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Abstract

A well-covered graph is a graph in which every maximal independent set is 4 maximum
independent set; Plummer introduced the concept in a 1970 paper. The notion of a 1-we!l-
covered graph was introduced by Staples in her 1975 dissertation: a well-covered gfqph G
is 1-well-covered if and only if G-v is also well-cdvcrcd for every point v in G Except for
K, and Cs, every 1-well-covered graph contains triangles or 4-cycles. Thus, triangle-free
1-well-covered graphs necessarily have girth 4. We show that all planar 1-well-covered

graphs of girth 4 belong to a specific infinite family, and we give a characterization of this

. family.
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A CLASS OF PLANAR WELL-COVERED GRAPHS WITH GIRTH FOUR

INTRODUCTION

A set of points in a graph is independent if no two points in the graph are joined by
a line. The maximum size possible for a set of independent points in a graph G is called thve- )
independence number of G and is denoted by g(G). A set of independent points which
attains the maximum size is referred to as a maximum independent set. A set S of
independent points in a graph is mg_&in_wgl_(with respect to set inclusion) if the addition toS
of any other point in the graph destroys the independence. In general, a maximal |
independent set in a graph is not necessarily maximum. |

In a 1970 paper, Plummer [14] introduced the notion of considering graphs in
which every maxirﬁal independent set is also maximum,; he called a graph having this
property a well-covered graph. The work on well-covered graphs that has appeared in the
literature has focused on certain subclasses of well-covered graphs. Campbell [2]
characterized all cubic well-covered graphs with connectivity at most two, and Campbell
and Plummer (3] proved that there are only four 3-connected cubic planar well-covered
“graphs. Royle and Ellingham [16] have recently completed the picturev for cubic well-
covered graphs by determining all 3-connected cubic well-covered graphs.

Fdr a well-covered graph wifh no isolated points, the independence number is at
most one-half the size of the graph. Well-covered graphs whose independence number is
cx:ictly one-half the size of the graph are called m_;ﬂ_qmmd grapbs. The subclass of
very well-covered graphs was characterized by Staples [17) and includes all well-covered

rees and all well-covered bipartite graphs. Independently, Ravindra [15] characterized (r::&
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bipartite well-covered graphs and Favaron [6] characterized the very well-covered graphs. | °

Recently, Dean and Zito [4] characterized the very well-covered graphs as a subset of a g \

more general (than well-covered) class of giaphs. Distribution |
| sty

~ Availabii

%

Avail

Sp

et et

S —



~

Finbow and Hartnell [7] and Finbow, Hartnell, and Nowakowski [8] studied wcli- .
covered graphs relative to the concept of dominating sets. Finbow, Hartnell, and
Nowakowski have al.so obtained a charactcriian’on of well-covered graphs with girth at
least five [9]. A

A wcll-covered graph is 1-well-covered if and only if the delefion of any point from
the graph leaves a graph which is also wel]-co?ered. A well-covered graph is in the cliss
W if and only if any two disjoint independent sets in the graph can be extended to disjoint:
maximum independent sets. Staples [18] showed that a well-covered graph is 1-well-
covered if and only if it is in W,. Since we wiil appeal mostly to the notionv of extending
two disjoint independent sets 10 disjoiht maximum independent sets, henceforth we use the
\V; nomenclature instead of referring to 1-well-covered graphs.

The class of well-covered graph§ contains all completc graphs and all complete
bipartite graphs of the form Ky . The only cycles which are well-covered are C3, Cq, Cs,
and C;. We note that all complete graphs are also in W, but no complete bipartite graphs

(except Ky 1) are in Wp. The cycles C3 and Cs are the only cycles in W,

PRELIMINARY RESULTS

We assume that all graphs are connected, unless otherwise stated. The reader is
referred to [1) for tennihology and notation not defined here. Note that a disconnected
graph is in W if and only if each of its components is in W2. Suppose G is well-covered,
G # K. Letv bea point in G and consider the graph G-v. Since G # K|, there exists a
pointu ~v. Since G is well-covered, the point u is contained in a maximum independent
set1in G. Clearly, vis notin I. Thus, I is also independent in G-v. Consequently, (G-
v) = a(G) for any point v. Hence, from a result of Erdﬁs and Gallai [5] it follows that
a(G) <IV(G)//2. Thus, W graphs inherit this bound on independence number.

Staples [18]) proved thai a W, graph cannot have an endpoint.
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Theorem 1. If Ge Wy and G is ot complete, then § 2 2.

In the next theorem, we prove that a point on a 4-cycle in a W, graph must have at

least three neighbors.

Theorem 2. If Ge W; and v is a point on a 4-cycle in G, then deg(v) 2 3.
Proof. Suppose v is on the 4-cycle vabe in G. Also suppose that deg(v) = 2.
Then {v} and {b} cannot be extended to disjoint maximum independent sets in G, a

contradiction since Ge W;. Thus, deg(v) 2 3. i

In Theorem 3, we show that any point in a W3 graph that is not on a triangle must

be on a S-cycle.

Theorem 3. If Ce W3 and v is a point in G, then v is on either a triangle or a 5-cycle.

Proof. Suppose v is not on a triangle. Suppose also that v is not on a S-cycle. Let -

N; = N(v) and Nz = {xe V(G): d(x,v) =2}. Since v is not on a triangle, then N, is
independent. Since 8 2 2 by Theorem 1, each point in Nj has a neighbor in N,. For each
xe N, let N'(x) = N(x) N N,. Pick a,e N'(x) and let A = {a,: xeNy}. If ay = ay, then
a, is not adjacent to ay; otherwise, vxa,a,y is a 5-cycle in G containing v. Thus, A is
independent. Since A dominates Ny, then it follows that A and (v} don't extend to disjoint

maximum independent sets in G. This is the desired contradiction. [

A W, graph can have a point of dcgrée two or possibly two adjacent points of

degree two. However, we show in the next theorem that a W5 graph cannot have a point

~ of degree two with each of its neighbors of degree two.




Theorem 4. If G is well-covered (and hot a cycle) with a path of three consecutive points
of degree two, then G is not in Wa.

| Proof. Suppose a, b and ¢ are points in G such thata~ b, b ~ ¢ and deg(a) =
deg(b) =deg(c) = 2. Since G is not avcycle, then a is not adjacent to c. Assume to the
contrary that G is in W2. Then by Theorem 3, the point b must lie on a 5-cycle . Suppose
a 5-cycle containing b is C = xabcy. Since G is nota cycle, fhen_either deg(x)>2or

deg(y) > 2. Without loss of generality, assume deg(x) > 2. Letu ~x such that ue C.

Then {u,c) is independent. So {u,c} and {a} don't extend to disjoint maximum

(1

independent sets in G, a contradiction. l
Therefore, G is not in W, 1
Consider a graph G which is not complete and point v in G. By deleting v and its
neighbors, we obtain a subgraph of G. Specifically, wi: define the subgraph Gy = G-N[v].
|

In Theorem 5, we state a necessary condition fol‘r a well-covered graph to be in W3,
|

which is proved in [13]. We will reference Theorem 5 fm several occasions in this paper.
|
!

Theorem 5. If a graph G is in W and G is not complete, then G, is in W; for all v in G.

The girth of a graph is the size of a smallest cycle in the graph. We say a graph

with no cycles has infinite girth. In [13], we prove the following theorem.

Theorem 6. If Ge W3 (G # K3 or Cs), then girth G £ 4.

Hence, a W graph (other than K3 and Cs) must contain a triangle or a 4-cycle.
Thus, a triangle-free W graph (other than K and Cs) has girth 4. In [13], we construct
infinite families of W5 graphs with girth 4. We study planar W graphs of girth four for

the remainder of this paper.




In general, a W, graph can have a cutpoint. However, we prove in the next

theorem that a W graph of girth four cannot have a cutpoint.

Theorem 7. If G is a W3 graph of girth 4, then G is 2-connected.
Proof. Assume to the contrary that G has a cutpoint v. Let Gy, Gy, ..., Gp be the
components of G-v. By Theorem 1.20, graphs Gy, ..., G, are W, graphs. Let Nj= N(v)

N G; fori = 1,..,n. Since G has girth 4, then N; is independent for all i. Since G;e W,,

~ there exists maximum independent sets J; in G; such that J; N;=0, for all i. Clearly, J

=J; U...U J, is an independent set in G. Consequently, J lfémd {v) are disjoint
independent sets in G which do not extend to disjoint maxnj;mum independent sets in G.
Thisisa contradictiovn. since Ge W3. Hence, G is 2-connthed. ' ]
A line in a graph G is a ¢ritical line if its removal in!creases the independence
number. A line-critical graph is a graph with only critical lines. Staples proved in (17] that
a u'iangle-free. W, graph is line-critical. Henée, all graphs wgiven'sub_sequcntly in this paper

are line-critical.

PLANAR W, GRAPHS OF GIRTH FOUR

In this section, we will characterize all planar W, graphs of girth 4. For graphs
drawn in the plane, we say two faces are adjacent if they share a line. If a face F contains
point v, we say F is incident to v. The size of a face is the number of points it contains.
We refer to the order and sizes of the faces incident to a point v as the face configuration at
V. |

Lebesgue [10] developed the theory of Euler contributions for planar graphs and
Ore (11] and Ore and Plummer [12] used the theory to study pléne graph colorings. The
Euler contribution of a point v, ¢(v), is defined as the quantity ¢(v) = 1 - (1/2)deg(v) +




I(1/x;), where ihe sum is takén over all faces F; incident (0 v and x; is the size of F;. If
IF(G)! denotes the number of faces in the plane graph G, then it follows that Z, ¢(v) =
IV(G)I - IE(G)! + IF(G)I. Here the sum is taken over all points v in G Since Eﬁler’s '
formula for plane graphs says 1Y(G)! - IE(G) + IF(G)l = 2, then we have Z, 4)(\}) =2.
Thus, &(v) must be positive for some vinG. If ¢(v) >0, we say v is a point with positive

Euler contribution.
infinite familv.

~ The following construction allows us to build larger planar W, graphs of girth 4
from a given such graph. It can be verified di.ectly from the definition of a W3 graph that

the construction indeed yields a W; graph.

Construction 1. Suppose G is a W, graph with adjacent dégree two points x and y
which are not on a triangle. Let N(x) = {u,y}, N(y) = {x,v}, and let a, b and c be new |
points. Form a new graph H with |
V(H) = V(G) v {a,b,c}, and
E(H) = E(G) U {xa,ab,bc,cy.cu). See Figure 1.
Then H is a W5 graph with a(H) = a(G) + 1.

Figure 1




In Construction 1, if G is planar and has girth 4, then clearly H is also a planar W,
graph of girth 4. In the following theorem, we recursively construct an infinite family of

planar W graphs of girth 4.

Theorem 8. Letn > 3 be a positive integer. Then there exists a planar W3 graph of girth
4, denoted Gy, such that a(Gy) = n and IV(Gp)i = 3n - 1. |

Proof. (By induction on n.) For n = 3, let G3 be the graph on.eight points givenin
Figure 2. Then a(G3) = 3 and IV(G3)l = 3(3) - 1. Fork 2 3, let Gy, be a graph obtained
from Gy by the construction gi\‘/cn in Construction 1. Assume a(Gy) =k and IV(G}_()I =3k
- 1. From the observation preceding Theorem 8, graph GM is a planar W graph of girth
4. Also, IV(Gyet)l = IV(G! +3 =3k - 1 +3 =3(k+1) -1, and 0(Gy,1) = (Cy) + 1 =k +
1.

Therefore, G, satisfies the statement of the theorera. The result follows by

induction. » | ]

.Figurc 2

Now that we have an infinite family of planar W, graphs of girti 4, we work

toward showing that all planar W; graphs of girth 4 are in the family in Theorem 8.

|
.




Since the smallest cycle in a W5 graph of girth 4 is a 4-cycle, it is of interest to leamn
what we can about 4-cycles in these graphs. The next lemr.;a will help us to determine

those W graphs of girth 4 which haQe exactly one 4-cycle.

Lemma 9. Suppose G is a W7 graph of girth 4.‘ Let Cbe ad-cyclein G. If deg{v) =3
for all points v in C, then G is isomorphic to the graph given in Figure 2.

Proof. Let C = vyvavavs., Assume deg(v;) =3, for all i. Since G has girth 4, then
vy is not adjacent to v3 and v; is not adjacent to v4. Let u;~ v; such that y; is not in C, for '
alli. Since G has girth 4, then u; # u;;) fqr all i (addition mod 4).

Suppose u; = u3. Then N(v;) = N(v3). So (v} and {v3] don't extend to disjoint
miaximum independent sets in G, contradicting Ge Wa. Thus, u; # u3 and, similarly, u; #
us. So we can assume thati # ] implies u;# u;. |

Suppose u; ~ ug. Since deg(v;) =3, then {u4,v3} is independent and dominates
N(vy). Thus, {u4,v3} and {v;} don't extend to disjoint maximum independent sets in G, a
contradiction. So u, is not adjacent to us. Similarly, u) is not adjacent to uj, uj is not

adjacent to u3, and u3 is not adjacent to ua.

\

Since Ge W, deg(u;) 2 2. Since uj # u;, i # 1, then uy is not adjacent to v;, i # 1.
Thus, there exists y ~ uy such that ye C. If y is not adjacent to v3, then {y,v3} and (v}
don't extend to disjoint maximum independent sets in G. So we assume y ~ v3; thatis, y =
u3 and u; ~ u3. Moreover, we have shown that deg(u;) = 2. By symmetry, deg(u3) = 2.

By a symmetrical argument, uz ~ us and deg(up) = deg(us) = 2. So deg(v;) = 3 for
all i and deg(u;) = 2 for all i. Therefore G can be drawn in the plane as the graph given in
Figure 2. | [




Now we show in Theorem 10 that there is only one W5 graph of girth 4 with

exactly one 4-cycle.

Theorem 10. If G is a W, graph of girth 4 with cxactly one 4-cycle, then G is
isomorphic to the graph in Figure 2. | |

Proof. Suppose G is a W7 graph of girth 4 with exactly one 4-cycle. Let C = abcd
| be the 4-cycle in G. By Theorem 5, graph G,e W, for all points vin G. By Theorem 2,
deg(x)2 3 forallxin C.

* Suppose deg(x) 2 4 for some x in C. Without loss of generality, assume deg(b) 2

4. ‘Let wand y be .neighbors of b such that {w,y} n {a,c}) =D. Since G has only one 4-
cycle, then d is adjacent to neither w nor y. Consider the W3 graph Gg. Not= that b, y and
w are in the same component of Gg. Since G Has only cne 4-cycle, then G4 has no 4-
cvcles. Thus, Gq is a W, graph with girth > 4. |

By Theorem 6, eaéh component of Gq is a line ora 5-cycle. So the component H

of Gq containing b, y and w must be a S-cycle, say H = stybw. See Figure 3.

Figure 3

Since G has only one 4-cycle, then s is adjacent to neither a nor c. Thus, the points

a. b, c and y are all in the same component of the W3 graph G;. But then the component of
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‘G, containing a, b, ¢ and y is neither a line nor a 5-cycle. Since G, is a W, graph with
girth > 4, we obtain a contradiction via Theorem 6.
Hence, deg(b) = 3. It follows that deg(x) = 3 for all x in C. By Lemma 9, the

result follows. . {1

In the followin g theorem, we prove that if a W, graph has a point of degree twe
which does not havs a neighbor of degree two, then the graph is not planar. ‘Asa
consequence, we prove in Corollary 12 that it a planar W7 graph of girth 4 has points of

degree two, then those points of degree two must occur in adjacent pairs.

Thecrem il. Suppose G is in W and contains a point v of degree two which is not on a
riangle and whose neighbors have degree 2 3. Then G is nbt planar.

Proof. Let N(v) = {a,b}). Since v is not on a triangle, then a is not édjacent to b.
Let Nj = N(a)-v and Ny = N(b)-v. By Theorem 2, a 4-cycle in a W, graph cannot have a
point of degree two. Thus, Nj "\ Ny =@. Suppose there exist points x and y such that
.;;e N}, ye N2 and x is not adjacent to y. Then {x,y} and {v} don't extend to disjoint
maximutn indepf:ndent sets in G, contradicting Ge W3. Hence, xe N; and ye N, implies
x ~y. Since deg(a) 2 3 and deg(b) 2 3, then there exist points u) and v in N} and points
u; and vz in Ny, Since x ~ y for all xe Ny, for all ye Ny, it follows that uy ~ ug, uy ~ v,

uz ~ v) and vy ~ v2. Thus, G is not planar. 0

Corollary 12. If G is a planar W, graph of girth 4 with § = 2, then the points of degree
two occur as adjacent pairs.

Proof. Suppose v is a point of degree two in G. Since G has girth 4, by Theorem
11 it follows that v has a neighbor of degree two. By Theor=m 4, the point v cannot have
two neighbors of degree two. Thus, v has exactly one neighbor witl. degree two. Hence,

the poirts of degree two occur as adjacent pairs in G. []
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‘We note that it is possible for a W; graph of girth 4 to have a point of degree two
whose neighbors have degree greater than two. The graph in Figure 4 is one such
example. Moreover, using the graph in Figufe 4 as a starting graph, an infinite family of
W graphs of girth 4 can be recursively cb'nstructcd_via Construction 1. Each graph in this

family has a point of degree two whose neighbors have degree greater than two.

Figure 4

We return to consideration of planar W graphs of girth 4 with points of degree

two. Since we know degree two points occur in pairs, we consider the structure around

adjacent points of degree two.

Lemma 13. Suppose G'is a planar W, graph of girth 4 with adjacent degree two points x

and v. Let N(x) = [Au.y) and N(y) = {v,x}. Then deg(u) = deg(v) - 3. Moreover, u and

v have two common neighbors.

Proof. By Theorem 7, graph G is 2-connected. By Theorem 3, the points x and y
are ona S-cycle C. Then C = xyvwu. By Theorem 4, deg(u) 2 3 and deg(v) 2 3. Thus,
deg(w) > 2 by Theorem 11. Let N'(w) = N(w)-{u,v).

Let Uy = N(u)-x. Suppose there exists some pe Uy such that p is not adjacent to v.
Then {p.v} and {x} don't extend to disjoint maximum independent sets in G, contradicting
Ge W,. Thus, pe U, implies p~v.

Assume that deg(u) > 3.




" Suppose Uy has at least two points outside C and no points inside C. Let ae U,
such that no point of U, is in the intericr of cycle uwva, and let be U, such that a is the
only member of Uy in the interior of cycle uwvb. Since G has girth 4, then {a,b,w} is

independent (see Figure 5).

Figure 5

Suppose ze N'(w) implies z~a. Then {a} and {w) don't extend to disjoint
maximum independent sets in G, contradicting Ge Wa. Thus, there exists some ze N'(w)
such that z is not adjacent to a. Consider the graph G;. By Theorem 5, giaph G,e W,.

LetA; = (c ~a: cisinside the cycle uwva) and A = {d ~ a: d is inside cycle
uavb). If A; =, then wis a cupoint for G, contradicting the 2-connectedness of G.
Thus A = . If there exists ce A; such that ¢ is not adjacent to z, then a is a cutpoint for
G,. Since G, is 2-connected by Theorem 7, we obtain a contradiction. Thus, ce A;
implies ¢~ z. Now, if Ay =G, then {b,z} and {a) don't extend to disjoint maximum
independent sets in G. So Az# .

Let B = {f ~ b: fisinside cycle uavb}. Suppose there exists some de A, such that
de B. Then ais a cutpoint in the graph Gy, a contradictior: by Theorem 7. Thus, de A,
implies de B; that is, A is contained in B. But then {b,z) and {a} don't extend to

disjoint maximum independent sets in G.
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Hence, it is not possible that Uy has at least two points outside C and no boints
inside C. By symmetry, we cannot have at least two points of U, inside C and no points
of U, outside C.

_' If Uy has at least one point inside C, then rename w as the innermost pbint of Uy
inﬁdé G that is, choose w so that no point of Uy is inside the 5-cycle xyvwu. Now we
~can ptocecd as above to obtain a contradiction.
. Hence, deg(u) = 3. By symmetry, deg(v) = 3. Let N(u) = {x,w,t}. From above,
pe U,‘ lmphcs p ~ v. Thus, N(v) = {y,w,t}. C 0]

' Hence, if x is a point of dcgree two in a plenar W, graph of girth 4, then x must
have one neighbor, say y, with degree two and one neighbor, say u, with degree three. In

addition, if v is the second neighbor of y, then deg(v) = 3 and u and v have two common

neighbors.

We show in the next theorem that a planar W graphbf girth 4 with points of

degree two must be in the family constructed in Theorem 8.

Theorem 14. Suppose G is a planar W graph of girth 4 withd=2. ThenGisa |

member of the family of gn.phs given in Theorem 8. _

Proof. (By induction on the number of 4-cycles.) Suppose G is a planar W graph
of girth 4 with § =2. Suppose G has exactly one 4-cycle. Then by Theorem 10, it follows
that G = G3 given in Theorem 8. Assume the inductive hypothesis: if G is a planar W,
graph of girth 4 with 8 = 2 and the number of 4-cycles in G is exactly k-1 (k 2 2), then G
is a member of the family of gfaphs given in Theorem 8.

Suppose G is a planar W3 graph of girth 4 with 8 =2 and the number of 4-cycles in
G is exactly k (k = 2). By Corollary 12, graph G has adjacent degree two points, say x
and y. Let N(x) = {u,y} and N(y) = {v,x}. Itfollows from Lemma 13 that deg(u) =

deg(v) = 3 and u and v have two common neighbors. So let N(u) = {x,w,a} and N(v) =




i4

{v.w,a}. Without loss of generality, assume a is exterior to cycle xyvwu (see Figure 6).

By Corollary 12, deg(w) > 2 and deg(a) > 2.

Figure 6

If there exists some pbint s, s& {(u,v}, such that s ~ w and s ~ a, then {s,x} and
{v} don't extend to disjoint maximum independent sets in G, contradicting Ge W3. Thus,
N'(w) " N'(a) = &, where N'(w) = N(w)-{u,v} and N'(a) = N(a)-{u,v}.

Case 1. Suppose deg(w) 2 4.

Case 1.1. Also suppose d=g(a) 24. Since we are assuming deg(w) 2 4 and
deg(a) 2 4, then it follows that there exist distinct points z;, z3, aj, a3 such that z;e N'(w)
and aieN'(a),i=1, 2. -
| Suppose there exist i and j such that a; is not adjacent to zj. Then (a;,z;,y} is
independent and so {a;,z,y} and {u} don't extend to disjoint maximum independent sets in
G, contradicting Ge Wa. Thus a; ~ 2; for all i and éll j- But this contradicts the planarity of
G.

Case 1.2. Thus we must have deg(a) = 3. Consider the graph G,. By Theorem 5,
graph Gy isin W3. In Gy, the points a and u are adjaccnt points of degree two. Since
N'(w) " N'(a) = @, it follows that Gy has exactly bne less 4-cycle than G (uwva is the
only 4-cycle in G containing v). Since the number of 4-cycles in G is exactly k, then the
number of 4-cycles in Gy is exactly k-1. So Gy is a planar W3 graph of girth 4 with § =2

and the number of 4-cycles in Gy is exactly k-1. By the inductive assumption, the graph
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Gy is in the family of graphs given in Theorem 8. Then G can be obtained from Gy via the
construction in Construction 1, with x, y and v playing the roles of a, b and c, respectively

(see Figure 7). Thus, G is a member of the family of graphs given in Theorem 8.

Figure 7

Case 2. Suppose deg(w) = 3. Then in the graph Gy, points w and u are adjacent

points of degree two. As in Case 1.2,‘rhc number of 4-cycles in Gy is exactly k-1 and,
hence, Gy is in the family of graphs given in Theorem 8. Once again, G can be obtained

from Gy via the construction in Construction 1, with x, y and v playing the roles of a, b

and c¢. Thus, G is a member of the family of graphs given in Theorem 8. ]

In order to complete the discussion on planar W, graphs of girth 4, we will show
that a planar W graph of girth 4 must have points of degree two. The theory of Euler
contributions will be used for this. . 1
We need to consider possibble face conﬁguraiions ata pdint of degree three in a !
planar W graph of girth 4. In a 2-connected plaﬁar graph, the faces incident at a point can

intersect in various ways. However, for a planar W, graph of girth 4, the following lemma




shows that adjacent faces which are incident to a point of degree three always have a line as

their intersection. We omit the proof of the lemma.

Lemma 15. Suppose G is planar W, graph of girth 4 with § 2 3. Suppose v is a point of
degree three with N(v) = {_ul,uz,u3}, incident faces Fy, F2 and F3 (where face F; contains
linés vui and vu,, fgce F; contains lines vuj and vﬁg, and face F coniains lines vuj and
vu;) and positive Euler contribution, ¢(v). ThenFi N Fy=vuy, F,n Fg =vujand F3N

Fi = vu;.

In Theorem 16, by considering all possible face configurations at a point v with

deg(v) = 3 and ¢(v) > 0, we conclude that a planar W7 graph of girfh 4 must have points of

degree two.

Theorem 16. IfGisa plan:ir W, graph of girth 4, then § = 2.

Proof. Assume to the contrary that 8 2 3. Let ¢(v) be the Euler contribution of
point vin G. If deg(v) =4, then ¢(v) = -1 + Z(l/x;), where the sum is taken over the four
faces incident to v. Since G has girth 4, the largest possible value for Z(1/x;) is 1, when v
has face configuration (4,4,4,4). Hence, 0(v) <0 whenever deg(v) = 4. If deg(v) =3, |
then &(v) = -3/2 + X(1/x;), where the sum is taken over the five faces incident to v. The
largest possible value for Z(1/x;) here is 5/4. when v has face configuration (4,4,4,4,4).
Hence, 0(v) < 0 whenever deg(v) = 5. In fact, ¢(v) < 0 whenever deg(v) 2 5. Since G
must have a point v with ¢(v) >0 and we are assuming & 2 3, then we must have d=3.

So assume v is a point in G with deg(v) = 3 and ¢(v) > 0. Then ¢(v) =-1/2 +
Z(1/x;), where the sum is taken over the three faces incident to v; ¢(v) >0 implies that
Z(I/xi) > 1/2. Since G has girth 4, the only possible face configurations atv are the

following solutions to the Diophantine inequality Z(1/x;) > 1/2:




——
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1. (4,4,n), forn 24, 2. (45n),for5<n<19;
3. (46n),for6<n<1l; 4, (4,7n),for7<n<9;
5. (5,5,n),for5<n<9; 6. (5,6,n), for6<n<7.

Let N(v) = {uy,uz,u3). LetF,Foand F3 be the faces incident to v (where face F;
contains lir:s vu; and vuy, face F; contains lines vz and vus, and face F3 contains lines
vuz and vuy). It follows from Lemma 15 that F;AFy=vuy, FiAF3=vu; and F,"F3 =
vus. |
Case 1. Suppose v has face configuration (4,4,n), n 24. Let Fy =vujausand F
= vusbus. Since G has girth 4, then a is not adjacent to b. Then {a,b} and {v) don't
extend to disjoint maximum independent sets in G, contradicting Ge Wj. Therefore,
(4,4,n), n 2 4, cannot occur as a face configuraiion for v.

Case 2. Suppose v has face configuration (4,5,n), 5 <n < 19. Let Fy = vujauy,
F, = vusbeus and F3 = vuadf...eu; (e = f when n =5). If ais not adjacen.t to ¢, then {a,c)
and {v) don't extend to disjoint maximum independent sets in G. Soa~c. Similarly,a~
d. Since G is planar, point b is adjacent to none of points d, € or uy, point ¢ is not adjacen;

to e, and d is not adjacent to up. See Figure 8.




Suppose deg(us) # 3. Then there exists w ~ u3 such that we {c.dv]) and {w,b.e]
is independent. Then {w,b,e} and {v} don't extend to disjoint maximufn independent sets
in G, a contradiction. Thus, deg(us) = 3.

Let N = N(c)-{a,b,u3}. AssumeteN implies t~uz. Then {d,u;} and {c} don't
extend to disjoint maximum independent sets in G. Thus, tnere exists some te N such that
t is not adjacent to u;. But then {t,uy,f} is independent and so {t,us,f} and {u3} don't
extend to disjoint maximum independent sets in G. |

| Thus, v cannot have face configuration (4,5,n), 5sn<19.:

Case 3. Suppose v has face configuration (4,6,n), for 6 <n < 11. Let Fi=
vujauy, Fp = vusbweus and F3 = vuzd...eu;. Asin Case 2, we have a~cand a ~d
Thus, since G is planar, e is adjacent to neither b nor ¢. Since G has girth 4, then b is not
adjacent to ¢. Hence, {b,c,e} is independent and so {b,c,e} and {v} don't extend to
disjoint maximum independent sets in G, contradicting Ge W,.

Thus, v cannot have face configuration (4,6,n), 6<n<11.

Case 4. Suppose v has face conﬁguranon (4,7,n), 7S £9. Let Fy = vujauy, Fy

= vusbxycus and F3 = vuzdz...eu;. Asin Case 2, we havea~cand a~d. Alsoasin

~ Case 2, deg(us) = 3. If bis not adjacent to c, then {b,c,e} is independent (since Gis

planar). Thus, {b,c,e} and {v} don't extend to disjoint maximum independent sets in G, a
contradiction. Sob ~c. It follows that y is not adjacent to uz. But thén ly,uz,z} is
independent and so {y,uz,z} and {u3} don't extend to disjoint maximum independent sets
in G.

Thus, v canno. have face configuration (4,7,n), 7<n <9.

Case 5. Suppose v has face configuration (5,5,n), 5<n £9. Let F; = vujabuy,
F3 = vusecdus and F3 = vuzex...fu; (x = f whenn = 5).

Case 5.1. Suppose a is not adjacent to c. If neither a nor ¢ is adjacent to e, then
{a,c,e} and {v} don't extend to disjoint maximum independent sets in G. Thus, either a ~

corc~¢e.




\
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Figure 9

If b is not adjacent to d, then {b,d.f} and {v} don't extend to disjoint maximum

independent sets in G. Thus, b~d. Asin Case 2, deg(us) = 3. Now we can apply the

argument given in Case 2 to obtain a contradiction.
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Case 5.1.2. So c ~e. If bis not adjacent to f, then {b,f,d} and {v} don't extend

to disjoint maximum independent sets in G. Sob ~f. See Figure 10.

Figure 10
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As in Case 2, with uj playing the role of u3, we have deg(u;) =3. Now v/e can
apply the argument given in Case 2, with N = N(c)-{d,e,u3), to show that this
~ configuration cannot occur.

Case 52 Hence, a ~ c. If f is not adjacent to d, then (f,d,b} and {v] don't extend

to disjoint maximum independent sets in G. So assume f ~d. See Figure 11.

Figure 11

As in Case 2, with u; playing the role of u3, we have deg(u;) = 3, Now we can
apply the argument given in Case 2 to obtain a contradiction.

Thus, v cannot have face cbnﬁ guration (5,5,n), 5€n<9,

Case 6. Suppose v has face configuration (5,6,n), n = 6 or 7. Let F; = vujabu,,
F1 = vuscxdus and F3 = vusewyfu; (w = y when n = 6). Since G has girth 4, then c is not
adjacent to d.

Case 6.1. Suppose a~c. If fis not adjacent to d, then {b,d,f} is independent and
so {b,d,f} Lnd (v} don't extend to disjoint maximum independent sets in G. So assume f

~d. See Figure 12.




Figure 12

As in Case 2, with u) playing thc role of u3, we have deg(u;) =3. Now we can

apply the argument given in Case 2 to obtain a contradiction.

Case 6.2. Sc ais not adjacent to c. If a is not adjacent to d, then {a,c,d) and {v)

don't extend to disjoint maximum independent sets in G, a contradiction. So assume a ~ d.

Case 6.2.1. Suppose n = 6. Since G has girth 4, then f is not adjacent to e. Then
{b,f,e} is independent and so {b,f,e} and {v} don't extend to disjoint maximum
independeﬁt sets in G. So n = 6 cannot occur.

Case 6.2.2. Suppose n =7. If fis not adjacent to d, then {c,d,f} and {v} don't
extend to disjoint maximum independent sets in G. So assume f ~d. If f is not adjacent to

¢, then {f,b,e} and {v} don't extend to disjoint maximum independent setsin G. So

assume f~ e. See Figure 13.

Figure 13

s




As in Case 2, with u; playing the role of u3, we have deg(u;) = 3. Then {b,y,u3)}

is independent and so {b,y,u;} and {w;} don't cxtend to disjoint maximum independent

sets in G. Thus, n = 7 cannot occur.

Hence, v cannot have face configuration (5,6,n), for n = 6 or 7. Thus, deg(v) = 3

with &(v) > 0 leads to a contradiction in all possible cases. Therefore, d < 2. Since Ge W,

and G # K, then by Theorem 1 it follows that 8 2 2.' We conclude that § = 2. (]

Hence, we are able to completely characterize the planar W; graphs of girth 4. In

particular, the next corollary shows that the family of graphs in Theorem 8 is identical to

the family of planar W graphs of girth 4. -

Corollary 17. If G is a planar W, graph of girth 4, then G is a member of the family of

graphs given in Thcofem 8.
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Proof. This follows immediately from Theorem 16 and Theorem 4. 0
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