PR e L .. R . g S RX - o . o
e R x o, tmab o i Ll Kb’ 3 ot i, ik L s it Mt et G RTRA,ompasiet bsieslle

AD-A262 339

RL.-TR-92-178 TR 8 o o
In-House Report ”mn, l” If” Ini !fm :{.!l M I” Im

Septamber 1852

INCREASING SOFTWARE CONFIDENCE -
WHERE WE'RE HEADED IN SOFTWARE
TESTING TECHNCLOGY

Deborah A. Cerino, Roger J. Dziegiel, Jr.

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED.

Reproduced From
Best Available Copy

N el b fon A N By i e i gt s e R aallbans Srn " " p
o Y R R A R TSI R S s s s SRR e - S dci B g T—————vTT——— ere—yrp =
. I B i S s i o i O N R e
’ TN A

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, New York

_ 126 |
98 331 128 90000920020

R (T b ol ol

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations, :

RL-TR-92-178 has been reviewed and is approved for publication.

LA/ , o 1;
APPROVED: | {ML///@{///%%’/ : | «

SAMUEL A, DINITTO, JR., Chief
Software Technology Division

L]
_ FOR THE COMMANDER: MM

JOHN A, GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by

your organization, please notify RL (C3CB) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current maiiing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.,

REPORT DOCUMENTATION PAGE | ovs norosgores

Pubic reportrg bursen for tres cofloctnn of rformaton s estrrated to svaracd 1 hour per response, ckudng the time for reviews g instiuciions, SRACHG eXItNG dX3 SOwrces
Gaherng and martaneg the tdata neeced, and compuNg and revews g U 5 coioction of FonTaion Sent coTIMents regardinrg thes burden estimate o sy ather aspeat of t*
colecton of Nformeton, NCucng MUCEEStoNs for reaucng tis burden, to Wastir fon Hasdgurers Services, Orectorate for Iformation Operations andPepornts 1215 Jetferson
Davis Hghway, Sute 1004, Adtngton VA 22202-4302, and tu the Otfice of Mansgerment ara Budiet, P eperwonk Reduction Project (0704-0188), Washingtan, DG 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
) December 1992 In-House May 90 - Apr 92
4. T.TLE AND SUBTITLE 5. FUNDING NUMBERS
INCREASING SOFTWARE CONFIDENCE - WHERE WE'RE HEADED IN PE - 62702F
SOFTWARE TESTING TECHNOLOGY PR - 5581
6. AUTHOR(S) TA - 18
WU - 47
Deborah A. Cerino, Roger J. Dziegiel, Jr.
7. PERFORMING CRGANIZATION NAME (S) AND ADDRESS(ES) . 8. PERFORMING ORGANIZATION
Rome Laboratory (C3CB) REPORT NUMBER
525 Brooks Rd RL-TR-92-178
Griffiss AFB NY 13441-4505
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Rome Laboratory (C3CB)
525 Brooks Rd
Griifiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Roger J, Dziegiel, Jr./C3CB (315) 330-2054

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximsm 200 words)

In the past decade, many specialized software testing philosophies and testing tech-
niques have evolved. Some of these testing philosophies are time-consuming and
impractical while others are practical but only for small programs, Automating
the testing process is a goal that needs to be attained for testing to be cost-
effective and practical for any size or type of software program. Two testing
techniques have been explored under Rome Laboratory (C3CB) R&D programs. These
programs developed automatec testing tools which support these techniques. One
testing technique 1s mutation analysis and the other technique is decision-to-
decision path analysis., A comparison of these testing techniques via two test
tools was performed. This technical i1eport describes the testing process and the
results of this comparison,

14. SUPJECT TERMS ’ 15 NUMBER OF PAGES
Testing, dynamic analysis, path testing, branch testing, 60
Software Engineering .

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, (S)%%F;Wm CCHASSIFICATION 20. LIMITATION OF ABSTRACT

18 PRICE CODE

OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
SN 7540-01-280-5500 Stancard Form 298 (Rev 2.8

Premcrind by ANSI Std 23919
28102

1.0 INTRODUGCTION .o ieivissiesiisecssarnsesesseessesssisssessssssessssssesssssssossssssasssssasaosansoanss 1
2.0 BACKGROUND....ceoecnveerveesserereersns euseeeeearre et e ees e e beRs st et sa sttt sh s re et as e b s b s 1
3.0 TESTING STRATEGIES ... ecrttrrettceesrcensisesisesesssssssssssessrssssosssssnsessavesess 3
- 3.1 MUTATION TESTING........ Fetessseusestetesteseesseeseessstseaesraentasaesrerbesaarnarssarsarase 3
3.2 DECISION TO DECISION PATH (DD-PATH) TESTING -
BRANCH TESTING......ccoivrenrisnesescssiessssesssasesssessasessesssesasasiesssessasesnossassanss 4

4.0 AUTOMATED TESTING TOOLS....ceeeeeteeirerensneseserssnessssessssssssessassansssarosses 6
Q.1 MOTHRAooveevveriresssssinsssesssnssssssessssossossassssssessasessessnasssssssressesssassasssassasoss 7
4.2 REVPEOiiiiiiiissiesrissessseeseesssessesssssssessessessssssasssssssnsssssssessnsssnsareassnsorassnnsss 10

5.0 THE TEST PROGRAM ..o sseessesesesmssssssessssssessmmsosssssnsssssssmsssssssnsens 11

[.

6.0 C' 2RECT PROGRAM ... 13
6.1 MOTHRA - STATEMENT ANALYSIS MUTANTS...ccoovvevrrrecrersonne 13
6.2 MOTHRA - PREDICATE & DOMAIN MUTANTS......cvrterrrrresssnnrense 13
RT3 T T ——— 20

7.0 DOMAIN ERROR e e 20
7.1 MOTHRA - STATEMENT ANALYSIS MUTANTS ...coveerserrnrnenes 20
7.2 MOTHRA PREDICATE & DOMAIN MUTANTS....ccovvvrerreeererssrnennes 25
7.3 RXVP80 ... 32

8.0 MISSING STATEMENT ERROR ... evieririnreinssssosssssosseseessesssssessssssseseenssnses 3 &
B.1 MOTHRA e eeeeecevreensesesessssssesssssssssasssosassassssass sessssesssnsssaasssssassssassnsessassensesn 34
8.2 RXVPSEOD . iceicerreectessccasssnessesssessessssssasons reeresessanseseresenssesnesssntressnessane 34

0.0 COMPUTATION ERROR ...uuotirecstiecnneresssssnnessisssssssssasssessssssssssasossssssassansasssass 41
0.1 MOTHRA ...ooorveevicicsrissisite sesssessssessessesssessessssessassassssarssssssssssssssssesssnssnsessen 41
0.2 RXVPBO .o iiiiiceirerecirisseessssssassossessssnssssossesssasasssssossossrssessasssssasssssassanessssessns 46

JO.0 CONCLUSION ..o ictiiriireseccssssncseesssssuessrossessessssessas TV Prevemsssassiatt srss sssnsssassnssor 46

| Acoession For
['RTIS GRazI A
DTIC TaB g
- Unannounceqd g
@QO Justifieaiion
INSP;:» o
io) 4 Distribution/
4valladility Codas
Avail ane cmd/ ‘T
i Special or

|

™ RSN L e B JaLk it

sk et bl i it
LIST OF FJGURES
/ FIGURE PAGE
1 Directed Flow Graph... . wed
2 DD-Path EXample........cccoviveniivnnrininnencsimnnscnrencsnenenensd 6
3 The Mutation Process.....ivviviieriirncviinenercvvnesvsvnnnenens 3
4 Execution Coverage AnalysiS....c..cccouvruereereeiiiieennnnn 12
5 Correct Triangle Program.......cccoceeecveveriinniceeniieeninne 14
6 Initial Set of Test Cases.......cvevrvvrerrervernererserreserrensanee 1 3
7 Triangle Program DD-Paths......c.cccecvveveerviennnenne e 21
8 DD-Path TIEE.......ceeeeiertrirerrerrenrssssssressnessssssssessessesisennd 3
9 Triangie Program - (Domain Error).......ccceeevvevenns 24
10 Mothra - Live SAM (Domain Errcr)..........c...... w27
11 Mothra - Live P/D (Domain Error)........ccceveveees. 30
12 DD-Path Execution (Domain Error).........ccceeveeeenn. 33
13 Triangle Program (Missing Statement).............. 35
14 Mothra - Live SAM (Missing Statement)........... 37
15 DD-Path Execution (Missing Statement)............. 40
16 Triangle Program (Computation Error)........... .42
17 Mothra - Live SAM (Computaticn Error)........... 44
18 DD-Path Execution (Computation Error)............. 47
LIST OF TABLES
TABLE PAGE
1 Non-Traditional Testing Strategies.......ccecmmneene 2
2 Mothra Mutant Operators.......cmc, 9
3 Mothra - Statement Analysis Mutants............... 18
4 Mothra - Domain/Predicate. Mutants.................. 19
5 Mothra - SAM (Domain Ermror) ... 26
6 Mothra - Domain/Predicate Mutants.................. 29
7 Mothra - SAM Missing Statementccecvveeernne 36
8 Mothra - SAM Computation Error........cccecevereeeee 43

i

1.0 INTRODUCTION

In the past decade, many specialized software testing
philosophies and testing techniques have evolved. Some of these
testing philosophies are time-consuming and impractical while others
are practical but only for small programs. Automating the testing
process is a goal that needs to be attained for testing to be cost-
effective and practical for any size or type of software program. Two
testing techniques have been explored under Rome Laboratory
(C3CB) R&D programs. These programs developed automated testing
tools which support these techniques. On: testing technique is
mutation analysis and the other technique is decision-to-decision
path analysis. A comparison of these testing techniquss via two test
tools. was performed. This technical report describes the testing
process and the results of this comparison.

2.0 BACKGROUND

Testing is that phase in the software life cycle where a program
is symbolically or physically executed with the intent of gaining
confidence in its correctness.! ‘The basic problem, therefore, is
finding a test selection criterion, a rule to select sets of test cases that
will constitute a reliable test. Early in the 1970's, as part of software
testing's theoretical foundaticns, J. B. Goodenouga and S. L. Gerhart
defired the concept of a reliable test which they believed was
sufficient for verifying any program's correctness. As it turned -out
their ambitious theory was not practical in the real world.

Real world software testers began implementing test strategies
which work on particular classes of programs or particular classes of
errors. There are two classes of testing strategies: non-traditional
and traditional. The most widely used testing strategics are
traditional (also called manual) test strategies which include
deskchecking, code walkthroughs, and inspections. Non-traditional
test strategies are more extensive. TABLE 1 shows the non-
traditional strategies in a matrix format. Non-traditional strategies
inciude structure dependent and structure independent test
strategies, both of which may be categorized as either deterministic

or random strategies.

1 A. Goel, Syracuse University Publication, September 1987.

1

T L T TS
R

Structure dependent testing is based on the structural
properties of the program code. Structure independent testing is
based on the specifications (requirements) of the program, and is
not concerned with the design or code structure. Deterministic
testing is performed by taking into account the structure and/or
specifications of the program during test cace selection. Random
testing assumes that all test input is created equal. It assumes that
any input is as good, for testing prrposes, as any other input.

Structure Dependent Structure Independent
(White Box) (Black Box)
Statement Testing Equivaiznce Partitioning
Branch Testing Boundary Value
9, Analysis
’0%,_ Path Testing
"437,0 Cause-Effect Graphing
Structured Testing
Design-Based Functional
Symbolic Testing Testing
Domain Testing
Mutation Testing
2,
od%
Randomized Partition SIAD Tree Testing
Testing
NON-TRADITIONAL
TESTING STRATEGIES
TABLE1

Since it is virtually impossible to test a program with all
possible inputs to see if it produces the correct outputs, current
research efforts have concentrated on testing strategies which are
more practical than such brute force methods. Test strategies must
be reasonable in effort, in order to be cost effective. For these
reasons, testing strategies which select only a small subset of the
entire possible input domain are being pursued. While these

2

testing techniques cannot guarantee program correctness, they
provide the tester with a higher level of confidence in the program.
Thus, as stated by E. W. Dijkstra and generally accepted as a maxim,
"testing can only be used to detect the presence of errors, never their

absence." :

The two testing strategies examined here are structure
dependent strategies.

3.0 TESTING STRATEGIES

3.1 MUTATION TESTING

Mutation testing is based on the "competent programmer
hypothesis", it assumes the program under test has been wvritten by
a skilled (i.e., competent) programmer.l . It then follows that the
program would be almost correct, and differ from a truly correct
program by only a few small errors. Mutation testing allows a tester
to gauge whether a set of test data is adequate to detect those errors.
This strategy makes a series of minor changes to a program being
tested, creating a series of programs known as mutant programs.
Each program is the same as the original program except for a single
syntactic change. This minor change can be in the form of constant
replacement, arithmetic, relational, logical or logical operator
replacement, statement deletion, and statement addition (i. e.,

Return, Continue, or a Trap statement).2

The process consists of determining the expected output for
each test case of the original program, generating a set of mutant
prcgrams, determining the mutant output for each test case, and
comparitig the mutant output with the expected output for each test
case and mutant. If the mutant's output is different from the
expected output for a test case, then that mutant is said to be
discovered and "killed" by that test case and the mutant is said to be
"dead.” Otherwise, it remains "alive" but, may still be killed by a
subscquent test case. Live mutants| provide important test
information. A mutant may remain alive for one of three reasons:

1 R. A. DeMillo, et al.,, Purdue University/University of Florida, Software
Engineering Research Center, "An Overview of the Mothra Software Testing
Environment,” SERC-TR-3-P. '

2 R. A. DeMillo, et al, Purdue University/University of Florida, Software
Engineering Rescarch Center, "The Mothra Software Testing Envirorment,”
User's Manual, SERC-TR-4-P,

a. The test data is inadequate. This means that the test data
may not have covered (i.e., exercised) that portion of the program.

Example: In the test program (rcf, page 14) the input test data "(3,3,5)"
and "(5,3,3)" each exercise diffcrent parts of the program. If one is not
included in the test data, part of the program will not be exercised.

b. The mutant program is equivalent to the original program.
If the mutant program and the original program always produce the
same output, there is no way for the test data to distinguish between
the original program and the mutant program. It may mean that the
programs are essentially the same.

Example: Consider a program that first checks all input variables to
make sure they are greater than zero, and exits if the inputs are
negative. One mutant type is the "absolute value inscrtion" (ref, Table
2). This mutant operator replaces each variable in a program by the
absolute value of the variable. However, since the original program is
designed such that that particular variable is always positive, this
mutant will always produce the same output as the original program,
and is therefore ecquivalent.

c. There exists an error in the program. If the output of the
original program and the mutant program is the same and the test
data has exercised that portion of code, and the mutant program is
not equivalent to the original program, then an error is uncovered.

|
Example: Sce Figures 10, 11, 14, and 17 for mutants remaining which
remain after test case cxecution and arc not equivalent to the original
program. '

3.2 DECISION TO DECISION PATH (DD-PATH) TESTING - BRANCH
TESTING "

DD-PATH analysis uses a very simple structure dependent test
criteria strategy; i.e., cover all the edges (branches) of the program's
directed flow graph (ref FIGURE 1). This insures that not only every
branch of the program will be executed at least once, but that every
statement will also be executed. DD-PATH testing is frequently
called Branch testing. DD-PATH testing insures the execution of
every loop and control flow at least once. It involves inserting
statements or routines into the program to be tested to record
properties of the executing program. It does not affect the
functional behavior of the program. A decision point is either the
entry point of a module, or a place where more than one possible

4

path, or decision occurs. The path that is followed from one decision
point to the next is called a decision-to-decision -~ath! (ref FIGURE 2).

NODES .
(DECISIONS) EDGES
(BRANCHES)

DIRECTED FLOW GRAPH
FIGURE 1

Path testing is a more stringent test criterion than DD-PATH
testing. Path testing covers all the edge-to-edge transitions in the
directed flow graph. This means that path testing covers all possible
ways to traverse from the start of the program to its ending
statement. Most times it is impossible to test all the paths or
combinations of branches in a large program. Programs with many
loops may have an infinite number of paths. However, it is possible
to test all DD-PATHs. Analytic information consists of a listing of the
DD-PATHs of the program undergoing analysis and the number of
times cach DD-PATH is executed when the program is executed. For
more effective testing, all DD-PATHs and as many paths or branch
combinationis as possible skould be tested. The goal is to increase the

amount of code tested.

1 General Research Corporation, "RXVP80, The Verification and Validation
System for Fortran," User's Manual, 1985, 5-9.

5

ENTRY
DD-path 1

is
module entry
. TRU§< > FALSE
DD-path 2 , DD-path 3
is is
true branch false branch
DD-path 4

is
true branch TRUE

DD-path 5

is
FALSES false branch

DECISION-TO-DECISION FATH EXAMPLE

FIGURE 2

4.0 AUTOMATED TESTING TOOLS

Manually tesiing software can be a very tiresome, time
consuming, costly, and error-prone task. Since a great deal of
manhours are traditionally expended in program testing, automateu
testing tools are gaining acceptance, especially in space and military
applications. According to E. Milier in "Structurally Based Automatic
Program Testing,"! most application programs written in FORTRAN
can be tested minimally thorough with a relatively small number of
test cases. A test is minimally thorough if each and every branch in

1 Miller, E. F., et al.,, "Structurally Based Automatic Program Testing," EASCON-
74, Washington D.C., October 1974,

iis directest flow _ aph is traversed ai least once during the test.!

Two autorr 4 testing systems, which can be wused to provide
minimally ugh testing, have been developed under sponsorship
of Rome L.....tory and are described in the following sections.

4.1 MOTHRA

MOTHRA is a mutation-based testing system (hat allows a
tester to perform mutation analysis on a program (ref FIGURE 3).
The tester chooses the classes and types of mutations (ref TABLE 2)
to be performed and the test strength desired (i. e., percentage of
selected mutants that will be enabled). The tester also supplies the
test cases to be used as test input. The system executes the test data
on the original program and the mutant program and compares the
~outpw. If the output resulting from the muiart program is different

from the original output then the mutant is considered dead.2 If the
outputs are the same, the mutant is not detected and is considered
alive. The objective is to kill all of the mutants.

MOTHRA supports three super-classes of mutation analyses:

a. Statement analysis. Mutated statement and control
structures are introduced into the program code. These
mutants test for traditional statement analysis, testing that all
statements are executed and that each statement has an effect.

b. Predicate and domair analysis. Mutated expressions,
aritumetic opecrators, and constants are introduced into the
program code. These mutants test predicate boundaries and

data domains.

c. Coincidental correctness. Scalar variables, array references,
and constants zre replaced with other values. These mutaied
programs detec. crrors that are undetected by other testing
strategies when, due to the nature of the test data, the
program just happens to (coincidentally) producz the correct
output results.

1" Huang, J. C., "An Approach to Program Testing," ACM Computing Surveys,
September 1975, 113-128.

2 R. A. DeMillo, et al, Purdue University/University of Florida, Software
Engineering Rescarch Center, "An Overview of the Mothra Software Testing
Environment," SERC-TR-3-P, i-3. ‘

\

L, M ST

- e
})

Pt e S iy

L ST

ot

m«wvi i

SAV1dSIa

ST001L
YAHLO
NS
ANION3
JLINVIANIS
SYOLINDSAd -
INVINW HOLVIINAD
_‘H] INVININ
,— i "]
IAVID0Ud
40 WH04
dLVIAIIWYIINI dASYvd

USER INTERFACE

o % » ety e - m—
ESSLSISINEIBIG

FRICUGATILIAID

/-

SASVD
1S3l

NNIW
NOILD313S
Jo1vyado

INVINN

NVEDOdd

3104108

THE MUTATION PROCESS

FIGURE 3

Abbreviations for MUTANT TYPES are:

array reference for array reference replacement

aar
abs absolute value insertion '
acr array rcference for constant replacement
aor arithmetic operator replacement
asr array reference for scalar voriable replacement
car constant for array reference replacement
cnr comparable array name replacement
crp constant rcplaccment
csr constant for scalar replaccment
der DO statement end replacement
dsa data statement alterations
glr goto label replacement
ler logical connector replacement
ror relational operator replacement
rsr retum statcment replacement
san statement analysis (rcplacement by TRAP)
sar scalar variable for array reference replacement
scr scalar for constant replacecment
sdl statement deletion
src source constant replacement
svr scalar variable replacement
uoi unary operator insertion
Abbreviations for MUTANT CLASSES:
ary array mutations (aar,car,cnr,sar)
con " constant-rclated mutations (acr,scr,src)
cil control structure mutants (glr,der,rsr)
dmn domain perturbations (abs,crp,dsa,uoi)
opm operator mutants (aor)
prd operand mutants (Icr,ror)
scl scalar mutants (asr,csr,svr)
stm statement mutants (san,sdl)
Abbreviations for MUTANT SUPER CLASSES:.
all all the mutants
cca coincidental correctness analysis (ary,scl,opm,con)
pda predicate and domain analysis (dmn,prd)
sal statcment analysis (stm, ctl)

MOTHRA MUTANT OPERATORS

TABLE 2

MOTHRA has evolved from previous work in mutation systems.
The first was PIMS in 1979, a FORTRAN subset prototype, EXFER an
experimental vehicle in 1980, CMS.1 a2 COBOL system in 1981 and
FMS.3 an enhancement of EXPER in 1983. MOTHRA is desigred to
allow the testing of software at all test stages in the development
process. It can accommodate units ranging from 10 to 100,000,000
lines of code. It currently supports FORTRAN 77, and follow-on work
is planned to support the Ada programming language. An attractive
feature of mutation analysis is that it includes statement and branch
coverage, as it performs mutation analysis. In addition, the mutation
score of a particular program (i. e., dead mutants/total # of mutants)
indicatzs the adequacy of the data used to test the program, and is
also a potential predictor of operational reliability. A potential
problem of mutation aralysis systems is the amount of disk storage
and manpower required for the testing of the programs. However,
MOTHRA allows the user to choose a subset of mutants that is very
manageable and still adequate for testing purposes.

MOTHRA was developed by Georgia Institute of Technology
(with a subcontract to Purdue University), under the sponsorship of
Rome Laboratory contract F30602-85-C-0255. MOTHRA currently
runs under 4.3BSD UNIX!, System V UNIX, and Ultrix-32 V3.02.

42 RXVP803

Research EXportable Verification Program for the 80's
(RXVP80) is a software testing tool used to test and verify FORTRAN
programs. RXVP80 can analyze FORTRAN 66, FORTRAN 77 and most

FORTRAN extensions to the standards.

RXVP80 performs static as well as dynamic analysis of
programs. Static analyses are those which do not require execution
of the user's program, but which collect information on the structure
of the program. Static analyses provides information on control
structure, symbol usage, calling hierarchy, as well as unreachable

code.

Dynamic analyses require execution of the user's program and
provides run-time execution coverage information. As part of
execution coverage analysis (ref FIGURE 4), the user's source code is

1 UNIX is a trademark of Bell Laboratorics.
2 Ultrix and Ultrix-32 arc trademarks of Digital Equipment Corporation.
3 RXVP80 is a trademark of General Rescarch Corporation, Santa Barbara, CA.

10

instrumented (i.e., software probes are inserted) with statements
that trace the execution of the program. The execution of this
instrumented program produces a set of data that trace the DD-
PATHs and/or statements executed during the test run. A number of
reports that show ihe extent of program testing is then produced
from the data. The information provided indi:ates the thoroughness
of the tests, including which DD-PATHs are taken, which DD-PATHs
are not taken, and how often each DD-PATH is traversed. RXVPS80
provides the capability to test for 100% branch and statement

coverage of a program.

The dynamic analysis portion of the RXVP80 was used in
analysis of the test program and its performance was matched
against both MOTHRA's statement and predicate & domain analyses
capabilitics as these strategies were similar in their proposed

detection of errors.

RXVP80 is a commercial product from General Research
Corporation (Santa Barbara, CA) that resulted from a Rome
Laboratory (C3CB) effort entitled "FORTRAN Automated Verification
System" (FAVS), contract F30602-76-C-0436.

5.0 THE TEST PROGRAM

The test program used for automated testing by MOTHRA and
RXVP80 determines the type of triangle (scalene, isosceles, or
equilateral) from the data that is entered. The program user must
provide the length of the three sides of the triangle as integer inputs.
The program checks for negative integers or zero in the input and, if
found, it determines the input to be "not a valid triangle." A triangle
program was chosen because of its popularity in the software testing
literature. The triangle classification program in "Theories of
Program Testing & the Application of Revealing Subdomains” by
Weyuker and Ostrand is widely used to validate software testing
techniques. The test program used in this experiment is somewhat
different. In this program, the input does not have to be in
ascending or descending order. lor example, the input can be
entered as, (3,3,5), (5,3,3), or (3,5,3). Because this program allows
any order, to test this program you must test all combinations of
input! Even if the tester does not immediately see this at first
glance, by using these tools it becomes apparent that, for example,
(3,3,5) does not exercise the same statements as (5,3,3). Thus, test

11

S.L0ddyd

SISATYNY YAZATVNV u / SANVINIWOD
No1Lndaxa /] Hivd qasn

5 AAVIdIT <

m k q714 JOVIIAILNI SANVININOD s

- A90Ud Jasn &~ a
- jan —
3 2

e

W \ a0 \Al ALNDAXT mwwwwm

4 TVINYON { TN

09 QILNTWNALSNI 084AXY

EXECUTION COVERAGE ANALYSIS

- Lvd 300D
= TVINION 4D34N0S
w : JTIVIIANOD

cases must be built from information learned after exercising the
tools and examining the results.

The triangle subroutine (ref FIGURE 5) is a correct program --
it contains no errors. Therefore, this program was input to both test
too:s and the output was examined. This was the "control program.”
Next, three types of errors were introduced into the program: a
domain error, a computation error, and missing statement error.
Then each test tool was used on each of the control program's
variants (i.e., errors). The types of errors introduced into the
variants and the results of testing them are discussed in the

following sections.

6.0 CORRECT PROGRAM

6.1 MOTHRA - STATEMENT ANALYSIS MUTANTS

Using MOTHRA the first class of mutanis selected was the
STATEMENT ANALYSIS class, which includes statement mutants
(statement replaced by TRAP, and statement deletion) and control
structure mutants (GOTO label replacement, DO statement end
replacement, and return statement replacement). All mutants that
belong to the statement analysis class (i. e., the test strength was
100) were enabled. Using 35 test cases (ref FIGURE 6) on the correct
program, all mutants were killed except one. ' Examination of this
mutant program revealed that it was essentially the same as the
original program and, therefore, - the mutant program was
"equivalenced" (ref TABLE 3). To equivalence a mutant program
means to declare it to be functionally the same as the original
program. For the triangle program, MOTHRA's replacement of "GOTO
110" with the RETURN statement did not change the program since,
at that point in the program, the variable "MATCH" already had the
correct return value, making the mutant equivalent to the original
program. Thus, all mutants were accounted for and, as expected, the
presence of any errors was not detected.

6.2 MOTHRA - PREDICATE & DOMAIN MUTANTS

Using MOTHRA, the second class of mutants selected was the
PREDICATE AND DOMAIN class, which includes domain perturbations
(absolute value insertion, constant replacement, data statement
alterations, and unary operator insertion) and operand mutants
(logical connector replacement, and relational operator replacement).

13

= A ek AR oy -

)

olo s YoloNole!

10
20
30

=00
8

110
200

300

400

500

SUBROUTINE TRIANGLE(],J,K,MATCH)
integer i,j,k,match

MATCH is output from the subroutine:
MATCH = 1 IF THE TRIANGLE IS SCALENE
MATCH =2 IF THE TRIANGLE 1S ISOSCELES
MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
MATCH =4 IF NOT A TRIANGLE v

After a quick confirmation that it's a legal
triangle, detect any sides of equal length
IF(I.LE.0.OR.J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0 '

IF (I.NE.J) GOTO 10

MATCH=MATCH+1

IF (ILNE.K) GOTO 20

MATCH=MATCH+2

IF (J.NE.K) GOTO 30

MATCH=MATCH+3

IF (MATCH.NE.0) GOTO 100

Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500

IF (J+K.LE.I) GOTO 500

IF (I+K.LE.J) GOTO 500

MATCH=1

Return

Confirm it's a legal triangle before declaring
it to be isosceles or equilateral
IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500
MATCH=2

RETURN

IF (MATCH.NE.2) GOTO 300

IF (I+K.LEJ) GOTO 500

GOTO 110

IF (MATCHL.NE.3) GOTO 400

IF (J+X.LE.I) GOTO 500

GOTO 110

MATCH=3

RETURN

Can't fool this program, that's not a triangle
MATCH=4

RETURN

END

CORRECT TRIANGLE PROGRAM

FIGURE §

14

B DR T B S g, S b N e a e vl it St b B
FwPe R AR R e by
:

Test Cases for triangle.tc.

Values for case 1.
I 3
-J 4
K5

Values for case 3. alues for case 4.

K
v
I 2 I
-
K

(-
Landll

< R
2,
c
o
w

. for case 5. Values for case 6.
_, I 0 I -1
J O J O
KO K3
Values for case 7. alues for case 8.
4
3
2

ues for case 9. alues for case 10.

o

[I SSY

Values for case 11. alues for case 12.
I -1 I -1
J -1 J 2
K -1 K -1

Values for case 13. Values for case 14.
I 2 1 2

J1 J
K2 K

B RS I A ———. I ey P .
X st iieidy goad o st SEE T, R S T S e i~ e S

5
n INITIAL SET OF TEST CASES

TIGURE 6

15

Values for case 15.

12
12
K -1

Values for case 17.

I 1
I1
K1

Values for case 19.

I 1
J 2
KO

Values for case 21.

I3
I3
K2

Values for case 23.

I 7
IS5
K5

Values for case 25.

S 15
o J 5
) K 10

Values for case 27.

10
J 0
K2

Values for
Values for

Values for
I 1
¥y 2
K5

Values for
I 1
]S
K5

Values for
I 10
J 5
K5

Values for
I 5

J 10

K 5

alues for
2

0

0

R

case 16.

case 18.

case 20.

case 22.

case 24.

case 26.

case 28.

INITIAL SET OF TEST CASES

FIGURE 6 (continued)

16

Values for case 29.

Ty Do, B e

Values for case 30.

I 1 I3
J1 I3
K2 K3
Values for case 31. Values for case 32.
I0 I1
J 3]S
K7 K¢
Values for case 33. - Values for case 34.
I -1 I1
J 5 J O
K1 K S5

Values for case 35
I -20
J -20
K -20

INITIAL SET OF TEST CASES

FIGURE 6 (continued)

17

T

ki T T

1 i A S MERI Ao el WU g AR b RO R S AR R A AT T T, S o e MR ™

TYPE GENERATED LIVE %1LIVE EQUIV DEAD
glr 126 0 0.0 0 128
Isr 38 0 0.0 1 37
san 36 0 0.0 0 36
sdl 41 0 0.0 0 41
TOTALS 243 0 0.0 1 242
CLASS GENERATED LIVE %LIVE EQUIV DEAD

0

ary 0 . 0

con 0 0 0.0 0 0
ctl 166 0 0.0 1 165
dmn 0 0 0.0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0
scl 0 0 0.0 0 0
stm 77 0 0.0 0 77
SUPERCL || GENERATED LIVE %LIVE EQUIV DEAD
all 243 0 0.0 1 242
cca 0 0 0.0 0 0
nda 0 0 0.c 0 0
sal 243 0 0.0 1 242

TABLE 3

18

MOTHRA - STATEMENT ANALYSIS MUTANTS
(CORRECT PROGRAM)

Using the same 35 test cases as in the statement analysis
mutants test run described in section 6.1 above, 108 mutants
remained alive. The mutants were then examined and it was found

that many of them could be equivalenced. For example, the absolute
value insertion mutant type (abs) was equivalenced at several points
in the program since at those points, negative values were impossible
due to the structure of the code. Thirty-one mutants were then left
remaining. With these few remaining mutants, it was much easier to
see which statements were not being executed. Additional test cases
were then added and the remaining mutants were killed (ref TABLE

4). Thais confirmed the expected output, since it was known that the
program was correct. :

abs 126 0 0.0 717 49
crp 29 0 0.0 0 - 29
Isr 13 0. 0.0 1 12
ror 99 0 Nn.0 4 95
uoi 83 0 0.0 2 81
TOTALS 350 0 0.0 k4 266
CLASS GENERATED]| LIVE %LIVE]| EQUIV DEAD
ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 0 0 0.0 0 0
dmn 238 0 0.0 79 159
opm 0 0 0.0 0 0
prd 112 . 0 0.0 5 107
scl 0 0 0.0 0 0
stm 0 0 0.0 0 0
SUPERCL }| GENERATED LIVE %LIVE EQUIV DEAD
all 350 0 0.0 84 266
cca 0 0 0.0 0 0
pda 350 0 0.0 84 266
sal 0 0 0.0 0 0

MOTHRA - DOMAIN & PREDICATE MUTANTS
(CORRECT PROGRAM)

TABLE 4

19

R L TR I oy i Ae 4 wou iy o0l P a0 S) B -3 o, A TR %o S N B B 8 ORI . B Attt st o g it

6.3 RXVP80

Using RXVP80, an output repert was created which identified
all the DD-PATHSs in the triangle program (ref FIGURE 7). A DD-PATH
tree (ref FIGURE 8) was manually created to aid understanding of the
triangle program and determine exactly how RXVP80 created the DD-
PATHs. On entry to a function or subroutine, the entry point is
always DD-PATH 1. For IF statements, the TRUE branch is assigned
an even number DD-PATH and the FALSE branch an odd number DD-

PATH.

By using RXVP80 on the triangle program, it was found that the
original 35 test cases exercised 100% of the program DD-PATHs, and
that the output from each test case was correct (as it should be, since
this is a correct program). Thus, as was expected, no errors were

found.
7.0 DOMAIN ERROR

An error was introduced into the correct program, and both the
MOTHRA and RXVP80 were used to see if they would detect the
error. The triangie program was modified such that a domain esrror
was created. A domain error occurs when a specific input follows the
wrong path due to an error in the control flow of the program.! The
error was created by modifying the predicate on line 18 of the
triangle subroutine (ref FIGURE 9). Line 18, IF (I .NE. J) GOTO 10, was
changed to: IF (-I .NE. J) GOTO 10. '

7.1 MOTHRA - STATEMENT ANALYSIS MUTANTS

The domain error was created via the VAX/ULTRIX editor. The
program was then entered into the MOTHRA system. The statement
analysis class was selected, and all mutants belonging to that class
W\ere enabled (i. e., the test strength was 100).

\

\ When the test cases were entered, test case 3, test input (2,2,1)
gave an incorrect output. The triangle program cutout identified the
triéngle as scalene when it should have been isosceles. This incorrect

! White, Cohen, and Zei’ "A Domain Strategy for Computer Program Testing,"

Computer Program Testing, September 1981, 103-113.
20

HONWUE 35TV
HONVYH J0M1

JONWYYHd 3STvd
HONWYE 3nvy

HONYYE 3STvd
HONVYH 3Nyl

HONWYE dSTVd
HONWYd dndl

HONWYE 3STvd
HONYYE 40yl

HONYYE 3STvd
HONVYd dndl

HONYYY 3JSTvd
*HONWYI 3Ind¥l

HONYYE 3dSTvd
HONWYE 3nydy

SI
SI

SI
SI

ST
SI

SI
S1

SI
SI

Lt
91

St
| At

€1
¢l

1T
01

6
8

L
9

S
¥

€
4

AYINI JUNAILOUd ST |

Hlvdad
Hlvdaa

HIvdaa
Hiv3ga

HLYdqa
Hlvdaa

Hivdaa
HLV¥4aq

HLv¥daa
Hlvaaa

HL¥daq
HL¥daa

HIvdaa
H1v¥daa

Hlvdaag
HLvdaaq

HLvYdaa

NINLIY €€ [24
T=HOIVYR (4% £Z
e
LR
00S OI0D (r*d71°3+1) 41 1t 1z
s
s
00S 010D (I*3AT°N+r) 41 o¢f 61
y
LR
005 0109 (N"F1°p+I) 41 62 L1
xy
Xy
auayess aq o031 Iy o I ¥ 4
butzetosp a10jaq atbuetia TebaT ® £,37 wiyjuoy 2 g9z
14
00T 0109 (0*3IN"HOIVH) 4aI 0€ ¥z St
€+HOLVYA=HOLVH [X4 {44
LR
k¥
0€ OLOD (M"3N°r) JdI oz (44 z1
C+HOLVW=HOLIVN 12 11
%y
y
0Z 0109 (M"3N°I) 41 01 0e 6
T+HOLVW=HOLVHW 61 8
xx
LE
0T O0LO9 (r-3dN°I1-) J1 81 9
O=H IVRN LT S
s
LR 3
005 OLOD (0 °"TT1° ¥ °"¥WO* 0 *IT° L *¥WO" 0 "371° 1) a1 91 €
Yyibuay Tenbs jo $3p1s Aue 20973p ‘atbuetiy o vl
Te631 e 5,31 3eya UOTIPWITIUOD yoInb v 2033y 2 £1
i Z1
JTONVINL ¥ ION JI ¥ = HOIVH 2 It
TYIIINTINGT SI FTONVIUL FHL 41 € = HOLVR 3 0t
SITIOSOSI SI FTONVIUL 3HL 41 Z = HOLVH 2 6
ANITVOS ST JTONVIMI FHL 41 T = HOLVH 0 8
(duTInoIgqns ay3y woij ndino sy HOLVH b
9
HOLVH‘M’0’T ¥3odINI S [4
[3]
(HOLVK 'Y ‘0 ‘1) ITONVINL 3INIInodEns € 1
Z
T
TTEOHNOS 3ANIT 1SAN IWLS

(HOIVW “ ¥ ‘0 ' 1) FTONVINL ANIINOYANS

SNOILINIA3d HIVA-AG

TRIANGLE PROGRAM DD-PATHS

FIGURE 7

21

et

G

HONVEd 3ISTvd
ONVY¥E 3n¥l

HIONVYE 3STVd
HONYY8 3dndd
iZNVEE ISTvd
HONWYXE 3INdl

HONYEE 357vd
HINVYYE 3l

HONYYE 367Vd
HONVEE Indl

HONVYE 35IV4
HINVdE 3031

SI

s1
Ss1

SI

SI
SI

ST

SI
S1I

6
8z

1
0z

61
el

H1vVdad
Hlvddg

H1v¥dGg
H1VYd4CQ
H1¥ddq

HI¥Aagd

H1vYdag
Hlvdaa

H1vaaq
H1YJdGa

HIv4aa
1vd4ag

‘s

LR

LR

LRl

aN3 SS Sy
NdN13Y ¥S 1 4
F=HOLVAW 00S €S €y
ajbueray ® jou sieyy ‘weiboird cyya 1003 3,ued b} 1%
0s
NANLIIY (3 (44
€=HOIVR [¢]e} 4 1:14 144
011 0109 Le or
00S OlO9 (I°3IT°MN+L) dI b3 4 8¢
00F OLO9 (E°IN'HOIWW) JI 00¢ Sy <
011 0109 144 S¢E
00S OlO9 (£ IT°N+I) 41 €y te
00€ OlOS (Z 3AN'HOLVKW) JI 00z [44 1¢
NINL3Y 1§ ce
Z=HDLl¥YR 011 oy 6z
006 OlOD (N T L+I) J1 [1% (X4
00Z OlO9 (T 3AN"HOIWW) JI 001 g€ sZ
TeaajeTInba JO $373DsosT 2q 01 1} o) 9€
butie1oap ai103jaq arbuetiy Tebay e 3,81 witjuo)d o) (4%
Joynos INIT I1S3IN iWiS

(HOIYW * X ‘¢

SNCILZINIJ2Q HlIva-QQ

TRIANGLE PROGRAM DD-PATHS

FIGURE 7 (continued)

22

MATCH - 4

MATCHe MATCH o 2

OO-PATH O

MATCH= MATCH ¢ 3

OD-PATH 17 DO-PATH 18

[Tm‘.'] [u;rcn-c l
CIDICLD)

IIATCN-! I lllA?CN-l I

v : [[
CLDIELD
DD-PATH TREE
FIGURE 8
23

an oonnn

10
20
30

=00
8

110
200

300

SUBROUTINE TRIANGLE(LJ, K,MATCH)
integer i.j,k,match

MATCH is output from the subroutine:
MATCH = 1 IF THE TRIANGLE IS SCALENE
MATCH = 2 IF THE TRIANGLE IS ISOSCELES
MATCH = 3 IF /HE TRIANGLE IS EQUILATERAL
MATCH =4 IF NOT A TRIANGLE

After a quick confirmation that it's a legal

triangle, detect any sides of equal length

IF(I LE.0.OR.J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0

IF (-ILNE.J) GOTO 10 -- DOMAIN ERROR

MATCH=MATCH+1

IF (LNE.K) GOTO 20
MATCH=MATCH+2

IF (J.NE.K) GOTO 30
MATCH=MATCH+3

IF (MATCH.NE.0) GOTO 100

Confirm it's a legal triangle before dcclaring it to be scalene
IF (I+J.LE.K) GOTO 500

IF (J+K.LE.I) GOTO 500

IF (I+K.LE.J) GOTO 500

MATCH=1

Return

Confirm it's a legal triangle before declaring it to be isosceles or
equilateral

IF (MATCH.NE.1) GOTO 200
IF (1+J.LE.K) GOTO 500
MATCH=2

RETURN

IF (MATCH.NE.2) GOTO 300
IF (I+K.LE.J) GOTO 500
GOTO 110

IF (MATCH.NE.3) GOTO 400
IF (J+K.LE.I) GOTO 500
GOTO 110

MATCH=3

RETURN

Can't fool this program, that's not a triangle
MATCH=4

RETURN

END

TRIANGLE PROGRAM (DOMAIN ERROR)
FIGURE 9

24

outpet immediately indicates there is an error. MOTHRA was then
used to help pinpoint the error.

After inputting the original 35 test cases plus several
additional test cases, 18 mutants were still alive (ref TABLE 5). The
same mutant described in section 6.1 was equivalenced. Next,
possible reasons for the remaining mutants were examined.
Examination of Figure 10 shows that there are two groups of
remaining live mutants (mutants are identified in the program via
the "#" symbol). One group represents the mutants that are created
to replace the statement: IF (I+J .LE. K) GOTO 500. As shown in
Figure 10, the mutant statements for each original statement are
displayed beneath the statement they replace. When MOTHRA
executes, it replaces the original statement with one mutant
statement. Thus, as many new programs are created as mutant
statements. None of these were killed. Further examination shows
that, this statement was never executed because of the statement
directly above it: IF (MATCH .NE. 1) GOTO 200. MATCH was never
being set to 1 so the program execution was always jumping to
statement 200. To find the reason for this, the other group of
mutants, those that were created to replace the statement: MATCH =
MATCH + 1, were checked. It was clear that this statement was not
being executed. The statemeat directly above it was examined: IF (-]
.NE. J) GOTO 10. What was happening was that the program was
always going to statement 10 because there was an error in the IF
statement, The error was found!

7.2 MOTHRA - PREDICATE & DOMAIN MUTANTS

!
| Using MOTHRA, the predicate and domain class of mutants was

selected. Using the same test cases as those input to the correct
program previously mutated using the predicate and domain class,
three inputs gave incorrect outputs. Obviously the program was in
error and MOTHRA was used to try to find the error. After
numerous test case inputs, fifty-three mutants were remaining (ref
TABLE 6). The live mutants were examined (ref FIGURE 11). The
first set of mutants replaced the statement: MATCH = MATCH + 1. It
was clear that this statement was not being executed. To find a
reason for this, the code was examined. The previous statement: IF
(-I .NE. J) GOTO 10 indicated that the program execution was going to
statement 10 and not executing the MATCH = MATCH + 1 statement.

25

TYPE | GENERATED || LIVE %LIVE EQUIV | DFAD
glr 128 8 6.3 0 120
rsr 38 4 10.5 0 34
san 36 3 8.3 0 34
sdl 41 3 7.3 0 38
TGTALS 243 18 7.4 0 I 225
CLASS GENERATED | LIVE %LIVE EQUIV DEAD
ary 0 0 0.0 0 0
con 0 0 0.0 0 0
ctl 166 12 7.2 0 154
dmn 0 0 .0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0
scl 0 0 0.0 0 0
stm 77 6 7.8 0 71
] SUPERCL || GENERATED | LIVE | %LIVE | EQUIV | DEAD
B ' all 243 18 7.4 0 225
cca 0 0 0.0 0 0
pda 0 0 0.0 0 0
sal 243 18 7.4 0 225
MOTHRA - STATEMENT ANALYSIS MUTANTS

DOMAIN ERROR

TABLE 5

26

SUBROUTINE TRIANGLE(IL,J,K,MATCH)

integer i,j,k,match

C MATCH is output from the subroutine:
C MATCH = 1 IF THE TRIANGLE IS SCALENE
C MATCH = 2 IF THE TRIANGLE IS ISOSCELES
C MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
C MATCH = 4 IF NOT A TRIANGLE
C After a quick confirmation that it's & legal
C triangle, detect any sides of equal length
IF (I .LE.0.0OR.J .LE. 0.0OR. K LE. 0) GOTO 500
MATCH=0 '
IF (-ILNE.J) GOTO 10 -- DOMAIN ERROR
MATCH=MATCH+1
rsr 134 # RETURN
san 170 # *** TRAP ***
sdl 208 # CONTINUE
10 IF (I.NE.K) GOTO 20
MATCH=MATCH+2
20 IF (J.NE.K) GOTO 30
MATCH=MATCH+3
30 IF (MATCH.NE.0) GOTO 100
C Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LEK) GOTO 500
IF (J+K.LE.I) GOTO 500
IF (I+K.LE.J} GOTO 500
MATCH=1
Return
C Confirm it's a legal triangle before declaring it to be isosceles
° C or equilateial
100 IF (MATCH.NE.1) GOTO 200
IF (I+J.LE.K) GOTO 500
rsr 152 # RETURN
san 188 # *** TRAP 3***
sdl 227 # CONTINUE
rsr 153 # IF (I + J) .LE. K) RETURN
san 189 # IF (I + J) .LE. K) *** TRAP #**
sdl 228 # IF (0 + J) .LE. K) CONTINUE
gIr 73 # IF (0 + J) .LE. K) GO TO 400
gir 74 # IF (I + J) .LE. K) GO TO 300
glr 75 # IF (I + J) .LE. K) GO TO 200
gir 76 # IF (I + J) .LE. K) GO TO 110
MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
DOMAIN ERROR
FIGURE 10

27

S kgl s e o r

77 # IF (I + J) .LE. K) GO TO 100
78 # IF (I + J) .LE. K) GO TO 30
79 # IF (1 + J) .LE. K) GO TO 20
80 # IF (I + J) .LE. K) GO TO 10

MATCH=

RETURN

IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500

GOTO 110
159 # RETURN

IF (MATCH.NE.3) GOTO 400

IF J+K.LE.I) GOTOQ 500

GOTO 110

MATCH=3

RETURN

Can't fool this program, that's not a t." ngle

MATCH=4

RETURN

END

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS

DOMAIN ERROR

FIGURE 10 (continued)

28

MOTHRA - PREDICATE & DOMAIN MUTANTS

sal 0 |

DOMAI

ERROR

TABLE 6

29

TYPE GENERATED LIVE %LIVE EQUIV DEAD
abs 126 27 21.4 21 78
crp 29 2 6.9 0 27
Isr 13 0 0.0 0 13
ror 99 11 11.1 0 88
uoi 83 | 13 15.7) 0 70
TOTALS || 350 53 H 15.1 21 276

| CLASS GENERATED LIVE %LIVE || EQUIV l DEAD
ary 0 0 0.0 0 0
“{lcon 0 0 0.0 0 0
ctl 0 0 0.0 0 0
dmn 238 42 17.6 21 175
opm 0 0 0.0 0 0
prd 112 11 9.8 0 101
scl 0 0 0.0 0 0
stm 0 0 0.0 0 0
SUPERCL }| GENERATED LIVE | ®%LIVE EQUIV DEAD
all 350 53 15.1 21 276
cca 0 0 0.0 0 0
pda 350 53 15.1 21 276
0 00 ¢ 0 0

U T R T SRS U v R R Bt SR N 8 e e 1 ey - e

oXololeXolele!

33&%%%%3&%%%

(s
o%t%t%&

W
Oy

HEBRRERR=OO
(=]

SUBROUTINE TRIANGLE(LJ,K,MATCH)

integer 1i,j,k,match

MATCH is output from the subroutine:
MATCH = 1 IF THE TRIANGLE IS SCALENE
MATCH =2 IF THE TRIANGLE IS ISOSCELES
MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
MATCH =4 IF NOT A TRIANGLE

After a quick confirmation that it's a legal
triangle, detect any sides of equal length

- IF(.LE. 0 .OR.J LE. 0.0OR. K .LE. 0) GOTO 500

abs
abs
uol
crp
abs
abs
uoi
uol
uoi

abs
uoi
abs

abs

MATCH=0

IF (-ILNE.J) GOTO 10 -- DOMAIN ERROR
MATCH=MATCH+1

17 # MATCH = NEGABS (MATCH) + 1

18 # MATCH = ZPUSH (MATCH) + 1

283 # MATCH = (- MATCH) «+ 1

135 # MATCH = ZPUSH (MATCH) + 1
20 # MATCH = NEGABS (MATCH + 1)
21 # MATCH = ZPUSH (MATCH + 1)

284 # MATCH = - (MATCH + 1)

285 # MATCH = ++ (MATCH + 1)

286 # MATCH = - - (MATCH + 1)

IF (ILNE.K) GOTO 20 :

MATCH=MATCH+2

29 # MATCH = NEGABS (MATCH) + 2

291 # MATCH = (- MATCH) + 2

33 # MATCH = ZPUSH (MATCH + 2)

IF (J.NE.K) GOTO 30 ‘

MATCH=MATCH+3 ‘

45 # MATCH = ZPUSH (MATCH + 2)

IF (MATCH.NE.0) GOTO :00

Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LEK) GOTO 500

IF J+K.LE.I) GOTO 500

IF (I+K.LE.J) GOTO 500

MATCH=1

Return

Confirm it's a legal triangle before declaring it to be isosceles
or equilateral

IF (MATCH.NE.1) GOTO 200

abs
abs
uoi
uoi
crp
uoi
ror

83 # 100 IF (NEGABS (MATCH) .NE. 1) GO TO 200
84 # 100 IF (ZPUSH (MATCH) .NE. 1) GO TO 200
321 # 100 IF ((- MATCH) .NE. 1) GO TO 200

322 # 100 IF ((++ MATCH) .NE. 1) GO TO 200

144 # 100 IF (MATCH .NE. 0) GO TO 200

324 # 100 IF (MATCH .NE. (- 1)) GO TO 200

235 # 100 IF (MATCH .GT. 1) GO TO 200

MOTHRA - "LIVE" PREDICATE & DOMAIN MUTANTS
DOMAIN ERROR

FIGURE 11

30

Lo g RO R T

BHRUAXEBTHBRBTREREDE R

ror
ror

abs
abs
uoi
abs
abs
abs
abs
uoi
uoi
uoi
abs
abs

ror
ror
ror
ror
ror
ror

N = I3
Pt
s 3

. abs
ror

abs
abs
abs
abs

abs
ror

abs
abs
abs
abs

® I %%ﬂé’ HRRHE n

8
S

‘éO

uoi -

236 # 100 IF (MATCH .GE. 1) G TO 200
237 # 100 IF (TRUE.) GO TO 200
IF (I+J.LE.K) GOTO 500

86 # IF (NEGABS (I) + J) .LE. K) GO TO 500
87 # IF ((ZPUSH (I) + J) .LE. K) GO TO 500
325 # IF (((- D + J) .LE. K) GO TO 500

88 # IF (0 + NEGABS (J)) .LE. K) GO TO 500
90 # IF (I + ZPUSH(J)) .LE. K) GO TO 500
92 # IF (NEGABS (I - J) .LE. K) GO TO 500
93 # IF (ZPUSH(I + J) .LE. K) GO TO 500

326 # IF ((- (I + J)) .LE. K) GO TO 500

327 # IF ((++ (I + J)) .LE. K) GO TO 500

328 % IF ((- - (I + J)) .LE. K) GO TO 500

95 # IF ((I + J) .LE. NEGABS (K)) GO TO 500
96 # IF (I + J) .LE. ZPUSH (K)) GO TO 500
329 # IF (I + J) .LE. (- K)) GO TO 500

238 # IF (I + J) .LT. K) GO TO 500

239 # IF (I + J) .EQ. K) GO TO 500

240 # IF ((I + J) .NE. K) GO TO 500

241 # IF ((I + J) .GT. K) GO TO 500

242 # IF (I + J) .GE. K) GO TO 500

243 # IF (.TRUE.) GO TO 500

MATCH=2

RETURN

IF (MATCH.NE.2) GOTO 300

99 # 200 IF (ZPUSH (MATCH) .NE. 2) GO TO 300

247 # 200 IF (MATCH .GT. z) GO TO 300
IF (I+K.LE.J) GOTO 500 :

102 # IF ((ZPUSH (I) + K) .LE. J) GO TO 500
105 # IF (I + ZPUSH(K)) .LE. J) GO TO 500
108 # IF (ZPUSH(+ K) .LE. J) GO TO 500

111 # IF (I + K) .LE. ZPUSH (J)) GO TO 500
GOTO 110

IF (MATCH.NE.3) GOTO 400

114 # 300 IF (ZPUSH (MATCH) .NE. 3) GO TO 400

259 # 300 IF (MATCH .GT. 3) GO TO 400
IF J+K.LE.I) GOTO 500

117 # IF ((ZPUSH (J) + K) .LE. I) GO TO 500
120 # IF ((J + ZPUSH(K)) .LE. I) GO TO 500
123 # IF (ZPUSH(J + K) .LE. I) GO TO 500
126 # IF (J + K) .LE. ZPUSH (I)) GO TO 500
GOTO 110

MATCH=3

RETURN

Can't fool this program, that's not a triangle

MATCH=4

RETURN

END

MOTHRA - "LIVE" PREDICATE & DOMAIN MUTANTS
DOMAIN ERROR

FIGURE 11 (continued)

31

The pext large group of mutants which were not killed were
examined. These replaced the statement: IF (I+J .LE. X) GOTO 500.
Again, by the large —~umber of mutants remaining in this group, it
was clear that this statement was not being executed. “.ooking at the
previous statement: IF (MATCH .NE. 1) GOTO 20f indicated that
MATCH was not being set to 1. MATCH was not set to 1 because, as
indicated by the first group of mutants, the statement MATCH =
MATCH + 1 was not executed. For each group of mutants, the flow of
execution returned to the same point and it was finally noticed that
the IF statement: IF (-I .NE. J) GOTO 10 was in error. It should have
been: IF (I .NE. J) GOTO 10!

Overall, it was found that mutating for predicate and domain
mutants provided too much information for this small non-critical
testing experiment. It was easier to locate an error (domain error)
when statement analysis riatants were created. However, the same
conclusions were drawn as to what caused the error in the program -
it just took the test yersonnel much longer.

7.3 RXVP80

The same domain error was created by modifying the
subroutine triangle via the VAX/VMS editor. The program was then
input to RXVP80, instrumented (insertion of software probes) for DD-
PATH coverage and run against the previous set of test cases. After
additional test cases were added, only 86% of the paths had been
executed. RXVP80 identified DD-PATHs S5, 19, 20 and 21 as paths
that were not executed (ref FIGURE 12).

This led to investigation of the DD-PATH report which identifies
each DD-PATH, ref FIGURE 7. DD-PATH 5 is the FALSE branch of: IF
(-I .NE. J) GOTO 10, which meant that for none of the test cases was
-1 = J. On first examination of the program, it appears that inputting
(2,-2,2) for the sides of the triangle would cause this DD-PATH to be
traversed. However, closer examination revealed that a previous
statemeat checked for negative input values. If negative input was
encountered, ther the program control flow jumps to a statement at
the end of the program. The result is that this DD-PATH could never
be exercised, and that the assignment statement on this DD-PATH
which sets MATCH to 1 would not occur. DD-PATHs 16, 20, and 21
were also not exercised. DD-PATH 19, 20, and 21 emerge from the
false branch of: IF (MATCH .NE. 1) GOTO 200. This means that for.

32

FONANOD AT

(44
(44
LT
6t

! STYSHIAVYL |

JO YIdRNN

»» T2798 (Q3INOIXIA INIOYA =«

6z = a3Lnd3aXA SHIVE-Ad IO WIEHNN 1VIOL
: v = Q3LNDAXI ION SHIVA-Ad JO0 YAGHAN TYIOL
STYSYIAVIL HIVA-Ga J0 ¥IGHAN TVIOL
62 | XXXXX | { 62
82 I X | | 82
Lz I XXXXXX | | Le
9z | XX] 9z
¥4 I X | | (14
ve | XX | | | 24
%4 | XXX | { %4
&4 \ XXXXXXXX | | zz
! | (=) I
- » a8 @ — — . o 00 — LI Y
| i (61T))
81 } XXXXXXXXXXXX | | 8T
LT] XXXXXXX | { LT
91 | X | | 91T
ST | XXXXXXXX | | ST
vl | X | | VT
£1 | XXXXXXXXXX | | €1
A | XXXXX | | A S
11 | XXXXXXXAXXXXXXX | | Tt
ot 1 XXXXXXXXXXXX | | ot
6 | XXXXXXXX | | 6
8 ! XXXXXXXXXXXXXXXXXXX | | 8
L | XXXXXX | | L
9 | XXXXXXKXXXXXXXXXXKXXXX | | 9
|] s) |
v | XXXXXKXAXKXXXXXXXXRXXXXXXKXXX | I ¥
€ | XXXXXXXXXX XXX XXX XX KXXXKXXX | I €
z | XXXXXXXXXXXXXXXXKXXXX | { z
1 PXXXAAXRXXXAXKXX XX XAXXXXXXXXXXXXXXXX XK XX KK XXXKKXXKKK | i 1
! | |
YIGHOAN | 00T------ T08--——e T09-—=--=---) AR T A * .1 Qq3LNO3AXT JOR | WIHHAN
HLYd-aa | (ROAIXYW Ol Q3ZITYNMON) SNOILNDIXT JO WIAGHON I YAGHON | HI¥4-aa

S3ASYD LSIL 6¢

40 SITASIY FAILVIONND

LYOdIY dITIVLIIC FAIIVINHND YIAZATYNY HIVG

JTONVINI FTOAOH ¥Od

DD-PATH EXECUTION
(DOMAIN ERROR)

FIGURE 12

33

these DD-PATHs never to be executed, MATCH must not equal 1 at
any point in tue program. Looking back again at FIGURE 8, MATCH
never equals 1 because DD-PATH 5 was never exercised by the test:
data. Thus DD-PATHS 19, 20, and 21 these can never be exercised
because DD-PATH 5 was never taken. Upon close examination of the
predicate of DD-PATH 5: IF (-1 .NE. J) the error was realized. It
should be: IF (I .NE. J)! ‘

8.0 MISSING STATEMENT ERROR

The triangle program was modified, such that statement 17,
MATCH = 0 was removed from the program (ref FIGURE 13).

8.1 MOTHRA

Using MOTHRA the statement analysis class of mutants was
selected. There were 242 mutants created for the triangle
subroutine. Using the original set of test cases, test case 1, test input
(3,4,5) gave an incorrect output on the changed program. The output
showed that the triangle was "isosceles", however the correct output
for these values is a "scalene" triangle. Twelve other test cases gave
incorrect outputs. At the end of 23 test cases, 71 mutants remained

alive (ref TABLE 7).

In checking the live mutants, it was evident that certain
statements were not being executed and thus the mutants could not
be killed (ref FIGURE 14). These statements followed the false
branch of the predicate: IF (MATCH .NE. 0) GOTO 100, which means
that if MATCH = O the control flow goes to the statement IF (I+J .LE.
K) GOTO 500. However, his statement was never being executed.
Thus, it was clear that there was a problem in the program such that
MATCH was never set to zero and the missing statement (i. e.,
MATCH = 0) was found. \

i

8.2 RXVP80

The modified triangle program was input to RXVP80 lalong with
the same test cases as previously entered. The DD-PATH, execution
report showed that 100% execution coverage was obtdined (ref
FIGURE 15)! The reason was that VMS was automatically initializing
memory (and therefore MATCH), to zero, and the missing |statement
error was not found. The static analysis capability of RXVP80 was
then used to identify SET/USE errors. @ SET/USE errors occur when

34

00 00000

10
20
30

=200
8

110
200

300

SUBROUTINE TRIANGLE(1,J,K.MATCH)

integer i,j,k,match

MATCH is output from the subroutine:
MATCH = 1 IF THE TRIANGLE IS SCALENE

 MATCH =2 IF THE TRIANGLE IS ISOSCELES

MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
MATCH =4 IF NOT A TRIANGLE

After a ¢ ., - -~onfirmation that it's a legal

triangle, uuicct any sides of equal length

IF(I.LE. 0.OR J .LE. 0 .CR. K .LE. 0) GOTO 500 .
MATCH = ? -- MISSING STATEMENT

IFANEJ) .0 10
MATCH=MATCH+1

IF (ILNE.x) GOTO 20
MATCH=MATCH+2

IF J.NEK) GOTO 30
MATCH=MATCH+3

IF (MATCH.NE.0) GOTO 100

Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LEK) GOTO 500

IF (J+K.LE.I) GOTO 500

IF (I+K.LE.J) GOTO 500

MATCH=1

Return

Confirm it's a legal triangle before declaring
it to be isosceles or equilateral
IF (MATCH.NE.1) GOTO 200

IF (i+J.LE.K) GOTO 500
MATCH=2

RETURN

IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500

GOTO 110

IF (MATCH.NE.3) GOTO 400

IF J+K.LE.I) GOTO 500

GOTO 110,

MATCH=3

RETURN

Can't fool this program, that's not a triangle
MATCH=4

RETURN
END

TRIANGLE PROGRAM (MISSING STATEMENT)
FIGURE 13

35

s 53 5 Sy ‘ Bk o R RS e A A L R R MR R o R I A R PR it
TYPLE GENERATED LIVE %LIVE EQUI DEAD
glr 128 40 31.3 0 88
rsr 37 10 27.0 0 27
san 37 10 27.0 0 27
sdl L 40 11 27.5 0 29
TOTALS 242 71 29.3 0 171
CLASS GENERATED Ll Y_E %LIVE EQUIV DEAD
ary 0 0 0.0 0 0
‘con 0 0 0.0 0 0
ctl 165 50 30.3 0 115
dmn 0 0 0.0 0 0
opm 0 0 0.0 0 0
prd 0 0 0.0 0 0
scl 4] 0 0.0 0 0
stm 77 21 27.3 0 56
SUPERCL || GENEFRATED LIVE BLIVE EQUIV DEAD
all 242 71 29.3 0 171
cca 0 0 0.0 0 0
pda 0 0 0.0 0 0
sal 242 71 26.3 0 171

MOTHRA - STATEMENT ANALYSIS MUTANTS
MISSING STATEMENT ERROR

TABLE 7

36

olokoNoXoleoKe!

10
20
30

TR RALREIE BRI I R

SUBROUTINE TRIANGLE(I,J,K,MATCH)

integer i,j.k.match

- MATCH is output from the subroutine:

MATCH = 1 IF THE TRIANGLE IS SCALENE

MATCH =2 IF THE TRIANGLE IS ISOSCELES

MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
MATCH = 4 IF NOT A TRIANGLE

After a quick confirmation that it's a legal
triangle, detect any sides of equal length

IF (I .LE. 0 .OR.J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH = 0 -- MISSING STATEMENT

IF (ILNE.J) GOTO 10
MATCH=MATCH+1
IF (LNE.K) GOTO 20
MATCH=MATCH+2

" IF J.NE.K) GOTO 30

MATCH=MATCH+3
IF (MATCH.NE.0) GOTO 100

Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500 '

rsr 142 # RETURN

san 179 # *** TRAP ***

sdl 216 # CONTINUE

rst 143 # IF (I + J) .LE. K) RETURN
san 180 # IF (I + J) .LE. K) *** TRAP ***
sdl 217 # IF (I + J) .LE. K) CONTINUE
gir 41 # IF (I + J) .LE. K) GO TO 400
gir 42 # IF (I + J) .LE. K) GO TO 300
gir 43 # IF (I + J) .LE. K) GO TO 200
gir 44 # IF ((I + J) .LE. K) GO TO 110
glr 45 # IF (I + J) .LE. K) GO TO 100
glr 46 # IF (I + J) .LE. K) GO TO 30
gir 47 # IF (1 + J) .LE. K) GO TO 20
gir 48 # IF (I + J) .LE. K) GO TO 10
IF (J+K.LE.I) GOTO 500

rstr 144 # RETURN

san 181 # *** TRAP ***

sdl 218 # CONTINUE

rsr 145 # IF ((J + K) .LE. I) RETURN
san 182 # IF ((J + K) .LE. I) *** TRAP ***
sdl 219 # IF (J + K) .LE. I) CONTINUE
gir 49 # IF (J + K) .LE. I) GO TO 400
gir S0 # IF (J + K) .LE. I) GO TO 300
gir 51 # IF (J + K) .LE. I) GO TO 200

#

glr 52 IF (J + K) .LE. I) GO TO 110

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
MISSING STATEMENT ERROR

FIGURE 14

37

R R AR AT e S S e 7

_eme
3

il t

BRI I

D e e T e

glr 83 # IF (J + K) .LE. D) GO TO 100
glr 54 # IF (J + K) .LE.) GO TO 30
glr 55 # IF (J + KY .LE. I) GO TO 20
glr 56 # IF (J + K) .LE. D) GO TO 10
IF (I+K.LE.J) GOTO 500

rsr 146 # RETURN

san 183 # *2* TRAP #**
sdl 220 # CONTINUE

rsr 147 # IF (I + K) .LE. J) RETURN
san 184 # IF (I + K) .LE. J) *** TRAP *#*
sdl 221 # IF (I + K) .LE. J) CONTINUE
glr 57 # IF (I + K) .LE. J) GO TO 400
gir 58 # IF (I + K) .LE. J) GO TO 300
glr 59 # IF (I + K) .LE. J) GO TO 200
gir 60 # IF (I + K) .LE. J) GO TO 110
gir 61 # IF (I + K) .LE. J) GO TO 100
gir 62 # IF (I + K) .LE. J) GO TO 30
glr 63 # IF (I + K) .LE. J) GO TO 20
glr 64 i IF ((I + K) .LE. J) GO TO 10
MATCH=1

rsr 148 # RETURN

san 185 # ¢¥* TRAP *#**

sdl 222 # CONTINUE

Return

sdl 223 # CONTINUE

Confirm it's a legal triangle before
or ecquilateral

declaring it to be isoscecles

IF (MATCH.NE.1) GOTO 200

IF (I+J.LE.K) GOTO 500

MATCH=2

RETURN

IF (MATCH.NE.2) GOTO 300

IF (I+K.LE.J) GOTO 500

rsr 156 # RETURN

san 193 # ¢** TRAP #»*

sdl 232 # CONTINUE

rsr 157 # IF (I + K) .LE. J) RETURN
san 194 # IF (@I + K) .LE. J) *** TRAP #**»
sdl 233 # IF ((I + K) .LE. J) CONTINUE
gir 89 # IF (0 + K) .LE. J) GO TO 400
gir 90 # IF (I + K) .LE.) GO TO 300
gir 91 it IF (I + K) .LE. J) GO TO 200
gir 92 # IF (I + K) .LE. J) GO TO 110
gir 93 # IF (I + K) .LE. J) GO TO 100
glr 94 # IF (I + K) .LE. J) GO TO 30
glr 95 # IF (I + K) .LE. J) GO TO 20
glr 96 # IF (I + K) .LE. J) GO TO 10

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS

MISSING STATEMENT ERROR

FIGURE 14 (continued)

38

B T

300

500

LA R B R B X X X % %

gir 97 # GO TO 500
gir 98 # GO TO 400
gir 99 # GO TO 300
gir 100 # GO TO 200
gir 101 # GO TO 100
gir 102 # GO TO 30
gir 103 # GO TO 20
gir 104 # GO TO 10
rsr 158 # RETURN

san 195 # ~*** TRAP ***

sdl 234 # CONTINUE
IF (MATCH.NE.3) GOTO 400
IF J+K.LE.I) GOTO 500
GOTO 110
MATCH=3
RETURN

Can't fool this program, that's not
MATCH=4

RETURN

END

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
MISSING STATEMENT ERROR ’

FIGURE 14

39

a triangle

(continued)

+x 007007 Q3INDOIXT INIDYIG #=»
62 - Q3LNOIXT SHIVYI-AA 30 ¥IGWNN TYIOL
0 = Q3LNO3IXA LON SHIVA-Ad IO YIGHAN TVIOL

522 = STYSYIAVY] HIVd-Ad JO HIAGHAN TYIOL
1 v ! 62 | XXXXX | | 62
[4 l 82 | x | 1 82z
I s | Lz | XXXXXX | | Le
Iz } 9z { Xx | i 9z
11 | G2z | X | ! (¥4
1 ¢ | (&4 | Xx |] 1 X4
I € | %4 | XXXX | 1 €2
I L J 2z | XXXXXXXXX | 1 zZz
(I S | 12 | X i | 12z
Iz l 0z | XX | | 0z
[| 61 | XXXX | | 61
| o1 ! 81 | XXXXXXXXXXXXX | | 81
1 s | Lt | XXXXXX | I LI
[S | 9T | X | | 91
1 9 | ST i XXXXXXXX | | 31
1 T | vl (I X | | A
I ¢] €T | XXXXXXXXX | i [
Iz [zt | XX | { 1
I 6 | 11 1 XXXXXXXXXAXX | | 14 ¢
- €1 | 01 | XXXXXXXXXXXXXXXXX | | (134
I L. | 6 | XXXXXXXXX | { 6
| ST | 8 | XXXXXXXZXXXXXXXXKEXX | 8
1 s | L i XXXXXX | | L
I] 9 | XXAAXKXKXKX XX XXXXARXXKNXK | | 9
I g Il g | XXX¥XX | i S
[A S { v 1 XXXXXXAXKXXXXXXXXXXXXXX | | 4
1 22 | € | XXAXKXXX XX XX XK XX XX KK XKXKXKXKKX | | €
I 61 | rA | XXXAXXXXXXXXXXXXXXXX | { 4
1 L€ | T [JD10.0.0.6.00.0006000800 0000000000600 00000000000000000066d | T
| | | ! !
| STYSHIANIL | WIGWONN | 00T-~----- “08----m-— ‘09 -0 M TAT TR T ° | Q3INO3AXI ION | NWIGHAN
1 J0 Y3IdWON | HIvd-aqg | (RNHIXYH Ol Q3ZITYWMON} SNOIINDIAXI JO0 WISHNN | WIAGRON | Hl¥d-aa

ITONVINL ITOAOW HOd

DD-PATH EXECUTION
(MISSING STATEMENT ERROR)

FIGURE 15§

40

variables are used before being assigned a value. None were found.
RXVP80 reports showed that MATCH was set to a value via the
statements MATCH = MATCH + 1, MATCH = MATCH + 2, and
MATCH = MATCH + 3 and therefore, as far as RXVP80 was concerned,
MATCH was set before being used. This shows a limitation of the
SET/USE capability of RXVP80!

9.0 COMPUTATION ERROR

The triangle program was modified such . that statement 19,
MATCH = MATCH + 1 was changed to MATCH = MATCH - 1 (ref

FIGURE 16).

9.1 MOTHRA

Using MOTHRA, the class of mutants that belong to statement
analysis was selected. There were 243 mutants created for the
triangle subroutine. At the end of the set of test case inputs, 15
mutants remained alive. Looking at each mutant, one was
equivalenced since MATCH was always equal to 2 at that point in the
program. There were then 14 live mutants remaining (ref TABLE 8).
Examination of the location of the mutants in the program (ref
FIGURE 17), showed that this was the result of the false branch of the
predicate: IF (MATCH .NE. 1) never being executed (i.e., MATCH is
never equal to 1). Therefore, it was necessary to check statements
where MATCH is assigned values. Checking back in the program it
was found that at:

line # 23, MATCH = MATCH + 3
line # 21, MATCH = MATCH + 2
line # 19, MATCH = MATCH - 1
line # 17, MATCH = 0

Since MATCH is originally set to zero, it never gets set to 1 on
any of the subsequent branches. It was determined that MATCH
could be set to one if: the false branch of IF (I .NE. J) is taken and
MATCH = MATCH - 1, resulting in MATCH = -1 and then the false
branch of IF (I .NE. K) is taken and MATCH = MATCH + 2 resulting in
MATCH = 1. However, for these two conditions to be false, I would
be equal to J and I would be equal to K, which means that J would be
equal to K and the false branch of IF (J .NE. K) would be taken and
MATCH = MATCH + 3 would be executed resulting in MATCH = 2.

41

00 00000

10
20
30

=00
=

110
200

300

SUBROUTINE TRIANGLE(1,J,K,MATCH)
integer i,j,k,match

MATCH is output from the subroutine:
MATCH = 1 IF THE TRIANGLE IS SCALENE
MATCH =2 IF THE TRIANGLE IS ISOSCELES
MATCH =3 IF THE TRIANGLE IS EQUILATERAL
MATCH =4 IF NOT A TRIANGLE

After a quick confirmation that it's a legal
triangle, detect any sides of equal length
IF (I .LE. 0 .OR.J .LE. 0 .OR. K .LE. 0) GOTO 500
MATCH=0 :

IF (ILNE.J) GOTO 10

MATCH=MATCH-1 .- COMPUTATION ERROR
IF (LNE.K) GOTO 20 ‘
MATCH=MATCH+2

IF (J.NEK) GOTO 30

MATCH=MATCH+3

IF (MATCH.NE.O) GOTO 100

Confirm it's a legal triangle before declaring it to be scalene
IF (I+J.LE.K) GOTO 500

IF (J+K.LE.I) GOTO 500

IF (I+K.LE.J) GOTO 500

MATCH=1

Return

Confirm it's a legal triangle before declaring
it to be isosceles or equilateral
IF (MATCH.NE.1} GOTO 200

IF (I+J.LE.K) GOTO 500
MATCH=2

RETURN

IF (MATCH.NE.2) GOTO 300

IF (1+K.LE.J) GOTO 500

GOTO 110

IF (MATCH.NE.3) GOTO 400

IF (J+K.LE.I) GOTO 500

GOTO 110

MATCH=3

RETURN

Can't fool this program, that's not a triangle
MATCH=4
RETURN
END
TRIANGLE PROGRAM (COMPUTATION ERROR)

FIGURE 16

42

i
&
<8
B8
o8
N
bl
i
Uiy
By
h
%
i
-
h
":k
&
i3
.l:.)

S N g RS LI T R

.....
B

TYPE

glr
IST
san
sdl

%LIVE _

EQUIV

DEAD

GENERATED
[128

38

36 .

41

6.3
5.3
5.6
4.9

120
35
34
39

TOTALS

243

5.8

ol | L R L]

228

CLASS

LIVE

%LIVE

EQUIV

ary
con
ctl
dmn
opm
prd
scl
stm

77

PO OCOOCOOCO

0.0
0.0
6.0
0.0
0.0
0.0
0.0
5.2

CO OO O =

il S SRR TR e S e 9 T Tt B g N LR T g T T e B T e

[SUPERCL]| GENERATED]| LIVE %LIVE EQUIV DEAD
all 243 14 5.8 1 228

cca 0 0 0.0 0 0

pda 0 0 0.0 0 0

sal 243 14 5.8 1 228 =

L

&

MOTHRA - STATEMENT ANALYSIS MUTANTS
COMPUTATION ERROR
TABLE 8
43
\ /(2 /.~ ! S . - T“‘ o

a0 O000n

10
20
30

=00
3

110

HEBRHRBER BRGNS

SUBROUTINE TRIANGLE(1J,K,MATCH)

integer

i,j.k,match

MATCH is output from the subroutine:
MATCH = 1 IF THE TRIANGLE IS SCALLENE
MATCH =2 IF THE TRIANGLE IS ISOSCELES
MATCH = 3 IF THE TRIANGLE IS EQUILATERAL
MATCH = 4 IF NOT A TRIANGLE

After a quick confirmation that it's a legal
triangle, detect any sides of equal length
IF (I.LE. 0 .OR.J .LE. 0.CR. K .LE. 0) GOTO 500
MATCH=0
IF (I.LNE.J) GOTO 10 ‘
MATCH=MATCH-1 -- COMPUTATION ERROR
IF (LNE.K) GOTO 20

MATCH=MATCH+2

IF (J.NE.K) GOTO 30

MATCH:=MATCH+3

IF (MATCH.NE.0) GOTO 100

Confirm it's a legal triangle beforc declaring it to be scalene
IF (I+J.LEK) GOTO 500

IF (J+K.LE.I) GOTO 500

IF (I+K.LE.J) GOTO 500

MATCH=1
Return

Confirm it's a legal triangle before declaring it to be isosceles

or equilateral

IF (MATCH.NE.1) GOTO 200
IF (I+J.LE.K) GOTO 500

rsr
san
sdl
rsr
san
sdl
gir
gir
gir
gir
gir
gir
glr
gir

152
188
227
153
189

#
#

#
#
#
#
#
#
#
#
#
#
#
#

MATCH=2

MOTHRA -

RETURN
*: TRAP L E2

CONTINUE

IF ((I + J) .LE. K) RETURN
IF (I + J) .LE. K) *** TRAP ***
IF ((I + J) .LE. K) CONTINUE
IF (I + J) .LE. K) GO TO 400
IF (I + J) .LE. K) GO TO 300
IF ((I + J) .LE. K) GO TO 200
IF (I + J) .LE. K) GO TO 110
IF (d + J) .LE. K) GO TO 100
IF (I + J) .LE. K) GO TO 30
IF (I + J) .LE. K) GO TO 20
IF (I + J) .LE. K) GO TO 10

"LIVE" STATEMENT ANALYSIS MUTANTS
COMPUTATION ERROR

FIGURE 17

44

200

300

RETURN ‘

IF (MATCH.NE.2) GOTC 300
IF (I+K.LE.J) GOTO 500
GOTO 110 C

IF (MATCH.NE.3) GOTO 400
IF J+K.LE.I) GOTO 500
GOTO 110

MATCH=3

RETURN

Can't fool this program, that's not a triangle
MATCH=4

RETURN

END

MOTHRA - "LIVE" STATEMENT ANALYSIS MUTANTS
COMPUTATION ERROR

FIGURE 17 (continued)

45

Therefore, it was clear that MATCH never stays equal to 1 for this
program. Upon closer examination, it was seen that this was a result
of one of the assignment statements being in error and it was found
that MATCH = MATCH - 1 on line 19. It should be MATCH = MATCH +
1, therefore the error was found.

9.2 RXVP80

The modified triangle program was input to RXVP80, using the
same set of test cases in addition to several new test cases. The DD-
PATH execution report showed that DD-PATHs 19, 20, and 21 were
not executed (ref FIGURE 18). Examination of the DD-PATHs not
traversed showed that this was the result of DD-PATH 19 never
being taken. This meant that MATCH was never equal to one. As in
the MOTHRA system, the statements where MATCH is assigned a
value were examined. These statements were as follows:

MATCH = MATCH + 3 on DD-PATH 9
MATCH = MATCH + 2 on DD-PATH 7
MATCH = MATCH - 1 on DD-PATH 5
MATCH =0 on DD-PATH 3

For the reasons stated in the previous MOTHRA section, it was clear
that one of the assignment statements (i.e., MATCH = MATCH - 1) was
in error. Aggzin, the error was found.

10.0 CONCLUSION

Both tools performed very well. It was felt that RXVP80 was
easier to learn and use, and easier to find the error types that were
created. The DD-PATH concept is very clear and the graphical chart
that was manually created aided understanding of this test
technique. The DD-PATH concept has been used on many large-scale
software development efforts and has proven its usefulness.

MOTHRA is a newer and much more complex system (but a
more powerful testing system). It was more difficult to learn and
use and very time consuming to equivalence mutants. With so many
mutants being created, especially for the Predicate and Domain
mutant class, using MOTHRA was difficult to detect the errors.
Except for the Missing Statement Error, RXVP80 found the errors and
displayed them to the tester in a more understandable manner.
Overall, while mutation testing certainly has the potentiai to surpass

46

*x 99768 QIINDIXI INIDUIJ ws .
9z = a31n03x3 SHIVA-Ad JO YAGHON TYIOL
£ = QILNOIXI ION SHIVA-(d IO WAEHON TYIOL
sz2 = STYSHIAWNL HI¥d-Ad JO ¥IEWAN TVIOL
I v I 62 | XXXXX | { 62 o~ 3
|z I 8z | XX | | 82
1 9 1 Lz I XXXXKXXX | 1 Lz
i I | 9z | XXXXX | | 92z
I | (N -4 | X | | Y4
Iz I ¥ | xx | | %4
I € | €2 | XXXX | | (%4
I ot 1 zz | XXXXXXXXXXXKXX | ! ze
; | | | | (tz) | -
A — _ . v s . — — * o0 0 — .o 00 -
: [| [_ 61) | ~
I €1 I 81 ! XXXXKXXKXXXKXXXXKXXX | ! 81 z W ;
@ 1 6 VA S 1 XAXXXXX | ! LT O
It | 91 I X | 1 91 =
1 9 1 st | XXXAXXXX | I ST DR e
. bt (S 3 | x| | 141 Q, -
I L et | XXXXXXXKXX | I et 80 ®m
bz Izt _ xx |] HE & <
I 6 A S XXXXXXXXXXXX | o1 =<
i €1 ! ot | XXXXXXXXXXXKXXXXXX | | ot RO
I 8 I 6 I KXXXXXXXXXX | I 6 <P
2 1 8 | XXKXXXXXXXKXXXXXKKXX | | 8 B =
i s I ¢ | XXXXXXX | | L Qs
(A | 9 ! XXXXXXXXXKXXHXXXAKKXXXXK | | 9)5
e | S | _ XXXXX | | S ~ :
1 8t i v | XXXXXXXXXXXXXXKXXXAXKKXXK |] v ,
| i ze I € I XXXXXXXXXXXXXKXXXXXXXXKXXKKXXXK | 1 € /
=~ I €1 | 2 | XXXXXXXXXXXXXXKXXX | 1 z -
I g€ (. & I XXXAXAXKRXXXKXXXXKX XK XXX XKLXXKAXXXXXKXXXKXXXXKKNKKK | | 1
I | | | | Do
| STUSYIAVEL | WIEWON | 00T----—- *08-m-mmmm *09-mmmm—m 1] ST g [A — © | Q3INOAX3 ION | WIGHON Nooa
I JO ¥3EWNN | HIvd-ad | (HOHIXYH OL Q3IZITVWHON) SNOILNDIXA JO WIARAN ! YIAERON | Hiva-aa e
— B
S3ISYD 1531 GE d40 SITNSIY FAATIVINHAD .
ITONVINL TTIOAOH ¥Od Lo
L8043y QATIVIIA FAIIVINRND HIAZATUNY HIVA :

all other forms of testing, for certain classes of errors (i.e., missing
statement errors), the much easier to use static and dynamic style of
testing provides comparable results.

Mutation Testing's different mutant operators, however, allow
an extremely thorough testing strategy and is especially important
for testing mission critical applications. It allows testers to match the
degree of testing to the criticality of the application and the amount
of resources available for testing. Its statement mutants allow it to
provide statement level coverage, which overlaps RXVP80's

capabilities.

Future work is planned to enhance the MOTHRA system and
ensure a more usable testing system. As a result of this testing
project, recommendations for enhancements include:

Automated support to determine equivalent mutants, If all

classes of mutants are enabled, there are on the order of N2 mutants
created for an N line computer program! A significant number of
these, as shown in the test sample, may be equivalent to the original
program. Determining equivalent mutants is a time consuming
process and requires detailed knowledge of the computer program.
It could be very difficult for an independent tester to determine if a
program is equivalent as intimate knowledge of the details of the
program are necessary. This limits the variety of personnel that can
easily use the tooi. Automated support for determining equivalent
programs would significantly increase the usability of the tool.

State-of-the-art user interface MOTHRA's current menu

driven user interface, while adequate, should be more helpful in
guiding users through the proper sequence of steps necessary to
execute the tool. ° Determining the proper sequence to create the
mutants, execute the program with/without mutants, compare the
expected output with the mutant program's output, equivalence
programs, ctc. should be part of the tool's user interface. It should
display the menus with those options applicable only at that point in
time in the testing process. This would ensure that a user would not
be allowed to, for example, perform equivalence functions without
first creating mutants, and/or execute the mutant program without
saving the correct output results. In addition, on-line help at each
menu option should also be available to explain each menu option,

48

/
‘./.
/

Test _case generation, Automated support to provide additional

test cases to kill the remaining mutants would also enhance the tool's
usability. Currently, test case generation, is a manual process which
is assisted by the results of various MOTHRA reports which display
the type of live mutants, number of equivalenccd mutants and dead
mutants. From this information, the user must deduce which test
case(s) may kill those particular mutants. Automating the generation
of test cases would relieve some of the burden from the user. While
100% automation may not be possible, some support would increase
overall productivity of the tester and allow the testing process to be
completed in a shorter time frame. This enhancement is applicable
not only to MOTHRA but to most all testing tools (including RXVP80)
and research is currently being performed in this area by academia,

industry, aud government.

#U.S. GOVERNMENT PRINTING OFFICE: 1993-710-093-60135

49

MISSION
OF
ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transitlon in support of Air
Force Command, Control, Communications and Intelligenc_e (Csl) activities
for all Alr Force platforms, It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of Cat systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Alr Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, {ntelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, zlectromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

