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SUMMARY

A theory of sound radiation from an infinite cylindrical shell which is stiffened periodically by ribs
is given. Both shell and ribs are laminated composites. The shell is modelled by the differential
equations of a thin shell theory. The flexible ribs, which exert both forces and moments on the
shell's surface, are modelled by thin conical shell finite elements; degrees of freedom other than those
at the shell's surface are removed by receptance methods. Excitations are time-harmonic mechanical
forces at arbitrary points on the shell's surface and ribs, and acoustic monopoles in the exterior and
interior fluids.
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SOUND RADIATION FROM INFINITE LAMINATED COMPOSITE SHELL WITH PERIODIC

RIB STIFFENING

1. INTRODUCTION

An increasing use of laminated fibre reinforced materials as components in marine vehicles, see, for
example, Smith [11, means that well-established theoretical models based on isotropic materials must
be re-worked to a certain extent to include anisotropy. The particular problem studied here is the
sound radiation from a laminated composite cylindrical shell which is stiffened periodically by
identical ribs with flexible cross-sections. The aim is to extend previous theoretical formulations to
cover laminated composite materials, flexible ribs of arbitrary cross-section, interior and exterior
acoustic excitation, and mechanical excitation on a rib.

Sound radiation from stiffened isotropic thin shells has been studied theoretically by several authors.
Conersion of subsonic non-radiating wavenumbers, at the ribs, to supersonic radiating wavenumbers
is recognised as an important source of sound radiation with quasi-resonance characteristics. In
Bernblit [21 the rib is modelled as a simple circular beam which interacts with the shell through radial
forces only; excitations are radial forces on the shell's surface. In James [3] a matrix formulation is
given which allows the rib (and excitations) to exert axial, tangential and radial forces together with
a meridional moment on the shell's surface; the rib is modelled as a circular beam whose centroid
may be offset from the shell's surface; subsequent unpublished work modelled a flexible rib by the
finite element method. In Burroughs [41 a doubly periodic arrangement of ribs is considered; the
ribs, which are assumed to interact with the shell through radial forces only, are modelled as beams
with coupled rad'al and tangential motion; excitations are radial forces on the shell's surface. In
Burroughs and Hallender [5] the previous work has been extended to cover several different types of
mechanical excitation on the shell's surface. In Hodges et al. [6] free wave propagation on an
unloaded cylinder is examined; in order to give the ribs some measure of flexibility, the web of their
"T-rib" is modelled with cubic variation for its axial displacement; this model has been substantially
updated by Brazier-Smith and Scott, unpublished work 1988, Topexpress Ltd, to include far field
sound radiation and certain hydroacoustic noise sources as excitation. References to other relevant
work, 'irticularly on wave propagation in and sound radiation by stiffened plates, are contained in
the articles cited.

The geometry is shown in Figure 1. A thin cylindrical shell is stiffened by periodically spaced
identical axisymmetric ribs. The cross-section of a rib, shown as a "T-rib" in the diagram, is
composed of thin elements. Excitations are time-harmonic mechanical forces on the shell's surface
and ribs, and time-harmonic acoustic monopoles in the exterior, and interior acoustic fluids. The
effect of sound scattering by the finite sized ribs is neglected, ie for the purposes of calculating the
acoustic pressure inside the shell the ribs are regarded as line attachments. Both shell and ribs are
laminated composites comprising fibre reinforced thin layers with arbitrary staiking angles. In
Figure 2(a) is shown the through thickness lamination, as a planar stack of layers; in Figure 2(b) is
shown the stacking angle of a typical composite layer, the directions (0,z) on the shell's surface being
shown in parentheses.

The work described herein was done under item AS02EH14 of the Strategic Research Programme.
It contributes to the first milestone.



2. MATHEMATICS OF PROBLEM

2.1. Fourier Transforms

Field quantities are represented by Fourier integral transforms in the axial direction and Fourier series
transforms in the circumferential direction; for example, the function P(r,4,,z) is expressed as

P(rz) - (1/2x) e- f 1(r~n,)ed, (2.1.1)

where the spectral quantity is given by the inverse transform

P(rn,) = (1"2n)f 21e -f(roz)e. (2.1.2)

Fourier transforms facilitate solution of linear differential equations by replacing them with linear
algebraic equations. In these and subsequent equations the time variation e-' is suppressed.
Hereafter, bars on spectral quantities will be omitted to simplify notation; the arguments of a function
are sufficient to identify it as a Fourier series or Fourier integral transform.

2.2. Spectral Response of Shell

Let u denote a 4 x 1 column vector of axial, tangential and
radial displacements and meridional rotation of the shell's midsurface. From now on, references to
a displacement vector implicitly includes the meridional rotation, and references to an excitation
vector implicitly includes the meridional moment. The spectral displacements, using general thin shell
and rib equations of motion, have been obtained by James [3] as the 4 x 4 matrix equation

u(n,a) - D(n,ct)E(n,a)-(1/d)D(n,a)B(n) x

{ (Il[ E lon,a +2nq/d)B(n)l i D(n,a +2-iq/d)E(n,a +2nqId) (2.2.1)

where uQe) * (u,(n,a),u,(n,c),ua(n,c)t,(n,a)}' is the 4 x I column vector of spectral displacements
of the shell's midsurface; D(n,cc) is a 4 x 4 spectral receptance matrix whose elements, given in
Annex A, depend only on the shell and fluid parameters; E(n,a) is a 4 x 1 spectral excitation matrix
whose elements are obtained from the external excitation matrix

E(O,z)={E,(•),E(,z),E,(Oz).E,( M,(.,z)}I in which E,(0z), E,&(,z) and E,5(,z) are axial, tangential
and radial external stresses and M.(0,z) is the meriodional moment excitation per unit area; d is the
distance between ribs; B(n) is a 4 x 4 spectral stiffness matrix of a rib whose elements when it is
modelled as a beam are given in reference [3] and whose elements when it is modelled by thin
axisymmetric conical shell finite elements are derived according to principles described in Annex B;
I is a 4 x 4 identity matrix. Inspection of the above equation shows that the spectral displacement
matrix is composed of two terms: the first term, of axial wavenumber cr is the spectral displacement
of the shell in the absence of ribs; the second term comprises discrete axial wavenumbers a +21tq/d
due to various interactions between the periodically spaced ribs, via the shell and its interior and
exterior fluids.
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2.3. Far Field Sound Radiation

"The sound radiation in the exterior fluid, due to a prescribed spectral radial displacement u,(n,a) of
the shell's surface,

P(or 2 e ,if.[u,(na)Hl,.(yr)/y.H(j(ya)]ercda, (2.3.1)Ar,•0,z) 2n 2-$-._-In

and its stationary phase value in the acoustic far field, R--,

-ip~ 2 exp(ik R) (232p1 (M,O,M) E - [(_O.)lIu,(n,k.cosO)/H.,,(k~acosO)]eI, (2.3.2)
xkJRsinO

are results that are a standard to acoustics (see, for example, references 17] and [8J). In these

equations p, is the density of the exterior fluid; y,-+ 2_a2) ; k,-c/c, is the acoustic wavenumber

in the exterior fluid where c, is sound speed; H. is the Hankel function J8 +iY. and the prime on the

Hankel function denotes differentiation with respect to its argument; (R,,O,) are spherical coordinates
related to cylindrical coordinates by z=Rcos(O), r=Rsin(O); u,(nfkoCOS0) is the third element of the

spectral displacement vector of eqaation (2.2.1) evaluated at wavenumber a =kcosO. Provided that
there is some dissipation, however small, in the shell and ribs, the method of stationary phase is valid
formally for all values of 0 and *.

2.4. Mechanical Excitation on Shell Surface

The basic external excitation !tress on the shell's surface is the point force and meridional point

moment excitation vector, Fw{FFF,,M,)', located at coordinates (a0,•oz). In this case

E(g,,z) - F8(z-zo)8(0 -00)/a, (2.4.1)

and the ,.pectral excitation is obtained from equation (2.1.2) as

E(n,ct) - Fexp(-inO,-iaz,)/2ita. (2.4.2)

2.5. Mechanical Excitation on Rib

A rib is modelled by conical shell finite elements, as shown in Figure 3, the theory being given in
Annex B. If there are N nodes on a rib cross-section there are 4 N degrees of freedom, which could
considerably increase the size of the matrices of equation (2.2.1) unless unwanted degrees of freedom
are first eliminated. It is assumed that the rib is connected to the shell, along a circumference, a.
node p, say, where there are four displacements and four excitations which match the shell
displacements and excitations. If a mechanical point force F is applied at node q on a flexible rib,
then Annex B shows how the method of receptance coupling enables it to be replaced by an equivalent
shell excitation at the point p where the rib connects to the shell. This shell excitation is

3



E(n,a) Rw(n)'Rtm(n)Fexp(-ino,-iaz. )/2na, (2.5.1)

where Rf,(n) and R,(n) are 4 x 4 rib receptance matrices. The columns of RM,(n) are the four
Fourier series harmonic displacements of the rib at p due to unit harmonic excitation at each in turn
of the four excitation degrees of freedom at q. When the points p and q are coincident it is evident
that equation (2.5.1) reduces to equation (2.4.2). Thus, provided the excitation is applied at a single
node on a flexible rib, the method of receptance coupling allows reduction of the number of rib
coupling degrees of freedom from 4 N to four.

2.6. Acoustical Excitation

A point source located in the interior fGuid at coordinates (r,,.,,) has free field pressure

p,(rQ, z) - p.exp(ikR. )/R. (2.6.1)

where 2 - (z-z.) +r2+r-2rr.cos(*-.0); k,-w~lc, is the wavenumber and c, is sound speed.
Elements of the excitation vector E(na) are zero except for 171

E3-ýIj.(r)Y4jjya p-n.iz) (2.6.2)

where y,-+ (k1-,U2). The far field sound radiation due to the shell response is given by equation
k2.3.2).

When the source is located in the exterior fluid at coordinates (r,,4.,z,) the elements of the excitation
vector E(n,a) are again zero except for [7].

E3.- 2pa1Hgir.)IyaH4 (ya)] exp (-in* .- iaz.). (2.6.3)

The far field sound radiation due to the shell's response is also given by equation (2.3.2), which must
now be augmented by the far field pressure of the source

Po (R,6,•) . (p,/cxp [ ik ,(R-z,~sG-r sin~cos( ¢-•, ))1 , (2.6.4)

and the far field pressure of its rigid boundary reflection [7]

P,1 Rf~ - (paR) exp[ ik.(R-z~cosO.)] x

4(-e1,,I (2.6.5)
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i. NUMEPJCAL EXAMPLES

3.1. General

A Fortran program has been written to calculate the far field sound radiation from a ribbed laminated
shell for both acoustical and mechanical time-harmonic excitation. In order to provide a test of th.,
capability of this program an air, p,-1.21, c,-343, filled cylinder, radius a - 0.10, thickness

h - 0.002, excited by a unit rms mechanical point force and radiating into water, p,-1000. c,-1500,
has been considered. The cylinder material is either isotropic steel,
E a 195, G - 75.6, v-0.29, p-7700, or carbon fibre reinforced plastic (CFRP),
E,0 -202, Ea-7.4, G*,-2.74, v.0O.320, p-1520 when reinforced in the circumf.-rential direction

and an interchange of 0 and z is required when reinforced in the axial direction. The "T-rib"
dimensions are web thickness 0.002, web length 0.09, flange length 0.08 and flange thickness 0.002;
the rib spacing is d - 0.04 and the rib material is either steel or circumferentially reinforced CFRP.
All material constants are in SI units with Young's and shear moduli in GN/m 2. Dissipation in the
cylinder and ribs is allowed for by setting Young's and shear moduli to complex values, viz
EnE(I -iv,) and G-G(I -i•1 ), etc where the hysteretic loss factor % and n. are all chosen as 0.02
for the numerical examples.

The angular variation of the far field sound radiation exhibits a complicated variation with the angles 0
and 0 due to the dispersive nature of wa',ve propagation in ribbed cylinders. A feature of this
dispersion is that frequency locations of peaks in the radiated sound spectra move as the angle of
observation changes. In order to smooth out this complicated spatial variation the acoustic power is
plotted in Figures 4-5. The far field pressure is always of the form

p1 (R,0,) - exp (ik°R)IR i A(n,O) exp (in),

and it is not difficult to show that the acoustic power is

P1 - (2lnIpgc.:, 2 i4(n^ 12}sinO dO, (3.1.2)

where a customary multiplying factor of 1/2 has been omitted as it is convenient to think of the
excitation as rms. This equation is integrated numerically by an extended Simpson's rule. The power
level, in dB reference I picowatt, is defined as 101oglo(P 1)+120.0. For computations of acoustic
power a maximum of 10 circumferential harmonics (n), 12 axial harmonics (q) and 361 theta

increments were used. Symmetry in the ranges 0=(0,90) and 0=(90,180) degrees was used to
reduce computational times.

3.2. Isotropic Cylinder

In Figure 4(a) is shown sound power levels of an unribbed steel cylinder. When the excitation is a
radial force the spectrum is generally smooth and it can be demonstrated that it is substantially
independent of the shell parameters. When the excitation is an axial force, power levels are initially
much greater than those of the radial force, and thereafter the levels are within 4 dB of each other.
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A detailed physical interpretation of features in the plots is not given here, but it is worthwhile
recording that certainl aspects can be explained qualitatively from wavenumber versus frequency plots,
as in James 191. For example, such plots would show that while there are no dominant acoustically
fast radial modes, there are acoustically fast axial modes cutting on at 0, 5, 10 and 15 kHz for the
n 0 0, 1, 2 and 3 harmonics, respectively. Thus, most of the power of the radial for:e co;.ies
froma near field cylinder distortion, while most of the power of the axial force from comes from
supersonic quasi-axial waves which radiate acoustic energy in very sharp beams centred on
coincidence angles which vary with harmonic number, n.

In Figures 4(b) and 4(c) are shown sound power levels of the ribbed shell when the excitations are
on the shell's surface, at a rib attachment point, and on one of the ribs, at its flange centre (node 4
in Fig-are 3), respectively. When the excitation is a radial force, there is no noticeable difference
between the plots, as the frequency is too low for web longitudinal resonances or flange bending
resonances to occur. The broad hump at 10 kHz is more than 10 dB above the corresponding level
of the unribbed shell. It is due mainly to a near field effect caused by increased circumferential
stiffness of the ribbed shell, together with conversion of subsonic wavenumbers at the ribs into
supersonic radiating wavenumbers, the latter effect being more noticeable in sound pressure versus
frequency plots for selected 0 and 0 angles. When the excitation is an axial force there is a large
increase in power level when the excitation is applied to a rib web rather than to the shell's surface,
most certainly due to resonant bending of the web crcrs-section.

3.3. Fibre Reinforced Cylinder

In Figure 5(a) is shown sound power levels when the shell is composed of axially reinforced CFRP.
When the excitation is a radial force it can be demonstrated that the power levels are generally only
a few dB above those that would occur in the absence of the shell. Whert the excitation is an axial
force power levels are on average about 10 dB less, except at frequencies below 5 kHz.

In Figures 5(b) and 5(c) are shown sound power levels of the ribbed shell, the shell being composed
of axially reinforced CFRP and the ribs of circumferentially reinforced CFRP; excitations are on the
slhed's surface, at a rib attachment point, and on one of the ribs, at its flange centre (node 4 in
Figure 3), respectively. When the excitation is a radial force, there is no noticeable difference
between the plots, except in the range 15-20 kHz where levels are higher when the excitation is on
the rib; due presumably to the onset of a web longitudinal resonance. The broad hump at 10 kHz is
less dominant than in Figure 4. When the excitation is ai. axial force there is a large increase in
power when the excitation is applied to a rib web rather than to the shell's surface, most certainly due
to resonant bending of the web cross-section.

Comparing power levels in Figurms 4 and 5 shows that when the excitation is a radial force, levels
of the CFRP shell are generally just above those of the steel shell; for axial force excitation, levels
of the CFRP are generally considerably less.

3.4. Comparison with an Exact Theory

It is generally agreed that higher order shear deformation theories are necessary for accurate static
and dynamic response calculations of laminated composites, which are usually very compliant in
transverse shear. Classical plate and shell theory (as used herein) are thought to be inadequate for
all but the thinnest of composites; thus, the numerical results shown need to be validated by
comparing them with those of a higher order theory. Fortunately, a Fortran program [7] is availabie
for predicting acoustic radiation from cylindrically laminated composites for the case in which the
layers are modelled by exact equations of linear anisotropic elasticity.
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For the isotropic steel cylinder, exact theory give,; numerical values of power which are almost
indistinguishable from those shown in Figure 4(a). For the axially reinforced CFRP cylinder,
differences between power levels of exact theory and those shown in Figure 5(a) are hardly
noticeable. The plats of power obtained from exact theory are not reproduced here. As the thickness
of the cylinder is increased, without other constants changing, the differences between exact power
levels and those of shell theory will become increasingly apparent, but an awsesoment of the range of
applicability of classical shell theory applied to laminated composites is outside the scope of this
theoretical paper. However, provided the composite is sufficiently thin, it is surmised that classical
shell theory, used with caution, is adequate for phenomenological numerical studies.

The receptance matrix S(n,a) of the shell and the stiffness ,natrix B(n) of the rib can also be obtained
from the exact theory described in references [7] and [13], respectively. The analysis procedure
would not be difficult, but computer times would be an order of magnitude greater.

4. CONCLUDING REMARKS

Previous work on sound radiation from an infinite shell with periodic stiffening has been extended
to include fibre reinforced materials, flexible ribs of arbitrary thin-walled cross-section, mechanical
excitation on a rib and acoustic excitation by interior and exterior monopoles. The flexible rib which
is modelled by conical shell finite elements, usually has a large number of degrees of freedom; the
method f receptance coupling has shown how unwanted degrees of freedom can be eliminated.
Numerical results have demonstrated that the presence of flexible ribs or anisotropy can substantially
change the acoustic power spectrum characteristics. Lengthy parametric studies which include
different fibre and matrix materials, stacking angles anri stacking sequences will be required to
establish physical principles of practical importance. The computer programs developed as part of
this study are useful tools for such parametric studies.

For numerical investigations in which the shell contains a tinite number of ribs of arbitrary spacing
and differing cross-sections, the method of dynarnc stiffness coupling as tsed by Jaines [10] to solve
a scattering problem is relevant. For analytical investigations of the physics of sound radiation and
scattering the methods of Skelton [11] are appropriate for simple constraints. For finite axisymmetric
shells, with internal axisymmetric structure, models based on analytical methods such as in Laulagnet
and Guyader [12] or coupled finite. element and Haimholtz integral equation formulations as in
James [131 enable computations of low frequency sound radiation.

7
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Annex A

SPECTRAL DYNAMIC RECEPTANCE OF SHELL

Al. Differential Equations

The shell equations of motion are expressed in operator foim as

L,. L12 L13 UP"#~) E04,z 0

L2 ZL22 L23 u (#,z) - ,(z - 0 (A. 1. 1)

where E,, E, and E, are the excitation stresses applied to the midsurface of the shell; they are
positive when acting in the positive direction of the coordinate axes. The quantities p, and p5 are
the pressures due to external and internal fluids, respectively. The operators L0 depend on the
particular shell theory used. Here the laminated composite shallow shell equations of Leissa and Qatu
[14], in which effects due to transverse shear and rotary inertia are neglected, are adopted. The
operators, in cylindrical coordinates rather than in the general coordinates used by these authors, are

Lit -[ A,02/a2,. 23 + Iz2Ao'.a& + A 2 I...z/ ] + p. V180

L12 .-4 16a'I,, + (A,,+A,,)laBaa& + A.260,Z 2I.

L1, .- [B1,,'/a,'a* + 3B2BsPa.' 'a,. + (B12+2B66,3,a 2a*&az + p20/aZ3]

- [A,,Baoz + ,,,41,,aa].

L, .-f,, 18/a 2a9 ÷ 2A,,aaq, * + 2A,,CP/a . P,0&, 2 .

L,, .+[JB#,12 a3 a' + 3B, 6,/a 2a,,•& + (B,+2Bg,,/,aa0 aZ2 + B2B/,•z ÷]

-. Fy3N414a0 + A4&
L33 .+[D118'a4a#' + 4Dj 18'la~iza0P + 2(Dj,+2D.6)e/a2&az28s + 4D2 e8~aa4a&z + D,8'Iiazi]

+ Ada2- '2.B11Ya2'a'a. + 4Bj 6ZBa 2CjZa# + 28,1O2Ia40-t] + p~ .3W&2,

-,- L2 L3 - -L 3  Ln ,- -L-,
(A.1.2)

A-1



where p, is the mean density of the shell and h is its thickness. When the shell consists of a single
isotropic layer it can be shown that these operators reduce to those of the baseline cylindrical shell
theory of Donnell and Mushtari [8].

A2. Stiffness Values

The stiffness values AV, B. and D, are the same as those derived from laminated composite plate
theory. The laminated plate comprises M thin layers, see Figure 2, of fibre reinforced orthotropic

material. For the equivalent lamination on the shell's surface identify the global X and y axis with
the cylindrical 0 and z axes, respectively. In the local x-y plane a typical layer has *engineering0

elastic constants: E. and E., the Young's moduli; G, the shear modulus; v. and v). the Poisson's
ratios which Pre related by the symmetry relation E£=v=,E£,/v,,. For unidirection fibre
rciaforcement in an isotropic matrix material simple mixture theories such as the one proposed by
Chamis [15] enable these cor-stants to be found from the elastic constants of the component materials.
In the global x-y axes set the orthotropic constants of a layer are obtained from the plane stress
matrix relation

- , (A.2.1)

If the layer is stacked at an angle k, the elements of this constitutive matrix are obtained from
standard transformations, see, for example, Jones [16],

Q11 Q11coO'C + 2(Qj 2+2Qw)sin1CcoC + Q2sin&C,

;U1 (Q11+Q22_4QS6)S&CO2~Co + Qj2(Sin(+CoS4t),

Q1 (Q11-Q12-2Q66)sintcos'E. + (Q2Q22"sEoE
(A.2.2)

Q22 Q11si 4C + 2(Qt2+2Q66)cin 2[coO + Q=coa4
%,

Q 6 - (Q1 1-Qj-2Q6)sin'Ccost + (Q2-Q=+2Q)in cofik

Q"- (Q1Q221-Q)O cO + Q66(siet~cos't),

where

(1j-E.1(1-v,,,v.). Q22-E, (1-vv,,v,), Q1uEv,,/(1 -vv,,), Q6-Gv.

are the only non-zero elements of the constitutive matrix in local coordinates.
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The stiffness and density constants required in equation (A. 1.2) are obtained by summing the layer
constants as follows

2M.

(A.2.3)

D,.•z•_.., ;_1(.,.)9 P..(lfh)x EP-(,.(t-t._,).
3 n.1 -

where ta.-z -z with z. and t._t being the z coordinates of the upper and lower surfaces of the

(m)th layer; z. is the z coordinate of the laminate's midsurface; p is the layer density; h is the total
thickness of the laminate. The stiffness AM values are related to in-plane stretching of the shell's
midsurface; the D. values to bending of the surface; the BE values to coupling between bending and
stretching. When the shell is laminated symmetrically with respect to its midsurface, the BE values
are zero.

A3. Spectral Dynamic Stiffness

Replace the field quantities in equation (A. 1.1) by their Fourier transforms, defined by equation
(2.1.1), to give the spectral dynamic 3tiffness matrix relation

S 1,(n,a) Su(na) S33(na) u,(na,) E,(na)

where

S,, + [An 2 a2 + 2A.cg,/a + AUaCI- _.h- ).

S12 ' 1. 1 [n 2 /42 + (A,+ )zrnI4 + ml

S13 -i [Bt,,'/a' + 3B,&a2n/a + (B,2. 2EBnIa/a' + B2.2' + A1 ,2aa + Ainjal(A.3 .2)

S + • ,,,n1al +. 2A,,nc/a + Aa] - phW.

S 2 . -_ [B,,,,la,' + 3s,,,,s 2 + (Bs2 + 2B,)a',na -B2 s= * A,,Ar'a 2 + A,,,/a]
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S33 =+ [D11n41a' + 4D16n'caIa3 + 2(DL2 + 2Dd)n2cg2Ia2 + 4D2,na3/a

+ D=a + 2B,,n 2/a3 + 4BD6nc/a 2 + 2Bz,•2 /a + Aju,2] - W 2

+ )2-.(ya)/y H'y a) - pca2J (yp)/yJ/(yp),

S21iS,- S31 ',-S S3, -- s23

The last two terms of S, are the fluid loading spectral coefficients of the exterior and interior fluids,
respectively, see, for example, reference [7].

The solution of equation (A.3.1) is the spectral receptance matrix relating spectral forces and
displacements, viz.

u,(n,a)[ Dl,(n,,) D,2(n,(z) Ddzn,a) E,Cn~a)]

u,,(n, = D21(n,a) D22(na) D23(n.,) E,(n,a) (A.3.3)

u,(ns,) D31(n,a) D3,(n,,) D33(n,=,' E,(n•a)

As a rib is assumed to exert a meridional moment on the shell, in addition to the three orthogonal
stresses, it is necessary to expand equation (A.3.3) to include moment excitati,•n per unit area,
M,(Oz), via its spectral quantity, M,(n,a). The moment excitation is equivalent to a radial stress
excitation -aM,(4,z)/&z, whose spectral form is -iaM,(n,c); the corresponding meridional rotation,

has spectral form T(n,a)=iau,(n,a). Thus, noting that the elements DV are
interpreted as the spectral response in direction i due to unit spectral excitation in direction j, it can
be shown that the expanded matrix relatioix is

u,(na) DII(n,a) D12(n,a) Dd3n,=c) D14(n,a) E,(n,a)

O(na) D2a(n,a) D2,(n,a) D2(n,-) D24(n,)I E,(n, a) (A.3.4)

U,(n-a) D(n) D32n,,, D33(,) D34(na) r(na=)

T,(n,a) D 4,(n,a) D42(na) D43(n,a) D,.4(n, ctl M -(lal
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where

D14(n,a) - -ItDd3(n,a), DU(n,a) = -iaD,3(na),

D34(n a) --iaD 33(0ns), D41(na,) - iceD 3 (n,cx), (A.3.5 '

D4(n,a) - iaD32(n,ac), D43(n,a) - •,D33(n,a),

D404 _ &2 D33(fl,0)

Denote the 4 x 4 coefficient matrix ty D(n,ut): this is the shell's spectral dynamic receptance matrix
which is required in equation (2.2. 1).
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Annex B

DYNAMIC STIFFNESS MATRIX OF RIB

BI. Finite Element Modelling of Rib

A rib is modelled as an assemblage of axisymmetric conical shell elements, whose versatility is
illustrated in Figure 3 whichi shows examples of rib cross-section which can be generated from these
elements.

The theory of a conical shell element is based on the strain definitions in the local surface coordinate
system (Os)

eo- #Ira# + (u.cosp + u~sinp)lr,

a,. aC as

• , aIraB + . ,ls - u*inPlr,

(B. 1.1)

x0 - 4ullr*ao + cosa~ulr28a - sinIau, ras,
,aX. - -a'.,as",

v - -2ou, r *aa + 2sinp(&ljr2 •# + 2cosp(&,/ras) - 2sinjcosp(u,!r 2),

where e and ea are midsurface normal strains; y,, is the shear strain; X* and X, are cha:.ges in

curvature; T is twist; u,, u. and a. are displacements normal to the surface, around the
circumference and along the generator, respectively; P is the slope of the conical shell generator.

The 6 x 6 constitutive matrix D,, relating stress and moment resultants to midsurface strain, is
defined by the matrix relation

N, All A1 AN4 B1  B1 B16 #

N,. A,, Am A " B,6 BM B,% (B. 1.2)

M# B11 B12 B16 D11 D12 D16

M, BB1 B22 B26 D12 D22 D26 X,
M #, Bld B U. B " D l, D2, D o

where the stiffness coefficients have been defined in Annex A.
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B2. Mass and Stiffness Matrices of Element

Field quantities are expanded as Fourier series in the circumferential coordinate. Thus, for the
function P(4#,s)

P(O#s) = E P(n,*)e# where P(ns) - (1/2,x) 'P(,Os)e-4dO. (B.2.1)

Because of the orthogonality property of the harmonic functions a finite element analysis can be
carried out for each harmonic P(ns) separately. Thus, the following procedure refers to values in
the nth harmonic, and the requirement to sum the Fourier series, over values of n, to obtain Gte actual
field quantity is implicitly assumed. The theory is given with minimal explanation: details for cos(nO)
variation are contained in the pioneering paper of Percy et al. [17] and numerous texts on the finite
element method; extension of exp(in4) variation as herein is not difficult.

The conical shell displacement uj(n,s) normal to its generator is represented by a cubic in the variable
s which is the distance along the generator from node i. The displacement along the generator
u,(n,s) and the displacement around the circumference u,(ns) are both assumed to vary linearly in
the coordinate s. The rotation of the meridian is Y,(ns)=-u6(ns)la. The equation of motion of
the element is found by standard finite element procedure as

[S.(n) -_)
2M.] u.(n) - e.(), (B.2.2)

where

So(n) = 21( .k)'Y [ fLB.'*(ns)D.B.(ns)rds]A:i,

(B.2.3)

M. = 2(A;')" [f,.pgh.V.(s)rds]A".

The 8 x 8 matrix S(n) is the stiffness matrix of the element in the nth harmonic; the 8 x 8 matrixM.
is the mass matrix which is independent of the harmonic number; the superscripts -1, * and t denote
the operations of inverse, complex conjugate and transpose, respectively; the subscript e indicates that
the quantity to which it is attached refers to a single conical shell element; the matrices A. B,, andV.
are given below; the 6 x 6 matrix D. is the constitutive matrix of equation (B. 1.2); p, is the
element's density and he is its thickness. The integrals are evaluated numerically, by a simple
quadrature scheme, to avoid lengthy algebra.

The matrices u,(n) and E,(n) are 8 x I column vectors of nodal displacements and nodal excitations
in the global coordinate system, viz

u.(n).
and (Bn .0.2.4)

adE*a) .{E:(n).E(n),E:(n))ýn)EE:(n).E;(n),E:J(n),M~(n)}', -
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where the superscripts i and j refer to the left and right nodes on the element. For a force vector,
FP(), per unit length in the circumferential direction at node i , the excitation matrix at this node
can be shown to be E'(n)-2xrtP1(n), where FP(n) is obtained from the Fourier transform equation
(B.2. 1) and rP is the radial coordinate of the node; the excitation matrix EJ(n) at node j is identically
zero if there is no excitation there. Thus, for a point force FPA)-F•($-0o)/rt applied at node i at

0-0o, the 4 x 1 excitation matrix is simply E'(n)-Fexp(-inOo) where the matrix F is defined in
Section 2.4.

The non-zero elements of the 6 x 8 matrix Bo(n) are

B,,- (ll*4m, B,2= (Slr).SnP, B,3= Wnr, B14= Winsr,

B13 CosPIr, B16= (slr)XoSP, B17= (s2/r)cosp, B11= (V31r)coSP.

B22- 1- B31- Wnr, B32- kylr, B,3=- SnPlr. Ba4= 1-(Slr)sinP,

B,-,. (inlrCo.P, B44,,- (ins/r 2)cosP, B4s,- n2/r ,

B4.- (n2S4r 2)-SlnIr, B,,- (nWs 21r2)-(2s)silr, (B.2.5)

B4,- (n2s'lr')-3sinlr, B37- -2 B5 -- 6s,

Burn -(2./r 2*nPcosp, B,,- (2/r)cowO-(2.s/r2SincosD,

BUs- 2insinolr", B,,= -(2in/r)+(~j2AlrnP,

B•.7 -(4insr) +(2ins21r~snP , B6, = -(6ins2/r) +(2ws/r•)inP,

and the non-zero elements of the 8 x 8 matrix A. are

A•,1-cosp, A,,=-shnP, A23-, 1. A31- SnP, A.-=cos P.

A46-1, A,,- cosp, A.2- Uosp, A.s--sinlp, Aw -- Zsino•, (B3.2.6)

A,7- -L2.inP, A.- -LssinP, Ao- 1, A- L, A71 si, -- ,
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A72- Lsinp, A7,- cosP, A,6= LcosP, Akn- L2cosP, A.,- L'cosP3,

Aw- 1, As,= 2L, An= 3L3,

while the non-zero elements of the 8 x 8 matrix Vs, rotary inertia being ignored, are

V43,=, V44=, M= 1, Mm--S, 5= S2, 58= S3,

(B.2.7)

v5=s. v, = ,2. v•,= sV. v%= s, v== s, v., = S3,

v77=', V71.=S3 V 3= , vS = S, V1,= s. V.= s.

B3. Dynamic Stiffness of Rib

Assembly of a number of conical shell elements to form a rib, as shown in Figure 3, for example,
is a straightforward finite element computational procedure which reflects continuity of displacement
and equilibrium of stresses at the nodes. When the rib has Nfinite element nodes the assembly results
in the system matrix equation

Z,(n)U,(n) - E,(n), (B.3.1)

where Z,(n) is a 4N x 4N system dynamic stiffness matrix, U,(n) is a 4N x 1 column containing the
displacements of all nodes and E,(n) is a 4Nx I column vector containing the nodal excitations. The
subscript r refers to a complete rib. Take the inverse of equation (B.3. 1) to give the system dynamic
receptance matrix Z,(n)"l whose ijtb element is interpreted as the response at degree of freedom I due
to unit excitation at degree of freedomJ. The inverse can usually be computed rapidly if the elements
of Z,(n) are stored in a format suitable for a band solver.

If a rib is attached to the shell at nodep (usually 1) and external excitation forces are to be applied
at node q, then delete all rows and columns of Z,(n)"l not associated with the eight degrees of
freedom at nodes p and q. The following partitioned receptance matrix results

u,(n) R,9 (n) R,(n)I E,(n)

where up(n) and uQ(n) are 4 x 1 column vectors of displacements at nodes p and q, respectively;
EQ(n) and E,(n) are column vectors of internal reaction forces and external excitations; RM(n) is a
4 x 4 receptance matrix, whose columns are the 4 x 1 response vector at p due to unit excitation in
turn at each of the four degrees of freedom at q.
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Equation (B.3.2) can be written as the two matrix relations

u,(n) - R,,(n)E,(n) + R,(n)E,(n).
(B.3.3)

u,(n) - R,(n)E,(n) + R,(n)EQ(n)

The first of these equations is re-arranged as

F(,Q) - (1/2xr,)R,(n)-' u,(n) - (2xrýnr) R,,(n)-'R,,(n),(n), (B.3.4)

for line force excitations FP(u) and Fj(o) at nodes p and q, respectively, F,(n) and P,(n) being
the Fourier series transforms according to equation (B.2.1).

In the absence of external excitation on a rib, F,(n)-O, the dynamic stiffness matrix of the rib has

been defined in [3] as FP(n)-B(n)u,(n). Noting that the rib attachment point is rj,-a, this gives

B(n)-(lI2na)R,,(n)-', which matrix is required in the shell's spectral response of equations (2.1.1).

The second term in (B.3.4) is that part of the reaction force at point p which is due to line force
excitation FP,(n) on the same rib. The equivalent excitation on the shell's surface must be equal but
of opposite sign. Thus

E(nz) - (2xr/2na)R,,(n)'R,,(n)F4 (n)a(z-z). (B.3.5)

where the rib attachment point is at r-a, z-zo. The delta function has dimension m-1 in order to
convert forces per unit length in the circumferential direction on the rib into the required forces per
unit area on the shell. Take the Fourier integral transform of (B.3.5) and let the excitation be the
point force vector F4(•)-F8(4-#dlr. whose Fourier series transform is Fq(n)-Fexp(-in O)f2xr.,
to give

E(n,u) - Rff(n)-'R,,(n)Fexp(-in..-iz.)/2xa, (B.3.6)

which is the equivalent shell excitation required in Section 2.5.

The second of equations (B.3.3) can be used to calculate the displacement u,(n) at the excitation point
on a rib, but this is a formidable problem as it requires the displacement of the shell u,(nz-zo) at the
rib attachmett point, which can only be obtained by evaluating a Fourier integral numerically.
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