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Abstrac
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1-well-covered graphs necessarily have girth 4. We show that all plan, i" l-well-covered

graphs of girh 4 belong to a specific infinite family, and we give a characterization of this

family.
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A CLASS OF PLANAR WELL-COVERED GRAPHS WITH GIRTH FOUR

INTRODUCTION

A set of points in a graph is independent if no two points in the graph are joined by

a line. The maximum size possible for a set of independent points in a graph G is called the

independence number of G and is denoted by gLGI. A set of independent points which

attains the maximum size is referred to as a maximum independent set. A set S of

independent points in a graph is maximal(with respect to set inclusion) if the addition to S

of any other point in the graph destroys the independence. In general, a maximal

independent set in a graph is not necessarily maximum.

In a 1970 patper, Plummer [141 introduced the notion of considering graphs in

which every maximal independent set is also maximum; he called a graph having this

property a well-covered graph. The work on well-covered graphs that has appeared in the

literature has focused on certain subclasses of well-covered graphs. Campbell [2]

characterized all cubic well-covered graphs with connectivity at most two, and Campbell

and Plummer [3] proved that there are only four 3-connected cubic planar well-covered

graphs. Royle and Ellingham [16] have recently completed the picture for cubic well-

covered graphs by determining all 3-connected cubic well-covered graphs.

For a well-covered graph with no isolated points, the independence number is at

most one-half the size of the graph. Well-covered graphs whose independence number is

exactly one-half the size of the graph are called very well-covered graphs. The subclass of

very well-covered graphs was characterized by Staples [171 and includes all well-covered

trees and all well- zovered bipartite graphs. Independently, Ravindra [15] characterized CA &
TAh

bipartite well-covered graphs and Favaron [6] characterized the very well-covered graphs...,,<..

Recently, Dean and Zito [4] characterized the very well-covered graphs as a subset of a

more general (than well-covered) class of giaphs. Distribution I
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Finbow and Hartnell [7] and Finbow, Harnnell, and Nowakowski [81 studied well-

covered graphs relative to the concept of dominating sets. Finbow, Harmnell, and

Nowakowski have also obtained a characterization of well-covered graphs with girth at

least five [91.

A well-covered graph is 1-well-covered if and only if the deletion of any point from

the graph leaves a graph which is also well-covered. A well-covered graph is in the dLjýs

W., if and only if any two disjoint independent sets in the graph can be extended to disjoint

maximum independent sets. Staples [18] showed that a well-covered graph is I-well-

covered if and only if it is in W2. Since we will appeal mostly to the notion of extending

two disjoint independent sets to disjoint maximum independent sets, henceforth we use the

W2 nomenclature instead of referring to 1-well-covered graphs.

The class of well-covered graphs contains all complete graphs and all complete

bipartite graphs of the form Knn. The only cycles which are well-covered are C3, C4, C5,

and C7. We note that all complete graphs are also in W2, but no complete bipartite graphs

(except K1.1) are in W2. The cycles C3 and C5 are the only cycles in W2.

PRELIMINARY RESULTS

We assume that all graphs are connected, unless otherwise stated. The reader is

referred to [1] for terminology and notation not defined here. Note that a disconnected

graph is in W2 if and only if each of its components is in W2. Suppose G is well-covered,

G * K1. Let v be a point in G and consider the graph G-v. Since G * KI, there exists a

point u - v. Since G is well-covered, the point u is contained in a maximum independent

set I in G. Clearly, v is not in I. Thus, I is also independent in G-v. Consequently, c(G-
v) = ct(G) for any point v. Hence, from a result of Erd6s and Gallai [51 it follows that

a(G) < IV(G)1/2. Thus, W2 graphs inherit this bound on independence number.

Staples [18] proved that a W2 graph cannot have an endpoint.
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Theorem 1. If GE W2 and G is not complete, then 8 > 2.

In the next theorem, we prove that a point on a 4-cycle in a W2 graph must have at

least three neighbors.

Theorem 2. If Ge W2 and v is a point on a 4-cycle in G, then deg(v) > 3.

roof. Suppose v is on the 4-cycle vabc in G. Also suppose that deg(v) = 2.

Then (v) and (b) cannot be extended to disjoint maximum independent sets in G, a

contradiction since Ge W2. Thus, deg(v) > 3. I

In Theorem 3, we show that any point in a W2 graph that is not on a triangle must

be on a 5-cycle.

Theorem 3. If CE W2 and v is a point in G, then v is on either a triangle or a 5-cycle.

ELQgf. Suppose v is not on a triangle. Suppose also that v is not on a 5-cycle. Let

N, = N(v) and N2 = (xe V(G): d(x,v) = 2). Since v is not on a triangle, then N1 is

independent. Since 8 > 2 by Theorem 1, each point in N, has a neighbor in N2. For each

xe N1, let N'(x) = N(x) n N2. Pick a.e N'(x) and let A - {a,: xe N1). If a, * ay, then

a. is not adjacent to ay; otherwise, vxaxayy is a 5-cycle in G containing v. Thus, A is

independent. Since A dominates N1, then it follows that A and (v] don't extend to disjoint

maximum independent sets in G. This is the desired contradiction.

A W2 graph can have a point of dcgree two or possibly two adjacent points of

degree two. However, we show in the next theorem that a W2 graph cannot have a point

, .of degree two with each of its neighbors of degree two.
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Theorem 4. If G is well-covered (and not a cycle) with a path of three consecutive points

of degree two, then G is not in W2.

o Suppose a, b and c are points in G such that a - b, b - c and deg(a)

deg(b) = deg(c) = 2. Since G is not a cycle, then a is not adjacent to c. Assume to the

contrary that G is in W2. Then by Theorem 3, the point b must lie on a 5-cycle. Suppose

a 5-cycle containing b is C = xabcy. Since G is not a cycle, then either deg(x) > 2 or

deg(y) > 2. Without loss of generality, assume deg(x) > 2. Let u - x such that ue C.

Then (u,c) is independent. So (u,c) and (a) don't extend to disjoint maximum

independent sets in G, a contradiction.

Therefore, G is not in W2. [1

Consider a graph G which is not complete and point v in G. By deleting v and its

neighbors, we obtain a subgraph of G. Specifically, wý define the subgraph G,, = G-N[v].

In Theorem 5, we state a necessary condition for a well-covered graph to be in W2,

which is proved in [13]. We will reference Theorem 5 n several occasions in this paper.

Theorem 5. If a graph G3 is in W2 and G3 is not complete, then G, is in W2 for all v in (3.

The ginh of a graph is the size of a smallest cycle in the graph. We say a graph

with no cycles has infinite girth. In [13], we prove the following theorem.

Theorem 6. If Ge W2 (G(3 K2 or C5), then girth G < 4.

Hence, a W2 graph (other than K2 and C5) must contain a triangle or a 4-cycle.

Thus, a triangle-free W2 graph (other than K2 and C5) has girth 4. In [13], we construct

infinite families of W2 graphs with girth 4. We study planar W2 graphs of girth four for

the remainder of this paper.
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In general, a W2 graph can have a cutpoint. However, we prove in the next

theorem that a W2 graph of girth four cannot have a cutpoint.

Theorem 7. If G is a W2 graph of girth 4, then G is 2-connected.

Prof. Assume to the contrary that G has a cutpoint v. Let G, G2, ..., Gn be the

components of G-v. By Theorem 1.20, graphs G, ..., G, are W2 graphs. Let Ni = N(v)

n G0, for i = 1,...,n. Since G has girth 4, then Ni is independent for all i. Since Gi0 W2,

there exists maximum independent sets Ji in Gi such that Ji r) Ni = 0, for all i. Clearly, J

= Ji u... U Jn is an independent set in G. Consequently, J land (v) are disjoint

independent sets in G which do not extend to disjoint maximum independent sets in G.

This is a contradiction since Ge W2. Hence, G is 2-connelcted. []

A line in a graph G is a c.iical line if its removal increases the independence

number. A line-critical graph is a graph with only critical lines. Staples proved in [171 that

a triangle-free W2 graph is line-critical. Hence, all graphs given subsequently in this paper

are line-critical.

PLANAR W2 GRAPHS OF GIRTH FOUR

In this section, we will characterize all planar W2 graphs of girth 4. For graphs

drawn in'the plane, we say two fa=s are adjant if they share a line. If a face F contains

point v, we say F is incidn to v. The size of a face is the number of points it contains.

We refer to the ordr and sizes of the faces incident to a point v as the face configuration at
V.

Lebesgue [10] developed the theory of Euler contributions for planar graphs and

Ore [11] and Ore and Plummer [12] used the theory to study plane graph colorings. The

Eiuler contribution of a point v, O(v1, is defined as the quantity 0(v) = I - (l/2)deg(v) +

,.N. /.-• .. .,..
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-( 1/xi), where the sum is taken over all faces Fi incident xo v and xi is the size of Fi. If

IF(G)l denotes the number of faces in the plane graph G, then it follows that Z., O(v) =

IV(G)I - IE(G)I + IF(G)I. Here the sum is taken over all points v in G. Since Euler's

formula for plane graphs says IV(G)l - IE(G)I + IF(G)I = 2, then we have Z,, O(v) = 2.

Thus, 6b(v) must be positive for some v in G. If O(v) > 0, we say v is a point with positive

Euler contribution.

An infinite family.

The following construction allows us to build larger planar W2 graphs of girth 4

from a given such graph. It can be verified di.ectly from the definition of a W2 graph that

the construction indeed yields a W2 graph.

Construction 1. Suppose G is a W2 graph with adjacent degree two points x and y

which are not on a triangle. Let N(x) (u,y y, N(y) = (x,v), and let a, b and c be new

points. Form a new graph H with

V(H) = V(G) Q (a,b,c), and

E(H) = E(G) u (xa,ab,bc,cy.cu). See Figure 1.

Then H is a W2 graph with a(H) = a(G) + 1.

""G H

Figure 1

~~~~~~ x' Y. Vi.. • • .L... -,'
U x Y -"1V ' \
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In Construction 1, if G is planar and has girth 4, then clearly H is also a planar W2

graph of girth 4. In the following'theorem, we recursively construct an infinite family of

planar W2 graphs of girth 4.

Theorem 8. Let n '_ 3 be a positive integer. Then there exists a planar W2 graph of girth

4, denoted Gn, such that a(Gn) = n and IV(G,)I = 3n - 1.

PQrof. (By induction on n.) For n = 3, let G3 be the graph on eight points given in

Figure 2. Then a(G3) = 3 and IV(G3)I = 3(3)- 1. For k Ž> 3, let Gk., be a graph obtained

from Gk by the construction given in Construction 1. Assume ca(Gk) = k and IV(Gk)l = 3k

1. From the observation preceding Theorem 8, graph Gk+I is a planar W2 graph of girth

4. Also, IV(Gk+1)I = IV(Gk)I + 3 = 3k - I + 3 = 3(k+1) -1, and ot(Gk+l) = CC(C-k) + I =k +

S~1.

Therefore, Gk+1 satisfies the statement of the theorem. The result follows by

induction.

Figure 2

Now that we have an infinite family of planar W2 graphs of girt~i 4, we work

toward showing that all planar W2 graphs of girth 4 are in the family in Theorem 8.

_ _ _

___ __ __ 4



A characterization.

Since the smallest cycle in a W2 graph of girth 4 is a 4-cycle, it is of interest to learn

what we can about 4-cycles in these graphs. The next lemr.-a will help us to determine

those W2 graphs of girth 4 which have exactly one 4-cycle.

Lemma 9. Suppose G is a W2 graph of girth 4. Let C be a 4-cycle in G. If deg(v) - 3

for all points v in C, then G is isomorphic to the graph given in Figure 2.

Proof. Let C = vlv2v3v 4. Assume deg(vi) = 3, for all i. Since G has girth 4, then

v1 is not adjacent to V3 and v2 is not adjacent to V4. Let ui - vi such that ui is not in C, for

all i. Since G has girth 4, then ui # ui,-1 for all i (addition mod 4).

Suppose u1 = u3. Then N(v 1) = N(v 3). So (v1) and Mv3 } don't extend to disjoint

maximum independent sets in G, contradicting Ge=W 2. Thus, u l # U3 and, similarly, u2•

u.1. So we can assume that i #J implies ui # uj.

N Suppose u1 - u4. Since deg(vl) = 3, then (u4,v3) is independent and dominates

N(v1). Thus, (u4,v3) and {v1 } don't extend to disjoint maximum independent sets in G, a

contradiction. So ul is not adjacent to u4. Similarly, u1 is not adjacent to u2, u2 is not

adjacent to U3, and u3 is not adjacent to U4.

Since Ge W2, deg(ul) > 2. Since ul * ui, i # 1, then ul is not adjacent to vi, i # 1.

Thus, there exists y - ul such that ye C. If y is not adjacent to v3, then (y,v 3) and (v1)

don't extend to disjoint maximum independent sets in G. So we assume y - v3; that is, y =

u3 and u1 - U3. Moreover, we have shown that deg(ut) = 2. By symmetry, deg(u3) = 2.

By a symmetrical argument, u2 - U4 anddeg(u2) = deg(u4) = 2. So deg(vi) = 3 for

all i and deg(ui) - 2 for all i. Therefore 0 can be drawn in the plane as the graph given in

Figure 2. []
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Now we show in Theorem 10 that there is only one W2 graph of girth 4 with

exactly one 4-cycle.

Theorem 10. If G is a W2 graph of girth 4 with exactly one 4-cycle, then G is

isomorphic to the graph in Figure 2.

Proof. Suppose G is a W2 graph of girth 4 with exactly one 4-cycle. Let C = abcd

be the 4-cycle in G. By Theorem 5, graph Gve W2 for all points v in G. By Theorem 2,

deg(x) Ž 3 for all x in C.

Suppose deg(x) Ž_ 4 for some x in C. Without loss of generality, assume d,.g(b) 'a

4. Let w and y be neighbors of b such that (w,y) r) (a,c) = 0. Since G has only one 4-

cycle, then d is adjacent to neither w nor y. Consider the W2 graph Gd. Not. that b, y and

w are in the same component of Gd. Since G has only one 4-cycle, then Gd has no 4-

cycles. Thus, Gd is a W2 graph with girth > 4.

By Theorem 6, each component of Gd is a line or a 5-cycle. So the component H

of Gd containing b, y and w must be a 5-cycle, say H stybw. See Figure 3.

S

W t

a bS-dy

d c

Figure 3

Since G has only one 4-cycle, then s is adjacent to neither a nor c. Thus, the points

a. b, c and y are all in the same component of the W2 graph G,. But then the component of

.o~
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G, containing a, b, c and y is neither a line nor a 5-cycle. Since G, is a W2 graph with

girth > 4, we obtain a contradiction via Theorem 6.

Hence, deg(b) = 3. It follows that deg(x) = 3 for all x in C. By Lemma 9, the

result follows. [1

In the following theorem, we prove that if a W2 graph has a point of degree two

which does not ha-v a neighbor of degree two, then the graph is not planar. As a

consequence, we prove in Corollary 12 that if a planar W2 graph of girth 4 has points of

degree two, then those points of degree two must occur in adjacent pairs.

Theorem 11. Suppose G is in W2 and contains a point v of degree two which is not on a

triangle and whose neighbors have degree > 3. Then G is not planar.

Prof. Let N(v) = (a,b). Since v is not on a triangle, then a is not adjacent to b.

Let N1 = N(a)-v and N2 = N(b)-v. By Theorem 2, a 4-cycle ir a W2 graph cannot have a

point of degree two. Thus, N1 n N2 = 0. Suppose there exist points x and y such that

x: N1 , yeN 2 and x is not adjacent to y. Then (x,y} and (v) don't extend to disjoint

maximum independent sets in G, contradicting Ge W2. Hence, xe N1 and yE N2 implies

x - y. Since deg(a) > 3 and deg(b) Ž 3, then there exist points ul and v, in NJ and points

u, and v2 in N2. Since x - y for all xe N1 , for all ye N2, it follows that ul - u2, u1 - v2,

U2 - v, and v, - v2. Thus, G is not planar. [H

Corollary 12. If G is a planar W2 graph of girth 4 with 8 = 2, then the points of degree

two occur as adjacent pairs.

EProf. Suppose v is a point of degree two in G. Since G has girth 4, by Theorem

11 it follows that v has a neighbor of degree two. By Theor'm 4, the point v cannot have

two neighbors of degree two. Thus, v has exactly one neighbor witt. degree two. Hence,

the points of degree two occur as adjacent pairs in G. [1
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We note that it is possible for a W2 graph of girth 4 to have a point of degree two

w hose neighbors have degree greater than two. The graph in Figure 4 is one such

example. Moreover, using the graph in Figure 4 as a starting graph, an infinite family of

W, graphs of girth 4 can be recursively constructed via Construction 1. Each graph in this

family has a point of degree two whose neighbors have degree greater than two.

Figure 4

We return to consideration of planar W2 graphs of girth 4 with points of degree

two. Since we know degree two points occur in pairs, we consider the structure around

adjacent points of degree two.

Lemma 13. Suppose Gis a planar W2 graph of girth 4 with adjacent degree two points x

and y. Let N(x) = (u,y) and N(y) = {v,x). Then deg(u) = deg(v) = 3. Moreover, u and

v have two common neighbors.

Er&f. By Theorem 7, graph G is 2-connected. By Theorem 3, the points x and y

are on a 5-cycle C. Then C = xyvwu. By Theorem 4, deg(u) 2! 3 and deg(v) _> 3. Thus,

deg(w) > 2 by Theorem 11. Let N'(w) = N(w)- Iu,v).

Let U, = N(u)-x. Suppose there exists some pe U, such that p is not adjacent to v.

Then [p,v) and (x) don't extend to disjoint maximum independent sets in G, contradicting

GE W,. Thus, pE U, implies p - v.

Assume that deg(u) > 3.
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Suppose U, has at least two points outside C and no points inside C. Let ac U,

such that no point of U, is in the interior of cycle uwva, and let be U, such that a is the

only member of Ux in the interior of cycle uwvb. Since G has girth 4, then (a,b,w) is

independent (see Figure 5).

b a

v

Figure 5

Suppose ze N'(w) implies z - a. Then (a) and (w) don't extend to disjoint

maximum independent sets in G, contradicting Ge W2 . Thus, there exists some ze N'(w)

such that z is not adjacent to a. Consider the graph G,. By Theorem 5, graph Gze W2.

Let Aj = (c - a: c is inside the cycle uwva) and A2 = Id - a: d is inside cycle

uavb). If A, = 0, then w is a cupoint for G, contradicting the 2-connectedness of G.

Thus A1 I 0. If there exists ce AI such that c is not adjacent to z, then a is a cutpoint for

G,. Since G, is 2-connected by Theorem 7, we obtain a contradiction. Thus, ce A1

implies c - z. Now, if A2 = 0, then (b,z) and (a) don't extend to disjoint maximum

independent sets in G. So A2 * 0.

Let B = (f- b: f is inside cycle uavb). Suppose there exists some deA 2 such that

de B. Then a is a cutpoint in the graph Gb, a contradiction by Theorem 7. Thus, de A2

implies de B; that is, A2 is contained in B. But then (b,z) and (a) don't extend to

disjoint maximum independent sets in G.

I /"
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Hence, it is not possible that Ux has at least two points outside C and no points

inside C. By symmetry, we cannot have at least two points of U, inside C and no points

of Ux outside C.

if Ux has at least one point inside C, then rename w as the innermost point of U,

inside C; that is, choose w so that no point of U2 is inside the 5-cycle xyvwu. Now we

can proceed as above to obtain a contradiction.

Hence, deg(u) = 3. By symmetry, deg(v) = 3. Let N(u) = (x,w,t). From above,

pe Ux implies p - v. Thus, N(v) = (y,w,t). []

Hence, if x is a point of degree two in a plknar W2 graph of girth 4, then x must

have one neighbor, say y, with degree two and one neighbor, say u, with degree three. In

addition, if v is the second neighbor of y, then deg(v) = 3 and u and v have two common

neighbors.

We show in the next theorem that a planar W2 graph of girth 4 with points of

degree two must be in the family constructed in Theorem 8.

Theorem 14. Suppose G is a planar W2 graph of girth 4 with 8 = 2. Then G is a

member of the family of graphs given in Theorem 8.

Prof. (By induction on the number of 4-cycles.) Suppose G is a planar W2 graph

of girth 4 with 8 = 2. Suppose G has exactly one 4-cycle. Then by Theorem 10, it follows

that G = G3 given in Theorem 8. Assume the inductive hypothesis: if G is a planar W2

graph of girth 4 with 8 = 2 and the number of 4-cycles in G is exactly k-I (k _> 2), then G

is a member of the family of graphs given in Theorem 8.

Suppose G is a planar W2 graph of girth 4 with 8 = 2 and the number of 4-cycles in

G is exactly k (k - 2). By Corollary 12, graph G has adjacent degree two points, say x

and y. Let N(x) = {u,y) and N(y) = (v,x). It follows from Lemma 13 that deg(u) =
/ S~deg(v) = 3 and u and v have two common neighbors. So let N(u) = (x,w,a} and N(v) =
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{y,w,a}. Without loss of generality, assume a is exterior to cycle xyvwu (see Figure 6).

By Corollary 12, deg(w) > 2 and deg(a) > 2.

U

V

Figure 6

If there exists some point s, se (u,v}, such that s - w and s - a, then fs,x) and

(v) don't extend to disjoint maximum independent sets in G, contradicting Ge W2. Thus,

N'(w) n N'(a) = 0, where N'(w) = N(w)-{u,v) and N'(a) = N(a)-(u,v).

Case 1. Suppose deg(w) > 4.

Case 1.1. Also suppose deg(a) Ž 4. Since we are assuming deg(w) Z 4 and

deg(a) Z_ 4, then it follows that there exist distinct points z1, z2, a,, a2 such that zie N'(w)

and aie N'(a), i = 1, 2.

Suppose there exist i and j such that ai is not adjacent to zj. Then (ai,zj,y} is

independent and so {ai,zj,y) and [u) don't extend to disjoint maximum independent sets in

G, contradicting Ge W2. Thus ai - zj for all i and all j. But this contradicts the planarity of

G.

Case 1.2. Thus we must have deg(a) = 3. Consider the graph GY. By Theorem 5,

graph Gy is in W2. In Gy, the points a and u are adjacent points of degree two. Since

N'(w) r) N'(a) = 0, it follows that Gy has exactly one less 4-cycle than G (uwva is the

only 4-cycle in G containing v). Since the number of 4-cycles in G is exactly k, then the
number of 4-cycles in Gy is exactly k- 1. So Gy is a planar W2 graph of girth 4 with 5 = 2

and the number of 4-cycles in Gy is exactly k-i. By the inductive assumption, the graph

--U-~ ............. -.- ....
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G, is in the family of graphs given in Theorem 8. Then G can be obtained from Gr via the

construction in Censtruction 1, with x, y and v playing the roles of a, b and c, respectively

(see Figure 7). Thus, G is a member of the family of graphs given in Theorem 8.

V

Figure 7

Case 2. Suppose deg(w) = 3. Then in the graph Gy, points w and u are adjacent

points of degree two. As in Case 1.2, the number of 4-cycles in Gy is exactly k-I and,

hence, GY is in the family of graphs given in Theorem 8. Once again, G can be obtained

from Gy via the construction in Construction 1, with x, y and v playing the roles of a, b

and c. Thus, G is a member of the family of graphs given in Theorem 8. 1

In order to complete the discussion on planar W2 graphs of girth 4, we will show

that a planar W2 graph of girth 4 must have points of degree two. The theory of Euler

contributions will be used for this.

We need to consider possible face configurations at a point of degree three in a

planar W2 graph of girth 4. In a 2-connected planar graph, the faces incident at a point can

intersect in various ways. However, for a planar W2 graph of girth 4, the following lemma
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shows that adjacent faces which are incident to a point of degree three always have a line as

their intersection. We omit the proof of the lemma.

Lemma 15. Suppose G is planar W2 graph of girth 4 with 8 _> 3. Suppose v is a point of

degree three with N(v) = (ulu2,u3), incident faces F1, F2 and F3 (where face FP contains

lines vul and vu2, face F 2 contains lines vu2 and Vu3, and face F3 contains lines vu3 and

vul) and positive Euler contribution, O(v). Then F1 P F2 = vu 2 , F2 r) F3 = vu3 and F3 r)

F1 = vul.

In Theorem 16, by considering all possible face configurations at a point v with

deg(v) = 3 and O(v) > 0, we conclude that a planar W2 graph of girth 4 must have points of

dearee two.

Theorem 16. If G is a planar W2 graph of girth 4, then 5 = 2.

Proof. Assume to the contrary that 5 2! 3. Let O(v) be the Euler contribution of

point v in G. If deg(v) = 4, then O(v) = -1 + X( l/xi), where the sum is taken over the four

faces incident to v. Since G has girth 4, the largest possible value for Z(l/xi) is 1, when v

has face configuration (4,4,4,4). Hence, Q(v) 5 0 whenever deg(v) = 4. If deg(v) = 5,

then O(v) = -3/2 + 1(1/xi), where the sum is taken over the five faces incident to v. The

largest possible value for E(l/xi) here is 5/4, when v has face configuration (4,4,4,4,4).

Hence, O(v) < 0 whenever deg(v) = 5. In fact, O(v) < 0 whenever deg(v) > 5. Since G

must have a point v with O(v) > 0 and we are assuming 5 3, then we must have 8 = 3.

So assume v is a point in G with deg(v) = 3 and ý(v) > 0. Then O(v) = -1/2 +

1((l/xi), where the sum is taken over the three faces incident to v; O(v) > 0 implies that

:(l/xi)> 1/2. Since G has girth 4, the only possible face configurations at v are the

following solutions to the Diophantine inequality 7(1/xi) > 1/2:
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1. (4,4,n), for n Ž_ 4; 2. (4,5,n), for 5 !5 n 5 19;

3. (4,6,n), for 6 < n • 11; 4. (4,7,n), for 7 < n _< 9;

5. (5,5,n), for 5 • n _• 9; 6. (5,6,n), for 6 < n < 7.

Let N(v) = {u1,u2,u3}. Let F1, F2 and F3 be the faces incident to v (where face F,

contains lir.; vul and vU2, face F2 contains lines Vu2 and vu3, and face F3 contains lines

"vu3 and vul). It follows from Lemma 15 that F1 0 F2 = vu2, F, n F3 =vul and F2 o F3 =

VU3.

Case 1. Suppose v has face configuration (4,4,n), n > 4. Let F1 = vulau2 and F2

= vu 2bu3. Since G has girth 4, then a is not adjacent to b. Then (a,b) and (v) don't

extend to disjoint maximum independent sets in G, contradicting Ge W2. Therefore,

(4,4,n) n Ž_ 4, cannot occur as a face configuration for v.

Case 2. Suppose v has face configuration (4,5,n), 5 _ n < 19. Let F1 - vulau2,

"F2 = vu2bcu 3 and F3 = vu 3df...euI (e = f when n = 5). If a is not adjacent to c, then (a,c)

and (v) don't extend to disjoint maximum independent sets in G. So a - c. Similarly, a -

d. Since G is planar, point b is adjacent to none of points d, e or ul, point c is not adjacent

to e, and d is not adjacent to u2. See Figure 8.

Ea

Figure 8

f\
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Suppose deg(u 3) # 3. Then there exists w - u3 such that we (c,d,v) and {w,b,e)

is independent. Then (w,b,e) and (v} don't extend to disjoint maximum independent sets

in G, a contradiction. Thus, deg(u3) = 3.

Let N = N(c)-(a,b,u3}. Assume teN implies t - u2. Then {d,u 2 } and (c) don't

extend to disjoint maximum independent sets in G. Thus, there exists some te N such that

t is not adjacent to u2. But then ft,u2,f) is independent and so (t,u2,f) and [u3) don't

extend to disjoint maximum independent sets in G.

Thus, v cannot have face configuration (4,5,n), 5 < n < 19.

Case 3. Suppose v has face configuration (4,6,n), for 6 < n 5 11. Let F, =

vulau2, F2 = vu2bwcu3 and F3 = vu3d...eul. As in Case 2, we have a - c and a - d.

Thus, since G is planar, e is adjacent to neither b nor c. Since G has girth 4, then b is not

adjacent to c. Hence, {b,c,e) is independent and so (b,c,e) and {v) don't extend to

disjoint maximum independent sets in G, contradicting Ge W2.

Thus, v cannot have face configuration (4,6,n), 6 - n -< 11.

Case 4. Suppose v has face configuration (4,7,n), 7 < r, < 9. Let F1 = vutau2, F2

vu2bxycu3 and F3 = vu3dz...eul. As in Case 2, we have a - c and a - d. Also as in

Case 2, deg(u3) = 3. If b is not adjacent to c, then {b,c,e) is independent (since G is

planar). Thus, (b,c,e) and (v) don't extend to disjoint maximum independent sets in G, a

contradiction. So b - c. It follows that y is not adjacent to u2. But then (y,u 2,z) is

independent and so Iy,u2,z) and {u3} don't extend to disjoint maximum independent sets

in G.

Thus, v canno= have face configuration (4,7,n), 7 5 n 5 9.

Case 5. Suppose v has face configuration (5,5,n), 5 < n < 9. Let F, = vutabu2 ,

F2 - vu2cdu3 and F3 = vu3ex...ful (x = f when n = 5).

Case 5.1. Suppose a is not adjacent to c. If neither a nor c is adjacent to e, then

{a,c,e) and (v) don't extend to disjoint maximum independent sets in G. Thus, either a -

e or c - e.
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Case 5.1.1. Suppose a -e. Then neither b nord is adjacent to f. See Figure 9.

b

fal

3 F.

J2

Figure 9

If b is not adjacent to d, then [b,d,f) and {v) don't extend to disjoint maximum

independent sets in G. Thus, b - d. As in Case 2, deg(u3) 3. Now we can apply the

argument given in Case 2 to obtain a contradiction.

Case 5.1.2. So c - e. If b is not adjacent to f, then Ib,f,di and (v) don't extend

to disjoint maximum independent sets in G. So b - f. See Figure 10.

a bb

e Figure 10

//
/
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As in Case 2, with u2 playing the role of U3, we have deg(u 2) = 3. Now vie can

apply the argument given in Case 2, with N = N(c)-{d,e,u 2), to show that this

configuration cannot occur.

Case 5.2. Hence, a - c. If f is not adjacent to d, then (f,d,b) and fv) don't extend

to disjoint maximum independent sets in G. So assume f - d. See Figure II.

Figure 11

As in Case 2, with ul playing the role of u3, we have deg(ul) = 3. Now we can

apply the argument given in Case 2 to obtain a contradiction.

Thus, v cannot have face configuration (5,5,n), 5 5 n _ 9.

Case 6. Suppose v has face configuration (5,6,n), n = 6 or 7. Let F1 = vulabu2,

F2 ;= vu2cxdu 3 and F3 = vu3ewyfuI (w = y when n = 6). Since G has girth 4, then c is not

adjacent to d.

Case 6.1. Suppose a- c. If f is not adjacent to d, then (b,d,f) is independent and

so (b,d,f} nd (v} don't extend to disjoint maximum independent sets in G. So assume f

-d. See FA ure 12.
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Figure 12

As in Case 2, with ul playing the role of U3, we have deg(u) = 3. Now we can

apply the argument given in Case 2 to obtain a contradiction.

Case 6.2. So a is not adjacent to c. If a is not adjacent to d, then (a,c,dI and Iv)

don't extend to disjoint maximum independent sets in G, a contradiction. So assume a - d.

SCase 6.2.1. Suppose n =6. Since G has girth 4, then f is not adjacent to e. Then

S/ (�.b,f,e) is independent and so (b,f,e) and {v) don't extend to disjoint maximum

independent sets in G. So n = 6 cannot occur.

Case 6.2.2. Suppose n = 7. If f is not adjacent to d, then (c,d,f) and (v) don't

extend to disjoint maximum independent sets in G. So assume f - d. If f is not adjacent to

"e, then {f,b,e) and [v) don't extend to disjoint maximum independent sets in G. So

assume f - e. See Figure 13.

S' 
,-Figuree13
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W w e u 3
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Figure 13
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As in Case 2, with uI playing the role of U3, we have deg(u1) = 3. Then {b,y,u 3)

is independent and so {b,y,u3) and (ii} don't extend to disjoint maximum independent

sets in G. Thus, n = 7 cannot occur.

Hence, v cannot have face configuration (5,6,n), for n = 6 or 7. Thus, deg(v) = 3

with 0(v) > 0 leads to a contradiction in all possible cases. Therefore, 8 5 2. Since Ge W2

and G # K2, then by Theorem I it follows that 8 _> 2. We conclude that 8 = 2. []

Hence, we are able to completely characterize the planar W2 graphs of girth 4. In

particular, the next corollary shows that the family of graphs in Theorem 8 is identical to

the family of planar W2 graphs of girth 4.

Corollary 17. If G is a planar W2 graph of girth 4, then G is a member of the family of

graphs given in Theorem 8.

Prof. This follows immediately from Theorem 16 and Theorem 14.
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