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| 1.0 Introduction:

The Communications Technology Branch of Rome Laboratory performs theoretical

. research in the area of advanced signal processing concepts as they apply to military communica-

tions systems. Research performed by the laboratory manifests itself in several different forms.
Contractual work with universities and small businesses genérates important theoretical informa-
tion that augments in-house reseai‘ch ‘perfom\ed by Government scientists. The in-house research
stimulates independent thought processes allowing scientists and engineers to derive creative
applications for state-of-the-art technology. The research documented in this technical report is a
conglomeratibn of in-house work performed by Scott Shyne (Rome Lab computer scientist) and
technical data gathered from ma_ny scientiﬁc technical reports created through independent con-

tractual efforts. The work documented in this technical nepbrt was performed under the Rome Lab

‘In-House program “AJ/LPI Workstation”, PR C-1-H403. The objective of the AJ/LPI Worksta-

. tion effort is to develp, test, and evaluate advanced communications and signal processing algo-

rithms for use in the Air Force’s next generation SMART MULTIBAND radio systems (see
Figure 1). A wide range of fechnologies are being investigated including: Low Probability of
Intércept (vLPI).waveform design, advanced interference canceilation techniques, advanced
encoding/modulation schemes, applications of Expert Systems, and abplications of neural net-

works.

Neural Networks are currently being investigated for various applications to the commu-

 nications problem. Areas of investigation include, but are not limited to: waveform modulation/

demodulation, adaptive equalization, environmentai monitoring, and wavefrom recognmtion. This
technical report is intended to illustrate the possibie applicability of neural networks to the spe-
cific communications problem of waveform recognition. All referenced materials are listed in the

bibliography.
1.1 Background:

Communications links may be completely disrupted by channel effects or through elec-

tronic jamming. Enemy detection units will attempt to intercept signals using various techniques
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to exploit and decipher the signal. The capability to effectively utilize a communications circuit

by selecting several different modulation types may be of paramount importance to the success of
the mission. In some instances, it may be desirable for the channel to be reconfigured as a much
lower bandwidth channel in order to gain an advantage against noise and to use the low band-

widih mode to communicate new coordination information such as a change frequency order.

In circumstances such as these, the receiver may not be aware that a change in mcdulation
has occurred. A receiver, in sucha system, requires the capability for real-time waveform recogni-
tion whereby a change in the channel from one modulation technique to another can be realized
without severe connectivity loss. Neural paradigms excel in the recognition of patterns even in the
presence of channel noise. It is theoretically possible to design a receiver that operates in a vary-

ing modulation mode by utilizing intelligent waveform recognition techniques.

This new receiver would be trained on a specified set of waveforms, 'dep'endent on the -
comhuMcaﬁons environment of the particular mission. The receiver would be able to change
waveforms or modulation types in “real-time” without apriori knowledge of a reconfiguration
event from the transmitter. The capability to change modulation techniques, whenever the situa-

tion warrants, would create a much more robust and adaptable smart radio configuration.

1.2 S}cope:A '

The information presented in this pa~ar outlines a possible architecture for a Neural Wave-

bility of a neural based waveform recognition module to be incorporated into an adaptable smart

radio configuration. The motivation for this effort was to provide a “proof-of-concept” architec-
ture that utilized artificial neural systems to perform signal analysis for the purpose of identifying
specific modulation types. A simulation program was written in the C programming language to
help determine the appropriate neural paradigm for insgrtion into the NWRS. Future development
will allow the C code from this simulation to be linked into ComDisco’s Signal Processing Work-
station (SPW) simulation environment so that a full system can be designed and implemented uti-

lizing this new module. The NWRS exploits the keen pattern recognition capabilities of neural




networks in zn attempt to provide an essential module for an adaptable coi.. ‘unications system to

be utilized in a tactical radio of the 21st Century.
1.3  Outline of Report:

Section 1.0 gives a general overview of the background and scope of this technical report.
Section 2.0 discusses an adaptable smart radio configuration designed to utilize the NWRS. Sec-
tion 3.0 presents a hierarchical design of the Neural Waveform Recogniticn System (NWRS)
including some of the motivational factors behind the design concept. Section 4.0 presents the
technical details of the neural network paradigm that is utilized by the NWRS and a brief discus-
sion of how the paradigm performs the basic signai classification task. Section 5.0 gives a detailed
explanation of the simulation that was written to test the neural paradigm. This section will
include a brief description of the simulation environment, compiler, processor, data files. and exe-

“cution of the program. This section also discusses some of the performance analysis results from
the simulation. Section 6.0 presénts some of the basic results of ﬁxis effort and makes recommen-
dations for future work. The bibliography lists all the supporting documentation that was utilized
throughout this research effort. The source ccde for the NWRS is available for f)emsal by contact-

ing the author of this technical report. .
2.0 NWRS Radio Configuration:

The NWRS Radio Configuration, shown in Figure 2, illustrates a functional block diagram

of a digital communications system utilizing the Neural Waveform Recognition System (NWRS)

to correctly identify the type of modulation technique inherent to the received waveform.

The basic configuration of this architecture includes the tranémission, reception, recogni-
tion and demodulation/reverse formatting of baseband signals. The transmitter wculd transform -
textual information into binary digits through the use of some type of coding algorithm. Analog
information is formatted using three separate processes: sampling, quantization, and coding. In all
cases, the formatting step resﬁlts in a sequence of binary digits. These digits are modulated into

compatible baseband channel waveforms to produce a sequence of signal pulses with characteris-




tics that correspond to the binary digits being sent. The receiver detects the pulses coming across -

the channel and butfers the pulses into a 1024 element signal epoch. This signal epoch is then

| Demodulation
“and Formatting

waveform 1
» Neural . .
‘ Waveform C
Transmitter -.’<] ChannelD" Receiver ™ Recognition ‘ .
System ' .
-‘Demodulation
and Format:ing
waveform N |
NWRS Radio Configuration

Figure 2

passed directly into the Neural Waveform Recognition System. The NWRS attempts to classify
the signal epoch into specific waveform modulation types. Once the correct waveform modulation
type has been identified, the signal epoch is forwarded to the propei' demodulation and reverse
formatting routines. The demodulation routire produces an esﬁmate of the transmitted digits and

the reverse formatting recovers an estimate of the source information. =~

3.0 Neural Waveform Recognition System:

The Neural Waveform Recognition System (NWRS) is an intelligent signal 1ecognition
module that can be incorporated into an advanced tactical radio configuration. It will provide a
highly advanced classification inechanism that will determine what type of modulation scheme a

receiver should utinze.

3.1 Design Motivation:




The NWRS prct s intelligent signal classification of signal pulses received from the
baseband channel. This ciassification information resuits in a radio system that can switch
between several ‘arious types of modulation schemes ir real-time without prior notification of a
changing modulation type. This Capability allows the NWRS to recognize signals from various
radio configurations utilizing different modulation types. By varying the type of modulation used
during the transmission of a signal, the ovérall Low Probability of intercept (LPI) characteristics
of the signal are 4increased. By the time the unfriendly listener figures out the modulation type

being utilized, the radio has changed modulation types several times.
3.2 Theoretical Architecture:

NWRS incorporates the Kohonen Self-Organizing Feature Map neural paradigm to per-
form the classification of the signal pulses. The network will classify a signal vector of 1024

pulses that was received by the signal buffer at the front end of the NWRS (see Figure 3).

Waveform 1
Waveform 2
Waveform 3
Waveform 4
1024 Element Kohonen Neural Network
Sigral Buffer

Neural Waveform Recognition System

Figure 3




This signal vector serves as the 1024 element input vector to the neural network. The out-

put of the network will be the proper classification of the waveform. With the correctly classified
waveform, an advanced tactical radio can utilize the proper techniques to decipher the transmitted

message. The eventual application might look something like Figure 3.
4.0 Kohonen’s Self-Organizing Feature Map:

The Kohonen Self—brganizing Feature Map is a neural network paradigm that performs
the k-means clustering algorithm on an n-dimensional continuous valued vector. The' nem)ofk
goes through a period of learning where many different input vectors are presented. The network
continues to train on the input vectors until it is determined that the network has successfully
learned the vectors. The point at which this occurs varies widely from applicatién to application
due to the'degree of granularity required for proper classification of the input patterns and also
due to the orthogonality of the input patterns. Orthogonal training pattemns will cause the network
to learn very quickly whereas similar inpﬁt patterns will require a greater amount of training time
due to the'fact that the network must work harder to differentiate between two similar patterns.
Through repeated training iterations, the neural network forms a feature map based on the training
vectors. Each training vector mapS to a specified exemplar in the output layer of the network.
Once each training pattern has converged to one specific exemplar, the network has successfully

learned the training vector and is ready to be tested with corrupted signal vectors.
4.1 Background Information:

The Kcolionen neural network was developed by Teuvo Kohonen of the Helsinki Technol-
ogy University in Finland. In 1981, Teuvo Kohonen succeeded in deﬁhing a process which very
effectively forms various abstract “topographic maps” of sensory experiences. These memory
maps tend to self-organize in a similar manner to that of theoretical biological systems. The
Kohonen leaming process adopts its physical architecture from a model of the biological inner-
workings of the human brain. The activity of every neural cell in the central nervous system
depends on signals received from a great many other cells. There also exists mutual interconnec-

tions between remotely located cell groups made through long axons. The axon is that part of a




nerve cell through which impulses travel away from the cell body. These mutual interconnections

are simulated in the learning algorithm by creating lateral inhibition about the output nodes. This
means that nodes have the ability to “excite” or “activate” other qodes that are next to them.
Nodes that are in a relative proximity of each other are referred to as belonging to the same nei gh-
borhood. By activating nodes in the same area of memory, the memory begins to self-organize by
adjusting the interconnection weights, effectively partitioning the memofy based on the nurf\ber
of patterns presented. Once the network has been trained ona given number of input patterns, no-
new patterns may be introduced. The original patterns can be correctly recognized by being clas-
sified in the appropriate partition of memory. Kohonen’s Self-Organizing Feature Map also has,

the ability to recognize the patterns after being degraded by some amount of noise.

4.2 Technical Description:

The following two sections describe the Kohonen Self-Organizing Feature Map from a

- theoretical and a mathematical viewpoint. Section 4.2.1 will give the reader a conceptual under-

standing of how the algorithm works and Section 4.2.2 will back up the theory with the specific

mathematical equations used to implement the network.
4.2.1 Theoretical Viewpoint:

Kohonen’s Self-Organizing Feature Map contains both an input layer and an output layer

(see Figure 4). In the simulation to be discussed later, there are 1024 input nodes and 1024 output

nodes. The 1024 output nodes allow 1024 possible patterns to be stored. The interconnections
betwecn layers are represented by real valued connection weights. The output nodes exhibit
strohg lateral inhibition which means that there is a large number of virtual interconnections
between the output nodes. The connections do not exist as weights but as relationships to each
other. A minimum error classifier determines the best output node for a gfven input vector by
choosing the exemplar that is the shortest distance from the input vector. Lateral inhibition (the
effect a node has on other nodes in the same layer) is also exhibited by the output layer through
the determination of neighborhoods for specific nodes. These neighborhoods decrease with time

and as a result, so does the degree of lateral inhibition. The input layer takes a vector composed of
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dontinuous or binary data. This vector represents a pattern that could be a visual pattern or an

electrical signal vector. The vector is matched to the best exemplar by determining the minimum
distance from the input vector to all the exemplars. The output of the network is the best matching
exemplar. By training the network on a known set of data, certain exemplars have been defined to
represent a match to a specific pattern. When an exemplar has been chosen as the best match for a
particular input vector, that input vec‘tor..has been identified as the pattern that matched to that

exemplar during the initial training.
4.2.2 Mathematical Viewpoint:

The Kohonen Self-Organizing Feature Map paradigm utilizes the k-means clustering algo-
" rithm to perform the classification of the input data. Six separate procedures implement the algo-
rithm tht drives the Kohonen neural network. Each of these procedures is based on simple, well-

understood statistical analysis techniques.

The first procedure initializes the connection weights between the input and output layers
of the network. Theses connections should be initialized to small random values (possibly ranging
from 0.0 to 0.3). This initialization brocedure also determines the size of the neighborhood of
nodes (degree of lateral inhibition, see Para 4.2.1). At the start of training, all the butput nodes are

in the same neighborhood.

" The second procedure presents the input vector to the network. The input vector should
have exactly the same number of entries as there are input nodes. The data represents time varied
sample signal points that were stored in the signal buffer. The data is arialog and it defines the

sample waveform over a given time period.

The third procedure computes the Euclidean distance from the input vector to each output
node. This distance computation can be accomplishes in parallel, allowing for rapid computation
of multiple distances. The result of each distance compilation is stored in a “distance” array. The
array is given to the fourth procedure for analysis. The distance to each node is computed by the

following formula:

10
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n-1
= ¥ x(0-w;(0)?

i=Q
d; = all the distances from the input vector to each exemplar.
xl(t) each entry in the input vector at time t.
wp(t) weighted connection between input node i and output node jattimet.
n - 1 = the number of input nodes - 1.

The fourth pfocedure of the algorithm involves selecting the minimum distance from the
array generated in procedure 3. Each index in the “distance” arréy represents the distance from the
input vector to that particular e)'(emplar. The exemplar with the minimum distance from the input
vector becomes the best matching exemplar. The following formula illustrates the minimum dis-

tance equation. o
@ _ |min
g4 = ( j ) {4}
djp = Best matching exemplar in distance array (minimﬁm distance)

(mg‘n) Function used to choose the minimum dlstance f*om the input vector
J to the exemplar j.

{d j} = the array of distances from the input vector to exemplar j

The fifth procedure is the most complex algorithm component. It involves the adaptatioh
of the interconnection weights between the input and output layers. The interconnection weights
retain the overall knowledge of the input vectors. These weights are adapted based on several
changing variables. The adaptation must be accomplished with precision so that the information
maintained by the interconnection weights is not lost. The size of the neighborhood, as well as the
amount of change to a given weight, decreases with respect to time. This gradual change is
required to gracefully encapsulate the input vector knowledge into the connection weights with-
out drastically altering the weights. By slowly changing the weights, previous knowledge is pre-
served. The following formula reflects the adaptive update equation for the interconnection

weights of the Kohonen Self-Organizing Feature Map.

11




w(t+1) = w; (1) +8(1) (x,(1) - w; (1))

_ For all output nodes in the neighborhood of node j, where:
0sisn-1 .
w;(t+1)  New interconnection weight at time t + 1.
wy (1) | Current interconnection weight from node i to node j at time t.
g8 Gain term at time t where gain is defined as0< g (¢) < 1.

x;()  Ithentry in the input vector at time t.

The sixth procedure of the algorithm is to go back to the second procedure and present the
next input vector. The network continues to adapt itself and readjust the connection weights until
the feature map is completely d=fined based on the input vectors. The feature map becomes com-
pietely defined when input vectors repeatedly match to specific exemplars in the output layer.
Once training has been completed, the degree of flexibility and noise tolerance exhibited by the
system can be determined by utilizing corrupted input vectors and presenting them as input to the

network. The network must be able to recognize the correct waveform from the corrupted data.

5.0 Simulation and Analysis:

The main program is “kohl.c” and can be executed by typing koh <cr>. The execution
flow is shown in Figure 5. The program asks for the number of nodes in the input layer. It auto-
matically assumes an equal number of input nodes and output nodes. In this implementation, the
input layer and the output layer contain 1024 nodes each. The 1024 output nodes allow a maxi-
mum of 1024 possible patterns to be stored. Realistically, this hetwork would not be very efficient
if more than 300 patterns were introduced. The more pattems that are stored, the more susceptable
the network becomes to outside interference such as jamming or Gaussian noise. The 'interconnec-
tions between layers are represented by real valued connection weights. The program asks for the
name of the training file. The training file contains the four waveforms. Each waveform is repre-
sented as a 1024 point vector of real numbers. The program asks for the number of training itera-

tions. NWRS reads the input data from the training file and begins to self-configure itself utilizing

12
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the Kohonen Self-Organizing Feature Map neural paradigm. Each waveform will gradually con-

verge on a specific exemplar in the output layer feature map. This is accomplished through the use
of a minimum error classifier tﬁat determines the best output node for a given input vector by
choosing the exemplar that is the shortest distance from the input vector. The output of the net-
work is the best matching exemplar. By training the network on a known set of data, certain
exemplars have been defined to represent a matchbto a specific pattern. When an exemplar has
been chosen as the best match fora particular input vector, that input vector has been identified as
the pattern that matched to that exemplar during initial training. During training, lateral inhibitibh
is exhibited by the output layer through the determination of neighborhoods for spec “c¢ nodes.
These neighborhoods decrease with time and as a result so does the degree of lateral inhibition.
These neighborhoods gradually build the feature map characteristics that provide a “near hit”
capability for testing waveform recognition in the presence of noise. EXAMPLE: If a specific
waveform has converged after training to centroid number 43, the correct classification of this
pattern in 10 percent noise could be a centroid match of 41,42, 43, 44 or 45. Once Uainiﬁg is com-
plete, the adaptation of the interconnection weights is discontinued. This allows the network to
retain the patterns it was initially trained on without being corrupted by noisy input data. A more
detailed discussion of the testing of the NWRS is discussed in Section 5.3, Simulation Descrip-

tion.
5.1 Development Environment:

The NWRS program was written in the C programming language utilizing the C compiler
aveilable with SUNOS 4.1.1. The program was hosted on a SUN Sparcstation 2 which is based on
the Reduced Instruction Set (RISC) architecture. The code has been ported to an IBM PC and an
Amiga 2000 platform. The most updated version of the NWRS resides on the Sun workstation.
Future implementations will involve creating a custom coded block in ComDisco’s Signal Pro-
cessing Workstation (SPW) allowing the simulation to be tightly coupled with other elements of
communications systems enabling a more in-depth study of the NWRS’s effectiveness in classify-

ing various signals.

14
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5.2

Data Generation:

The NWRS program requires several data files for operation. These data files were ini-
tially generated by a small C program written for the express purpose of generating signal epochs

for the NWRS program. The program generated a sine wave, a cosine wave and two mixtures of

both the sine and cosine waveforins. The data was appropriate for initial testing and debugging of

the NWRS but inappropriate for credible performance analysis during actual operation. It was
decided to generate the test data by utilizing the extensive signal generation capébilities of Com-
Disco’s Signal Processing Workstation (SPW). Four systems were designed us’ing SPW’s Block
Diagram Editor. The signals generated by each of these systems were displayed using SPW’s Sig-

" nal Dispiay Editor. Each of the signals generated were written to the hard disk in ASCII format

and the ASCII files were used as input to the NWRS. The four systems that were designed using
SPW were based on the following modulation schemes: Staggered Quadrature Phase Shift Key-
ing (SQPSK), Minimum Shift Keying (MSK); 8-ary Phase Shift Keyi~g (8-PSK)', and 16-ary
Quadrature Amplitude Modulation (16-QAM). Each of thesé systems 'genera;ed the aforemen-
tioned modulation types with signal-to-noise ratios of 25db, 10db, 5db, and 1db. Each signal gen-
erated contained 1024 points with a sampling frequency of 16.10 Hz. The noise generator utilizes a
noise bandwidth of 1.0 Hz. The next fevs pages show the design of each of the systems as they
were created in ComDisco’s SPW. Figure 6 illustrates a system that utilizes two complex random
number generators to produce inphase and quadrature data required as input to the SQPSK modu-
lator. This signal is then split into five different signals, each with a different signal to noise ratio

(SNR) of 25db, 10db, 5db, 1db, and a clean signal (no noise). The noise that is introduced into the

” signal is Gaussian white noise. Figures 6, 8, 10, and 12 have the same general construction except

that a different modulation block (SQPSK, 8-PSK, 16-QAM, and MSK) is used for each model.
The signals generated by each of the systems in Figures 6, 8, 10, and 12, are displayed using the
signal display editor in SPW and are illustrated in Figures 7, 9, 11, and 13. In Figure 7, the first

signal displayed is an SQPSK modulated signal with a SNR of 1db. It is impossible to distinguish

SQPSK pulses from this figure by looking at it. The second siznal has a SNR‘of 5db and it is still

15




nearly impossible to distinguish signal pulses. The third signal has a SNR of 10db and it is possi-
ble, although difficult, to distinguish pulses from the noise. The fourth signal has recognizable'
pulses with a SNR of 25db and the last signal is a pure signal with no noise at all. Figures 7, 9, 11,

and 13 are all displayed in the same format as described above. Figure 6 is the SQPSK system

" model that generates the signals displayed in Figure 7. Figure 8 is the 8-PSK system model that

generates the signals displayed in Figure 9. Figure 10 is the 16-QAM system model that generates
the signals displayed in Figure 11. Figure 12 is the MSK system model that generates the signals
displayed in Figure 13.

5.3 Simulation Description:

The NWRS classifies four different waveforms (no noise added) using the Kohonen’s
Self-Organizing Feature Map paradigm. The network is trained by repeatedly presenting‘ the
waveform signal epochs to the input layer of the NWRS. When presentation of the four wave-
forms no longer causes the interconnection weights to change, the network is completely trained.
Once training is complete, weight adaptation is discontinued and the system is tested to see if it
can correctly identify each of the distinct waveforms. Correct recognition of the waveform is
obtained if the best matching exemplar (in the output layer) is the exemplar where the original
pattern was stored. The best matching exemplar is the exemplar that is the shortest Euclidean dis-

tance from ﬂ1e signal epoch input vector (as shown in Figure 14).

~ The network is further tested by presenting the input layer with waveform signal epochs
that were generated with signal-to-noise ratios of 25db, 10db, 5db, and 1db. The purpose of this
type of testing is to determine if the NWRS can correctly clas’sify Wavefonns that have been cor-
rupted by Gaussian white noise. The NWRS showed excellent results in the ability to classify
waveforms that had signal-to-ndise ratios (SNR) of 25db. The network correctly classified these
signals 100% of the time. When the SNR was reduced to 10db, the network was again able to
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D %V ‘%' Input layer

Waveform Signal Epoch Input Ve;:tor

Classification of Signal Epoch
Fig 14

correctly classify the waveform signal epoch by matching the waveform to an éxemplar that wés
close to the exemplaf originally designated as that particular waveforms exemplar. Once the SNR
dropped to 5db, the network had great difficulty classifying the SQPSK, 16-QAM, and the 8-PSK
signal epochs. It was able to classify the MSK waveform probably due to the great difference in
shape between the MSK modulation and the other three modulation types. The NWRS could not
classify any of the signal epochs with a signal-to-noise ratio of 1db. The following tables show
some of the results of testing the NWRS with various signal epochs. The numbers in the table rep-
resent which exemplar the signal epoch best matched to. There are 1024 possible exemplars to
match to. Exemplar 1024 is a garbage node and when a signal matches to it; this means that the

network doesn’t know what type of signal was just presented.

Table 1: NWRS 10 Training Iterations
MODULATION P ignal 2 NR 10db SNR Sdb SNR 1db SNR

SQPSK 530 549 530 1024 1024
16-QAM : 1018 1015 1024 1024 1024
8-PSK 9 6 5 1024 1024
MSK 403 415 416 425 1024
25
- P L s g
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Table 2: NWRS 20 Training Iterations
MODULATION  PureSignal 25dbSNR  10dbSNR  SdbSNR  1dbSNR

SQPSK 532 540 559 1024 1024
16-QAM 1022 1019 1024 1024 1024
8-PSK 9 6 5 1024 1024
MSK 311 309 317 299 1024

Table 3: NWRS 30 Training Iterations

MODULATION Pure Signal 25dbSNR  10dbSNR  5db SNR 1db SNR

SQPSK 529 513 594 1024 1024
16-QAM 1018 1021 1024 1024 1024
8-PSK 9 5 ' 13 1024 1024

MSK 319 297 306 257 1024

The increase in training iterations did not significantly effect the performance of the
NWRS. An attempt was made to increase the training iterations by several orders of magnitude.
As the following data shows, there was no significant improvement or degradation noticed. The
exemplars converged to the exemplars listed in the following example after 50 iterations. No

change was noticed from iteration 51 through to iteration 1000.
Table 4: NWRS 1000 Training Iterations
MODULATION Pure Signal 25dbSNR | 10dbSNR  5db SNR 1db SNR

SQPSK 534 513 594 1024 1024
16-QAM 1019 1015 1024 1024 1024
8-PSK 9 15 33 1024 1024
MSK 302 302 294 290 1024

An attempt was made to train the network {using the corrupted data from the 25db SNR
signal epochs instead of training the NWRS of cle ,n data. The thought being that perhaps since
the performance was based on the ability of the NWRS to classify corrupted signal epochs, train-
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ing it on slightly néisy signal epochs would be a more representative training set. As the following

data shows, there was no significant improvement or degradation noticed.

Table 5: NWRS 30 Training Iterations with 25db SNR data.

MODULATION  Pure Signal 25dbSNR  10dbSNR  5dbSNR  1dbSNR
SQPSK 568 513 568 1024 1024 .
16-QAM 1003 1021 1024 1024 1024
 8-PSK 1 17 21 1024 1024
MSK 305 305 305 260 1024

| " The NWRS is based on the Kohonen Se..-Organizing Feature Map which utilizes the K-
means clustering algorithm. This algorithm uses the Euclidean distance to determine what cluster
of output Veqtors a given input vector belongs too. Wk.en using Gaussian white noise, the mean of
the noise over the entire waveform is zero. 'Iherefore, as far as the overall distance from this nbisy ’
input vector to its correct cluster is concerned, there is almost no difference between a vector with
25dbSNR using Gaussian noise (overall change being nearly zero from original vector) and one
without any Gaussian noise. As the SNR decreased, the power of the noise increased, greatly dis-
turbing the overall mean of the signal epoch. The difference between the mean of the original sig-
nal epoch and the mean of the noisy signal epoch differed by such a wide margin that the NWRS
could not correctly classify the noisy signal epoch as-a member of the original signal epochs clus-
ter. Figure 15 illustrates graphically how the NWRS classifies an input pattern to be a member of
a learned signal cluster or just an unrecognizable noisy signal. During training, the NWRS self-
organizes its memory to reﬂect the number of different signal epochs it was trained on. Each of
these training patterns become the central point (centroid) of the memory map. The area around
the centroid is called the body of the cluster. If a best matching exemplar falls within the body of
a defined cluster, the signal can be classified as a member of that cluster and it is now known what

type of signal epoch was just presented to the NWRS,

The exemplars that did not fall into a cluster were not recognized by the NWRS. These
exemplars were not recognized mostly because the SNR was to low. The power of the noise

greatly overshadowed the characteristics of the actual signal. If some type of preprocessor were
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Figure 15

introduced to normalize the noisy signal epoch to the power level of the original signal epoch, the
classification results of the NWRS would be greatly improved. Other types of noise and jamming
will tend to have significant effects on the NWRS’s ability to correctly classify the waveform
depending on the effect these outside interferers have on the mean of the signal epoch and the
amount of power added to the signal. More work needs to be performed in this area. Once the
NWRS correctly classifies the waveform, the receiver can utilize the proper techniques to deci-

a pher the transmitted message.
6.0 Results and Recommendations:

Kohonen’s Self-Organizing Feature Map has shown positive preliminary results in the

area of waveform recognition given a noisy environment. The simulation was created as a toy
problem to illustrate some of the major characteristics of the Kohonen algorithm. Several vari-
ables can be modified to explore the performance of the algorithm. The most prevalent modifica-

tion would be to adjust the nearest neighbor excitability. In the current simulation, the
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neighborhood is decreased after every three iterations until the neighborhood becomes one. By
increasing the number of training iterations and adjusting the neighborhood every fourth or every
sixth iteration, the resulting memory map might be better defined and therefore be more noise tol-
erant. As the neighborhood decreases in size, the amount each weight is adjusted also is

decreased. This weight adjustment is another factor that can be altered for experimentation.

Future development ih this application area will include expanding this simulation to run
in ComDisco’s “Signal Processing Workstation” (SPW) communicétions simulation environ-
ment. This will allow the use of many different modulation'types for classification. It will be
interesting to see how the classification of the waveform pérfbnns if noise jafnmers are introduced
in addition to Gaussfan white noise. By implementing NWRS as a single “block™ in the SPW
environment, it can be incorporated into an entire system to study the effects of the NWRS when
used in conjunction with conventional noise cancellation filters. Utilizing the SPW environment
will also provide a full test suite of analysis tools that can be used to tune the NWRS for better
performance. It is noped that the NWRS ia combination with SPW will provide a test environ-
ment that may help us understand some of the overall complexities of introducing neural nét-

works into the world of communications.
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for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of Csl systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
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including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-

~ sing, solid state sciences, photonics, elrctromagnetic technology, super-
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