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Abstract
We consider the problem of reconstructing Jacobi matrices and real

symmetric arrow matrices from two eigenpairs. Algorithms for solving
these inverse problems are presented. We show that there are reasonable
conditions under which this reconstruction is always possible. Moreover,
it is seen that in certain cases reconstruction can proceed with little or
no cancellation. The algorithm is particularly elegant for the tridiagonal
matrix associated with a bidiagonal singular value decomposition.
Keywords: Jacobi matrix, Arrow matrix, inverse problem.

1 Jacobi matrices
Let T be an unreduced real symmetric tridiagonal matrix (i.e. a Jacobi
matrix)

T f -'- B2 " (I)

#n--1 In

with 0, > 0 for i = 1,2,...,n - 1. We use th notation introduced in
[11] and let UST(n) denote the set of n x n real unreduced symmetric
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tridiagonal matrices, and let UST+(n) denote that subset of UST(n)
with positive0,. 0.

We wish to develop an algorithm to reconstruct T from the knowledge
of two of its eigenpairs (A, u) and (ju, v). The eigenvector recurrence for
symmetric tridiagonal matrices is

0,-1u,1-i + a,,, + 3,u,,,i -- Au, (2)
where (A, u) is any eigenpair of T, u, is the ith element of u, and 'Oo
6, = 0. Applying this relation to both eigenpairs gives

Of-iL,-I + aU,. + 0,u,+1 = UI
0

,-0it,4- 1 + nt', 4 0,t',+• = gtn,.

Combining these two ,'quations and eliminating a, gives

,-I(,,,U,-1- U,v,-)) + ,,(u,+Ivi -- v,+ u,) = (A - )u,,v,. (3)

Since Oo = 8- = 0 we get the following initial and terminal conditions

-(u2t'l-V21l) = (A- )st'l (4)
O-](VnUn-I - UnV.-I) - (A,- p)u•V.. (5)

Combining (3) with (4) gives a special case of the Christoffel-Darboux
identity,

0,(,l+ It's - t7,lU,, ) = (A- L7 ) ukv, (6)
I k=1

for i = 1,2,. n - 1. There is also a back ard formula,

(u ,- V,,u,) = -(A+ - gi) • UkV, (7)

which follows from (3) and (5), or from (6) and the orthogonality of the
eigenvectors. In a similar manner, we can show that

2au,v, = (A + p)uv, - 0,-a(u,',.-,I + ,ju,,-,) - 6,%(,+Iv, + ,,+tu,). (8)

This formula uses all of the available information but it is possible to
obtain an equation for the a, using the 6, and a single eigenpair with the
formula

=sio --2-Itv, - 0-,.1v,- - ,8,1V,÷. (9)
We can use these equations to reconstruct the original matrix from the

two eigenpairs provided that no element of the two eigenvectors is zero



and that v,u,.4 , -u,v,+i 6 0 for any: = 1,2,...,n - 1. If this is true, then
the equations for the a, simplify to

2a, = (A +-)- + "- - (."' + u"+ (10)\ I, us V I, ut,

or

u, = -- • -iu'I -,8,u÷l,(11)
Us, U,

Notice that (10) is just the simple average of (11) over both eigenpairs.
Using (11), (6), and (7) we can reconstruct the original matrix in 13n -9
flops,

In order to determine when these formulas can be applied, we need
some additional results. We introduce the following fact from [10].

Fact 1 Let T E UST 4 (n) and assume that the eigenvalues ore ordered
50 that A\ > A2 > ... > An. Then the number of sign changes between
consecutive elements of the kth eigenvector of T, denoted sk, is k - 1.

We refer the reader to [10] for a proof but note that it can be derived
from the Sturm sequence property for the cha',acteristic rolynomials of the
principal submatrices. With this fact in hand we can prove the following
theorem.

Theorem 1 If T E UST+(n) and iu (A,u) and (Mv) are the extremal
eigenpairs of T, that is A = A, and it = An, then v,u,+4 - ,,i,+l $ 0 for
anyi=l,2 ._n- 1.

Proof. The proof follows trivially b. noting that the strict interlacing
property for unreduced symmetric tridiagonals (see [12] p, 300) guaran-
tees that none of the numbers u,, us , v., v,+4 can be zero. And, since u,
and u,+1 must have the same sign and vt, and v,+, must have opposite
signs (from fact 1), it follows that both terms in u,v,41 - vu,4 1 have
opposite signs and are nonzero so this difference is really a sum of two
strictly positive (negative) numbers and hence is not zero. 0

Hence, if we choose the two extremal eigenpairs of a given element of
UST, we can always reconstruct the original matrix using the formulas
above. Notice that the denominator is computed without cancellation in
this case because of the sign pattern. Moreover, if we use the smallest
(largest) eigenpair in (9) to get the a,, then these can be reconstructed
from the derived 6, and the data without further cancellation if the matrix
is positive (negative) definite. If the matrix is indefinite then there is only
one udditional cancellation for each of the a,. If the matrix is singulai
then choosing the eigenvector associated with the zero eigenvalue prevents
further cancellation.

Note that any element of UST(n) has exactly 2n - I real degrees of
freedom and that two eigenpairs contain 2n + 2 numbers but, in fact, also
have 2n - I real degrees of freedom since there are two arbitrary scaling
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parameters for the eigenvectors and a single orthogonality condition. The
eigenpairs contain precisely the right amount of information.

This algorithm is especially robust when applied to the tridiagonal
matrix associated with the bidiagona] SVD. It is well known [7] that the
Jordan-Lanczos matrix

A [0 B7']

A=[ B 0 ]112)

where B E R?... is an unreduced bidiagonal with positive elements, can
be reduced via the perfect shuffle to an unreduced tridiagonal T of the
form

0 0 1

01 0 8

T = 2 (13)

"I. 'i n-I

The matrix T is 2n x 2n and its eigenvalues occur in plus-minus pairs.
It is not difficult tc show that if (A, u) is an eigenpair of T then (-A, Su)
is also an eigenpair where S is diagonal with I and -1 alternating as the
diagonal elements. The reconstruction formula for this matrix simplifies
considerably since we need only a single eigenpair. In particular, the 0,
are given by

, =-W-)' (14)

As a special case of the more general algorithm it is obvious that the
denominator u,+.fu, is not zero provided we use the eigenvector associated
with the largest eigenvalue. Ever% more intriguing is that, provided none
of the principal submatrices shares an eigenvalue with the full matrix,
this denominator will be non-zero for any eigenpair since in this case no
element of any eigenvector can be zero. In other words, the reconstruction
from any eigenpair is well-posed provided that the given eigenvector has
no zero elements. The algorithm requires 5n - 7 flops working with (14)
and the backward equation

(- I)'÷|A (1+.(15)

Notice that this matrix has only n - I real degrees of freedom which
is exactly what is given by one eigenpair since the eigenvector contains
an arbitrary scaling parameter and must satisfy the special orthogonality
condition

4



0-l)' 0. (16)

We point out that this algorithm can be interpreted as the reconstruc-
tion of an unreduced bidiagonal B from its largest singular value and both
associated singular vectors.

2 Arrow Matrices
We can reconstruct the arrow matrix in a similar manner to that given
above. The arrow is of some importance as it occurs in certain divide and
conquer schemes for finding the eigenvalues of a tridiagonal matrix (1, 8].
The arrow is also an element of the class of symmetric &cyclic matrices
(as is the Jacobi matrix) and hence it is possible to find its eigenvalues
with "tiny componentwise relative backward error", [5].

The general form of an arrow matrix is

0r1

A = '.- (17)

If 6, $ 0 for i 2, ... , n I and if, # a, for any i # then
we shall say that A E USA(n). where UV.'.ý n) is the set of unreduced
symmetric arrow matrices. Proceeding ;, before, we let (A, u) and (p,.v)
be two eigenpairs of A. The eigenvecto, recurrence is

,., + n = Au, (18)

at, + 0,t' = Pvt (19)

for i = 1,2,..., n - 1. Moreover, the eigenvector relation also gives

= p~..LZo.(20)
ton

for any eigenpair (p, v) of A. If we combine (18) and (19) and eliminate
0, we get

,(,. - U,v.) = (A - P)u,t,,. (21)
Similarly, eliminating 0, gives

a,(V,Un - utV) 2- #vu. - Au,v.. (22)

This gives a very simple, easily vectorizable reconstruction algorithm.
The only remaining question is whether the quantities Vn., - unv, are all
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nonzero. In order to -how that this is true under the correct conditions, we
need to first establish some facts about the eigenvectors of an unreduced
.arrow matrix. We begin by noting that

A -A]= D-I A. (23)

where D =daaio . ,.),and b =fi8. ,T Following
(8] we compute the Gauss factorization

1' D-I )A ]=[b7(D- A)-r' ] I O - f(A)]
(24)

where f, the spectrul function, is given by

f (A)(25)

From (24) and (25) the zeros of f are the eigenvalues of A. Further-
more, if A is unredtced, then the eigenvalues of A are strictly interlaced
by the a,. It follows that the eigeiivector associated with A is

V(A)= (Al -D)-'b 3(26)
Note thit distinctness of die a, is critical since it guarantees that (Al- D)
is nonsiiigular. Combining this description of the eigen'iectors with the
fact that the a, interlace the eigenvalues, we have the following fact

Fact 2 Let A be an unreduced arrow- inatrux with 0. > 0 for i = 1,2,..., n
1. Then the folluwtng hold.

1. If u is any, eigent'ector of A then u, $ 0 for any i= 1, 2,i

2. If we order the eigenvalurs of A so that As > A2 > ... > A". and
let us, be the eigenvector, from (26), associated with Ak, then the
first k - I elements of us, are less than zero, and the last n - k +4 I
elements are grr-ater than zero.

Proof. The proof of the first fact follows directly from formula (26)
and the interlacing property. The second fact follows from formula (26),
the interlacing property, and the positivity of the fl.. 0

This simplifies the reconstruction formula since, if we assume that the
eigenvectors are normalized so that their last elements are equal to one,
the reconstruction formulas can be rewritten as

(p~~ .)



(p - ,A)u, t', (7

,, - V( ")

Using tiaese formulas, we can reconstruct the arrow matrix in ]On - 8
flops. Under the previously mentioned conditions, it is easily shown that
none of the denominators in the reconstruction formula are zero and hence
we can always reconstruct the matrix from two eigenpairs.

Theorem 2 If A is an unreduced arrow matrix, and if A and p are any
two distinct eigenvalues of A u-sth associated eigenvectors u and v, nor-
rmalized to have their last elements equal to one, then u, - v, 3 0 for
i = 1,2 .... i - I.

Proof. Assume that u, = v,. The eigenvector relation implies that

I. V , (28),
which implies that A = p, but this contradicts the distinctness of the
eigenvalues. Hence, it follows that u, 0t v,. 0

The reconstruction algorith'm has another very important property: if
the two extremal eigenpairs (Oi and A. and their associated eigenvectors)
are used, then the 8. can be found, up to the scaling factor A, - A,
without cancellation. This follows from the fact that if the corresponding
eigenvectors are normalized so that their last elements are both one, then
all the remaining elements must have opposite signs. This is fortuitous
since it means that the differences that appear in the denominator do not
involke ca.icellation. Moreover, if A is indefinite there are no cancellations
whatsoever in computing the/0,. Conversely, if A is definite there are no
cancellations in computing the or,. If A is semi-definite (and singular)
then there is no cancellation at all, including the computation of Y'. The
computation of -r involves one cancellation if the matrix is indefinite, and

none if it is definite, or semi-definite, provided we choose the correct eigen-
vector for its computation. In any case, whenever there is cancellation in
this algorithm, it is benign.

3 Breakdown of the Jacobi reconstruc-
tion
On seeing that the reconstruction algorithm for the arrow is well posed
for any two eigenpairs, it is tempting to believe that this might also be
the case for the Jacobi matrix algorithm since the same conditions apply
- unreduced, no principal submatrix shares an eigenvalue with the full
matrix. Unfortunately, it is not true. Consider the matrix
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r 6 2 0 0]

2 4 5 0 (29)0 5 4 2
0 0 2 6

which is an element of UST+ and satisfies the condition that no principal
submatrix shares an eigenvalue with the full matrix. The eigenvalues of
this matrix are 10, (5 + VrT)/2, 5, (5 - v/(6)/2 and the eigenvectors
associated with 10 and 5 are [1 2 2 1]T snd [-2 1 1 - 2]7", respectively.
Note that the reconstruction algorithm breaks down for these two eigen-
pairs and cannot uniquely determine 02. Some manipulation of the scalar
equations shows thaý the two eigenpairs in question are eigenpairs of any
matrix of the form

[6 2 0 0
2 9 - 0 (30)o0 . 9-' 2
0 0 2 6

Fortunately, we can say a few things about breakdown. First of all,
if the algorithm breaks dwn in the cc1putation of 0, then it cannot
Lreak down in the computation of 0,-i or 6,+1 since this implies that
two distinct eigenvalues share the same eigenvector. Second, if there is a
breakdown then it is possible to reconstruct a parametrized matrix with
the specified eigenpairs by setting 8, = -f and solving for a, and a,+,
in terms of -y. Setting -y = 0 will yield a reduced tridiagonal with the
specified eig-_npairs.

4 Stabilizing divide and conquer algo-
rithms
We note that there are several other important inverse problems for the
symmetric arrow matrix. Of interest, is the reconstruction of the sym-
metric arrow front the eigenvalues and the shaft of the arrow (i.e. the
elements a,). In this case it is also possible to reconstruct the arrow in
a straightforward manner since we need only determine the 0, and the
element -f. Clearly, we can obtain -t from the trace formula, that is

w n--I

'Y ZA, Of (31)

The 6, can b( computed directly since the -# are the residues (if the
partial fraction decomposition

( I(') r.1 (-,) .A (32)
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Thus we have

'8' = link (ok - A)f(A) = -- - A,))-01-, (,- a,) (3

This algorithm is used in [3] for the reconstruction of a periodic Jacobi
matrix. It can also be applied to stabilize the extension based tridiagonal
divide and conquer algorithms [1, 8].

We note that this is very similar with the inverse problem first con-
sidered in [2] and then used in [9] to stabilize the modification based
Cuppen-Dongarra-Sorensen algorithmn [4. 6]. In particular, the zer's of
the spectial function

f(A) = +2. 3z (34)

are the eigemvalues of D + bbT. The authors of, [9] show that loss of
orthogonality ir, computing the eigenvectors can be avoided by using the
computed eigenvalues A, in the reconstruction formula

and theni computing the eigenvectors of D + b Ifrom their explicit ex-
pressions. The enlightened use of shifts of the origin [9] is crucial to both
algoritlhms.

5 Acknowledgements

The first and third authors were supported by direct grant from the Naval
Postgraduate School. The third author also acknowledges support from
the Interdisciplinary Project Center for Supercormputing at the ETH.
Zfirich.

References
[1] P. ARBENZ, Divide and conquer algorithms for the bandsymmctric

eigenvalue problem, in Parallel Computing '91 (D.J. Evans, G.R. Jou-
bert and H. Liddell, editors), Elsevier Science Publishers B.Y., Ams-
terdam, 1992, pp. 151-158.

[2] J.L. BARLOW, Error analysis of update methods for the symmetric
eigenwlue problem, SIAM J. Matrix Anal. Appl., to appear.

[3] D. BOLLY AND G.II, GOLUB, A modified method for reconstructing
periodic Jacobi matrices, Math. Comp., 42, 165, (1984), pp. 143-150.

[4] J.J.M. CUPPEN, A divide and conquer method for the symmetric tridi-
agonal eigenproblern, Numer. Math., 36, (1981), pp. 177-195.

9



[5] JAMES W. DEMMEL AND W.B. GRAGG, On computing accurate sin-

gular values of matrices with acyclic graphs, Linear Algebra AppI., to
appear.

[6) 3.3. DONGARRA AND D.C. SoRENsEN, A fully parallel algorithm for
the symmetric eigenvalue problem, SIAM J. Sci. Statist. Comput., 8,
(1987), pp. 139-154.

[7] G.I1. GOLUB AND W. K(AHAN, Calculating the singular values and
pseudo-inverse of a matrix, '. Soc. Indust. Appl. Math. Ser. B Numer.
Anal., 2, (1965), pp. 205-224.

[8] W.B. GRAGG, 30JHN R. THORNTON AND DANIEL D. WARNER, Paral-
lel divide and conquer algorithms for the symmetric tridiagonal eigen-
problem and bidiagonal singular vaiue problem, Modeling and Simu-

lation, Volume 23, Proc. 23rd Annual Pittsburgh Conf., Univ. Pitts-
burgh School of Engineering, 1992.

[9] M. GLu AND S.C. EISENST.T, A stable and efficient algorithm for the
rank-one modifiration of the symmetric eigenproblcm, Department of
Computer Science , Yale University, working paper, 1992.

[10] B. PARLETT, The symmetric eigenvalue problem, Prentice Hall Inc.,
New Jersey, 1980.

[11] B. PARLETT AND W.-D. Wu, Eigenvector matrices of symmetric
tridiagonals, Numer. Math., 44 (1984), pp. 103-110.

[12] 3.11. WILKINSON, Tie Algebraic Eigenvaluh Problem, Clarendon
Press, Oxford, England, 1965.

10



DISTRIBUTION LIST

Director (2)
Defense Tech Information Center
Cameron Station
Alexandria, VA 22314

Research Office (1)
Code 81
Naval Postgraduate School
Monterey, CA 93943

Library (2)
Code F
Navy ;tgraduate School
Monr:•- .:, CA 93943

Prc-C' -,)r Richard Franke (1)
Depi..m nt of Mathematics
Naval Pnstgraduate School
Monterey, CA 93943

Dr. Neil L. Gerr (1)
Mathematical Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Richard Lau (1)
Mathematical Sciences Division
Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5000

Harper Whitehouse (Code 743) (1)
NCCOSC RDT&E Division
271 Catalina Blvd.
San Diego, CA 92152-5000

Keith Bromley (Code 7601) (1)
NCCOSC RDT&E Division
271 Catalina Blvd.
San Diego, CA 92152-5000

John Rockway (Code 804) (1)
NCCOSC RDT&E Division
271 Catalina Blvd.
San Diego, CA 92152-5000

Professor Carlos Borges (15)
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943


