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Abstract

"A graph is well-covered if every maximal independent set is a maximum independent set.

"A strongly well-covered graph G has the additional property that G-e is also well-covered

for every line e in G. Hence, the strongly well-covered graphs are a subclass of the well-

covered graphs. We characterize strongly well-covered graphs with independence number

two and determine a parity condition for strongly well-covered graphs with independence

number three. More generally, we show that a strongly well-covered graph (with more

than four points) is 3-connected and has minimum degree at least four.



STRONGLY WELL-COVERED GRAPHS

INTRODUCTION

A set of points in a graph is independent if no two points in the graph are joined by

a line. The maximum size possible for a set of independent points in a graph G is called the

independence number of G and is denoted by QM. A set of independent points which

attains the maximum size is referred to as a maximum independent set. A set S of

independent points in a graph is maxim I_(with respect to set inclusion) if the addition to S

of any other point in the graph destroys the independence. In general, a maximal

independent set in a graph is not necessarily maximum.

In a 1970 paper, Plummer [ 13] introduced the notion of considering graphs in

which every maximal independent set is also maximum; he called a graph having this

property a well-covered graph. The work on well-covered graphs that has appeared in the

literature has focused on certain subclasses of well-covered graphs. Campbell (21

characterized all cubic well-covered graphs with connectivity at most two, and Campbell

and Plummer [3] proved that there are only four 3-connected cubic planar well-covered

graphs. Royle and Ellingham [15] have recently completed the picture for cubic well-

covered graphs by determining all 3-connected cubic well-covered graphs.

For a well-covered graph with no isolated points, the independence number is at

most one-half the size of the graph. Well-covered graphs whose independence number is

exactly one-half the size of the graph are called ve well-cove graphs. The class of

very well-covered graphs was characterized by Staples [16] and includes all well-covered

trees and all well-covered bipartite graphs. Independently, Ravindra [14] characterized

bipartite well-covered graphs and Favaron [6] characterized the very well-covered graphs.

Recently, Dean and Zito [4] characterized the very well-covered graphs as a subset of a

more general (than well-covered) class of graphs.
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A set S of points in a graph dominates a set V of points if every point in V-S is

adjacent to at least one point of S. Finbow and Hartnell [7] and Finbow, Hartnell, and

Nowakowski [8] studied well-covered graphs relative to the concept of dominating sets.

Finbow, Hartnell, and Nowakowski have also obtained a characterization of well-covered

graphs with girth at least five [9].

A well-covered graph is I -well-covered if and only if the deletion of any point from

the graph leaves a graph which is also well-covered (Staples introduced the term 1-well-

covered in [16] and [17] ). For the analogous line property, we say G is strongly.w..L,

covered if and only if G is well-covered and G-e is also well-covered for all lines e in G.

Note that if G is not connected, then G is 1-well-covered if and only if all components of G

are 1-well-covered. Similarly, if G is not connected, then G is strongly well-covered if and

only if all components of G are strongly well-covered. See [10] and [111 for some results

on I-well-covered graphs with girth four.

The class of well-covered graphs contains all complete graphs and all complete

bipartite graphs of the form Kn.n. The only cycles which are well-covered are C3, C4, C5,

and C7. We note that all complete graphs (except K1) are also 1-well-covered, but no

complete bipartite graphs (except K1,1) are I-well-covered. The cycles C3 and C5 are the

only 1-well-covered cycles. Also note that the only complete graphs which are strongly

well-covered are KI and K2, the only complete bipartite graphs which are strongly well-

covered are K1,1 and KZ,2, and C4 is the only strongly well-covered cycle.

In [12], we construct infinite families of strongly well-covered graphs with

arbitrarily large (even) independence number. The construction involves the lexicographic

product of graphs.
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PRELIMINARY RESULTS

Unless otherwise stated, we assume that all graphs are connected. For notation and

terminology not defined here, refer to [ 11.

A line in a graph G is a critical line if its removal increases the independence

number. A line-critical graph is a graph with only critical lines. In the following lemma,

we show that the deletion of a critical line from a well-covered graph leaves a graph which

is no longer , ell-covered.

Lemma 1. If G # K2 is well-covered and e is a critical line in G, then G-e is not well-

covered.

Prof. Let e = uv. Since G * K2, then (without loss of generality) there exists

some point a - u, a # v. Since G is well-covered, there exists maximum independent set J

in G such that ar J. In the graph G-e, the set J is maximal independent. Thus, G-e has a

maximal independent set of size ct(G). Since e is a critical line, ot(G-e) = Co(G) + 1.

Hence, the graph G-e is not well-covered. []

Note that as a consequence of Lemma 1, we have the statement that a strongly well-

covered graph (other than K2) has no critical lines. Thus, if G s' K2 is strongly well-

covered, then c(G-e) = a(G) for all lines e in G.

If x is a point in a graph G, then the closed neighborhood of x is given by N[x] and

consists of x and all its neighbors. The next two lemmas will be very helpful in eliminating
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Lemma 2. Suppose G is well-covered. Also suppose that S is an independent set and x

is a point in G such that

(i) xf S and x - v for exactly one v in S, and

(ii) S dominates N[x].

Then G-e is not well-covered, where e = vx.

Proof. Since G is well-covered and S is independent, then there exists maximum

independent set J z S in G. Since v is in S and x - v, then xe J. Since S dominate• Nrx]

and J z S, then N(x) r) J = ({v}. Thus, in the graph G-vx, the set J Q Ix) is independent.

Hence, vx is a critical line in G. By Lemma 1, the graph G-vx is not well-covered. []

Lemma 3. Suppose G is strongly well-covered with ct(G) 2t 2. Then every point in G

must have at least two nonadjacent neighbors.

Prof. Assume to the contrary that v is a point in G such that every pair of

neighbors of v is adjacent. Let w - v. Then { w) = S satisfies the conditions in Lemma 2;

hence, G-vw is not well-covered, contradicting the assumption that G is strongly well-

covered. []

Let G, denote the graph obtained from G by deleting the point v and all its

neighbors; that is, G, is the graph induced by G-N[v]. Similarly if u and v are points in G,

let Gy be the graph induced by G-(N[u] u N[v]). The following very useful necessary

condition for a graph to be well-covered is proved in [3].

Theorem 4. If a graph G is well-covered and is not complete, then G, is well-covered

for all v in G. Moreover, ox(G,) = a(G) - 1.

We obtain a similar necessary condition for a graph to be strongly well-covered in

Theorem 6. First we prove the following lemma.



Lemma 5. Suppose e = uv is a line in a well-covered graph G such that G-e is not well-

covered. Then either (i) e is a critical line and there exists a maximum independent set I

containing {u,v) in G-e, or (ii) e is not a critical line and there exists a maximal

independent set J containing {u,v} in G-e such that IUl < a(G).

ERof. Suppose e = uv is a critical line in G. Hence, there exists a maximum

independent set I of size a(G) + I in G-e. Suppose I n (u,v) * {u,v). Thus, I is

independent in G, a contradiction since III > cX(G). Therefore, I contains (u,v).

Suppose e is not a critical line in G. Thus, ca(G-e) = ca(G). Consider the

independent set {u,v} in the graph G-e. Since G-e is not well-covered (by assumption),

then there exists a maximal independent set J in G-e such that IJl < a(G-e). If J r) {u,v}

{u,v}, then J is maximal independent in G. Since a(G) = cx(G-e) > IJI and G is well-

covered, we obtain a contradiction. Thus, J contains Iuv}. [1

Theorem 6. If G is strongly well-covered and G is not complete, then G, is strongly

well-covered for all points v in G.

Proof. By Theorem 4, the graph G, is well-covered and ca(G,) = a(G) - 1, for all

points v in G. So we need only show that Gv-e is well-covered for all lines e in G, for all

points v.

Assume to the contrary that there exists v such that G,-e is not well-covered for

some line e in G0. Let e = uw. By Lemma 5. since G, is well-covered and G,-e is not

well-covered, then either (i) e is a critical line for G, or (ii) if e is not a critical line for G,

then there exists a maximal independent set I D {u,w) in G,-e such that IJI < c(G,-e) =

a(G,,).

Suppose e is a critical line in G,. Then there exists maximum independent set J in

G,-e such that IJI = ca(G,) + 1 = x(G). But then J u [v) is independent in G-e, a

contradiction since G has no critical lines.
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So e is not a critical line in G,. Thus, there exists a maximal independent set J

(u,w) in Gv-e such that IJI < a(G,). Then J u {v) is maximal independent in G-e. Thus,

Ii u (v) l < c(Gv) + 1 = ct(G); since a(G-e) = a(G), we contradict the assumption that G-e

is well-covered. Ui

If G * K2 is well-covered and e = uv is a line in G, consider maximal independent

sets in the graph G-e. Suppose J is a maximal independent set in G-e which does not

contain at least one endpoint of e (that is, J n {u,v) * Iu,v} ). Then it follows that J is a

maximal independent set in G. Since G is well-covered, then IJI = a(G). Thus, every

maximal independent set in G-e which does not contain at least one endpoint of e has size

a(G). Consequently, to show that G-e is well-covered it suffices to show that every

maximal independent set in the graph G-e which contains both endpoints of e has size

ct(G).

Staples [16] studied well-covered graphs with the property that for all points v in

G, the graph G-v is not well-covered. She called these graphs wel-covered point-critical.

We find a significant connection between such well-covered graphs and strongly well-

covered graphs. The following two theorems from Staples [161 will be helpful.

Theorem 7. Suppose G is well-covered and c(G) = 2. Then for all points v in G the

graph G-v is not well-covered if and only if deg(v) = IV(G)I - 2 for all points v.

Theorem 8. If G is well-covered and has no critical lines, then for all points v in G the

graph G-v is not well-covered.

First, we show in Theorem 9 that strongly well-covered is a sufficient condition for

G to have the property that for all points v the graph G-v is not well-covered. As a

consequence, K2 is the only strongly well-covered graph which is also I-well-covered.
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Theorem 9. If G (G * K, or K2) is strongly well-covered, then for all points v in G the

graph G-v is not well-covered.

&of. By Lemma 1, if G-e is well-covered, then e is not a critical line. Since G-e

is well-covered for all lines e in (3, then G contains no critical lines. By Theorem 8, a well-

covered graph with no critical lines has the property that for all points v in G the graph G-v

is not well-covered. (]

The converse of Theorem 9 is not true. Consider the graph G in Figure 1; it can be

shown that G is not strongly well-covered yet has the property that for all points v the

graph G-v is not well-covered. G is not strongly well-covered because ot(G) = 3 and G-e

has a maximal independent set of size two (namely, the endpoints of e).

e

Figure I

STRUCTURAL RESULTS

First, we completely characterize the strongly well-covered graphs with

independence number two. This characterization is quite helpful in building strongly well-

covered graphs with independence number larger that two (see 1121).

Theorem 10. Suppose G is well-covered with a(G) = 2. Then G is strongly well-

covered if and only if G is ( IV(G)I - 2) - regular.
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Proof. (=) Suppose G is strongly well-covered. By Theorem 9, the graph G-v is

not well-covered for all points v in G. By Theorem 7, deg(v) = IV(G)l - 2 for all points v

in G.

(*=) Suppose G is ( IV(G)I - 2) - regular. Let e = uv be a line in G. Consider the

graph G-e. Since deg(v) = IV(G)I - 2, then I V(G) - N~v] I = 1. Let w be the point not in

N[v]. Since deg(w) = IV(G)i - 2 and w is not adjacent to v, it follows that w - u. Thus,

Iu.v} is maximal independent in G-e. So every maximal independent set in G-e containing

{u,v) has size cc(G). Hence, every maximal independent set in G-e has size two, and so

we see that G-e is well-covered. Since e is arbitrary, then G-e is well-covered for all lines

e in G. Hence, G is strongly well-covered. I]

We show in the following theorem that if G is strongly well-covered and v is a

point in G, then G, cannot contain a K2-component (a component which is a line).

Theorem 11. Suppose G is a connected strongly well-covered graph with or(G) . 2. If

v'is a point in G, then G, cannot contain a K2-component.

Eoof. Assume to the contrary that there exists a point v in G such that Gv contains

a K2-component. Let the K2-component be e = uw. Let S be a maximum indepei-dent set

in G,, such that ue S. Then S Q' (w) is independent in the graph G,,-e, and so S U {v,w)

is independent in the graph G-e. Now by Theorem 4, we have ISI = t(G.) = a(G) - i and

hence IS u {v,w)l = cL(G) + 1. Thus, e is a critical line forG, a contradiction since G is

strongly well-covered. I]

Now we are prepared to consider strongly well-covered graphs with independence

number three. We show in Theorem 13 that G, must be connected, for every v in G, if

a(G) = 3 and G is strongly well-covered. This will be important for an inductive argument

given in the proof of Theorem 15. The following lemma is useful in proving Theorem 13.
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Lemma 12. Suppose G is strongly well-covered and ct(G) = 3. If v is a point in G, then

G,, cannot have two isolated points.

Prof. Assume to the contrary that there is a point v in G such that G, has two

isolated points. Let a and b be isolated points in G,. Thus, V(G) = {v) u (a,b) u N(v),

since ct(G) = 3. Let A = N(a) r) N(v) and B = N(b) r) N(v).

Suppose A n B •0. Let we A n B. Then (v,w) is maximal independent in the

graph G-vw, a contradiction since G-vw is well-covered and c(4G-vw) = ct(G) = 3 ( a(G)

= a(G-vw) since a strongly well-covered graph contains no critical lines).

So A r) B = 0. Since a(G) = 3, then ct(GJ) = 2, for all points u in G. By

Theorems 6 and 10, it follows that Ga and Gb are each regular strongly well-covered

graphs (note that G, is not complete since v and b are in V(G,) and v is not adjacent to b;

symmetrically, Gb is not complete). Since ac Gb, it follows that N(v) = A u B. From

Lemma 3, the point a must have two nonadjacent neighbors in G, say m and n, and b must

have two nonadjacent neighbors in G, say s and t. See Figure 2.

V

Figure 2

Consider the graph Gi. By Theorem 6, graph Gm is strongly well-covered with

cc(Gm) = 2. By Theorem 11, graph Gm cannot have a K2-component. Consequently,

either Gm consists of the isolated points b and n, or Gm is connected and by Theorem 10 is

( IGmi - 2 ) - regular.
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Suppose Gm is connected and ( tGml - 2) - regular. By Theorem 11, the graph Gm

cannot have a K2-component. So there exist two nonadjacent neighbors, x and y, of b in

Gm; that is, x - b, y - b, and neither x nor y is adjacent to m. But then (x,y,a,m) is

independent in the graph G-ma, a contradiction since G is strongly well-covered and

therefore contains no critical lines.

So Gm consists of the isolated points b and n. Thus, xe B implies x - m.

Similarly, by looking, at the graph Gs, we conclude that yeA implies y - s. Since V(G) =

Iv) u (a,bI u N(v) and N(v) = A u B, it follows that {m,sJ is maximal independent in

the graph G-ms. This is a contradiction since a(G-ms) = 3 and G-ms is well-covered.

Thus, if v is a point in G, then G, cannot have two isolated points. []

Theorem 13. If G is strongly well-covered and cx(G) = 3, then G, must be connected for

all points v in G. Moreover, G, is ( IG,1 - 2) - regular.

Proof. Since a(G) = 3, then cx(G,) = 2 for any point v in G. By Theorem 11, the

graph G, cannot have a K2-component. By Lemma 12, graph G,, cannot have two

singleton components. By Theorem 6, graph Gv is also strongly well-covered. Since K,

and K2 are the only complete graphs which are strongly well-covered, it follows that G,

can have neither isolated points nor any components with indepe~ndence number one.

Thus, G, is connected. Since ao(G) = 2, then G, is ( I1G, - 2) - regular by

Theorem 10. [1

Theorem 13 gives us enough structural knowledge to obtain in Corollary 14 a parity

condition on all point degrees in strongly well-covered graphs with independence number

three.
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Corollary 14. Suppose G is strongly well-covered and cL(G) = 3.

(i) If IV(G)I is even, then deg(v) is odd for all v in G.

(ii) If IV(G)l is odd, then deg(v) is even for all v in G.

Eoof. For any point v in G, we have 0t(Gv) = 2. From Theorem 13, it follows

that G, is ( IV(G,)l - 2 ) - regular. Hence, IV(G,)I must be even. Since IV(G)I = IV(G,)I +

deg(v) + 1, then IV(Gj)l = IV(G)I - deg(v) - 1. Thus, IV(G)l and deg(v) must have the

opposite parity. [I

See Figure 3 for a strongly well-covered graph with independence number three

and odd point degrees. The graph given in Figure 4 is strongly well-covered with

independence number three and every point has even degree.

Figure 3
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Figure 4

Next we turn to a more general discussion of strongly well-covered graphs. If G is

strongly well-covered, then it is possible for G, to contain an isolated point a, for some

point v in G. However, we show in Theorem 15 that if the point a is isolated in the graph

G,., then the points a and v must have the same set of neighbors.

Theorem 15. Suppose G is connected and strongly well-covered and v is a point in G

such that G, has an isolated point a. Then NG(a) = NG(V).

•of (By induction on a(G).) By Theorem 10, the statement is true for oA(G) =

2. By Theorem 13, the statement is true (vacuously) for a(G) = 3.

Assume the inductive hypothesis: If G is strongly well-covered, OL(G) < n-I (n Ž

4) and v is a point in G such that G, has an isolated point a, then NG(a) = NG(v).

Next, suppose G is a counterexample to the statement with cz(G) = n, n _- 4. Thus,

there exists a point v in G such that G, has an isolated point a and NG(a) • NG(v). Clearly,
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NG(V) = NG(a). Let W = NG(v) - NG(a), and note that W * 0. Let H = G,,-a. Since G is

well-covered, then so is H and W(H) = o:(G) - 2. Since a(G) Ž 4, then H * 0.

Suppose x is a point in H. If x is not adjacent to y for some ye NG(a) and x is not

adjacent to z for some ze W, then v and a are in the same component of the graph G,.

Also, z - v in G, and z is not adjacent to a. By Theorem 6, the graph G, is strongly well-

covered with c(Gx) = ca(G) - I = n - 1. Then v is a point in G, such that the graph G,,

has isolated point a. Since z - v in Gx and z is not adjacent to a, then NGX(v) t NGx(a).

But this contradicts the inductive assumption.

Thus, if xE H then x - y for all ye NG(a) or x - z for all ze W. LetS= { x H: x -

z for all zeW) and T= (xEH: x - y for all ye NG(a)}.

Suppose yE NG(a). Since G is strongly well-covered, then G-vy is well-covered.

Hence, there exists maximum independent set J : (v,y) in G-vy and IJI = cz(G). Let J =

J-(v,y). So IJ'I = ct(G) -2. Since a(G) >_ 4, then J' •0. Now y - x for all xeT and J D

(v,y) together imply that J' is contained in S-T. Thus, S-T * 0. Note that J is a

maximum independent set in H.

Suppose xc S. Then xz is a line in G, where ze W. Since G is strongly well-

covered, then G-xz is well-covered. So there exists maximum independent set I D {x,z,a)

in the graph G-xz. Now, I' = I - (a,z} is in H since (x) dominates W. Since all points in

S, except x, are adjacent to z in the graph G-xz, then I'-x must be in T-S. Since II'-xI =

a(G) - 3 and a(G) a 4, then it follows that T-S * 0.

So let beT-S. Consider J from above. Since J' is a maximum independent set in

H and J' is contained in S-T, then b - u for some ue '. See Figure 5.
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Figure 5

Consider the graph Ga. By Theorem 6, graph G, is strongly well-covered with

1X(Ga) ct(G) - 1. Since ue S, then u - z for all ze W; also, v and u are in the same

component of G,. Hence, v becomes isolated in the graph G.,. Since b ~ u in G. and b is

not adjacent to v in Ga, then NGa(v) * NG•(u). Since a.(G0) = n - 1, this contradicts the

inductive assumption that NGa(u) = NGa(v).

Thus, if G is strongly well-covered with a(G) = n (for n ; 4) and v is a point in G

such that G, has an isolated point a, then NG(a) = No(v). The desired result follows by

induction. [i

In general, if G is well-covered then G,, can contain up to a(G) - I isolated points.

For example, Kn.n is well-covered, ot(Knx,) = n, and K,,,-N(v] contains n-I isolated

points for any point v in Knn. However, for strongly well-covered graphs we show in the

following corollary that the number of isolated points in Gv is severely restricted.

Corollary 16. If G is connected and strongly well-covered, then G,, has at most one

isolated point for any point v in G.
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Erlf. Assume to the contrary that v is a point in G such that G, has two isolated

points, a and b. By Theorem 15, we have N(a) = N(v) = N(b). Let we N(v). By

Theorem 6, the graph G, is strongly well-covered. Moreover, since G is well-covered

a(G,-a-b) = a(G) - 3. Since G is strongly well-covered, there exists maximum

independent set J in the graph G-vw which contains (v,w). Since w - a and w - b, then

J-{v,w) is contained in G,-a-b. This is a contradiction since Ui = a(G) and a(G,-a-b)

a(G) - 3. Thus, G, cannot have two isolated points. []

We now have the means to establish an upper bound for the degree of a point in a

strongly well-covered graph. It is interesting to compare the bound in the following

theorem with the Hajnal type upper bound for a 1-well-covered graph given by Staples in

[17].

Theorem 17. Suppose G is connected and strongly well-covered. Then deg(v) < IV(G)l

- 2ct(G) + 2, for all points v in G.

E=.Qf. By Corollary 16, the graph Gv can have at most one isolated point, for all

points v in G.

Suppose Gv has no isolated points. Note that for a well-covered graph H with no

isolated points, IV(H)I > 2a(H). Since G, is well-covered, then IV(G,)I Ž 2a(G,) =

2a(G) - 2. Thus, IV(G)I > 1 + deg(v) + 2a(G) - 2. So deg(v) < JV(G)l - 2a(G) + 1.

Suppose Gv has a single isolated point a. Then Gv-a has no isolated points and is

well-covered. So IV(G,-a)l _> 2ax(G,-a) = 2(ca(G) - 2) = 2a(G) - 4. Hence, IV(G)I>

deg(v) + I(a,v)l + 2cx(G) - 4 = deg(v) + 2a(G) - 2. It follows that deg(v) < IV(G)I - 2ct(G)

+2.

The upper bound in Theorem 17 is sharp. Each of the graphs G and H in Figure 6

is strongly well-covered (see [12] for a verification of this) and has at least one point whose
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degree attains the upper bound. In particular, IV(G)I = 16, ct(G) =6 and A(G) 6. For

H, IV(H)I =22, c(H) =8 and A(H)= 8.

Figure 6

We now turn to developing a lower bound on the minimum degree 8 for a strongly

well-covered graph. Assume that G is a strongly well-covered graph, G # K1 or K2. We

show next that if 8 = 2, then G must be the 4-cycle.
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Theorem 18. If G is strongly well-covered with a point of degree two, then G is the 4-

cycle.

Eoof. Let deg(v) = 2, with N(v) = (a,b). If there exists w ~ a such that w is not

adjacent to b, then (w,b) is independent and dominates N[v], w is not adjacent to v and b

~ v. By Lemma 2, the graph G-bv is not well-covered. This contradicts the strongly well-

covered assumption.

So N(b) 2 N(a). By symmetry, it follows that N(a) = N(b). Let xe N(a)-v. Then

v is isolated in the graph G,. By Theorem 15, we have N(x) = N(v) {a,b). Suppose, in

addition, there exists y - a such that ye {x,v}. Then v is isolated in Gy, and so again by

Theorem 15 we have N(y) = N(v) = N(x). But then v and x are isolated in Gy,

contradicting Corollary 16.

Hence, G must be the 4-cycle. []

A well-covered graph can have points of degree one, two or three. However, we

show in the following theorem that each point in a strongly well-covered graph on more

than four points has at least four neighbors.

Theorem 19. If G is strongly well-covered, Ge {K1,K2 ,C4 ), then 8 > 4.

Proof. From Lemma 1, it follows that G cannot have an endpoint. Therefore,

from Theorem 18 we see that 8 > 3. Suppose deg(v) = 3, with N(v) = (a,b,c).

Case 1. Assume that v lies on a triangle, say triangle vab. If a - c, then (a)

dominates N[v] and a - v. By Lemma 2, the graph G-av is not well-covered, contradicting

the strongly well-covered assumption for G. So a is not adjacent to c and, by symmetry, b

is not adjacent to c.

By Lemma 1, c is not an endpoint. So let w - c, w * v. If w is not adjacent to a,

then (a,w} dominates N[v], a - v and w is not adjacent to v. This leads to a contradiction

via Lemma 2.



So w - a and, by symmetry, w - b. Thus, N(a) Z N(c). By Theorem 15, it

follows that N(a) = N(c). But be N(a) and bE N(c), a contradiction.

Case 2. So v cannot lie on a triangle; that is, N(v) is independent.

Case 2.1. Suppose N(a) r) N(b) * [v). Let we N(a) n N(b), w * v. If w is not

adjacent to c, then (w,c) dominates N[v], c - v and w is not adjacent to v. This leads to a

contradiction via Lemma 2. So w - c. Thus, v is an isolated point in the graph Gv,, and so

by Theorem 15 we have N(w) = N(v). Since Gv cannot isolate two points (by Corollary

16), it follows that N(a) n N(b) = N(b) rt N(c) = N(a) n N(c) = {v,w). Since 8 > 3, then

each of a, b and c has a third neighbor, say x - a, y - b and z - c, and x, y and z are

distinct. See Figure 7.

V

a b

w

Figure 7

If x is not adjacent to y, then (x,y,cl is independent and dominates N[v], neither x

nor y is adjacent to v and c - v. We obtain a contradiction via Lemma 2. So x - y. By

symmetry, x - z and y - z. In fact, if t - c, to Iv,w), then x - t.

Since G is strongly well-covered, then G-xy is well-covered. So there exists

maximum independent set J p_ (x,yc) in G-xy. But then (J u (w,v)) - c is independent

in G-xy, with I (J u [(wv)) - c I = cx(G) + 2 - 1 = a(G) + I. This is a contradiction since

a(G-xy) = cz(G).

Case 2.2. So N(a) r) N(b) = (v). By symmetry, N(a) rl N(c) = N(b) n N(c) =

(v). Let xe N(a)-v. If there exists y - b, y * v, such that x is not adjacent to y, then
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{x,y,c} dominates N[v] and is independent. We obtain a contradiction via Lemma 2. So x

dominates all neighbors of b, except v. Hence, {x,vi is independent and dominates N[b],

v - b and x is not adjacent to b. This is a contradiction via Lemma 2.

Thus, G cannot have a point of degree 3. So 8 > 4. [1

From the characterization given by Finbow, Hartnell, and Nowakowski in [91, if H

is a well-covered graph with girth > 5, then 8(H) <3. Thus, the lower bound on 5 for

strongly well-covered graphs leads immediately to the following two corollaries.

Corollary 20. There are no cubic strongly well-covered graphs.

Corollary 21. If G is strongly well-covered (G * K1 or K2), then girth(G) < 4.

The last structural result we prove is that a strongly well-covered graph on more

than four points is 3-connected. For that purpose, we state as a lemma the following result

found by Staples [16].

Lemma 22. If G is well-covered and for all points v in G the graph G-v is not well-

covered, then G is 2-connected

Theorem 23. Suppose G is strongly well-covered, Ge (Kt,K 2,C4 ). Then G is 3-

connected.

Proof. (Induction on et(G).) For ix(G) = 2, graph G is 3-connected as a result of

Theorem 10. This serves as a basis for induction. We assume the inductive hypothesis: If

G is strongly well-covered with ox(G) = n, for n _Ž 2, then G is 3-connected.
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Consider a strongly well-covered graph G with ct(G) = n + I > 3. From Theorem

9 and Lemma 22, it follows that G is 2-connected. Suppose (u,v) is a cutset for G. We

consider two cases.

Case 1. Suppose N[u] kj N[v] = V(G). If u is not adjacent to v, then (u,v) is

maximal independent in G. Since G is well-covered and a(G) > 3, this is a contradiction.

So u - v. Then fu,v} is maximal independent in the graph G-uv. Since G is strongly

well-covered with ca(G) _> 3, then G-uv is well-covered and ct(G-uv) _> 3. Hence, we have

a contradiction.

Case 2. So we assume N[u] u N[v] * V(G). Suppose x is a point in G such that

x Nl[u) v N[v]. Let G' be the component of the graph G- { u,v } which contains x.

Consider the graph G6. By Theorem 6, graph G, is strongly well-covered. Let U, = N(u)

n G' and V, = N(v) n G'.

Let H be the component of Gx containing {u,v). Then H is strongly well-covered

with a(H) - n. Since 8(G) Ž> 4, then H is not a 4-cycle. Thus, by the inductive

assumption it follows that H is 3-connected. Therefore, we claim x - a for all ae UI and x

- b for all be V1 . For suppose not; say w is in U1 u V, and w is not adjacent to x. Then

w is in V(H) and is separated from G-{u,v)-V(G') by {u,v}. Thus, H is at most 2-

connected, a contradiction. Also, since H is 3-connected it follows that G- ( u,v) has only

two components. Let G" be the other component of G- { u,v). So H is the subgraph of G

induced by V(G") u (u,v). Let U2 = N(u) r) G" and V2 = N(v) n G".

Case 2.1. Suppose (u,v} does not dominate V(H). Then there exists some

ye V(G") such that ye V2 u U2. Consider the graph Gy. As argued above for the graph

Gx, we have y - a for all ae U2 and y - b for all be V2.

Consider the graph Gy. Since x and y are in different components of G- ( u,v),

then Ix,y} is independent. Since a(G) - 3, then Gy is not empty. So by Theorem 6, the

graph Gxy is strongly well-covered. If u - v, then the line uv is a component of Gxy. By

Theorem II, we obtain a contradiction. So u is not adjacent to v. Note that u and v are not
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isolated points in G,. However, they are isolated in G,,y. Since y is a point in the strongly

well-covered graph G,, then by Corollary 16 at most one of u and v can be isolated in G,.

Hence, we have a contradiction.

Case 2.2. Thus, we assume {u,v} dominates V(H). If u is not adjacent to v, then

{ u,v I is maximal independent in H. On the other hand, if u - v, then (u,v) is maximal

independent in the graph H-uv. Since H is strongly well-covered, it follows that a(H) = 2.

By Theorem 10, graph H is (IV(H)I - 2) - regular. Since S(G) _ 4, then IV(H)I _> 6.

Case 2.2.1. Suppose u - v. Since H is well-covered, then there exists a point

ye V(G") such that u is not adjacent to y. Since H is ( IV(H) - 2 ) - regular, then the graph

Hu is just the isolated point y. Since u - v and {u,v} is a cutset for G, then y is isolated in

the graph Gu. Hence, NG(U) = NG(y) by Theorem 15. But this is a contradiction since G

is 2-connected and (u,v) separates y from G'.

Case 2.2.2. So u is not adjacent to v. Since H is ( IV(H)I - 2) - regular, it follows

that u - y and v - y for all ye V(G"). Let te U1. If t is not adjacent to v, then either v is a

cutpoint for the strongly well-covered graph Gt (contradicting the fact that Gt is 2-

connected as a consequence of Theorem 9 and Lemma 22), or Gt contains as a component

the subgraph of G induced by V(G") u {vv (a contradiction since v - y for all yr V(G")

). Thus, t - v. Hence, tr U1 implies te V1. By symmetry, te V1 implies te U 1. Thus,

U1 = V1. It follows that NG(U) = NG(v).

Let teU 1 . Suppose x is a point in G'-U1. From earlier, x - a for all ae Ul. In

particular, x - t. Thus, t dominates G'-U1.

Consider the graph G-tu. Since G is strongly well-covered and at(G) 2! 3, then G-

tu is well-covered and oc(G-tu) >_ 3. On the other hand, in the graph G-tu, the set { u,t) is

maximal independent since t dominates (G'-U1 ) u (v) and u dominates (Ul-t) u G".

Thus, we obtain a contradiction.

Therefore, G cannot have a 2-cutset. Thus, G is 3-connected. The result follows

by induction on a(G). [U
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We conjecture that Theorem 23 can be improved to say 4-connected.
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