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AN APPROACH TO ON-LINE ASSESSMENT AND DIAGNOSIS OF STUDENT

TROUBLESHOOTING KNOWLEDGE

Nancy J. Cooke

and

Anna L. Rowe
INTRODUCIO

As tasks become mote cognitively complex and demand mom specialized skill, training

issues are increasingly critical. The domain of avionics troubleshooting is a good example of such

a task. The cognitive complexity of this task, combined with the personnel downsizing currently

faced by the Air Force, make the role of training even more crucial. Personnel will be required to

become skilled quickly, and their skill will be required to span a broad range of equipment. In

addition, the automatization of many aspects of the troubleshooting task greatly reduces the amount

of time spent manually troubleshooting faults. The difficulties associted with the resulting lack of

troubleshooting experience are particularly apparent when the autowization fails and manual

troubleshooting becomes essential. Training programs need to address these rare, yet critical,

events.

How can training programs meet these requ ts? One approach is through the use of

computerized intelligent tutoring systems. These systems enable individuals to spend time learning

a skill in a one-on-one environment in which a computer takes on the role of a human tutor. Means

and Gott (1988) outline some of the advantages of intelligent tutors, including their ability to

provide the student with vast amounts of problem solving experience in a short period of time.

Historically, the system developed for computer-aided instruction were simply on-line displays of

a series of written instructions. Individualized instrction, if available, was based on whether or

not the student's performance on the instructional material reached a preset criterion. Distinctions

were not made on the basis of underlying student knowledge, specific erors that were made, or

the possible reasons for those errors (Sleeman & Brown, 1982). One goal of intelligent tutoring

systems is to incorporate mort individualized instruction based on a detailed assessment of student

knowledge and diagnosis of cognitive s•engths and weaknesses. Instructional intervention can
then be directed at these strengths and weaknesses. The purpose of the work described in this

paper is to develop a methodology for the assessment and diagnosis of student knowledge.

The problem of assessment and diagnosis for intelligent tutoring systems has been

approached in a number of ways. One approach involves "debugging" a students knowledge after

inferring misconceptions or "mal-rules" from patterns of student ernos (e.g., Burton, 1982;

Stevens, Collins, & Goldin, 1979). Aldtaugh this approach has intuitive appeal, there is some

evidence that errors are not as systema'dc as would be implied by underlying misconceptions
(Payne & Squibb, 1990). Anderson, Boyle, and Reiser (1985) take a different approach and



model student actions in terms of a set of production rules. These rules are then compared to an
ideal student model in order to determine student deficiencies. These approaches and other related
ones all attempt to model the student by mapping either errorful actions or all actions "nto

misconceptions or deficiencies in the student's knowledge. The approaches are also similar in that
this mapping is achieved rationally. That is, the ideal model or rules for scoring are constructed
through an analysis of domain principles, rather than through an empirical investigation of expert

or ideal student behavior. Interestingly, many of the domains studied in intelligent tutoring
research have involved rather abstract, academic subjects such as algebra, geometry, and computer

programming. These topics tend to lend themselves to a rational analysis because they are well-
specified and well-structured problems, typically associated with an organized and well-
documented body of knowledge. Aluiough many of the principles and techniques derived from
such studies may generalize to other similar domains, it is not clear how such findings can be
extended to more complex and concrete domains such as avionics trojbleshooting. In many of
these domains knowledge acquisition is a prerequisite for tutor development (Psotka, Massey, &

Mutter, 1988).
Recently, some assessment work has been carried out in the real-world domain of avionics

troubleshooting (Gitomer, 1992; Pokorny & Gott, 1992). Pokorny and Gott (1992) have devised
an assessment procedure that identifies general deficits in different types of knowledge (i.e.,

system, procedural, and strategic) of airmen tasked with troubleshooting technical electronic
equipment In general, they deduct points from these three different knowledge categories
depending on the errors that the student makes. Note that this is similar to the debugging approach
except that general deficiencies are identified, not specific misconceptions. Gitomer (1992) has

developed a related procedure that involves mapping student actions onto these same types of

deficits. In both of these cases, a cognitive task analysis that involved knowledge elicitation from

subject matter experts was required to determine ideal student behavior.

Likewise, in most real-world domains the first question to be addressed in assessment and
diagnosis is exactly what knowledge is necessary to perform the task? Hall, Gott, and Pokomy
(1991) have developed a procedure called PARI for analyzing the cognitive requirements of a task
for this purpose. The procedure involves a series of structured interviews with subject matter

experts (SMEs) in which a specific problem solution is dissected in terms of its precursors,

actions, results, and interpretations (i.e, PARI). For instance, a PARI analysis of the avionics

troubleshooting domain has indicated that there are several types of knowledge relevant for

successful troubleshooting performance. These types include: (1) system (or how it works)
knowledge, (2) strategic (or how-to-decide-what-to-do-and-when) knowledge, and (3) procedural
(or how-to-do-it) knowledge (Gott, 1989). The assessment and diagnosis of student knowledge

of avionics troubleshooting has been guided by the results of this cognitive task analysis in its
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focus on these three types of knowledge. Optimally, assessment and diagnosis in this domain

would consist of identifying the specific content of student knowledge of these different types and

comparing it to SME knowledge. The problem of identifying the content of knowledge is often

referred to as knowledge elicitation.

The Problem, Eliciting System Knowlede

Evidence exists that suggests that system knowledge may be the most critical of the three
types of knowledge in troubleshooting ill-defined problems in complex systems (Gitomer. 1984).

Although there are probably many situations in which an understanding of how the system works

is not necessary to perform the task (e.g., automated avionics troubleshooting, making a long
distance phone call; Kieras, 1988, Rouse & Morris, 1986), this type of knowledge is assumed to
play an important role, at least for problems that are more ill-defined. Though much can be learned

about procedural and strategic knowledge from observing the actions of a problem solver, it is
much less clear how system knowledge is revealed. FurhermoM, the definition of system

knowledge or, what many refer to as a mental model, is not completely clear, or at the least, agreed

upon (Rouse & Morris, 1986; Wilson & Rutherford, 1989). Despite the lack of a clear definition,

research employing the mental model construct is fairly prolific, with different researchers using

their own operationalizations of the construm The different methods for examining mental models

can be classified into four categories: 1) accuracy and time measures, 2) interviews, 3) process

tracing4protocol analysis, and 4) structural analysis.

A raynd imem a. When this method is used, subjects are given a set of

problems to solve, and problem solving behavior, measured in terms of time and errors, is

examined to make inferences about mental models. Accuracy and/or latency measures of problem
solving performance have been used to make inferences about mental models about physics

(Clement, 1983; McCloskey, 1983), calculators (Bayman & Mayer, 1984; Halasz & Moran,

1983), electronic ciruitry (Genmer & Gentner, 1983), and control panel devices (Kieras &

Bovair, 1984). This method is one of the most commonly used in the literature. It is similar to the

approach discussed above for debugging student knowledge, both in terms of methodology and
limnittions. That is, time and rors do not always map neatly onto a specific mental model or

misconception (Cooke & Breedin, 1992). As a consequence, most attempts to measure mental

models in the fitamur have combined this basic measure with one or mor of the relatively richer

measures described below.

unkeas Interviews to elicit mental models can be more or less structured, with the
content and course of the interview being more or less predefined. Unstrctured interviews, which

do not follow a prespecified format, have been used to capture subjects mental models of common
phenomena in physics (DiSessa, 1983) and of home heat control (Kempton, 1986). Such an

interview may also be conducted after problem solving (e.g., McCloskey, 1983). Structured
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interviews, on the other hand, follow some sort of prespecified format. The structured interview

may focus on: (1) a specific system component--e.g., location, purpose, function (Gitomer,
1984), (2) diagrams-e.g., enumerate concepts, show physical and/or functional relations,

designate related components (Gitomer, 1984; Hall, Gott & Pokorny, 1991), or (3) a specific

example of system behavior (Stevens, Collins & Goldin, 1979).

Process Tracinigffmtcol AnalXsis. When this method is used, subjects are presented with
a problem and are asked to "think aloud" as they solve the problem. Subjects are asked to
generally describe their thought processes and to state reasons for their actions. The protocol is
subsequently analyzed (i.e., protocol analysis) either to generate hypotheses about mental models
or to support or reject a proposed model. Although such verbal reports have been criticized for

their reliability and accuracy (e.g., Nisbett & Wilson, 1977), others (Ericsson & Simon, 1984)
have attempted to define the conditions under which verbal protocols are appropriate.

Nonetheless, this method of measuring mental models is one of the mst popular elicitation

methods. It has been used to examine mental models of physics (Larkin, 1983; Greeno, 1983;
Clement, 1983), calculators (Halasz & Moran, 1983), and heat exchangers (Williams, Hollan, &

Stevens, 1983).

Structural AnalysiL When this method is used, pairwise proximity estimates for a set of
system-relevant items are gathered. These estimates are then submitted to a descriptive multivariate

statistical technique (e.g., multidimensional sciling, cluster analysis, or network clustering
technique) which reduces the estimates to a simpler form. For example, Kellogg and Breen (1990)
used the Pathfinder network structural technique (Schvaneveldt, 1990) to derive and compare

user's mental models with an idealized system model. Likewise, Gillan, Breedin, and Cooke
(1992) used hierarchical cluster analysis and Pathfinder to compare subjects' mental models of the
human-computer interface. In addition, Gitomer (1984) used cluster analysis and

multidimensional scaling to compare expert and novice airmens' knowledge organization of an
antenna system. One of the stengths of these techniques is that they are able to convey
quantitative, as well as qualitative information about mental models.

In summary, four very different types of measuremet methods have been used in research
on mental models. The different measurment approaches may each provide different sorts of
information, making genealizatios across studies difficult, if not impossible. In addition, the
different approaches have not been evaluated in terms of their respective reliabilities and validities.

In general, each of the different methods is likely to have advantages and disadvantages (Cooke,
1992a), and no one method of measuring mental models has received universal acceptance.
Therefore the selection of a single optimal method for on-line student assessment is an uncertain

enterprise at best. Indeed, the criteria associated with an optimal technique are similarly ill-defined
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(Cooke, 1992a). In this paper a pragmatic view is taken in which optimal methods art minimally

assumed to elicit knowledge that is relevant to task performance.

Another difficulty associated with using most of these methods for on-line assessment of

student system knowledge is that most involve the collection of "extra" data (e.g., verbal reports,
similarity ratings) not typically collected in interactions with the tutor. Thus, the use of these

methods would entail interruption of the tutoring process to collect data in a task that would most

probably seem artificial to the student. The single exception to this limitation is the collection of

time and accuracy measures. Here, measures can be automatically collected on-line and used to

infer student knowledge. In fact, most of the intelligent tutor approaches to assessment and
diagnosis discussed above have relied on this method. Unfortunately, time and accuracy data are

impoverished compared to the much richer data obtained from verbal reports and structural

analyses. These richer methods go beyond the studentfs actions, facilitating the jump from actions

to the cognitive underpinnings of those actions. Therefore, what is skeeded is not only a reliable

and valid method for measuring system knowledge, but one that can provide rich representations

of this knowledge from student actions derived on-line. This is the focus of our project. The

goal is to be able to map student actions (both rorful and correct) collected on-line onto a rich

representation of student system knowledge. This representation can then be used to assess and
diagnose student system knowledge and identify targets for intervention. The domain selected for

this project is avionics troubleshooting.

The Plan: Mapping Student Actions onto System Knowledge

Basically, the general problem identified above involves making detailed inferences about a

student's system knowledge from that student's actions. One way to dissect this problem is to

work backwards from the goal state-system knowledge, to the initial state -- student actions.

Interviews, process tracing, and structural analytic methods offer rich representations of system

knowledge. However, it is necessary to know which of these methods provides the most reliable

and valid measure of system knowledge in the domain of avionics troubleshooting (see Figure

1.1). Therefore, the first subgoal in solving the above problem involves identifying a valid method

for eliciting and representing system knowledge required for avionics troubleshooting. Assuming

that system knowledge is critical for performance, then a valid method of measuring this

knowledge should reveal differences among subjects that correspond to performance differences.

Of course, these techniques require data collected off-line. "berefore, the next subgoal

involves determining how to derive this type of data from on-line ineractions with the tutor. Can

we make use of the data already collected on-line to derive rpresentations of system knowledge?

MI other words can we identify general relationships between student actions and patterns of

system knowledge derived off-line, so that later predictions can be made about system knowledge

based on student actions? As previously noted, mapping etrzs onto a student's understanding can
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Figure 1. Steps involved in mapping student actions onto system knowledge.

be problematic because actions can be varied and idiosyncratic (e.g., Payne & Squibb, 1990). On

the other hand, it is generally assumed that actions are, at least partially, the result of knowledge

and that certain patterns of actions reflect specific types of troubleshooting knowledge (Pokorny &
Gott, 1992). Gott, Bennett, and Gillet (1986, p 43) label the assumption that "thinking is for the

purpose of doing" the theory of technical competence, Perhaps a mom, stable analysis of student

knowledge can be achieved by examining all of the student's actions regardless of whether correct

or incorrect But how do we make sense of all of these actions? What is needed is a means of

identifying meaningful M or summaries of student actions. A pattern of actions can be

thought of as an intermediate representation of student troubleshooting knowledge (see Figure

1.2). Although patterns in studentactions ae likely to emerge, their is an

empirical question. Specifically, do differences revealed in identified action patterns ccxresponA to

actual differences in other measures of student performance? Thus, the identification of action

patterns and the evaluation of the meaningfulness of these patterns is a second subgoal.

Once meaningful patterns of actions (Le., troubleshooting knowledge) have been identified,

the next subgoal entails mapping these patterns onto patterns of sysm knowledge (see Figure

1.3). Can we identify patterns of actions that corrspond to distinct representations of system
knowledge? Of course this step requires the elicitation of both actions and system knowledge from

the same subjects. Assuming that the previous subgoals have resulted in meaningful patterns of
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actions and representations of system knowledge and assuming that system knowledge underlies

actions (at least partially), then some correspondence should emerge. For instance, students who

swap a card before checking the data flow to that card may do so for several reasons. This

mapping procedure may indicate that students who demonstrate this action pattern tend not to

understand the relationship between data flow and signal flow. Finally, if this correspondence

does emerge, then it would be possible to make predictions about rystem knowledge from

troubleshooting actions collected on-line, thereby eliminating the extra data collection step (see

Figure 1.4). Predictions based on these actions could be evaluated by either implementing them in

a tutor and evaluating the tutor or comparing the predictions to those m&Ae by SMEs.
The four subgoals represented in Figure 1 comprise the long-term plan associated with the

development of a new approach for assessing and diagnosing student system knowledge. The

subgoals represented in Figures 1.1 and 1.2 are prerequisites to the later subgoals, but even in

isolation, these preliminary steps make important contributions to the' general problem of student

assessment and diagnosis. More specifically, the first subgoal will identify optimal methods for

eliciting system knowledge in the avionics troubleshooting domain. This information is useful for

stages of tutor development in which knowledge of this type needs to be elicited from domain

experts. In addition, although less efficient than the long-term plan, the best techniques could be

used to assess student system knowledge off-line. The second subgoal may also contribute by

identifying meaningful action patterns that may be useful in and of themselves in assessing and

diagnosing other types of student knowledge (i.e., procedural or strategic knowledge). The

remainder of this report focuses on progress made toward the long-term plan, specifically, the

subgoal portrayed in Figure 1.2.

Research Pro ss InMrintdcns

The goal of this part of the project is to identify meaningful patterns in students'

troubleshooting actions. These patterns are referred to generally as "troubleshooting knowledge,"

because it is assumed that they are influenced by the thre forms of knowledge central to

troubleshooting, namely strategic, system, and procedural knowledge. If the resulting action
patterns capture troubleshooting knowledge in a meaningful way, then minimally, they should be

able to differentiate high and low performers.
One way that action patterns can be derived is through the use of the Pathfinder network

scaling procedure. The Pathfin-der procedure is a descriptive statistical technique that represents

pairwise proximities in a graphical form (Schvaneveldt, 1990; Schvaneveldt, Durso, & Dearholt,

1985; Schvaneveldt, Durso, & Dearholt, 1989). In the graph, concepts or entities are represented

as nodes and relations between entities as links between nodes. Each link is associated with a

weight that represents the strength of that particular relationship. These weights are based on

proximity estimates which can be collected in a number of ways including pairwise relatedness

7



ratings, co-occurrence of items in a sorting task, or event co-occurrence. Pathfinder networks can

have directed links given asymmetrical proximity estimates and unconnected nodes if proximity

estimates between an item and all other items exceed a maximum criterion set by the experimenter.

It should also be noted that although the links represent semantic relations, the algorithm does not

identify the specific relation associated with each link. The Pathfinder procedure determines
whether or not to add a link between each pair of nodes. Basically, a link is added if the minimum

distance between nodes based cAl all possible paths (i.e., chains of one or more links) is greater

than or equal to the distance indicated by the proximity estimate for that pair. Two parameters, I

and a. determine how network distance is calculated and affect the density of the network.
Dearholt and Schvaneveldt (1990) provide a detailed discussion of Pathfinder (also see Appendix

A).

Pathfinder has several advantages including the fact that it is not constrained to hierarchical

configurations like most cluster analysis routines and its ability to repisent asymmetrical relations

(Dearholt & Schvaneveldt, 1990). In addition, results from several studies indicate that Pathfinder

network representations are psychologically meaningful in that they are predictive of recall order

and judgment time (Cooke, 1992b; Cooke, Durso, & Schvaneveldt, 1986). Pathfinder networks

have, in fact, been used to reliably distinguish skilled and unskilled performers in domains such as

air-combat flight maneuvers (Sch,,aneveldt, Durso, Goldsmith, et aL, 1985), computer

programming (Cooke & Schvaneveldt, 1988), and interface design (Kellog & Breen, 1990). They

have also been used to assess student classroom performance (Goldsmith & Johnson, 1990). In

this study the similarity between student and instructor networks was highly correlated (r = .74)

with final class grade.

The Pathfinder procedure has typically been used to represent knowledge in fe form of

conceptual or declarative relationships (e.g., Cooke & Schvaneveldt, 1988; Schvaneveldt, Durso,

Goldsmith, et al., 1985). However, it has also been used in one case to represent action sequences

(McDonald & Schvaneveldt, 1988). In this study McDonald and Schvaneveldt collected co-

occurrence frequencies of UNIX commands issued by users who interacted with the system. They

used Pathfinder to summarize these data in terms of a network of the most frequently occurring

action paths. Thus, because of Pathfinder's ability to represent action sequences and deal with the

asymmetrical and nonhierarchical relations typically found in actions, it was selected as i. vehicle

for interpreting actions in the present study.

Such a representation of actions would be desirable for several reasons beyond the overall

goal of mapping actions onto system knowledge. First, on-line assessment in tutors could be

achieved by deriving an individual's network from actions taken during problem solving and

comparing this network to an "expert" network. The comparison would be based on the number

of shared nodes (actions) and links (action sequences) between the two networks. Thus, this

8



particular comparison results in one value that represents overall level of knowledge. Second. the

qualitative nature of the network representation allows a more detailed diagnosis of student
troubleshooting knowledge. The Pathfinder network analysis could highlight specific actions and

action sequences that are not "expert-like" and that could be targeted for remediation. Likewise,
positive aspects of performance (expert-like actions) could be identified and targeted for positive

feedback to the student. Thus, one additional benefit of this methodology is that it is capable of

providing both quantitative assessment information at a global level and qualitative information at a

more detailed level. Finally, because of the bottom-up nature of this approach, the Pathfinder

representations may incidentally reveal specific patterns of actions that distinguish high and low

performers, but that have not been recognized or verbalized by the SMEs.

METHQD
Actions taken by subjects on a troubleshooting tests described by Nichols, Pokorny, Jones,

Gott and Alley (1989) were used to develop Pathfinder networks. IV the Nichols et al. study the

effects of an intelligent tutoring system called SHERLOCK were examined by comparing the

performance of technicians who received both on the job training (OJT) and SHERLOCK training

(experimental group) to the pefortmance of technicians who received only OJT (control group).

SJubjcts,
The subjects were 37 manual avionics shop technicians stationed at one of two AF bases,

Langley AFB or Eglin AFB. Supervisors had identified the subjects as being at a beginning or

intermediate skill level (3 or 5) and available for the study duration (I mo.). Five subjects were
later dropped from the study: two subjects were transferred, and three subjects were identified as
being more skilled than previously detemmined, leaving a sample of 32 technicians. The subjects

were first matched on the basis of a verbal troubleshooting score and a number of other scores
(e.g., mechanical and electrical tests). Then members of each matched pair were randomly
assigned to either the experimental or control group. The 30 subjects who completed a specific set

of three verbal troubleshooting problems were used in the present analyses.

Individual subjects were classified as either high or low performers on each problem based

on the score they received from the scoring worksheet (Pokorny & Gott, 1992), the current

assessment method in this domain. This score is derived by subtracting a pre number

of points for each error that the student makes in troubleshooting. For the pretest problem, high

perforners were defined as those subjects who received a score of 85 or greate, whereas low

performers were defined as those subjects who received a score of 35 or less. These cutoffs were

arrived at by identification of natural breaks in the frequency distribution of sores. Four of six

high performers and three of eight low performers were in the experimental group. Subjects were

reclassified as high and low performers based on their performance on the posttest problem.

Specifically, subjects were classified as high performers if they received a score of 85 or greater,
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and subjects who received a score of 55 or lower were classified as low performers. Interestingly,

all of the high performers and only one of the low performers were in the experimental group.

Materials arnd Proedure,

A brief description of the methodology used by Nichols et al. (1989) follows. All subjects

participated in a training period in which they received either OJT or OJT and SHERLOCK. The

pre- and posttest measures referred to below were administerd before and after this training
period, respectively. Four measures were used in the study: 1) the Armed Services Vocational

Aptitude Battery, 2) a measure of each subject's previous experience in electronics, 3) pre- and

posttest versions of a verbal troubleshooting test, and 4) pre- and posutest versions of a

noninteractive troubleshooting test. (Only those subjects stationed at Eglin AFB completed the

pretest version of the noninteractive test). In addition, those subjects who received SHERLOCK

training completed a tutor report card following the final training session. Only problems from the

verbal troubleshooting data were analyzed in the present study.

The verbal troubleshooting test is an individually administered structured problem solving

test. The test begins with the examiner describing a fault that has occurred. The subject then
attempts to isolate the fault and repair the equipment through a series of recursive action-result

steps. In each step the subject specifies an action he/she would take and the reason for taking that

particular action. The examiner responds by informing the subject of the action's effect on the

equipment, and requests the subject's inference concerning equipment operation based on that

effect. The cycle continues until the problem is solved, the one hour time limit expires, or the

subject gives up. Thus, although subjects are not working on actual equipment, they have to make
use of all of the technical data that they would require if they were troubleshooting real equipment.

Six pretest and four posttest verbal troubleshooting problems were administered by

Nichols et al. Only the data from three problems were used in the present analyses, specifically

pretest 1, pretest 2, and posttest 1. The complete analysis described below was conducted on data

from pretest 2 and posttest I because these problem were comparable in terms of type and
difficulty. The pretest 1 problem was primarily analyzed to determine the optimal coding scheme.

mESULTS AND DmSCUSSION
A coding scheme for students' actions was developed using the data from the pretest 1

problem (see Appendix B). This scheme was then applied to and modified slightly for the

remaining two problems, referred to herein as pretest and posttest. The purpose of the scheme was

to be able to classify discrete actions into meaningful action units that could be represented as

nodes in a Pathfinder network. The main categories of actions for both problems included

"equipment checks, data flow tests, signal flow tests, and swaps. The most abstrec level of

categorization was used unless the same action would, in some cases, result in a pass and in

others, a fail. In this case, the lower, more specific level of abstaction was used. Using this
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decision rule, for each problem an action unit was associated with one and only one

troubleshooting outcome. The resulting coding schemes consisted of 63 action units/nodes

categories for the pretest and 62 action units/nodes for the postmest problem.

Transition probabilities for all pairs of actions (in both directions) were calculated for

individual subjects by dividing the frequency with which specific action transitions (e.g., swap

UUT followed by check DMM fuse) occurred by the frequency with which the first item in the

sequence occurrd For example, if swap UUT occurred twice and was followed by check DMM

fuse on one of those occasions then the transition probability would be 0.5. Note that these are

first-order transitions only. Higher order transitions (i.e., the probability of swap UUT followed

by check DMM fuse either immediately or with one or more actions intervening) were considered,

but not used because the immediate transitions were considered to be the most meaningful.
Transition probabilities were also calculated across groups of subjects using frequencies summed
across all subjects in the group. For instance, transition probabilities were calculated for the high

and low performers for each of the two troubleshooting problems.

The four matrices of transition probabilities (high and low performers, pre- and posttest)

were submitted to the Pathfinder network network scaling technique (Schvaneveldt, 1990).

Figures 2 and 3 illustrate the pretest problem network representations resulting from the high and

low performers' probabilities, respectively. Figures 4 and 5 illustrate the postmest problem network

representations resulting from the high and low performers' probabilities resetively. Details of

these networks will be discussed below in the section on diagnosis.

One of the major questions to be asked of this approach is whether Pathfinder networks of

actions can distinguish high and low performers for the purposes of assessmret In this study the

subjects' score for each problem derived using the scoring workshe is assumed to be the "true

score" indication of their performance on that problem. Tberdo to answer the above question
one can look at the correlation between an assessment measur derived from Pathfinder networks

and the score derived from the scoring worksheet procedure. To assess students using Pathfinder,

for each problem an ideal or expert network can be compared to the network repesentation of each

nonexpert individual. The C meammu (Goldsmith & Davenwt 1990) provides a quantitative
index of network similarity that can be used for this purpose. This measure is baed on proportion
of shared nodes and links in two networks. It ranges fom 0 (low similarity) to I (high similarity).
For the pre- and posuest problems, the networks baed on the aggregate actions of the six highest
performers wer used as ideals for that problem The retaining nonexper were evaluated in
terms of thes standards. Note that the use of the six highest performers as the ideal greatly

restricts the range of data for the remaining nonexperts on which the correlations were based. This

procedure was necessary because thae wer only incomplet data available for SMEs, the obvious
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choice for the ideal Thus, it should be kept in mind that the correlations reported here may be

underestimated due to this constraint.

The correlations between troubleshooting scores and this network similarity measure for the

24 nonexperts in each problem are presented in Table 1. In addition two other assessment

measures that were related to the network similarity measure were calculated and included in the

analysis to aid in distinguishing relevant from irrelevant aspects of the Pathfinder-based measure.

One of these measures was derived from a correlation of action frequencies (i.e., the frequency

with which each action unit occurred) associated with an individual's protocol and action

frequencies associated with the aggregate high-performer protocol. Thus, this measure should be

high to the extent that the nonexpert performed the same actions as the high-performers the same

number of times. It should overlap with the Pathfinder network similarity measure in that they

both take shared actions into account. However, the Pathfinder measure includes information on

action sequences, whereas the action frequency measure includes frqrency of individual actions.

Finally, the second other measure was the total number of actions that each subject executed (iL.,

number of steps to solution).

Examination of Table 1 indicates that the Pathfinder similarity measure is predictive of

troubleshooting scores for the pretest (L(2 2 )= .57, it <.01), but not for the posttest (j (22)- .26).

However, the action frequency measure is predictive of the score for both the pre- (E (22)n .65, g

<.01) and the posttest (. (22)= .76, j <.01). Other significant cocrelations indicate that the two

measures of Pathfinder similarity and action frequency are highly nat oiated, as was predicted.

However, at least for the pretest, both measures seem to independently account for a portion of the

variance. The correlation between the troubleshooting score and the action frequency measure

remains significant when the Pathfinder similarity measure is partialed out (I (21)n .53, it <.01).

Also, the correlation between the troubleshooting score and the Pathfinder similarity measure is

marginally significant when the action frequency measure is partialed out (I (21)- .39, 11 <07).

Another way of looking at these data is to compute change scores for subjects frmn pretest to

posuest and correlate these scores. Because only 20 of the 24 nonexperts were classified as

nonexperts for both tests, dam were analyzed for only these 20 subjects. The inte--orrelation

matrix for these change scores is presented in Table 2. As might be expected from the previous

analysis, the troubleshooting score change was highly corlated with both the change in

Pathfinder similarity (I (18)- .51, R <.05) and the change in action frequency (L.(18)= .55, i

<.05).
Taken together, these results suggest that the types of actions subjects perform and the

frequency with which they perform them ae predictive of both the pre- and posttest scores In

addition, the specific sequence in which actions are executed is predictive of the pretest scores. As

will be discussed below, there was a much wider range of actions performed by the low
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Table 1. Intercorrelation matrix of four assessment measures. (VT score = verbal
troubleshooting score; PF sime = similarity of PathfMinder network with expert network;
ActFreqmcorrelation of action frequencies with expert action frequencies; No.Act = number of
actions)

Table la. Table lb.

Pretest Measures Posttest Measures

2 3 4 1 2 3 4

1. VT score 1.00 .57** .65"* .38 1. VT score 1.00 .26 .76"* -.35

2. PF sim 1.00 .47* .38 2. PF sim 1.00 .55** .22

3 Act-req 1.00 .30 3 ActFreq 1.00 -.17

4. No.Act- 1.00 4. No.Act 1.00

*p<.05; **p<.01

Table 2. Intercorrelation matrix of four measures of change from pre- to posttest.
(VT score = verbal troubleshooting scor PF siu - siumlarity of P network with expert
network; Ac&req-correlaton of action fequencies with expert action frequencies; No.Act -
number of actions)

Intercorrelations of Change From Pre. to Posttest

1 2 3 4

1. VT score change 1.00 .510 .550 -.075

2. PFsim change 1.00 .49* .37

3. Acd•n chante 1.00 .11
4. No.Act change 1.00

*p<.05; **p<,Ol
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performers in the posttest compared to the pretest which may have overwhelmed any predictive

power of sequential variation.

Finally, the assessment measures can also be compared in terms of their ability to
discriminate subjects in the experimental and control groups. The mean scores of experimental and

control subjects for the pretest and posttest are presented in Table 3. As should be expected, there
were no pretest differences between experimental and control groups. Interestingly, the only
significant difference between these two groups at posttest is for the Pathfinder similarity measure
(L(22) = 2.07, V<.05). Subjects in the experimental condition had networks that were more
similar to the ideal network than did subjects in the control condition. The lack of a significant
verbal troubleshooting score difference between the two groups is most likely due to the restriction
of range that occurred by eliminating the six highest performers on the posttest. The fact that

Pathfinder accounts for experimental vs. control differences, but not the action frequency measure,
suggests that subjects who were trained on SHERLOCK learned more expert-like action sequences
than those who were not.

Table 3. Mean assessment measures for experimental and control groups on pre-
and poettests. (VT score - verbal troubleshooting score; PF sim = similarity of Pathfinder
network with expert network; ActFreq= orrelation of action frequencies with expert action
frequencies; No.Act = number of actions)

Measure Pretest Mean Posttest Mean

Experimental 42.00 68.00
Control 47.00 59.00pFsim

x tal .05 .07
Control .05 .04

AExemetal .38 .41
Control .33 .24

Experimental 12.60 15.80
Control 11.50 16.60

In sum, this procedu seems to identify meaningful action patterns. Assessment in this
domain (i.e., avionics troubleshooting) is currently carried out using the scoring worksheet
(Pokorny & Gott, 1992) and, as demontted above, an assessment measure based on Pathfinder

action patterns corresponded to that of the scoring worksheet. Although this particular subgoal
does not entail diagnosis of student knowledge, one of the purported benefits of the Pathfinder
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analysis is its ability to offe: information beyond the mere assessment of student knowledge. In

this section diagnostic implications of the Pathfinder analyses are discussed. The main question

here is does Pathfinder highlight specific strengths and weaknesses in students' knowledge that

can be targeted for intervention? The analysis that follows entails identifying the strengths and

weaknesses of the low performers as a whole, although an identical analysis could be performed at

an individual level.

DiagLosis and Intervention

The Pathfinder networks for the high and low performers differed both quantitatively and

qualitatively. Some of the quantitative differences between individuals and high-performers were

captured in the network similarity measures described above. General quantitative differences

between the two groups can be seen in terms of the number of nodes and links present in the

networks of the high and low performers. The high performers' networks had fewer nodes (i.e.,

actions) than the low performers' networks, especially at posttest (seeFigures 2 through 5 and

Table 4). In other words, the high performers as a group executed fewer distinct actions than the

low performers. indicating a less varied repertoire of actions across all high performers for this

problem. High performers seem to agree on the relevant actions for this problem in comparison to

low performers. Although the low performers at posttest executed over twice as many distinct

actions as the high performers, they shared all but one of the high performer's actions. Thus, at

posttest the low performer's applied a wide repertoir of actions as a group, including actions that

are expert-like. These results suggest that the low performers as a group have knowledge about a

wide variety of actions by posttest, yet they do not seem to understand when these actions apply.

Interestingly, the subjects in the experimental group executed fewer distinct actions (35) than those

in the control group (48). Thus, SHERLOCK may be effective in teaching students the conditions

under which various actions apply.

What do these diffrences indicate in terms of diagnosis and inturvention? First, the six

pretest nodes in the high perfxmers' network that were not contained in the low performers'
network consisted of signal flow and data flow tests. In addition, at pretest, low performers

executed 11 actions (corr eod g to 11 extra nodes) high performers did not, seven of which
were data flow and signal flow tests. At posttest, half of the additional actions executed by low

performers were data flow and signal flow tests and half were swaps. Thus, these errors of
omission and commission indicat that intervention in these particula cases should be targeted at

learning the appropriate data flow and signal flow actions. A mtre detailed target may be derived

by a focus on individual nodes.

In addition to having fewer nodes than low performnr high performers' networks also

had fewer links than the low performers' at both pre- and posmest (see Table 4). This is to be

expected given the fact that fewer nodes necessarily implies fewer links. However, the number of
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links per node does not differ greatly for the four networks. For each node there are approximately

2 links per node (range = 1.8 to 2.1) across the four networks. However, the number of links

shared between the high and low performers increased slightly from pre- to posttest, suggesting

that the low-performers began demonstrating action sequences more like those of the high

performers. This pattern is verified by the C measure of similarity between the networks of the

low and high performers at pre- (C = .04) and posttest (C = .07). Although the resulting C values

were relatively low, they do indicate that the low performers became more like the high performers

at posttest. For instance, even the low performers at posttest had learned to conduct the signal

flow and data flow tests which the high performers used at posttest to pinpoint the fault. Thus, the

low performers learned more expert-like sequences of actions, given training.

Table 4. Number of nodes and links for aggregate networks of high and low
performers.

Number of Nodes Number of Links

Pretest Posttest Pretest Posttest

High performers 23 21 44 38

Low performers 28 45 52 94

Shared 17 20 7 11

The networks of the high and low-performers also differed in some more global ways. First,

the high performers (both tests) appeared to follow a rule about the general sequence of actions

which were taken: 1) general checks outside of the test package, including visual checks,

tvquipment checks, and swaps, 2) signal flow tests inside the test station, 3) data flow tests of
components inside the test station and 4) swapping. Low performers, on the other hand, did not
closely follow this rule and instead committed violations in this general sequence. For example,

some low performer moved from data flow tests inside the test package to general checks outside
of the test package. This trend was observed both for pre- and poatest networks.

Second, the low performes exhibited what may be termed a meaningless action sequence

at both pre- and posttest, whereas high performers did not. For example, after completing a signal

flow or data flow check which indicated that the component was functional, some low performers

chose to swap the component anyway. The high performers did not exhibit meaningless actions

sequences such as these.
CONCLUSIONS

The results obtained from the work completed thus far are promising in that they indicate that

meaningful patterns of actions can be identified using the Pathfinder network scaling procedure.

This result achieves the subgoal indicated in Figure 1.2. The network patterns are also meaningful
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in the sense that they can differentiate high and low performers as defined by the scoring

worksheet. In addition, the Pathfinder networks reveal qualitative differences between high and

low performers that are suggestive of targets for intervention (e.g., data flow and signal flow
tests). Finally, this bottom-up approach to knowledge elicitation resulted in general action patterns

that may not have been verbalized in a typical knowledge elicitation interview (i.e., the general

sequence of high-performers: checks outside, signal flow tests inside, data flow tests, swaps).
These results are even more promising when the source of the ideal or expert network used to

make these comparisons is considered. Specifically, high-performers were used here as the ideal.

An even better ideal would probably result from the use of recognized SMEs. In addition, the use

of subjects with more expertise would widen the range of performance, which would likely result

in enhanced assessment and diagnostic capabilities.

The next step of this project is the evaluation of different measures of system knowledge (the

subgoal represented in Figure 1.1). The longer-term goals include the mapping of system
knowledge onto action patterns and prediction of system knowledge based on this mapping.

The short term (one year) contributions of this work include:

1. A method of generating network representations of student actions and an

evaluation of this method.

2. An alternative to, or extension of, existing methods for assessing student

troubleshooting knowledge on-line.

3. A method for targeting specific concepts or strategies associated with overall

knowledge strengths or deficits.

4. A method or set of methods that have been determined to be optimal for eliciting and

representing the system knowledge of students.

The longer-term contributions of this work are:

1. A procedure for on-line assessment and diagnosis of student's system knowledge
which involves mapping action patterns onto deficits or proficiencies in system

knowledge.

2. A procedure which summarizes actions (earrfid and correct) in terms of a rich

representation of student knowledge that lead itself to qualitative analysis useful for

diagnosis and intervention.
3. An assessment and diagnosis procedure that targets the complex domain of

avionics troubleshooting.
4. A methofology that can be applied to the problem of eliciting knowledge from SMEs for

tutor development.

5. A general test of the assumption that system knowledge underlies troubleshooting

actions.
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Appendix A

The Pathfinder Network Generation Algorithm

The Pathfinder procedure takes pairwise proximity estimates for a set of items and generates a
graph structure in which the items are represented as nodes and relations between items as links
between nodes. Links connecting nodes arm determined on the basis of the patern of proximity
estimates. Each link is associated with a weight that represents the strength of that particular link.
Weights are the original proximity estimates associated with item pairs. With symmetric distance
matrices Pathfinder will produce networks with undirected links. However, Pathfinder networks
can have directed links given asymmetrical estimates and can be unconnected if proximity estimates
between an item and all other items exceed a maximum criterion set by the experimenter. The
major diagonal in the data matrix represents the distance between an object and itself. This distance
is usually 0. but Pathfinder will handle non-zro entries on the diagonal by creating links from the
node to itself (loops) in the network. Data derived from transition probabilities may lead to such
non-zero entries for the diagonal

The data for Pathfinder may be in the form of similarities, dissimilarities, probabilities, or
distances. The data may be collected from records of events (e.g., actions taken in problem
solving), eye movements, or more typically, from concept similarity ratinp or co-occurrence in
concept sorting. For example, suppose three subjects (Tom, Michelle, and Doug) were asked to
rate all pairs of the following four entities in terms of relatedness (1-highly related, 6-not related):

(1) DMM
(2) Group Test Point Select Card
(3) UUT
(4) Test Point Select Card

The hypothetical data can be formatted in a symmetrical matrix as follows. Rows and columns
correspond to the four entities:

0 6 24 06 4:4 0 54 3
6 0353 6 01 1 5 02 3
2 5 05 4 1 03 4 20 1
4 3350 4 1 30 3 3 10

The Pathfinder procedure determines wetr or nt to add a link between each pair of nodes. A
link is added if the minimum dist= between nodes based on all posMible paths (i.e., chains of
one or more links) is greamr than or equal to the distance indicated by tde proximity estimate for
that pair.
Pathfinder uses two paramet, q and rw determine the calculation of this network distanc. The
q-parameter constrains the number of links travemed in paths in the network. The r-parameter
defines the metric used for onaputing the path length in trms of the Minkowski metric, so r -1
corresponds to the city block me1Pic and r = 2 onusponds to the Euclidean metric. Wben r -
infinity, path length equals the fmaimu weight (i.e., dis e estimate) of the links that make up
the path, and thus only ordinal �as oned to be made about the datL. Varying these two
parameters results in network of g 1 #-copletity however, it is always the case that the links
of simpler networks are completely contained widtn mee cormplex netwos The simplest
network results frmo setuing r to infinity and q ?,j the number of items (or nodes) minus one.
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The Pathfinder networks (r ,q 3) based on the relatedness ratings given by the three
hypothetical data sets are shown below. Note thea the network structures of Michelle and Doug are
highly similar;, the two networks are structurally alike except for a link between Grp TP Select and
TP Select seen in Doug's network but not in Michelle s. On the other hand, Tom's network is
different from both Michelle's and Dougs. Tom did not see DMM as central, whereas both
Michelle and Doug did. In addition, Tom's network is "chain-like", whereas Michelle and Doug's
networks are not.

Tom:

3

1 3

IGip Th Si=Oct

Doug:

/2 

•4

28



In addition to a qualitative comparison of the networks, a quantitative comparison can be made
using the C statistic (Goldsmith & Davenport, 1990). This is a ineasure of shared links for
matching nodes across two different networks. C indicates the strength of relationship between
two networks and ranges in value from 0 (not related) to I (related). The first step in calculating C
is determining the proportion of shared links for a particular node across two networks. This is
accomplished by calculating the ratio of the intersection of links emanating from that node to the
union of links from that node across the two networks. This proportion is calculated for all nodes
across the two networks. C is the averaging ratio of shared links across the nodes in the two
networks. The calculations of C between A, B, and C's networks are illustrated below.

Torn and Michelle

Step 1: 1/3 + 1/2 + 0/3 + 0/2 =.833

Step 2: .83/4-.21

Step 1: 1/3 + 1/3 + 0/3 + 0/3 = .667
Step 2" .667/4 a .17

Step1: 3/3+1/2 + 1/2 = 3
Step 2: 3/4 = .75

"Thus, Doug and Michelle's networks ame fairly strongly related, with . = .75. Tom's network, on
the other hand, is not as strongly related to either Michelle's or Doug's with . = .21 and .17,
respectively.
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Appendix B

: Action units used for the pretest problem
#: Action units used for the postst problem

DATA FLOW

1.0 DF check of Test Point select card *
[.1 V(28V) #

1. 11 oscope
1. 12 voltage
1.13 ohm

1.2 V(GND) #
1.21 oscope
1.22 voltage

1.221 Off the active path
1.23 ohm

1.3 V(28 V to GND) #
1.31 oscope
1.32 voltage

1.321 Off the active path
1.33 ohm

2.0 DF check of Group Test Point Select card #
2.1 V(28V) *

2.1 loscope
2.12 voltage
2.13 ohm

2.2 V(GND) *
2.21 oscope
2.22 voltage
2.23 ohm

2.3 V(28 V to GND) *
2.31 oscope
2.32 voltage
2.33 ohm

3.0 DF Check of Seme imt Selc card*
3.1 A DMM OND

3.11 obcops
3.12 voltg
3.13 ohm

3.2 B DMM GM
3.21 oscops
3.22 v, olt
3.23 ohm

3.3 V (28V)
3.31 oscp
3.32 voltage
3.33 ohm
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4.0 DF check of Decoder Driver
4.1 Input * #

4.11 oscope
4.12 voltage
4.13 ohm

4.2 Output #
4.21 V(28V)

4.211 oscope
4.212 voltage

4.2121 Off the active path
4.213 ohm

4.22 V(GND) *
4.221 oscope
4.222 voltage

4.2221 Off the active path
4.223 ohm

4.23 V(28 V to GND)
4.231 oscope
4.232voltage
4.233 ohm

4.4 By ohm check (28V output to OND output) * #
4.5 From input to output *

4.51 oscope
4.52 lta,°432- Offthe acie psth

4.53 ohms
4.531 Off the active Path

5.0 DF check of TP SunW 2 * #
5.1 Input

5.11 maswemnt code
5.111 oscope
5.112 voltag
5.113 ohm

5.1131 Off the active pith
5.12 from TP timing (Enter, Rese%, A Enter, B Bntw)

5.121 osope
5.122 voltage
5.123 ohm

5.2 Outpu
3.21 ------
5.22 voltag
5.23 ohm

5.3 From input to mutput

6.0 DF check of TP Sung. I*
6.1 Input

6.11 memsummt code
6.111 os*Vo
6.112 vollta

6.1121 Off toe acive path
6.113 ohm

6.1131 Off the active path
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6.12 from TP timing (Enter, Reset, A Enter, B Enter)
6.121 oscope
6.122 voltage
6.123 ohm

6.2 Output #
6.21 oscope
6.22 voltage
6.23 ohm

7.0 DF check of TPTtiming *#
7.1 Input

7.11 A/B
7.111 oscope
7.112 voltage
7.113 ohm

7.12 Enter
7.121 oscope
7.122 voltage
7.123 ohm

7.2 Our-ut
.2 oscope

7.22 voltage
7.23 ohm

7.3 From input to output

8.0 DF check Units Switch * #
8.1 Input

8.11
8.12 vo
8.13 ohm

8.2 Outut ,8.21 so

8.22 voltage
8.23 ohm

9.0 DF check Teas Switch * #
9.1 input

9.11 oscope
9.12 voltage
9.13 ohm9.2 Outputcmp

9.22 voitage
9.23 ohm

10.0 DF checkd Eam Swlch #
10.1 oscope
10.2 voltag
10.3 ohm

11.0 DF check A/B Swich * #
11.1 o50s"
11.2voltage
11.3 ohm
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12.0 DF check Measurement Select Switch Output #
12.1 ADMM

12.11 oscope
12.12 voltage
12.13 ohm

13.0 DF check Operating Voltages *#
13.1 Off the active path

45.0 DF check wies * #

47.0 DF check BIT Test Point * #

48.0 DF check stimulus circuitry *

SIGNAL FLOW

14.0 SF Wires * #
14.1 DMM to Al

14.12 short
14.13 ohm
14.13 voltage

14.2 Al to A12
14.21 short
14.22 ohm
14.23 voltage

14.3 A12 to A13
14.31 short
14.32 ohm
14.33 voltage

14.4 A13 to TP
14.41 short
14.42 ohm
14.43 voltage

14.5 Off the active path
14.51 short
14.52 ohm
14.53 voltage

15.0 SF thu Test Point Select Cad#
15.1 short
15.2 ohm

15.21 Off the active path
15.3 voltage

16.0 SF thr Growp Test Point SeimctCi * #
16.1 short
16.2 ohm
16.3 voltage

17.0 SF thru Measumnt Select Cwd #
17.1 short
17.2 ohm
17.3 voltage
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18.0 SF thru Test Point Select & Group Test Point Select *#
18.1 short
18.2 ohm
18.3 voltage

19.0 SF thru Measurement Select & Group Test Point Select *
19.1 short
19.2 ohm
19.3 voltage

20.0 SF thru all three cards *#
20.1 short
20.2 ohm
20.3 voltage

21.0 SF thru all three cards & Test Package *#
21.1 short
21.2 ohm
21.3 voltage

22.0 SF thru all three cards, & external to Test Point Select #
22.1 short
22.2 ohm
22.3 voltage

23.0 SF thru Test Point Select, Group Test Point Select,*& external to Test Point Select *
23.1 short
23.2 ohm
23.3 voltage

24.0 SF thru Test Point Select & external to Test Point Select #
24.1 short
24.2 ohm
24.3 voltage

25.0 SF external to Test Point Select * #
25.1 short
25.2 ohm
25.3 voltage

26.0 SF Test PackaWrest Package Pams *
26.1 short
26.2 ohm

26.21 Off the active path
26.3 voltage

27.0 SF Signld Denninant (UUT & MSA) & prs inside *#
27.1 short
27.2 ohm
27.3 voltage
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28.0 SF DMM fuse * #
28.1 short
28.2 ohm
28.3 voltage

46.0 SF output towards UUT * #

CHECKS

29.0 Check Signal Determinant (UUT & MSA) *#
29.1 visual
29.2 part number (P/N)

30.0 Check Test Equipment * 0
30.1 visual
30.3 setup/settings

31.0 Check DMM * #
31.1 visual
31.2 part number (P/N)
31.3 setup

32.0 Check DMM fuse *
32.1 Simpson ohmmeter
32.2 oscope
32.3 swap
32.4 visual check

SWAP

33.0 Swap Signal Determinant (UUT & MSA) *#

34.0 Swap parts inside Signal Determinant *

35.0 Swap DMM * #

36 .0 Swap DF Component

IT.1 Decoder Driver* #
36.2 Test Point Sorae 2 * #
36.3 Test Point Storage 1 *0
36.4 Test Point liming * *
36.5 Measnureent Code-Oes * #
36.6 a Code-Tens 0 #
36.7 BIT Relays Test Point *#
36.8 TP enter switch * #
36.9 TP A/B switch * 0

37.0 Swap Test Point Select Card * #37.1 Off die active path

38.0 Swap Group Test Point Select Card * #

39.0 Swap Measurement. Select Card * #
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40.0 Swap Test Package Parts * #

41.0 Swap Other * #

RESEAT

42.0 Reseat Card * #
42.1 Reseat Measurement Select
42.2 Reseat Group Test Point Select
42.3 Reseat Test Point Select
42.4 Reseat Decoder Driver/DF Component

OA/FI

43.0 0A/FI on RAG Drawer *

RERUN TEST

44.0 Re-run Test/Re-enter instructions *#
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