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AN APPROACH TO ON-LINE ASSESSMENT AND DIAGNOSIS OF STUDENT
TROUBLESHOOTING KNOWLEDGE
Nancy J. Cooke
and
Anna L. Rowe
INTRODUCTION

As tasks become more cognitively complex and demand more specialized skill, training
issues are increasingly critical. The domain of avionics troubleshooting is a good example of such
a task. The cognitive complexity of this task, combined with the personnel downsizing currently
faced by the Air Force, make the role of training even more crucial. Personnel will be required to
become skilled quickly, and their skill will be required to span a broad range of equipment. In
addition, the automatization of many aspects of the troubleshooting task greatly reduces the amount
of time spent manually troubleshooting faults. The difficulties associated with the resulting lack of
troubleshooting experience are particularly apparent when the automization fails and manual
troubleshooting becomes essential. Training programs need to address these rare, yet critical,
events.

How can training programs meet these requirements? One approach is through the use of
computerized intelligent tutoring systems. These systems enable individuals to spend time learning
a skill in a one-on-one environment in which a computer takes on the role of a human tutor. Means
and Gott (1988) outline some of the advantages of intelligent tutors, including their ability to
provide the student with vast amounts of problem solving experience in a short period of time.
Historically, the systems developed for computer-aided instruction were simply on-line displays of
a series of written instructions. Individualized instruction, if available, was based on whether or
not the student's performance on the instructional material reached a preset criterion. Distinctions
were not made on the basis of underlying student knowledge, specific errors that were made, or
the possible reasons for those errors (Sleeman & Brown, 1982). One goal of intelligent tutoring
systems is to incorporate more individualized instruction based on a detailed assessment of student
knowledge and diagnosis of cognitive strengths and weaknesses. Instructional intervention can
then be directed at these strengths and weaknesses. The purpose of the work described in this
paper is to develop a methodology for the assessment and diagnosis of student knowledge.

The problem of assessment and diagnosis for intelligent tutoring systems has been
approached in a number of ways. One approach involves "debugging” a student's knowledge after
inferring misconceptions or "mal-rules” from patterns of student errors (e.g., Burton, 1982;
Stevens, Collins, & Goldin, 1979). Although this approach has intuitive appeal, there is some
evidence that errors are not as systematic as would be implied by underlying misconceptions
(Payne & Squibb, 1990). Anderson, Boyle, and Reiser (1985) take a different approach and




model student actions in terms of a set of production rules. These rules are then compared to an
ideal student model in order to determine student deficiencies. These apprdachcs and other related
ones all attempt to model the student by mapping either errorful actions or all actions ~nto
misconceptions or deficiencies in the student's knowledge. The approaches are also similar in that
this mapping is achieved rationally. That is, the ideal model or rules for scoring are constructed
through an analysis of domain principles, rather than through an empirical investigation of expert
or ideal student behavior. Interestingly, many of the domains studied in intelligent tutoring
research have involved rather abstract, academic subjects such as algebra, geometry, and computer
programming. These topics tend to lend themselves to a rational analysis because they are well-
specified and well-structured problems, typically associated with an organized and well-
documented body of knowledge. Alinough many of the principles and techniques derived from
such studies may generalize to other similar domains, it is not clear how such findings can be
extended to more complex and concrete domains such as avionics troybleshooting. In many of
these domains knowledge acquisition is a prerequisite for tutor development (Psotka, Massey, &
Mutter, 1988).

Recently, some assessment work has been carried out in the real-world domain of avionics
troubleshooting (Gitomer, 1992; Pokorny & Gott, 1992). Pokomy and Gott (1992) have devised
an assessment procedure that identifies general deficits in different types of knowledge (i.e.,
system, procedural, and strategic) of airmen tasked with troubleshooting technical electronic
equipment. In general, they deduct points from these three different knowledge categories
depending on the errors that the student makes. Note that this is similar to the debugging approach
except that general deficiencies are identified, not specific misconceptions. Gitomer (1992) has
developed a related procedure that involves mapping student actions onto these same types of
deficits. In both of these cases, a cognitive task analysis that involved knowledge elicitation from
subject matter experts was required to determine ideal student behavior.

Likewise, in most real-world domains the first question to be addressed in assessment and
diagnosis is exactly what knowledge is necessary to perform the task? Hall, Gott, and Pokomy
(1991) have developed a procedure called PARI for analyzing the cognitive requirements of a task
for this purpose. The procedure involves a series of structured interviews with subject matter
experts (SMEs) in which a specific problem solution is dissected in terms of its precursors,
actions, results, and interpretations (i.¢, PARI). For instance, a PARI analysis of the avionics
troubleshooting domain has indicated that there are several types of knowledge relevant for
successful troubleshooting performance. These types include: (1) system (or how it works)
knowledge, (2) strategic (or how-to-decide-what-to-do-and-when) knowledge, and (3) procedural
(or how-to-do-it) knowledge (Gott, 1989). The assessment and diagnosis of student knowledge
of avionics troubleshooting has been guided by the results of this cognitive task analysis in its




focus on these three types of knowledge. Optimally, assessment and diagnosis in this domain
would consist of identifying the specific content of student knowledge of these different types and
comparing it to SME knowledge. The problem of identifying the content of knowledge is often
referred to as knowledge elicitation.
The Problem: Eliciting § Knowled

Evidence exists that suggests that system knowledge may be the most critical of the three
types of knowledge in troubleshooting ill-defined problems in complex systems (Gitomer, 1984).
Although there are probably many situations in which an understanding of how the system works
is not necessary to perform the task (e.g., automated avionics troubleshooting, making a long
distance phone call; Kieras, 1988, Rouse & Morris, 1986), this type of knowledge is assumed to
play an important role, at least for problems that are more ill-defined. Though much can be learned
about procedural and strategic knowledge from observing the actions of a problem solver, itis
much less clear how system knowledge is revealed. Furthermore, the definition of system
knowledge or, what many refer *o as a mental model, is not completely clear, or at the least, agreed
upon (Rouse & Morris, 1986; Wilson & Rutherford, 1989). Despite the lack of a clear definition,
research employing the mental model construct is fairly prolific, with different researchers using
their own operationalizations of the construct. The different methods for examining mental models
can be classified into four categories: 1) accuracy and time measures, 2) interviews, 3) process
tracing/protocol analysis, and 4) structural analysis.

Accuracy and time measures. When this method is used, subjects are given a set of
problems to solve, and problem solving behavior, measured in terms of time and errors, is
examined to make inferences about mental models. Accuracy and/or latency measures of problem
solving performance have been used to make inferences about mental models about physics
(Clement, 1983; McCloskey, 1983), calculators (Bayman & Mayer, 1984; Halasz & Moran,
1983), electronic circuitry (Gentner & Gentner, 1983), and control panel devices (Kicras &
Bovair, 1984). This method is one of the most commonly used in the literature. It is similar to the
approach discussed above for debugging student knowledge, both in terms of methodology and
limitations. That is, time and errors do not always map neatly onto a specific mental model or
misconception (Cooke & Breedin, 1992). As a consequence, most attempts to measure mental
models in the literature have combined this basic measure with one or more of the relatively richer
measures described below.

Interviews. Interviews to elicit mental models can be more or less structured, with the
content and course of the interview being more or less predefined. Unstructured interviews, which
do not follow a prespecified format, have been used to capture subjects’ mental models of common
phenomena in physics (DiSessa, 1983) and of home heat control (Kempton, 1986). Such an
interview may also be conducted after problem solving (e.g., McCloskey, 1983). Structured




interviews, on the other hand, follow some sort of prespecified format. The structured interview
may focus on: (1) a specific system component--¢.g., location, purpose, function (Gitomer,
1984), (2) diagrams--¢.g., enumerate concepts, show physical and/or functional relations,
designate related components (Gitomer, 1984; Hall, Gott & Pokorny, 1991), or (3) a specific
example of system behavior (Stevens, Collins & Goldin, 1979).

Process Tracing/Protocol Analysis. When this method is used, subjects are presented with
a problem and are asked to "think aloud"” as they solve the problem. Subjects are asked to
generally describe their thought processes and to state reasons for their actions. The protocol is
subsequently analyzed (i.e., protocol analysis) either to generate hypotheses about mental models
or to support or reject a proposed model. Although such verbal reports have been criticized for
their reliability and accuracy (e.g., Nisbett & Wilson, 1977), others (Ericsson & Simon, 1984)
have attempted to define the conditions under which verbal protocols are appropriate.

Nonetheless, this method of measuring mental models is one of the most popular elicitation
methods. It has been used to examine mental models of physics (Larkin, 1983; Greeno, 1983;
Clement, 1983), calculators (Halasz & Moran, 1983), and heat exchangers (Williams, Hollan, &
Stevens, 1983).

Structural Analvsis, When this method is used, pairwise proximity estimates for a set of
system-relevant items are gathered. These estimates are then submitted to a descriptive multivariate
statistical technique (e.g., multidimensional scdling, cluster analysis, or network clustering
technique) which reduces the estimates to a simpler form. For example, Kellogg and Breen (1990)
used the Path{inder network structural technique (Schvaneveldt, 1990) to derive and compare
user’s mental models with an idealized system model. Likewise, Gillan, Breedin, and Cooke
(1992) used hierarchical cluster analysis and Pathfinder to compare subjects’ mental models of the
human-computer interface. In addition, Gitomer (1984) used cluster analysis and
multidimensional scaling to compare expert and novice airmens' knowledge organization of an
antenna system. One of the strengths of these techniques is that they are able to convey
quantitative, as well as qualitative information about mental models.

In summary, four very different types of measurement methods have been used in research
on memal models. The different measurement approaches may each provide different sorts of
information, making generalizations across studies difficult, if not impossible. In addition, the
different approaches have not been evaluated in terms of their respective reliabilities and validities.
In general, each of the different methods is likely to have advantages and disadvantages (Cooke,
1992a), and no one method of measuring mental models has received universal acceptance.
Therefore the selection of a single optimal method for on-line student assessment is an uncertain
enterprise at best. Indeed, the criteria associated with an optimal technique are similarly ill-defined




(Cooke, 1992a). In this paper a pragmatic view is taken in which optimal methods are minimally
assumed to elicit knowledge that is relevant to task performance.

Another difficulty associated with using most of these methods for on-line assessment of
student system knowledge is that most involve the collection of "extra” data (e.g., verbal reports,
similarity ratings) not typically collected in interactions with the tutor. Thus, the use of these
methods would entail interruption of the tutoring process to collect data in a task that would most
probably seem artificial to the student. The single exception to this limitation is the collection of
time and accuracy measures. Here, measures can be automatically collected on-line and used to
infer student knowledge. In fact, most of the intelligent tutor approaches to assessment and
diagnosis discussed above have relied on this method. Unfortunately, time and accuracy data are
impoverished compared to the much richer data obtained from verbal reports and structural
analyses. These richer methods go beyond the student's actions, facilitating the jump from actions
to the cognitive underpinnings of those actions. Therefore, what is needed is not only a reliable
and valid method for measuring system knowledge, but one that can provide rich representations
of this knowledge from student actions derived on-line. This is the focus of our project. The
goal is to be able to map student actions (both errorful and correct) collected on-line onto a rich
representation of student system knowledge. This representation can then be used to assess and
diagnose student system knowledge and identify targets for intervention. The domain selected for
this project is avionics tmubleshootmg

Basxcally, the gcneral problem ldenuﬁed above mvolves making detailed inferences about a
student’s system knowledge from that student's actions. One way to dissect this problem is to
work backwards from the goal state—-system knowledge, to the initial state -- student actions.
Interviews, process tracing, and structural analytic methods offer rich representations of system
knowledge. However, it is necessary to know which of these methods provides the most reliable
and valid measure of system knowledge in the domain of avionics troubleshooting (see Figure
1.1). Therefore, the first subgoal in solving the above problem involves identifying a valid method
for eliciting and representing system knowledge required for avionics troubleshooting. Assuming
that system knowledge is critical for performance, then a valid method of measuring this
knowledge should reveal differences among subjects that correspond to performance differences.

Of course, these techniques require data collected off-line. Therefore, the next subgoal
involves determining how to derive this type of data from on-line interactions with the tutor. Can
we make use of the data already collected on-line to derive representations of system knowledge?
In other words can we identify general relationships between student actions and patterns of
system knowledge derived off-line, so that later predictions can be made about system knowledge
based on student actions? As previously noted, mapping errors onto a student's understanding can
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Figure 1. Steps involved in mapping student actions onto system knowledge.

be problematic because actions can be varied and idiosyncratic (e.g., Payne & Squibb, 1990). On
the other hand, it is generally assumed that actions are, at least partially, the result of knowledge
and that certain patterns of actions reflect specific types of troubleshooting knowledge (Pokomny &
Gott, 1992). Gott, Bennett, and Gillet (1986, p 43) label the assumption that "thinking is for the
purpose of doing" the theory of technical competence. Perhaps a more stable analysis of student
knowledge can be achieved by examining all of the student's actions regardless of whether correct
or incorrect. But how do we make sense of all of these actions? What is needed is a means of
identifying meaningful patterns or summaries of student actions. A pattern of actions can be
thought of as an intermediate representation of student troubleshooting knowledge (see Figure
1.2). Although pattemns in student actions are likely to emerge, their meaningfulpess is an
empirical question. Specifically, do differences revealed in identified action patterns correspond to
actual differences in other measures of student performance? Thus, the identification of action
patterns and the evaluation of the meaningfulness of these patterns is a second subgoal.

Once meaningful patterns of actions (i.c., troubleshooting knowledge) have been identified,
the next subgoal entails mapping these patterns onto patterns of system knowledge (see Figure
1.3). Can we identify patterns of actions that correspond to distinct representations of system
knowledge? Of course this step requires the elicitation of both actions and system knowledge from
the same subjects. Assuming that the previous subgoals have resulted in meaningful patterns of




actions and representations of system knowledge and assuming that system knowledge underlies
actions (at least partially), then some correspondence should emerge. For instance, students who
swap a card before checking the data flow to that card may do so for several reasons. This
mapping procedure may indicate that students who demonstrate this action pattern tend not to
understand the relationship between data flow and signal flow. Finally, if this correspondence
does emerge, then it would be possible to make predictions about system knowledge from
troubleshooting actions collected on-line, thereby eliminating the extra data collection step (see
Figure 1.4). Predictions based on these actions could be evaluated by either implementing them in
a tutor and evaluating the tutor or comparing the predictions to those maue by SMEs.

The four subgoals represented in Figure 1 comprise the long-term plan associated with the
development of a new approach for assessing and diagnosing student system knowledge. The
subgoals represented in Figures 1.1 and 1.2 are prerequisites to the later subgoals, but even in
isolation, these preliminary steps make important contributions to the-general problem of student
assessment and diagnosis. More specifically, the first subgoal will identify optimal methods for
eliciting svstem knowledge in the avionics troubleshooting domain. This information is useful for
stages of tutor development in which knowledge of this type needs to be elicited from domain
experts. In addition, although less efficient than the long-term plan, the best fechniques could be
used to assess student system knowledge off-line. The second subgoal may also contribute by
identifying meaningful action patterns that may be useful in and of themselves in assessing and
diagnosing other types of student knowledge (i.e., procedural or strategic knowledge). The
remainder of this report focuses on progress made toward the long-term plan, specifically, the
subgoal portrayed in Figure 1.2,

R B P .1 . i .

The goal of this part of the project is to identify meaningful patterns in students'
troubleshooting actions. These patterns are referred to generally as "troubleshooting knowledge,"
because it is assumed that they are influenced by the three forms of knowledge central to
troubleshooting, namely strategic, system, and procedural knowledge. If the resulting action
patterns capture troubleshooting knowledge in a meaningful way, then minimally, they should be
able to differentiate high and low performers.

One way that action patterns can be derived is through the use of the Pathfinder network
scaling procedure. The Pathfinder procedure is a descriptive statistical technique that represents
pairwise proximities in a graphical form (Schvaneveldt, 1990; Schvaneveldt, Durso, & Dearholt,
1985; Schvaneveldt, Durso, & Dearholt, 1989). In the graph, concepts or entities are represented
as nodes and relations between entities as links between nodes. Each link is associated with a
weight that represents the strength of that particular relationship. These weights are based on
proximity estimates which can be collected in a number of ways including pairwise relatedness




ratings, co-occurrence of items in a sorting task, or event co-occurrence. Pathfinder networks can
have directed links given asymmetrical proximity estimates and unconnected nodes if proximity
estimates between an item and all other items exceed a maximum criterion set by the experimenter.
It should also be noted that although the links represent semantic relations, the algorithm does not
identify the specific relation associated with each link. The Pathfinder procedure determines
whether or not to add a link between each pair of nodes. Basically, a link is added if the minimum
distance between nodes based ca all possible paths (i.e., chains of one or more links) is greater
than or equal to the distance indicated by the proximity estimate for that pair. Two parameters, [
and g, determine how network distance is calculated and affect the density of the network.
Dearholt and Schvaneveldt (1990) provide a detailed discussion of Pathfinder (also see Appendix
A).

Pathfinder has several advantages including the fact that it is not constrained to hierarchical
configurations like most cluster analysis routines and its ability to reprpsent asymmetrical relations
(Dearholt & Schvaneveldt, 1990). In addition, results from several studies indicate that Pathfinder
network representations are psychologically meaningful in that they are predictive of recall order
and judgment time (Cooke, 1992b; Cooke, Durso, & Schvaneveldt, 1986). Pathfinder networks
have, in fact, been used to reliably distinguish skilled and unskilled performers in domains such as
air-combat flight maneuvers (Schvaneveldt, Durso, Goldsmith, et al., 1985), computer
programming (Cooke & Schvaneveldt, 1988), and interface design (Kellog & Breen, 1990). They
have also been used to assess student classroom performance (Goldsmith & Johnson, 1990). In
this study the similarity between student and instructor networks was highly correlated (r = .74)
with final class grade.

The Pathfinder procedure has typically been used to represent knowledge in the form of
conceptual or declarative relationships (e.g., Cooke & Schvaneveldt, 1988; Schvaneveldt, Durso,
Goldsmith, et al., 1985). However, it has also been used in one case to represent action sequences
(McDonald & Schvaneveldt, 1988). In this study McDonald and Schvaneveldt collected co-
occurrence frequencies of UNIX commands issued by users who interacted with the system. They
used Pathfinder to summarize these data in terms of a network of the most frequently occurring
action paths. Thus, because of Pathfinder’s ability to represent action sequences and deal with the
asymmetrical and nonhierarchical relations typically found in actions, it was selected as «. vehicle
for interpreting actions in the present study.

Such a representation of actions would be desirable for several reasons beyond the overall
goal of mapping actions onto system knowledge. First, on-line assessment in tutors could be
achieved by deriving an individual's network from actions taken during problem solving and
comparing this network to an "expert” network. The comparison would be based on the number
of shared nodes (actions) and links (action sequences) between the two networks. Thus, this




particalar comparison results in one value that represents overall level of knowledge. Second, the
qualitative nature of the network representation allows a more detailed diagnosis of student
troubleshooting knowledge. The Pathfinder network analysis could highlight specific actions and
action sequences that are not "expert-like" and that could be targeted for remediation. Likewise,
positive aspects of performance (expert-like actions) could be identified and targeted for positive
feedback to the student. Thus, one additional benefit of this methodology is that it is capable of
providing both quantitative assessment information at a giobal level and qualitative information at a
more detailed level. Finally, because of the bottom-up nature of this approach, the Pathfinder
representations may incidentally reveal specific patterns of actions that distinguish high and low
performers, but that have not been recognized or verbalized by the SMEs.

METHOD

Actions taken by subjects on a troubleshooting tests described by Nichols, Pokorny, Jones,
Gott and Alley (1989) were used to develop Pathfinder networks.  Ip the Nichols et al. study the
effects of an intelligent tutoring system called SHERLOCK were examined by comparing the
performance of technicians who received both on the job training (OJT) and SHERLOCK training
(experimental group) to the performance of technicians who received only OJT (control group).
Subjects,

The subjects were 37 manual avionics shop technicians stationed at one of two AF bases,
Langley AFB or Eglin AFB. Supervisors had identified the subjects as being at a beginning or
intermediate skill level (3 or 5) and available for the study duration (1 mo.). Five subjects were
later dropped from the study: two subjects were transferred, and three subjects were identified as
being more skilled than previously determined, leaving a sample of 32 technicians. The subjects
were first matched on the basis of a verbal troubleshooting score and a number of other scores
(e.g., mechanical and electrical tests). Then members of each matched pair were randomly
assigned to either the experimental or control group. The 30 subjects who completed a specific set
of three verbal troubleshooting problems were used in the present analyses.

Individual subjects were classified as either high or low perfonmers on each problem based
on the score they received from the scoring worksheet (Pokorny & Gott, 1992), the current
assessment method in this domain. This score is derived by subtracting a predetermired number
of points for each error that the student makes in troubleshooting. For the pretest problem, high
performers were defined as those subjects who received a score of 85 or greater, whereas low
performers were defined as those subjects who received a score of 35 or less. These cutoffs were
arrived at by identification of natural breaks in the frequency distribution of scores. Four of six
high performers and three of eight low performers were in the experimental group. Subjects were
reclassified as high and low performers based on their performance on the posttest problem.
Specifically, subjects were classified as high performers if they received a score of 85 or greater,




and subjects who received a score of 55 or lower were classified as low performers. Interestingly,
all of the high performers and only one of the low performers were in the experimental group.
Materials and Procedure,

A brief description of the methodology used by Nichols et al. (1989) follows. All subjects
participated in a training period in which they received either OJT or OJT and SHERLOCK. The
pre- and posttest measures referred to below were administered before and after this training
period, respectively. Four measures were used in the study: 1) the Armed Services Vocational
Aptitude Battery, 2) a measure of each subject’s previous experience in electronics, 3) pre- and
posttest versions of a verbal troubleshooting test, and 4) pre- and posttest versions of a
noninteractive troubleshooting test. (Only those subjects stationed at Eglin AFB completed the
pretest version of the noninteractive test). In addition, those subjects who received SHERLOCK
training completed a tutor report card following the fina! training session. Only problems from the
verbal troubleshooting data were analyzed in the present study.

The verbal troubleshooting test is an individually administered structured problem solving
test. The test begins with the examiner describing a fault that has occurred. The subject then
attempts to isolate the fault and repair the equipment through a series of recursive action-result
steps. In each step the subject specifies an action he/she would take and the reason for taking that
particular action. The examiner responds by informing the subject of the action's effect on the
equipment, and requests the subject's inference concerning equipment operation based on that
effect. The cycle continues until the problem is solved, the one hour time limit expires, or the
subject gives up. Thus, although subjects are not working on actual equipment, they have to make
use of all of the technical data that they would require if they were troubleshooting real equipment.

Six pretest and four posttest verbal troubleshooting problems were administered by

Nichols et al. Only the data from three problems were used in the present analyses, specifically
pretest 1, pretest 2, and posttest 1. The complete analysis described below was conducted on data
from pretest 2 and posttest 1 because these problems were comparable in terms of type and
difficulty. The pretest 1 problem was primarily analyzed to determine the optimal coding scheme.
RESULTS AND DISCUSSION

A coding scheme for students' actions was developed using the data from the pretest 1
problem (sce Appendix B). This scheme was then applied to and modified slightly for the
remaining two problems, referred to herein as pretest and posttest. The purpose of the scheme was
to be able to classify discrete actions into meaningful action units that could be represented as
nodes in a Pathfinder network. The main categories of actions for both problems included
equipment checks, data flow tests, signal flow tests, and swaps. The most abstract level of
categorization was used unless the same action would, in some cases, result in a pass and in
others, a fail, In this case, the lower, more specific level of abstraction was used. Using this

10




decision rule, for each problem an action unit was associated with one and only one
troubleshooting outcome. The resulting coding schemes consisted of 63 action units/nodes
categories for the pretest and 62 action units/nodes for the posttest problem.

Transition probabilities for all pairs of actions (in both directions) were calculated for
individual subjects by dividing the frequency with which specific action transitions (e.g.. swap
UUT followed by check DMM fuse) occurred by the frequency with which the first item in the
sequence occurred. For example, if swap UUT occurred twice and was followed by check DMM
fuse on one of those occasions then the transition probability would be 0.5. Note that these are
first-order transitions only. Higher order transitions (i.c., the probability of swap UUT followed
by check DMM fuse either immediately or with one or more actions intervening) were considered,
but not used because the immediate transitions were considered to be the most meaningful.
Transition probabilities were also calculated across groups of subjects using frequencies summed
across all subjects in the group. For instance, transition probabilitics.were calculated for the high
and low performers for each of the two troubleshooting problems.

The four matrices of transition probabilities (high and low performers, pre- and posttest)
were submitted to the Pathfinder network network scaling technique (Schvaneveldt, 1990).
Figures 2 and 3 illustrate the pretest problem network representations resulting from the high and
low performers’ probabilities, respectively. Figures 4 and 5 illustrate the postiest problem network
representaions resulting from the high and low performers’ probabilities respectively. Details of
these networks will be discussed below in the section on diagnosis.
Assessment

One of the major questions to be asked of this approach is whether Pathfinder networks of
actions can distinguish high and low performers for the purposes of assessment. In this study the
subjects’ score for each problem derived using the scoring worksheet is assumed to be the "true
score” indication of their performance on that problem. Therefore, to answer the above question
one can look at the correlation between an assessment measure derived from Pathfinder networks
and the score derived from the scoring worksheet procedure. To assess students using Pathfinder,
for each problem an ideal or expert network can be compared to the network representation of each
nonexpert individual. The C measure (Goldsmith & Davenport, 1990) provides a quantitative
index of network similarity that can be used for this purpose. This measure is based on proportion
of shared nodes and links in two networks. It ranges from 0 (low similarity) to 1 (high similarity).
For the pre- and posttest problems, the networks based on the aggregate actions of the six highest
performers were used as ideals for that problem. The remaining nonexperts were evaluated in
terms of these standards. Note that the use of the six highest performers as the ideal greatly
restricts the range of data for the remaining nonexperts on which the correlations were based. This
procedure was necessary because there were only incomplete data available for SMEs, the obvious
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choice for the ideal. Thus, it should be kept in mind that the correlations reported here may be
underestimated due to this constraint.

The correlations between troubleshooting scores and this network similarity measure for the
24 nonexperts in each problem are presented in Table 1. In addition two other assessment
measures that were related to the network similarity measure were calculated and included in the
analysis to aid in distinguishing relevant from irrelevant aspects of the Pathfinder-based measure.
One of these measures was derived from a correlation of action frequencies (i.c., the frequency
with which each action unit occurred) associated with an individual's protocol and action
frequencies associated with the aggregate high-performer protocol. Thus, this measure should be
high to the extent that the nonexpert performed the same actions as the high-performers the same
number of times. It should overlap with the Pathfinder network similarity measure in that they
both take shared actions into account. However, the Pathfinder measure includes information on
action sequences, whereas the action frequency measure includes frequency of individual actions.
Finally, the second other measure was the total number of actions that each subject executed (i.c.,
number of steps to solution).

Examination of Table 1 indicates that the Pathfinder similarity measure is predictive of
troubleshooting scores for the pretest (£ (22)= .57, p <.01), but not for the posttest (r (22)= .26).
However, the action frequency measure is predictive of the score for both the pre- (1 (22)= .65, p
<.01) and the posttest (T (22)= .76, p <.01). Other significant correlations indicate that the two
measures of Pathfinder similarity and action frequency are highly intercorrelated, as was predicted.
However, at least for the pretest, both measures seem to independently account for a portion of the
variance. The correlation between the troubleshooting score and the action frequency measure
remains significant when the Pathfinder similarity measure is partialed out (r (21)=.53, p <.01).
Also, the correlation between the troubleshooting score and the Pathfinder similarity measure is
marginally significant when the action frequency measure is partialed out (¢ (21)=.39, p <.07).

Another way of looking at these data is to compute change scores for subjects from pretest to
posttest and correlate these scores. Because only 20 of the 24 nonexperts were classified as
nonexperts for both tests, data were analyzed for only these 20 subjects. The intercorrelation
matrix for these change scores is presented in Table 2. As might be expected from the previous
analysis, the troubleshooting score change was highly correlated with both the change in
Pathfinder similarity (r (18)=.51, p <.05) and the change in action frequency (r.(18)=.55,p
<.05).

Taken together, these results suggest that the types of actions subjects perform and the
frequency with which they perform them are predictive of both the pre- and posttest scores. In
addition, the specific sequence in which actions are executed is predictive of the pretest scores. As
will be discussed below, there was a much wider range of actions performed by the low
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Table 1. Intercorrelation matrix of four assessment measures. (VT score = verbal
troubleshooting score; PF sim = similarity of Pathfinder network with expert network;
ActFreq=correlation of action frequencies with expert action frequencies; No.Act = number of
actions)

Table 1la. Table 1b.

Pretest Measures Posttest Measures

1 2 3 4 1 2 3 4
1. VTscore 1.00 .57*%* 65** .38 1.VTscore 1.00 .26 .76**-35
2. PF sim 1.00 .47+ .38 2. PF sim 1.00 .55** .22
3 ActFreq 1.00 .30 3 ActFreq 1.00 -.17
4. No.Act- 1.00 4, No.Act 1.00

*p<.05; **p<.01

Table 2. Intercorrelation matrix of four measures of change from pre- to posttest.
(VT score = verbal troubleshooting score; PF sim = similarity of network with expert
network; ActFreq=correlation of action frequencies with expert action frequencies; No.Act =

number of actions)

Intercorrelations of Change From Pre- to Posttest

1 2 3 4

1. VT score change 1.00 .51* .55* -.075

2. PFsim change 1.00 .49* .37
3. ActFreq change 1.00 .11
4. No.Act change 1.00
*p<.0S; **p<.01
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performers in the posttest compared to the pretest which may have overwhelmed any predictive
power of sequential variation.

Finally, the assessment measures can also be compared in terms of their ébility to
discriminate subjects in the experimental and control groups. The mean scores of experimental and
control subjects for the pretest and posttest are presented in Table 3. As should be expected, there
were no pretest differences between experimental and control groups. Interestingly, the only
significant difference between these two groups at posttest is for the Pathfinder similarity measure
(£(22) = 2.07, p<.05). Subjects in the experimental condition had networks that were more
similar to the ideal network than did subjects in the control condition. The lack of a significant
verbal troubleshooting score difference between the two groups is most likely due to the restriction
of range that occurred by eliminating the six highest performers on the posttest. The fact that
Pathfinder accounts for experimental vs. control differences, but not the action frequency measure,
suggests that subjects who were trained on SHERLOCK learned more expert-like action sequences
than those who were not.

Table 3. Mean assessment measures for experimental and control groups on pre-
and posttests. (VT score = verbal troubleshooting score; PF sim = similarity of Pathfinder

network with expert network; ActFreq=correlation of action frequencies with expert action
frequencies; No.Act = number of actions)

Measure Pretest Mean Posttest Mean
YIscore
Experimental 42.00 68.00
Control 47.00 59.00
Experimental .05 .07
Control .05 04
imental .38 41
Control .33 24
Experimental 12.60 15.80
Control 11.50 16.60

In sum, this procedure seems to identify meaningful action patterns. Assessment in this
domain (i.e., avionics troubleshooting) is currently carried out using the scoring worksheet
(Pokomy & Gott, 1992) and, as demonstrated above, an assessment measure based on Pathfinder
action patterns corresponded to that of the scoring worksheet. Although this particular subgoal
does not entail diagnosis of student knowledge, one of the purported benefits of the Pathfinder
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analysis is its ability to offe- information beyond the mere assessment of student knowledge. In
this section diagnostic implications of the Pathfinder analyses are discussed. The main question
here is does Pathfinder highlight specific strengths and weaknesses in students' knowledge that
can be targeted for intervention? The analysis that follows entails identifying the strengths and
weaknesses of the low performers as a whole, although an identical analysis could be performed at
an individual level.

Di is and I .

The Pathfinder networks for the high and low performers differed both quantitatively and
qualitatively. Some of the quantitative differences between individuals and high-performers were
captured in the network similarity measures described above. General quantitative differences
between the two groups can be seen in terms of the number of nodes and links present in the
networks of the high and low performers. The high performers’ networks had fewer nodes (i.e.,
actions) than the low performers' networks, especially at posttest (see Figures 2 through 5 and
Table 4). In other words, the high performers as a group executed fewer distinct actions than the
low performers, indicating a less varied repertoire of actions across all high performers for this
problem. High performers seem to agree on the relevant actions for this problem in comparison to
low performers. Although the low performers at posttest executed over twice as many distinct
actions as the high performers, they shared all but one of the high performer’s actions. Thus, at
posttest the low performer’s applied a wide repertoire of actions as a group, including actions that
are expert-like. These results suggest that the low performers as a group have knowledge about a
wide variety of actions by posttest, yet they do not seem to understand when these actions apply.
Interestingly, the subjects in the experimental group executed fewer distinct actions (35) than those
in the control group (48). Thus, SHERLOCK may be effective in teaching students the conditions
under which various actions apply.

What do these differences indicate in terms of diagnosis and intervention? First, the six
pretest nodes in the high performers’ network that were not contained in the low performers’
network consisted of signai flow and data flow tests. In addition, at pretest, low performers
executed 11 actions (corresponding to 11 extra nodes) high pesformers did not, seven of which
were data flow and signal flow tests. At posttest, half of the additional actions executed by low
performers were data flow and signal flow tests and half were swaps. Thus, these errors of
omission and commission indicate that intervention in these particular cases should be targeted at
leaming the appropriate data flow and signal flow actions. A more detailed target may be derived
by a focus on individual nodes.

In addition to having fewer nodes than low performers, high performers’ networks also
had fewer links than the low performers' at both pre- and posttest (see Table 4). This is to be
expected given the fact that fewer nodes necessarily implies fewer links. However, the number of
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links per node does not differ greatly for the four networks. For each node there are approximately
2 links per node (range = 1.8 to 2.1) across the four networks. However, the number of links
shared between the high and low performers increased slightly from pre- to posttest, suggesting
that the low-performers began demonstrating action sequences more like those of the high
performers. This pattern is verified by the C measure of similarity between the networks of the
low and high performers at pre- (C = .04) and posttest (C =.07). Although the resulting C values
were relatively low, they do indicate that the low performers became more like the high performers
at posttest. For instance, even the low performers at posttest had learned to conduct the signal
flow and data flow tests which the high performers used at posttest to pinpoint the fault. Thus, the
low performers learned more expert-like sequences of actions, given training.

Table 4. Number of nodes and links for aggregate networks of high and low
performers.

Number of Nodes N@Bﬂ of Links
Pretest Posttest Pretest Posttest
High performers 23 21 4 38
Low performers 28 45 52 94
Shared 17 20 7 11

The networks of the high and low-performers also differed in some more global ways. First,
the high performers (both tests) appeared to follow a rule about the general sequence of actions
which were taken: 1) general checks outside of the test package, including visual checks,
vquipment checks, and swaps, 2) signal flow tests inside the test station, 3) data flow tests of
components inside the test station and 4) swapping. Low performers, on the other hand, did not
closely follow this rule and instead committed violations in this general sequence. For example,
some low performers moved from data flow tests inside the test package to general checks outside
of the test package. This trend was observed both for pre- and posttest networks.

Second, the low performers exhibited what may be termed a meaningless action sequence
at both pre- and posttest, whereas high performers did not. For example, after completing a signal
flow or data flow check which indicated that the component was functional, some low performers
chose to swap the component anyway. The high performers did not exhibit meaningless actions
sequences such as these.

CONCLUSIONS

The results obtained from the work completed thus far are promising in that they indicate that
meaningful pattems of actions can be identified using the Pathfinder network scaliug procedure.
This result achieves the subgoal indicated in Figure 1.2. The network patterns are also meaningful
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in the sense that they can differentiate high and low performers as defined by the scoring
worksheet. In addition, the Pathfinder networks reveal qualitative differences between high and
low performers that are suggestive of targets for intervention (e.g., data flow and signal flow
tests). Finally, this bottom-up approach to knowledge elicitation resulted in general action patterns
that may not have been verbalized in a typical knowledge elicitation interview (i.c., the general
sequence of high-performers: checks outside, signal flow tests inside, data flow tests, swaps).
These results are even more promising when the source of the ideal or expert network used to
make these comparisons is considered. Specifically, high-performers were used here as the ideal.
An even better ideal would probably result from the use of recognized SMEs. In addition, the use
of subjects with more expertise would widen the range of performance, which would likely result
in enhanced assessment and diagnostic capabilities.

The next step of this project is the evaluation of different measures of system knowledge (the
subgoal represented in Figure 1.1). The longer-term goals include the mapping of system
knowledge onto action patterns and prediction of system knowledge based on this mapping.

The short term (one year) contributions of this work include:

1. A method of generating network representations of student actions and an
evaluation of this method.

2. An altemnative to, or extension of, existing methods for assessing student
troubleshooting knowledge on-line.

3. A method for targeting specific concepts or strategies associated with overall
knowledge strengths or deficits.

4. A method or set of methods that have been determined to be optimal for eliciting and
representing the system knowledge of students.

The longer-term contributions of this work are:

1. A procedure for on-line assessment and diagnosis of student's system knowledge
which involves mapping action patterns onto deficits or proficiencies in system
knowledge.

2. A procedure which summarizes actions (errorful and correct) in terms of a rich
representation of student knowledge that le.\ds itself to qualitative analysis useful for
diagnosis and intervention.

3. An assessment and diagnosis procedure that targets the complex domain of
avionics troubleshooting.

4. A methodology that can be applied to the problem of eliciting knowledge from SMEs for
tutor development.

S. A general test of the assumption that system knowledge underlies troubleshooting
actions.
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Appendix A
The Pathfinder Network Generation Algorithm

The Pathfinder procedure takes pairwise proximity estimates for a set of items and generates a
graph structure in which the items are represented as nodes and relations between items as links
between nodes. Links connecting nodes are determined on the basis of the pattern of proximity
estimates. Each link is associated with a weight that represents the strength of that particular link.
Weights are the original proximity estimates associated with item pairs. With symmetric distance
matrices Pathfinder will produce networks with undirected links. However, Pathfinder networks
can have directed links given asymmetrical estimates and can be unconnected if proximity estimates
between an item and all other items exceed a maximum criterion set by the experimenter. The
major diagonal in the data matrix represents the distance between an object and itself. This distance
is usually 0, but Pathfinder will handle non-zero entries on the diagonal by creating links from the
node to itself (loops) in the network. Data derived from transition probabilities may lead to such
non-zero entries for the diagonal

The data for Pathfinder may be in the form of similarities, dissimilarities, probabilities, or
distances. The data may be collected from records of events (e.g., actions taken in problem
solving), eye movements, or more typically, from concept similarity ratings or co-occurrence in
concept sorting. For example, suppose three subjects (Tom, Michelle, and Doug) were asked to
rate all pairs of the following four entities in terms of relatedness (1=highly related, 6=not related):

(3 %T Point Select Card
( est Point Select

(3) UUT

(4) Test Point Select Card

The hypothetical data can be formatted in a symmetrical matrix as follows. Rows and columns
correspond to the four entities:

0624 0644 0543
6053 6011 5023
2505 4103 4201
4350 4130 3310

The Pathfinder procedure determines whether or not to add a link between each pair of nodes. A
link is added if the minimum distance between nodes based on all ible paths (i.e., chains of
cx:amﬁnb)kpumhnamﬂpmdimmmgmepwﬁmwmm

t pair,
Pathfinder uses two parameters, q and r,to determine the calculation of this network distance. The
q-parameter constrains the number of links traversed in paths in the network. The r-
defines the metric used for computing the path length in terms of the Minkowski metric, sor = 1
corresponds to the city block metric and r = 2 corresponds to the Euclidean metric. Whenr=
infinity, path length equals the maximum weight (i.c., distance estimate) of the links that make up
thcpath,mdthmonlyaﬂindlmmnedmbewmmem Varying these two
parameters results in networks of di complexity; however, it is always the case that the links
of simpler networks are completely con within more ex networks. The simplest
network results from setting r to infinity and q v the number of items (or nodes) minus one.
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The Pathfinder networks (r = 00, q = 3) based on the relatedness ratings given by the three
hypothetical data sets are shown below. Note that the network structures of Michelle and Doug are
highly similar; the two networks are structurally alike except for a link between Grp TP Select and
TP Select seen in Doug's network but not in Michelle's. the other hand, Tom's network is
different from both Michelle's and Doug's. Tom did not see DMM as central, whereas both
Michelle and Doug did. In addition, Tom's network is “chain-like", whereas Michelle and Doug's
networks are not.

Tom:
-— > [T]
Michelle:
T:
P
Doug:
LT:
2 4
[GpTP Sdect_| ¢—g—>
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In addition to a qualitative comparison of the networks, a quantitative comparison can be made
using the C statistic (Goldsmith & Davenport, 1990). This is a ineasure of shared links for
matching nodes across two different networks. C indicates the strength of relationship between
two networks and ranges in value from 0 (not related) to 1 (related). The first step in calculating C
is determining the proportion of shared links for a particular node across two networks. This is
accomplished by calculating the ratio of the intersection of links emanating from that node to the
union of links from that node across the two networks. This proportion is calculated for all nodes
across the two networks. C is the averaging ratio of shared links across the nodes in the two
networks. The calculations of C between A, B, and C's networks are illustrated below.

Tom and Michelle

Step1: 1/3+1/2+0/3 +0/2 = .833
Step2: 83/4= .21

Tom and Doug

Step 1: 1/3+1/3+0/3 +0/3 = .667
Step 2: .667/4 = .17

Doug and Michelle:

Stepl: 3/3+12+1/1+12=3
Step 2: 3/4=.75

Thus, Doug and Michelle's networks are fairly strongly related, with C = .75. Tom's network, on
the other hand, is not as strongly related to either Michelle's or Doug's with C = .21 and .17,

respectively.
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Appendix B

*: Action units used for the pretest problem
#: Action units used for the posttest problem

DATA FLOW

1.0 DF check of Test Point select card *
1.1 V(28V) #
1.11 oscope
1.12 voltage
1.13 ohm
1.2 V(GND) #
1.21 oscope
1.22 voltage
1.221 Off the active path
1.23 ohm
1.3 V(Zg ;llto GND) #
1.32 voltage
1.321 Off the active path
1.33 ohm

2.0 DF check of Group Test Point Select card #
2.1 V(28V) *
2.11
2.12 voltage
2.13 ohm
2.2 V(02Nz!:) »
.21 oscope
2.22 volage
2.23 ohm
23V(28 VioGND) *
%gzlv o
32 vo
2.33 ohmm‘ls
3.0 DF Check of Measurement Select Card * #
3.1 ADMMGND

311
3.12 voltage
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4.0 DF check of Decoder Driver
4.1 Input * #
4.11 oscope
4.12 voltage
4.13 ohm
4.2 Output #
421V(28V)*
4.211 oscope
4.212 voltage
4.2121 Off the active path
4.213 ohm
422 V(GND) *

4.233 ohm
4.4 By ohm check (28V output to GND output) * #
4.5 From input to output * #
4.51 oscope

4.52volt?e
21 Off the active path
4.53 ohms

4.531 Off the active Path

5.0 DF check of TP Storage 2 * #
5.1 Input

5.11 munrems e t code
5,112 voltage
5.113 ohm

5.1131 Off the active path

5.12 from TP timing (Enter, Reset, A Enter, B Enter)
e
3.123 ohm

52
e
5.23 ohm

5.3 From input to output

6.0 DF check of TP Storage 1 ¢
6.1 Input #
6.11 measurement code
6.111 oscope

6.112 voltage
6.1121 Off the active path

6.113 ohm
6.1131 Off the active path
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6.12 from TP timing (Enter, Reset, A Enter, B Enter)
6.121 oscope
6.122 volage
6.123 ohm

6.2 Output #

6.21 oscope

6.22 voltage

6.23 ohm

7.0 DF check of TP Timing * #
7.1 Input
7.11 A/B
7.111 oscope
7.112 voltage
7.113 ohm
7.12 Enter
7.121 oscope
7.122 voliage
7.123 ohm
7.2 Output
.21 oscope
7.22 voltage
7.23 ohm
7.3 From input to output

8.0 DF check Units Switch * #
8.1 I"p%tn
.11 oscope
8.12 voltage
8.13 ohm

82 omg‘.lztl oscope

8.22 vol
8.23 olm:u'e

9.0 DF check Tens Switch * #
9.1 Input
e
. tage
9.13 ohm

9.2 Outpat oscope

9.22 vol
9.23 alm'nu'c

10.0 DF check Enter Switch ¢ #

10.1 oscope
10.2 voltage

10.3 ohm

11.0 DF check A/B Switch * #

11.1 oscope

11.2 voltage
11.3 ohm




12.0 DF check Measurement Select Switch Qutput * #
12.1 ADMM
12.11 oscope
12.12 voltage
12.13 ohm

13.0 DF check Operating Voltages * #
13.1 Off the active path

45.0 DF check wires * #

47.0 DF check BIT Test Point * #
48.0 DF check stimulus circuitry * #
SIGNAL FLOW N

14.0 SF Wires * #

14.1 DMM 10 Al
14.12 short
14.13 ohm
14.13 voltage

142 Alto Al12
14.21 short
14.22 ohm
14.23 voltage

143 A12t0 Al13
14.31 short
14.32 ohm
14.33 voltage

144 A13tw0 TP
14.41 short
14.42 ohm
14.43 voltage

14.5 Off the active path
14.51 short
14.52 ohm
14.53 voltage

15.0 SF thru Test Point Select Card * #
15.1 short
15.2 ohm
15.21 Off the active path
15.3 voltage

16.0 SF thru Group Test Point Select Card * #
16.1 shont
16.2 ohm
16.3 voltage

¢ 17.0 SF thru Measurement Select Card * #
17.1 short
17.2 ohm

. 17.3 voltage
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18.0 SF thru Test Point Select & Group Test Point Select * #
18.1 short
18.2 ohm
18.3 voltage

19.0 SF thru Measurement Select & Group Test Point Select * #
19.1 short
19.2 ohm
19.3 voltage

20.0 SF thru all three cards * #
20.1 short
20.2 ohm
20.3 voltage

21.0 SF thru all three cards & Test Package * #
21.1 short
21.2 ohm
21.3 voltage

22.0 SF thru all three cards, & external to Test Point Select * #
22.1 short
22.2 ohm
22.3 voltage

23.0 Sthgrlu 'Il‘lest Point Select, Group Test Point Select, & extemal to Test Point Select * #
short
23.2 ohm
23.3 voltage

24.0 SF thru Test Point Select & extemnal to Test Point Select * #
24.1 short
24.2 ohm
24.3 voltage

25.0 SF external to Test Point Select * #
25.1 short
25.2 ohm
25.3 voltage

26.0 SF Test Package/Test Package Parts * #
‘ 26.1 short
26.2 ohm
26.21 Off the active path
26.3 voltage

27.0 SF Signal Determinant (UUT & MSA) & parts inside * #
27.1 shont
27.2 ohm
27.3 voltage
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280 SFDMM fuse * #
28.1 short
28.2 ohm
28.3 voltage

46.0 SF output towards UUT * #
CHECKS

29.0 Check Signal Determinant (UUT & MSA) * #
"29.1 visual
29.2 part number (P/N)

30.0 Check Test Equipment * #
30.1 visual
30.3 setup/settings

31.0 Check DMM * #
31.1 visual
31.2 part number (P/N)
31.3 setup

32.0 Check DMM fuse * #
32.1 Simpson ohmmeter
32.2 oscope
32.3 swap
32.4 visual check

SWAP
33.0 Swap Signal Determinant (UUT & MSA) * #
34.0 Swap parts inside Signal Determinant * #
35.0 Swap DMM * #
36.0 Swap DF Component

36.1 Decoder Driver * #

36.2 Test Point Storage 2 * #
36.3 Test Point Storage 1 * #

367 BIT Relays Test Point * #
3681Penterswmch‘#
369 TP A/B switch * #

3708wa_rTestPointSelectCud‘0
1 Off the active path

38.0 Swap Group Test Point Select Card * #
39.0 Swap Measurement. Select Card * #




40.0 Swap Test Package Parts * #
41.0 Swap Other * #
RESEAT
42.0 Reseat Card * #
42.1 Reseat Measurement Select

42.2 Reseat Group Test Point Select
42.3 Reseat Test Point Select

42 4 Reseat Decoder Driver/DF Component -

OA/F1
43.0 OA/FI on RAG Drawer * #
RERUN TEST

44.0 Re-run Tesy/Re-enter instructions * #
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