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Abstract: We analyze the robustness of various standard finite element

schemes for the Reissner-Mindlin plate and obtain asymptotic convergence

estimates that are uniform In terms of the thickness d. We Identify h

version schemes that show locking, i.e. for which the asymptotic convergence

rate deteriorates as d - 0 and also show that the p version Is free of

locking. In order to isolate locking effects from boundary layer effects

(which also arise as d -+ 0), our analysis Is carried out for the periodic

case, which Is free of boundary layers.
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1. INTRODUCTION

It is well-known that the numerical approximation of the Reissner-Mindlin

(RM) plate model by certain finite element schemes deteriorates when the

thickness d of the plate Is close to zero. This occurs because of two

phenomena, the existence of boundary layers and the presence of locking.

Boundary layers arise as components of the exact solution of the RM plate

model and (to some extent) podel the bcundary layers present in the exact

solution of the corresponding 3-d problem. In a series of papers (see [1] for

example), Arnold and Falk have characterized In detail various aspects of the

boundary layer for the exact RM solution, for different boundary conditions.

In particular, in [1] it is shown that the layers are strongest for soft

simply supported and free plates and weakest for soft clamped conditions.

One effect of the presence of these boundary layers is to weaken the a priori

regularity of the solution. Since the singular behavior occurs only near the

boundary, an effective strategy to overcome any consequent deterioration of

numerical schemes is to locally refine the mesh (usually with a low order

scheme). See, for instance [2], where this has been done in the context of

the h-p version.

The second phenomenon mentioned above, numerical locking, also occurs

when the thickness is close to zero, but for a different reason. it Is

well-known that as the thickness d 4 0, the RM solution tends to the

Kirchoff plate solution. In the limiting case, the exact solution will

therefore satisfy Klrchoff'u hypothesis. The problem of locking occurs

because as d - 0, the finite element solution is also forced to satisfy this

hypothesis. Consequently, the number of conforming trial functions (which

satisfy Kirchoff's hypothesis) can get severely restricted, resulting in a

degradation of the approximation properties of the trial space.

One method to avoid locking is to construct a finite element space which
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possesses optimal approximation properties even when restricted by Kirchoff's

constraint. This leads to a robust standard finite element method, i.e. one

whose performance is not sensitive to the thickness. An alternate strategy is

to use a mixed method, which has the effect of enforcing the constraint in a

weaker sense, thereby restricting the finite element space less. Such methods

have been developed for various contexts where locking occurs - see, for

example, [91 (particularly Chapter 7 for the R-M plate) and the references

therein. In this paper, we will concentrate exclusively on the first strategy,

which can be used without reformulating the usual variational form. As a

consequence, our results will be immediately applicable to several finite

elements used in the context of various commercial codes.

The problem of locking is quite different in terms of origin and

numerical treatment from that of boundary layers. Consequently, it is more

instructive to analyze these problems separately. In this paper, we will be

interested only in the problem of locking. To isolate this phenomenon and

divorce it from the effect of boundary layers, we will be considering the case

of periodic boundary conditions, which we will choose so that the solution is

smooth. (This models the situation in the interior, in the case boundary

layers are present.) For this RM model problem we will characterize the

locking and robustness properties of various finite element schemes, using the

general theory of locking developed by us in (4]. A key condition from that

work, the so-called "condition (a)", will be shown to be satisfied in this

case, thereby reducing the question of locking to one of approximability

alon. A similar technique was used by us in [51 to analyze Polsson ratio

locking which occurs in elasticity problems when the Poisson ratio is close to

1/2.
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2. THE MODEL PROBLEM AND ITS REGULARITY

We consider as our domain the 2-d midsection Q = (-x,w) of a square

isotropic plate with the plate occupying the region 0 x [-d,dI. On 0 we

consider the RM plate model for ud = (;d,&d),

(2.1) CdUd = _d 2 D )A~ d+(1+v)VV.;d}_A(Vodd) 0

(2.2) -Ad-2V.(Vwd-;d) = g

which gives the bending of the plate in equilibrium. We assume the periodic

boundary conditions,

(2.3a) wd(X,") = wd(x',-), wd(xY) = hd(-•,y). lxl,lyt s

(2.3b) $d(x,X) = ;d(x,-N), $d(wy) = d(-',Y)', 1x1, lyl s N"

Here, ;d gives the rotation of fibers normal to the midplane, % measures

E
the transverse displacement of the midplane, and D 2 is the

12(1-vY)

flexural rigidity scaled by d3 . Also, A = 2T___ with K > O, E and 0s

v < 0.5 being the shear-correction factor, Young's modulus and Poisson ratio,

respectively. Moreover, g is the scaled loading function, i.e. the

3transverse load density per unit area divided by d3. (We assume,

3essentially, that the loading function for a plate of thickness 2d is gd

where g is independent of d.)

If we allow d to tend to zero In (2.1), we formally obtain Kirchoff's

hypothesis,

(2.4) C 0u0 := ;0 - grad "0 = 0

The limiting solution u0 = (;0,w0) satisfies (2.4) together with

(2.5) DA20 = g
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and the periodic boundary conditions (2.3) (see e.g. [31). This, of course,

is the classical biharmonic equation of plate bending, which (unlike the RP

model) is independent of d (and is sometimes used to model the actual 3-d

plate).

For any domain R c Rn. we will denote by HS(R) the usual Sobolev

space with s (= 0,1,2,...) square Integrable derivatives. For our domain

0, H Sr() will denote the corresponding space of functions with s
per

periodic derivatives, periodic in both x and y. Using the method of real

interpolation (71, the above spaces may be defined for all real s. We will

use I-Is I-Is to denote the seminorm and norm respectively, in both the

periodic and non-periodic case. We will also use C (Sl), which will
per

denote the space of functions with s periodic continuous derivatives.

Any u(x) = u(x ,x) in Hs (0) can be expanded as a Fourier series,
12 per

(2.6) u(x) = u ke k'x, k = il(kk)2 x = (xl x 2

ke 2

where
k u~-ik-x>2

u = <ue >, keZ2

with <',*> denoting the usual L2 (1) inner product. Then we have the

following equivalences:

(2.7) Iulf 2 fkl sk;I ul X 2s ) I

keZ2  kCZ2

which hold for all real s & 0. We may also use (2.7) to define the norms

juls, s < 0 and the corresponding spaces Hsr(0) which are the completions
s per

under these norms of H 0r).
per

We now cast (2.1)-(2.3) into the following weak form. Find, for
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d e (0,11, ud = (;dwd) r V = [H (Q)]3 such that for allv = v &.) , V.
d d per

(2.8) ad(ud,v) = b(ud,v) + - <CoUd,v> = .
d d 2  0d

Here, C0 is as defined in (2.4),

b(udv) =2 {(-V)V~d*V4 (1.v)(V4 d)(V8)1dx ldx
2 ffa d 2

and

F(v) = <g,C> = Jff gC dx1 dx2

with the last Integral being undcrstood as the pairing of H (0) andper

H-1 (a) if g e H-1 (0). (For existence and uniqueness for this problem, seeper per

Theorem 2.1 ahead.) We will denote the problem (2.8) by Pd and assume,

without loss of generality, that It Is equivalent to (2.1)-(2.3).

Let us define the energy norm corresponding to Pd by

2uE,d = ad (u,u), U E V.

Also, for u e Hpk (0) x Hpe (Q) x H e (2) = Hkp"(0), let

per per per per

2 2(,)I, = #,12 + 12 + Iw,2

where the norm In w is understood to be modulo constants. Then it may be

shown that

(2.9) A1Iull, 1  ' IuIE,d S A2 d- liul, 1

where A and A2 are constants Independent of d. It Is readily observed

that for d bounded away from 0, the two norms are equivalent.

Let us now define, for k X 1, 0 s d S 1, the spaces Hkcd C per

given by

(2.10) H( = {u k (a) Cu = 0).
kd per d
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For any normed linear space H, we will denote the ball of radius B > 0 by

=B fu eH, IUIH s B).

We will use the notation

S= Hk+i * k PB(k) (u ekk+1,k( IU Ikper per s

and

We note that (2.10) may equivalently be characterized as

Hkd =(u = (;0)' ; e ' 1(2 Cdu O)

since using (2.1), it is easily seen that ; e H k+lc) w e H k {E).
per per

Similarly, in the definition of H,d' we may replace IuMk+1,k by IIk+l"

We note also that for u e H,d, we have, using (2.1),

(2.11) 1COulk_1 s Kd2 B

for K a constant independent of u, d.

Let us look more closely at the limiting sets HkO and 4,0. Since

for these Cou = 0, we see that $ e H k+
1 (c) implies that Vw = e Hk+plW)

0 per per

so that c e H (Q). Hence, we see that in this limiting case, theper

regularity of w is increased by two derivatives and we have the equivalent

characterization,

Hk,0 {u E Hkplk+2 (g}, CoU 01

per Cu0

.0= (u e Hk.o' lulk+lk+2 • B1

The choice of the above is motivated by the following theorem, which

gives an a priori estimate in these weighted norms.
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Theorem 2.1. Let g e Hs-2 (Q), s k 1, satisfy the compatibility
per

condition

(2.12) <g,1> = 0.

Then there exists a unique sequence of solutions {ud) = 4 d'•d) (wd unique

up to a constant) to (2.1)-(2.3) for d e (0,1] and (2.3)-(2.5) for d = 0,

such that Ud e HsBd' where B = C1g1s_2' with C a constant independent of

g and d.

Proof. Suppose g, *dl' *d2 and Wd are represented in terms of their

respective Fourier series, as in (2.6). Then (2.1)-(2.2) may be written as

(d > 0)

D{2k 2 +(l-v)k 2 }+Ad-2 D(1+v)k k2  -iAd-2k 1  *d 0
ik-x D 2 2 2 -2 k

e A D (i+v)klk2 kD2k 2+(--v)k2d)+?2d d 2 d2 k k 0

keZ2

I~-2 -'X2 kA-2(k2 k2 k k
22 2 'dklAd-k iAd~k2  Ad-2(kl+k2} •d g"

From this it may be easily verified that the solution ud of (2..1)-(2.3) is

Ik1
@d1 Diki4

= ek-x ik 2 k
(2.13) Ud *d2 e -ei4 g

krZ2 DjkI
01 2__

wd Dik 14 + Alk12

0

where Z0= Z{O}. Here, we have used the fact that g = 0, due to (2.12).

Similarly, the solution of (2.3)-(2.5) is given by



(2.14) 0= e D k 4

Q2- DjkI4

kE0

with $0 = VO" Note that In (2.13)-(2.14), wd Is unique up to a constant.

From (2.13), It Is easily seen that for d > 0.

lUdlsIs C clgl_ 2

proving that Ud e Hsd " The case d = 0 follows similarly from (2.14). a

drovid

We now prove the following theorem, which gives us the co-called

"condition (a)" which is central to the locking theory developed In the next

section. Essentially, this condition establishes the rate at which the

solution of (2.1)-(2.3) tends to the solution of (2.3)-(2.5) In the H S+l's()
per

norm when d Is small.

Theorem 2.2. For any ud =H ")EHd there exists u =4 o0 GE
d d'(d) s dt 00

HcB such that
s,O

; = ;0

Iwd - wOls s Kd2 B

where c,K are constants Independent of ud, d and B.

Proof. Given ud = (;dwd) E HBs,d' let us define g (possibly

depending on d) by (2.2). Then by (2.2),

1g1s- 2 s Kd-21COudis-1

s KB

where we have used (2.11).

Now ;d',d may be expressed In terms of g by (2.13). Also, let

be given by (2.14) and define ;0 = VwO" Then It Is easily seen that
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;d = 0'

and that e H where c is independent of ud, d and B. Substi-and hat -0,•) S'OHs,O

tuting ;d - =0 = VwO in (2.1), we have

(•dwO-) = _A- l d2 D (-V)A+d (l+) VV÷
d (2;d ;d'

from which it follows that

1% - wols S Kd2 I;dls+l Kd•2 B.

The above theorem shows that for d small, functions in H B are close
sd

to functions in H•,O In this connection, we will also need the following

result.

Theorem 2.3. Given u0  e H B, s & 1, there exists a

constant C independent of uod such that for any d e (0.11, there

is a ud , Hs d satisfying

(2.15) lUdlE,d + lUdls+l.s Cs2

and

(2.16) lud - U0 11o 1 -) 0 as d -* 0.

Proof. First, using (2.11), it is easily seen that for s k 1,

(2.17) lUdlEd ' Cludls+l,s.

Next, let u0  (grad w0,w0) e HB, Then, since 0e H (n), we obtain the
s,0s per

decomposition (w0 is defined modulo constants)

0 ik*x k 2 s+2 k 2

WO EZ2 e E (1k1 2  I < .

0 0
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k k 4
Hence, defining g = Dw (kk we see that

(2.18) g E Hs-2 (a), <g,l> 0, igis 2  SIOIs+2  CIUoIs.I~.2 •
per

Using Theorem 2.1 together with (2.17)-(2.18) allows us to construct ud

satifying (2.15). Also, the argument of Theorem 2.2 shows that (2.16) holds.a

3. LOCKING AND ROBUSTNESS

Suppose now that we are interested in approximating (2.8). We assume

that we are given a sequence {VN} of finite-dimensional subspaces of V =

(H r(0)]3 (N denoting the dimension, N e N). Then we can define the
per

sequence of finite element solutions uN E VN by
d

(3.1) ad(uNv) = ad(ud,v) V v E VN.
d d dd

The sequence 40) thus defines an extension procedure 9, i.e. a rule by

which we can increase the dimension N with the idea of increasing accuracy.

(3.1) immediately gives

(3.2) lud - udlE,d S 'nf lud - VIE~d
Vev

As shown In Theorem 2.1, depending upon the regularity of the data g,

the exact solutions of our problem will belong to the sets H Ck per
H,d per

k t 1, introduced in Section 2. We will assume that the sequence {VN} is

F -admissible, i.e. it leads to a certain fixed rate F0 (N) of convergence

when functions in Hk+l'k () are approximated, in the following sense:
per

(3.3) A10FoN) s sup inf lu-vl, 1 s A2 F0 (N).

ueH vEVN

Here, F0 (N) -* 0 as N4 w and A1 , A2 depend upon B but are independent

of N. Moreover, we assume that there exists d e (0,1) such that for
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do 0 d S 1,

(3.4) A I(d )F (N) s sup inf Iu-v1l, A2 (do)Fo(N).
1uE4 d vEVN

(Note that the lower bound In (3.3) follows from the one in (3.4) while the

upper bound In (3.4) follows from the one In (3.3)).

Using (2.9), (3.2) and (3.4), we then obtain the following estimate which

holds uniformly for all d 0 d S 1,

(3.5) (do)Fo(N) s sup Ed(Ud- d 2(do)Fo{N)
1 0 F 0 (N) E u-u s A2d)

where

(3.6) Ed v) = Ivll, or IVIE,d

Whether or not AV A2 are bounded as d -+ 0 will depend on the extension

procedure being used.

A procedure I for which (3.5) holds uniformly for all 0 < d 5 1 will

be called free from locking for the sets Hk,d with respect to the Ed

measure. A more precise definition, adapted from the general treatment of

locking in [4], is given below.

Let L(d,N), the locking ratio corresponding to d e (0,1], N e N,

with respect to the spaces Hk~d C1k+1,k(g) and error measures (Ed} (as in
w re ,d per

(3.6)) for the problems (3.1), be defined by

L(d,N) = sup Ed{Ud-u )(Fo(N))-1.
UdE, d

Then we make the following definitions.

DefJ1nt on 3.1. The extension procedure 7 is free from locking for the

family of problems (3.1), d e (0,1] with respect to the solution sets

C ck+lk(0) and error measures E if and only if
Hk,d per

12



ira sup ( sup L(d,N)1  H < e.

N-)w ded(O,11

5 shows locking of order f(N) if and only if

0 < lim sup [sup L(d,N) 1f ] K < -

where f(N) 4 w as N - a. It shows locking of # least (respectively Pt

wost) order f(N) if K > 0 (respectively K < }).

Definition 3.2. The extension procedure 7 is robult for the family of

problems (3.1), d e (0,11 with respect to the solution sets Hkkd c 'k(l)
H1d per

and error measures Ed if and only if

Lim sup sup E 0.
N d UdGd,
N4 ~~d 64EH d du) =0

It is robust with uniform order g(N) if and only if

sup sup Ed(ud-u g(N)
d udEc4,d

where g(N) 4 0 as N - w.

Remark. In Sections 4, 5 we will frequently use the form g(N) = N-r to

characterize the robustness order r. If r = 0, then convergence will not be

guaranteed.

Definitions 3.1, 3.2 are related by the following theorem, from (4].

Theorem 3.1. 3 is free from locking if and only if it is robust with

uniform order F0 (N). Moreover, suppose f(N) is such that

f(N)Fo(N) = g(N) 4 0 as N4.

13



Then I shows locking of order f(N) If and only if It Is robust with

maximum uniform order g(N).

It Is easily seen that 3 Is non-robust If and only if It shows locking

of order (F 0(N))-.

Let us briefly explain the above ideas. We are assuming that our exact

solution has a certain regularity (i.e. it Is In ek+1'k(g)). Our extension
per

procedure I has associated with It a rate of best approximation Fo0 NM.

which gives the best approximation that we could expect to achieve (Eqn.

(3.3)), for the most unfavorable exact solution In Hk+i'k(g). Using the
per

finite element method gives this rate for d & d0  (Eqn. (3.4)), but does not

necessarily give this rate (uniformly) as d approaches 0. The locking

ratio compares the accuracy actually achieved by the finite element method

(for the least favorable exact solution in Hk,d) to the best accuracy

possible (i.e. to F0 (NM). If the achieved accuracy Is asymptotically the same

as the rate F 0N) in (3.3), (3.4) uniformly for all d E (0,11. then we say

that the extension procedure 7 = WVN} is free of locking for all Ud G E ,dp

d e (0,11. If the achieved accuracy Is asymptotically not the same, then the

robustness g(N) gives the best rate of convergence that can be achieved

independent of the parameter d. In this case, fMN) = g(N)(F0(N}}-I

characterizes the asymptotic strength of the locking.

In [4], we have formulated a useful condition, called condition (a),

under which the question of locking reduces to one of approximability alone.

For this condition to hold, we must first be given a sequence of solution

spaces Hk,d and a limit space Hk.0 such that Theorem 2.3 holds. Then

cBcondition (a) may be stated as: Given ud Q 4,d' there exists a u0 e Hj,0
(for some c independent of ud, d,B; u0 depending on ud) such that

(3.7) lud - uOlk÷1,k KdB
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with K a constant Independent of B, d and ud. This condition therefore

characterizes the distance of solutions ud to functions u0  satisfying

(2.4), as d 4 0. We have shown in (4] that if the "remainder" ud - u0  Is

small in the sense of (3.7), then we need only consider the approximation of

functions u 0  in the limit space 4,0 to answer questions about locking and

robustness.

Our choice of periodic boundary conditions for the plate problem is

motivated primarily by the fact that condition (a) is satisfied. To prove

(3.7) for our problem, we simply choose u0  (for given ud ) as in Theorem

2.2. Then we get (3.7); in fact, we get a power of d2 (instead of just d,

as needed). As a result, Theorem 2.4 from (4] will hold for our problem.

This theorem states that locking and robustness rates are the same no matter

which error measure In (3.6) is used. It is stated below.

Theorem 3.2. Consider the family of problems (3.1), d e (0,1] with the

solution sets HkHd c p+ek(a), k x 1. Then the extension procedure 9 Is

free from locking with respect to the V = HI'I1(Q) norm If and only If It Is
per

free with respect to the energy norm. It shows locking of order f(N) In the

V norm if and only if it shows locking of order f(N) in the energy norm.

We will now only refer to the locking of 1, without specifying an error

measure. The following theorem reduces the question of locking to one of

approximability alone.

Theorem 3.3. Consider the problems (3.1) with solution sets Hk,d,

ka1. Let VN YN x 2'N where YNc [H 1r(a)]2 , Z~ Hp1r(0 and definepe per

Sc 0 by N= {( e ZE , grad w e yN}. Then the extension procedure
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S= {V4) Is robust with uniform order max{Fo(N),g(N)} where g(N) Is

given by

(3.8) g(N) sup inf I - z12 .
weHk+2, zEWN

per

Also, with F (N) as in (3.3), 9 is free from locking If and only If

(3.9) g(N) s CFO(NM.

It shows locking of order f(N) If and only if

(3.10) CIo(N)f(N) s g(N) s C2 Fo(N)f(N).

Proof. Let us define

(3.11) g(N) = sup inf Iu - vl,1,

U*4H 0  V4EVN
C0v-0

Since condition (a) Is satisfied, by Theorem 2.2(B) of [41, 3 is robust with

uniform order max{F 0 (N),g(N)}. The argument Is as follows. For Ud G 4,d'

we may find (by condition (W}) a u0 * E ,0 such that (3.7) holds. Then we

have

N ~N n

lud - u 11,1 S lUd - udlEd S I lud - viE,d
vGVN

"v in+VvN {,Uo -VE~d + ,(ud-uO) -v 2Ed}

C I V 20

" g(N) + d- 1  tn I(ud-UO) - v.ml,

v2 VN

16



g(N) + d [dF (N)]

using (3.3) and (3.7) (the latter giving (u -uo) e dB
d NHk) This proves the

robustness order. Next, using the fact that Theorem 2.3 and condition (a)

hold, we see by Theorem 2.2(B) of [4], that (3.9) and (3.10) will hold with

g(N) replaced by g(N).

To show g(N) and g(N) are equivalent, consider a v = (O,z) e VN such

that Cov =0 . Then

Co = 0 * z e WN, = grad z.

Hence, for u - (;,W) e C, we have

C(N) = sup inf ;11- +• - Z111

Co V=O

sup inf {jgrad w - grad z11 + Iw -zi 1 }

4Hk+2 'B(a) ZGEWN

per

from which it is easily seen that g(N) and i(N) are equivalent. The

theorem follows. a

Let us now define the subspaces VN = YN x ZN. We will consider both

triangular and rectangular meshes. Our results will be for the uniform

triangular and rectangular meshes h,' Mh shown for the case of our square
1 2

domain 0 in Figure 3.1.

hh

Fig. 3.1. Uniform meshes P1,
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Let S be a triangle or parallelogram. Then we define

PI(S) = polynomials on S of total degree s p
p

P2(S) = polynomials on S of degree s p In Sach variable
p

P(S} = 3(S) = PXI(X) x_ xI, the serendipity elements
p p 1 129 12)

(P2 (S). 3 (S) are defined only for S parallelogram).
p p

For any mesh Mh, we now define for i = 1,2,3

?~i, h = P i,h (Mh) = e LW() , vi e PI(
p,-i p,-i IV 2 a h

j
h

where Ql are the elements of Mh. For k > 0, we define

h = PIhMh) = p h nc(k )
p, k pk p,-I per

where p2,h and 93 h are defined for rectangular meshes only. In the

p,k p,k

succeeding sections, we will consider the locking effects of the spaces VN =

Vl'h defined by taking yM = ylh [ hih]2 and ZN = zI,h =l h Notep,q P = pOJ an q =qO"

I h -2 2that for the space Pl:h N = O(h p )p,O'

4. THE h VERSION

In this section, we consider the robustness of the finite element spaces

VN = VI'h when p, q are held fixed and h is decreased to attain accuracy.P~q

Let us first estimate F i(N) In (3.3), (3.4).

Lemma 4.1. Consider an h version sequence of spaces {VN} = {v '}h

defined by V Ih yih X Z ,h [pi:h 2  Ph on an appropriate triangular
pq p p q p, ] q,O 0

or parallelogram quasiuniform mesh, where p,q P I are fixed and h varies.
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Then for any do > 0, (3.4) is satisfied with

00(4.1 F 0(N) CN-'in(p,q, k-I )/2

with C independent of N but depending on p,q,k. Moreover, (3.3) is also

satisfied with the above FO.

Proof. We first note that for I > 1, r X 1, with m = min(rj-1)/2,

(4.2) CI N- Z sup Inf Iz - V11  S C2 N-N

zeH t'B (0) veT' h

per r,O

(4.2) has been shown in Theorem 4.1 of [51 (for example) for the non-periodic

case, from which the periodic case is easily d,.vuced. Using (4.2), it is

easily seen that the upper estimate in (3.3) (and hence (3.4)) holds with F0

given by (4.1). To establish the lower estimate in (3.4) (and hence (3.3)),

we note that given a periodic wd (or conversely a periodic i), we can find

a corresponding periodic function 4 (or a periodic wd) satisfying (2.1),

such that ud = (;dwd) (or ;d = ($d'wd)) lies in 4,d (for appropriate

k). Hence, (4.2) can be used to establish the required lower bound. o

We may now analyze the locking and robustness properties of various

types of elements by calculating g(N) defined by (3.8) and comparing it

with F0 (N) given by (4.1). We first consider triangular elements.

Suppose that VN = V1'h (as in Lemma 4.1) is defined on mesh M•h. Then
p,q

we see that

(4.3) WN= Pl,h q p
q, 1

= ?19~h1+,h q ap + 1.
pq+p+1

Let us define

r(q) = max(2,q) for 1 S q s 4
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= q + 1 for q k 5.

Then the following lemma follows from Theorem 5.1 and Lemma 5.2 of [5],

where It has been established for the non-periodic case.

Lemma 4.2. Let NMh be the uniform triangular mesh of Figure 3.1. Then
1

for we k+ (a), k a O, q 1,
per

Inf iw -z42 s chmin(k.r(q)-2) 1w1 k+2"
zeT l, h

q,1

Moreover, there exists a function Q e C (0)() satisfying
per

Inf IQ - z12  & Chr(q)-2
ze 1, h

q,1

We can now prove the following theorem.

Theorem 4.1. Let the extension procedure 7 consist of the h version on

the uniform triangular mesh ?P, with spaces {VN} = {•vIh} = {[l:]2 X.1 P'q) i pO x] qO1"

Let the solution sets be Hkd. Then for the p and q shown below, 7 is

robust with uniform order N-r when k k 2r+1 and shows locking of order Nt

when k k p + 1.

Robustness Locking order

Degree Degree order = O(N-r) = O(N )

p q r

1 qk1 0 1/2

2 S p s 4 q = p (p-2)/2 1
q X p + 1 (p-i)/2 1/2

p a 5  q =p (p-1)/2 1/2
q •p+ p/2 0

(For p > q, the same results as for the case p = q hold.)
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Remark. The above theorem shows that with the customary choice p = q,

convergence is not guaranteed for p = 1 or 2 (i.e. r, the robustness order

is 0) and is only guaranteed (with reduced order) if p a 3. In fact,

locking cannot be avoided whenever we take p q. It is O(N) for

p = 2,3,4 and O(N /2) for p t 5 (for p = 1, it is technically O(N /2)

as well, since the maximum possible rate in this case is O(N- /2)). To avoid

locking, p has to be taken to be 5 or larger with q being chosen to be

p + 1. (Note that taking q > p + 1 will not increase the robustness rate.)

Proof of Theorem 4.1. We illustrate the proof for p = 2, for the two

cases q - 2, q i 3. By Lemma 4.1, we see that for both cases, for k k 1,

(4.4) F0(N) = CN-min(2,k-1)/2

and for k a 3 (i.e. k k p + 1), we have the best rate that we can expect,

I.e. O(N- 1 ), We now calculate the robustness rate actually achieved, given

by max(F 0 (N), g(N)) where g(N) is defined by (3.8).

For q = 2, we see that using (4.3), we have

(4.5) g(N) = sup Inf 1w -z4 2
OeHk+2,'B{(0) zer 1 h

per 2,1

By Lemma 4.2, for any k k 0, we see that

C1 S g(N) S C

and hence, for k z 1, the robustness rate is max(F 0 (N), g(N)) • C. Hence,

this method is not robust. By (4.4), for k X 3, F0 (N) = CN- , so that by

Theorem 3.3, the locking is O(N ).

For q a 3, we get (4.5) again, except z is now in !Ph By Lemma

4.2, for k t 1,
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CIh s g(N) s C2h.

i.e. g(N) z CN -/2 Using (4.4), we see that for k z 2, F (N) :s CN-1/2
-1/2

so that the robustness rate is max(F 0 (N), g(N)) _ CN for k t 2. Also,

for k k 3, F0(N) = CN-1 and by Theorem 3.3, for k x 3, the locking is

0(N 1/2). a

Remark. For p a 5, the above results hold even for the case that the

quasiuniform version of Mh is used (see [5)).
1

Let us now consider the uniform rectangular mesh Mh- Suppose first that

the extension 9 is based on P2(S) elements, with VN = V2'h =
2P p,q

012 x P q2 Then it may be observed that

(4.6) wN = 2,h q p

q, 1

= •l,h p2,h qp1
p+,1 h,1 q p + 1.

The following is an analog of Lemma 4.2 for this case. The non-periodic

version of this result is established in [8], [5].

Lemma 4.3. Let Mh be the uniform rectangular mesh of Figure 3.1. Then
- - 2

for e Hk+2 (0), k k 0, q k I,
per

(4.7) inf Iw-z42 s Chmin(k'q-1) Iw~k+2.

zeP 2, h

q,1

Moreover, there exists a function Q e C(.0)() satisfying
per

(4.8) [E IQ -zJ 2  Chq-1

PlIh U2,h
q+l, I q,1

Obviously, the two bounds (4.7) and (4.8) hold for both the spaces
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1 h 2 h 2, h
Pq+,1 u q,2I and Pl Now using Theorem 3.3, Lemma 4.1. (4.6) and Lemma

4.3, we obtain the following theorem, whose proof is similar to that of

Theorem 4.1.

Theorem 4.. Let the extension procedure I consist of the h version on

the uniform rectangular mesh Mh, with spaces {vN, = jVh =

{r2,h]2 [J2,hf. Let the solution sets be Hkd Then for the p and q

shown below, 3 is robust with uniform order N-r when k & 2r + 1 and

shows locking of order N when k a p4l.

Robustness Locking order

Degree Degree order = O(N-r = O(N )

p q r t

1 q t 1 0 1/2

p a 2 q X p (p-1)/2 1/2

We now consider an extension procedure on Mh based on p3(S) type

elements. Accordingly, suppose VN _ V3,h. Then it can be shown that
p,q

(4.7) WN -- J3, hqsp
q,1

= P1,h p 2, q x p + 1, or (p,q) (2,3).

3,1 h 2,1 p = 2, q & 4.

In this case, we have the following lemma.

Lemma 4.. Let Nh be tho- uniform rectangular mesh of Figure 3.1 Then
2

for d GHk+•Zr(), kx0, qO,
per

23



(4.8) Inf 1w - z12  chmin(km(q)) +

zep 1, h

q,1

where m(q) = max(O,q-3). Moreover, there exists a function Q C(W (a)per

satisfying

(4.9) Inf |Q - z|2 X amre(q)

ze?3, h
q,1

Proof. (4.8) follows from Theorems 1, 2 of [8], as shown In [5]. Next,

we note that In Lemma 5.2 of [5], (4.9) was established for P,'h instead of
q,:1

q 3,h for the non-periodic case. Essentially the same proof can be used to

prove (4.9) here as well. a

Note that the bounds In (4.8), (4.9) will hold for Pq,1 and Pq.1.

respectively, as well, Using (4.7) and Lemma 4.4, we may once again establish

the following theorem, analogously to Theorem 4.1.

Theorem 4.£. Let the extension procedure 7 consist of the h version on

the uniform rectangular mesh Mh2, with spaces 4A 3h =

] p:o]2 P3h, Let the solution sets be Hkd. Then for the p and q

shown below, 3 is robust with uniform order N-r when k & 2r + 1 and

shows locking of order N when k x p + 1.
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Robustness Locking order

Degree Degree order = O(N-r) = O(N
p q r I

1 q 1 0 1/2

2 q =2,3 0 1
q 4 1/2 1/2

p t 3 q =p (p-3)/2 3/2
q p+1p4 (p-2)/2 1

Remark. Theorems 4.2 and 4.3 show that locking cannot be avoided when

rectangular elements are used, no matter what choices of p and q are made.
2 3 2

Both P2 and P3 elements are robust only when p k 2 (for P2 we only

get robustness if, moreover, q x 4). For p t 3, P3 elements show twice to
p

three times the locking rate as P2 elements, depending on the choice of q.
p

S. THE p AND h-p VERSIONS

Let us now consider a p version extension procedure 9, with {vN} =

p qj, where h is kept fixed and p,q 4 w. Also, let us consider an h-p

version over a quasiuniform family of meshes fMh}, where both h and p,q

are changed for accuracy. Then we have the following estimate for F0

(Theorem 4.2 of [5)).

Lea 5_1. Let {VN} = {vih} be a sequence of p version spaces on a

fixed mesh Mh, with p,q 4 w. Then (3.3) and (3.4) (for any fixed do > 0)

are satisfied with

-(k-1)/2
(5.1) F (N) = CN

0

with C independent of N but depending on h, k. Moreover, as p,q 4 a,
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(5.1) also holds if the h-p version over a quasiuniform family of meshes {Kh}

is used. In this case, we have the following more refined estimate:

(5.2) F0(N) = Chmin(rk-1)r-(k-1 ),

where r - min(pq).

Note that in the above, (Nh) does not have to be a family of uniform

meshes, but can be a quasluniform family of meshes.

We now show that there Is no locking when the p version is used for our

model problem.

Theorem 5.1. Let the extension procedure I consist of the p version

using a mesh consisting of triangles or parallelograms (which can be

arbitrary). Then with solution sets Hk,d, k k 1, 3 is free of locking and

N-(k-i)/ 2

is robust with uniform order N as pq 4 w.

Proof. Using the results of [11], [10], we can show that for the p

version with C(1 continuous triangular or parallelogram
per

straight-sided elements, for w e Hk+2(M), k k 1, (h fixed),
per

inf 1w - s Cr-k Ik k+2 .

r,1

Now for any I = 1,2,3, with VN =Vlh = [ h]2 we have ,1:h WNp, q ,O × •qO ehv r, I

for r - min(p,q). Since r = 0(N 1/2), we have, with g(N) defined by

(3.8),

g(N) - CNk ,

so that the method is robust with order max(g(N),Fo(N)) - OC-(k-l)/2 by

Lemma 5.1. The theorem follows, using Theorem 3.3. o
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Let us remark that in the above proof, it is observed that g(N) is of a

smaller order than F (N). This Implies that for the limiting case (where we

have the biharmonic problem), the p version actually shows an Increase in the

rate of convergence (by one order of p), rather than a decrease due to

locking. The reason is that the solution to the biharmonic is of higher

regularity than that of the plate problem, and the asymptotic rate of

convergence of the p version only depends upon the regulari t y of the solution.

For the h-p version, we may show the following theorem for triangular

meshes.

Theorem 5.2. Let the extension procedure 7 consist of the h-p version,

using quasluniform meshes conslsti-g of triangles. Let VN = Vlh with
p,q

p 2 5, q a p + 1. Then with solution sets Hk~d, k X 1. 7 Is free of

locking and is robust with uniform order N-(k I)/2 (or, more precisely,

h k-1p-(k-1) ).I

Proof. The essential idea is to use the following estimate for the h-p

version with C (1) continuous triangular elements for w e Hk+ 2 (Q), k & 1
per per

(5.2) inf w - z42  s Chkr-kw|k+2

r,1

provided r k 5, r k k + 1. An analog of (5.2) has been established in [61

for the case of C(0) elements - a similar technique, combining (5.1) with a

scaling argument, works for the C(1) case as well. For VN = V1'h with
p,q

q t p + 1, p t 5, we have P,1 h c WN. Hence, using (5.2) and Theorem 3.3,
pp 1

we have

g(N) = Chkp-k . CN-k/2

in (3.8). The theorem follows easily.
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We see from the above that when the h-p version is used, the separate

robustness rates of the h and p versions are combined. Theorem 5.2 therefore

combines the results of Theorems 4.1 and 5.1, and says that if the p version

is combined with a locking-free h version, then the resulting h-p extension

procedure is also free from locking.
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