions
as seen by % curves remaining .above unity for much of the spatial frequency raﬁge out to
the diffraction limit. Under good sampling ('—r:* = 0.5), STF, approached STFy performance,
particularly at higher photon counts (N > 200). Because of the significant bias problem at the

sampling ratio of 0.25, it was not determined at which point STF; actually outperforms STFy

under very good sampling conditions.




R T \

Perhaps the nl;)st important conclusion for this thesis is that the SRSH method is (iegraded by
a bias. In t.ying to isolate énd characterize. an apparent bias problem with STF curves, a careful
analysis of the OTF estimate () showe.d the problem of STF curves exceeding the theoretical
maximum result of unity, was due to a negative ‘bias ({VNre)) in S. By carefully examining noise
terms in both the STF numerator (8S*) and denominator (]S|*), a useful noise bias figure of merit
was deﬁeloped for determining non biased ranges for the STF curves. The figure of merit is the
ratio of the positive nurﬁerat-or bias term to the absolute value of the dominant denominator bias
term (I'E_(S_gé%)‘ This ratio was used to characterize regions of minirﬁal bias. Basically, the

threshold value for this figure of merit occurs when the numerator and denominator bias terms are

identical (value of 0.5 for [siage@l .\

5.2 Recommendations.

_The results from this thesis clearly point toward th?: need to develop a non-b;lased‘estimétor.
The bias problem can be minimalized by subtracting off appropriately calculated bi;as terms at the
end. However, a better approach would be to develop a non-biased OTF estimaté, or modify the
filtering (Wiener filter). As a first step, the negatively biased noise in S should be studied further

to characterize the influence of photon count and sambling ratio values on STF bias levels.

As a final note, some SRSH simulation runs should be done using the minimum variance
control law for phase reconstruction, since this was the control law used for the previous analytic

approach [24].




Appendix A. Selected Numerical Mcthods From the Simulation.

A.l  Karhunen-Loéve- Fast-Fourier- Transform (KL-FFT} Method of Phase Screen Generation.

This section summarizes pertinent information from an unp.ublishvd report by Cochran [17].
The technique used by the simulation to generat'f‘: random phase screens involves an inverse Fourier
transform of filtered complex Gaussian ranaom variables, followed by correction of low order spatial
frequenies with a limited number of orthogonal Karhunen -Loéve functions. This technique is called
the Karhunen-Loeve-Fast-Fourier-Transform (KL-FFT) Method of Phase Screen Generation. For
the simulation, the ¥FT portion creates a 128 x 128 pixel array as represented by the solid li‘ned
outer box in Figure A.1. The r-y axes are centered at row and columin location (65, 65), and is
oriented as shown. KL corrections occur over a circular region with a diameter encompassing 129
pixeis. A dotted line on the lower and right sides of the outer box of Figure A.l indicates this
circle of correction extends one row or column bveyond the defined boundaries of the FFT array.
The random phase screens used fc;r individual frames of the simulation originate from the center
81 x 8! pixels as indicated by the inner solid lined box. The KL-FFT method gencrates a complex

screen, of which the real portion is used on odd frames, and the imaginary po-tion on even frames.

A.1.1 FFT generated phase screen. Complex phase screen generation begins with the
128 x 128 pixel array being loaded with box;n\uller transtorm (see Section A.2) generated complex
gaussian numbers, 3(£) = z1(£)+jz2(F). The real and imaginary parts of  are zero mean Gaussian
random variables with a standard deviation of one. The resulting random array is then filtered by

the spatial filter defined by [17:2):

[0.1517 (ﬁ) T] if |£] > 0, and
H(E) =

(A.1)
0 otherwise,
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Figure A.1. Location of phase corrections.

where H is the spatial filter, and £ is the spatial position. The FFT estimate of a complex phase

screen is generated by the inverse Fourier transform of this filtered array:

Bp0(8) = FU M@0 (E) + 2@}, (A2)

__where W, represents the complex FFT phase screen. The next step is to boost the low frequency

components of this screen through addition of appropriately scaled KL functions.

A.1.2 KL correction to FFT generaled phase screen. Two low order KL functions are
used to correct tilt in the FF1 phase screens. First, a random strength is generated for each KL
function to be added to the FFT estimate of the phase screen. The box-muller transform generates
a gaussian random number, § = y; + jyo, with zero mean and variance determined by the Zernike

covariance matrix method, for scaling the ith KL function. The amount of correction required for

the ith KL function is found by subtracting the normalized inner product of the KL function with
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the phase screen from this complex number:

(A.3)

~

=i — {Z"'J Zy., \i’f!‘('?)]\'i(f)}
' ' Z’-J Zy., [I\'i(f)]'z ‘

where 4; is the complex scaler strength of the correction required for the ith KL function. The

correction of the wave front, ‘ilu,, for the KL functions is then given by:
Wiao gl F) = ¥y () + Y K@), (A4)
i

where \il“_”, is the KL-FFT comiplex phase screen.

Next, the real (odd fi.n.e numbers) or imaginary {even {rame numbers) part of the center
81 x 81 pixels of \il“_”, is scaled for turbu. .ce strength through use of the Fried parameter, r,.

The resulting real random phase screen is given by:

128.0Ar
To

];L'Re or Irn{‘ilk(_!j,(f)}l, (A.5)

center 81 x 81 pixels

o) = |

where Re signifies the real and Zm the imaginary part of \il“_,/,, Az is the distance between
pixels in the aperture. This phase screen, ¢, is used in the simulation as the uncorrected phase

front.

A.2  Bor-Muller transform.

The box-muller transform generates two gaussian random numbers of zero mean and standard

deviation o. ‘The transform is defined as:

a\/=2.0In¢; cos (27¢a) (A.6)
29(E) = o/=2.0In(;sin(27(). (A.T)

tr
=

8y

I
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where ¢y and $» are randomn numbers hetween zero and one, and 2y and z4 are the zero mean

gaussian random numbers.

A3 Kevhunen-Loive (K1) Representation of a Random Phase Sereen,

The KL correction to the FI'T phase screen originates from the technique of using a series
representation for a random phase sereen. The expression for the random phase front in a circular

aperture is given as [17:3]:

Vi(F) = Z!Iil\'f(f)v (A.8)

]
where W, is KL generated phase sereen, K; is the ith orthogonal KL function, and y; is the

expansion coeflicient that contains the turbulence statistics.

A.3.0 Basis functions for a KL erpansion.  This section summarizes pertinent information
from an unpublished report by Cochran [17]. ‘ln order to correctiy construct a random phase
screen, the basis functions used must be orthogonal. One possible set of basis functions for use in
constructing random phase aherrat i(»msvin a pupil are the so-called zero-mean normalized Zernike

polynomials. These functiots are defined by:

2(n+ DRIM(T) cos (mx), podd, and m # 0,
Zy(F) = ’\/'z—(u + l)R,’I“(v.i') sin(mrw),  p even, and m #£0, . (A9)

v +1R), m=0,

where ! signifies a factorial operation, m and n are indices of the Zernike polynomials, p is the

identification number of the polynomial according to Noll's system [25:207- 208], and R is defined

by:
(n=m)
.,Rm“_.) = 2‘: f [(..1)9(” _ 1)!”5')"-2'] | (\ o
T g \EE e .
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where m < n, and n—|m}is even. The problem with Zernike polynomialsis they are not orthogonal
functions, with non-zero correlations existing between various polynomials. So although they are
ideal for describing phase aberrations, they cannot be used as basis functions for a random phase

screen.

The KL technique uses an expansion of the Zernike polynomials to form orthogonal KL
functions. Each KL function contains correlated Zernike polynomials. The technique involves
first finding the eigenvectors and cigenvalues of the covariance matrix for a basis set of Zernike

5 &
polynomials. A KL function is constructed from a single ecigenvector, whose elements are used
to scale the appropriate Zernike polynomials. The eigenvalue determines the variance of the KL

function.

The Zernike expansion for the ith KL function is determined from the normalized covariance

matrix as follows:

(‘(',‘ = (7?(," (t\ll)

where (" is the normalized Zernike covariance matrix for the basis set of zernike polynomials, e; is
the ith eigenvector of ', and o7 is the ith eigenvalue. The clements of the covariance matrix are

calculated as follows {26:1175], [17:12):

0.15337(—1)n+n'=2m) (n+1)(n'+1")1‘(‘.—;)1'('———5"";" ) .
r(n’—n+157-)r(n+u’+"_‘—‘)r(u--n'+l}) beeaetbaars (A.12)
2 2 2

Coppr =

where (. is the covariance between numbered Zernike polynomials p and p' [25:207 -208], n and
m are indices used for calenlating the Zernike polynomials, I'(+) is the gamma function defined by
[27:386):

F(rz):/ exp(=2)r"='dr, (A.13)
0




and Sqpepr aﬁd 8aar are Kronecker delta functions defined as [28:153):
| fa=d
(A.14)

bpar =
0 otherwise.
The ith KL function is constructed from the ith cigenvector ¢; by the following expansion:

KB =3 e, (A.15)
P

where p is the designator for a particular Zernike polynomial Z,, and ¢;p is the pth component

of the eigenvector e;. The phase screen is found by summing over all appropriately scaled KL

functions considered:
(A.16)

S| wg

V(D) =YY wienz,
;

i
where D is the diameter of the pupil, and y; is a zero mean Gaussian random variable with variance

o? (eigenvalue for ith KL function). For the simulation, the two lowest order KL functions and
their associated variances (eigenvalues) are caleulated as part of the setup portion of the simulation.

The correction is applied on odd iterations since screens are created two at a time.
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