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1. INTRODUCTION

The dissemination of solid payload material as a gaseous cloud from a ctontaihnr can

be accomplished using a pressurized system (e.g. compressed CO2 cartridge), a mechan-

ical system (e.g. plunger) or a pyrotechnic system (e.g. central burster or hot/cold gas

flow). In the latter technique, dissemination of the payload is realized after ablation and

vaporization of the material from exposure to the thermal effects of pyrotechnic combustion.

Experimental programs at the U.S. Army Chemical Research Development and Engineer-

ing Center (CRDEC) are being used to test the efficiency of the thermal/ablation method.

The goals are high rate of dissemination and low temperature/high payload concentration

in the dissemination cloud. These tests can involve highly instrumented full-scale and small-

scale grenade models ignited within large test chambers. Numerical simulation in support of

such tests was conducted at the U.S. Army Research Laboratory (ARL). These simulations

are required to aid in data reduction, contribute to the physical understanding of thermal

dissemination, and conduct parametric studie., that may guide future tests.

The internal design of a grenade used for the thermal dissemination of solid payload into

the atmosphere can consist of two concentric cylinders; a pyrotechnic device in the outer

annulus and payload material bonded to the wall of the inner cylinder. The two chambers

are connected. Combustion of the pyrotechnic produces a high pressure within the grenade.

A pressure difference between the atmosphere and inside the grenade induces a thrit-flow

that thermally erodes and vaporizes the material in the inner chamber. The material in

gaseous form is entrained in this flow and expelled from the grenade. Figure 1 shows the

internal schematic of a generic grenade configuration.

Numerical simulation of the fluid dynamics associated with payload dissemination fromn

a grenade is accomplished in the present study using the Navier-Stokes equations along with

equations that govern chemical species ablation and diffusion. Chemical reactions between

payload and pyrotechnic gases may be but are are not necessarily involved. An implicit. finite-

difference scheme based on successive-over-relaxation is used to solve these equations for the

physical domain of interest. This domain resides within the inner chamber of the grenade;

thus, the flow within the grenade is modeled excluding combustion of the pyrotechnic. Using

chamber dimensions and payload chemical properties this simulation yields velocity, pressure,

temperature, density and chemical compostion of the gas in the inner chamber and exiting

the grenade.



2. NUMERICAL SIMULATION

The RAMCOMB (RAMjet COMBustion) computer code was originally developed for the

numerical simulation of combustion in a tubular solid-fuel ramjet (SFRJ) projectile (Nusca

et.al. 1988, Nusca 1989). Solid fuel regression rate and projectile thrust predictions compared

favorably with in-flight and ground test data. For the SFRJ application the RAMCOMB

code simulated a mass-controlled (stoichiometric) reaction of non-premixed solid fuel and

oxygen using classical diffusion flame techniques. The code has also been used to simulate

finite-rate premixed gaseous fuel combustion in the ram accelerator projectile launch system

(Nusca 1991) with reaction rates formulated in terms of temperature and chemical species

mass fraction. Application of the code to payload dissemination simulation for grenades

involves chemical species ablation and diffusion without chemical reactions. The governing
equations, boundary and initial conditions as well as the solution method are outlined below.

2.1 Governing Equations. Since the grenade payload chamber geometry is axisym-

metric (Fig. 1) the governing equations can be written in cylindrical coordinates. The
velocity components in this system are u,v, and w for the radial (r), azimuthal (0), and axial

(z) directions, respectively. Axisymmetric flow is assumed thus, all 0-derivatives are ignored;

however, the azimuthal velocity component and the azimuthal momentum equation are re-

tained (for future consideration of chamber rotation). Since steady flows are considered, tir'e

derivatives (O/Ot) are ignored. The conservation equations for global mass, momentum (ra-

dial, axial, azimuthal) and species mass conservation are given by (Nusca 1991, Schlichting

1979),
I O(rpu) + (pw)1)

r Or Oz
1 2PV. [pUV -f] -[Pv, -reel + = (2)
r O~r

V.- [pwV" - 7,1 + azz = 0 (3)

11
- V. [r(pvV - fe)] = 0 (4)

1 i (rpumj + rJi,,.) + -' (rpwmj + rJj,,) 0 (5)
Or ±r 57z + J I =0 5

Energy conservation for a compressible flow is expressed by the First Law of Thermody-

namics. The steady form of the First Law states that the net rate of stagnation enthalpy
(h = h + V2/2) inflow for a control volume is equal to the sum of the shear work done

by the contents of the control volumc on thle surroundings (F) and the heat transfer to the

2



surroundings (Schlichting 1979).

V. p + + + hiJ + A -- (ur. + ±Vf +w-) =0 (6)

where J is a flux term for mass (j = (,.ir/Re)Vm, = riVm,), heat (J- = (p,r/Pr)cý,,VT =

Frcp, VT), and turbulence kinetic energy, k, (J = (yff/Pr)Vk = FkVk). Where r repre-

sents the diffusion coefficient. The mass fraction and molar specific enthalpy for species j
are mj and hj, respectively. The density, pressure, velocity vector and velocity magnitude

are given by p,p, V, V = N/ul + v2 + W2 , respectively.

In Equations 2-4,6 the shear stress (r) includes the Reynolds stress with an effective fluid
viscosity expressed as the sum of the molecular and turbulent viscosities, pff = p + pt. The

flow Reynolds number, Re, represents the ratio of mass flux (pVL) to fluid viscosity, IA~f.

Molecular viscosity (ps) is defined using Sutherland's expression (Ames 1958),

,u=220,- 15  (7)S= 2"270x10-T + 198.6

Turbulent viscosity (pat) is described in the next section of this report.

The calorically perfect gas assumption can be used to determine the specific heat of each

species, cp,, when the temperature dependence of the species is not well determined. The

specific heat can also be formulated using an explicit temperature dependence obtained from
tabulated data (Stull and Prophet 1971).

c,,/* = A1 + A 2T + A3T2 + A4T3 + A 5 TV (8)

where the mixture specific heat is given by,

N

cv= (mjcp, (9)
i=1

Mixture temperature (T) is obtained from the conservation of energy (Eq. 6) expressed in

terms of the stagnation enthalpy,

N 1r ] V 2 r l 2  [ 1 11 Nh=TY]cp,m,+ 1-_r -- +Sc tr"" Sc fr -hm ()
r]V_ [Sc Pr iZ m., (10)

where f/ is the magnitude of the turbulent (fluctuating) velocity, vT1 . The Schmidt number,

Sc = I'eg/(pF), (ratio of momentum transport to mass transport) is assumed to be unity.

The Prandtl number, Pr = cpu/ffI., (ratio of momentum transport to heat transport) is

assumed to be nearly unity (.9) which is considered adequate for gaseous flows (Bradshaw

1981). The thermal conductivity of the gas mixture is denoted K.
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The mixture equation of state for a thermally perfect gas follows from Dalton's Law,

-N

where E = M Mj, Mj is the molecular weight of species j, and W is the specific gas

constant. Equation 11 is used to recover the density from the numerical solution of the

governing equations.

The stream function-vorticity form of the governing equations has been widely utilized

and facilitates the use of numerically efficient Gauss-Seidel relaxation algorithms. Stream

function, 0, and vorticity, w are defined using (Schlichting 1979),

0~ (go2V
T =rpw, = -rpu, W a pa r _r (5T2)

Or TZI ( )I

The governing equations, derived by Nusca (1989), can be expressed in the form of a general

variable, 0. This variable can represent stream-function, vorticity, azimuthal velocity, stag-

nation enthalpy, species mass fraction, turbulence kinetic energy, or turbulence dissipation

rate.
[I 0 ) -g Z - boa(coo)] - " (b," (c0). +. -O = 0 (13)

abloz Or / Or a~zj &Z & Trc)j-~ [br- cv,
For example, 4 = 0,a, = 0,b40 = 1/(pr'),c# = 1, d4 = -w/lr (which yields Eq. 12). For

N species only N - 1 specie equations (0 = inj) must be solved, since the sum of the mass
fractions must equal unity. In effect the global continuity equation (Eq. 1) is the Nth specie

equation since the summation of all specie equations yields the continuity equation.

The pressure can be recovered from the ib - w form of the equations after a converged

solution of Equation 13 is achieved or after each iteration, if pressure variations are expected

to have a significant effect on density. The radial and axial momentum equations (Eq. 2 and

3) can be rearranged to yield:

ap P,(r,z) and ap-= P2 (r,z) (14)

where P1 and P2 are functions of p, V and I. Along any path from point A to point B in

the flowfield, the pressure is given by:

PB -PA - (LPdz + P 2dr) (15)

Since p is a scalar, pB - PA should be path independent and therefore, can serve as a

consistency check on the converged solution. In most cases a pressure difference is desired

to form the pressure coefficient at a point. However, if the pressure at point B is required

the pressure at point A is assigned to a known inlet value and integration proceeds from the

inlet to point B in the flowfield.
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2.2 Turbulence Model. A two-equation turbulence model has been suggested by

Kim and Chung (1989) for multiple species flows. This model describes the turbulence

viscosity (pt) as a function of turbulence kinetic energy (k) and dissipation rate (f) as

pt = pCsk2/f. A set of partial differential equations is written for k and t.
Ok Ok 1 [0 Ok\ 01 O -k\(

pW + P Or - G-pe (16)

E Of a a at CIG C2p 2
""'0 + pu rr1 -=- [T - rJ (17)

G (1\ aUA2 + 2 U) 0u 2

where, Pk - + pt/Ak,PE, = p + pt/k,A = 1, = 1.3,C, = 1.44,C 2 = 1.92,C 3 = .09.

These equations are solved along with the Navier-Stokes equations (Eq. 13) using,

-= k, a# = 1, b,0 = rpk, c# = 1, d# = r(G - pt)

f, = ,- = 1,b,# = rp,,c# = 1,d# = r(C Gk/k - C2pt2/k)

2.3 Boundary and Initial Conditions. The boundaries of the inner grenade chamn-

ber (see Figure 1) are the inlet (connected to the pyrotechnic chamber), the exit (nozzle

throat), the symmetry axis, the chamber wall lined with payload material, and a section of

solid wall along the nozzle. Since the governing equations (Eq. 13) are elliptic the conditions

along these boundaries must prescribe values of the dependent variables, the gradient of the

dependent variables in the normal direction, or an algebraic relation which connects the
values of the dependent variables to the normal component of velocity.

At the inlet plane, radial profiles of all dependent variables, ,w, mi, jv, k, and c as
well as values for V, T, p, p, and pff are specified. It is assumed that the flow at the

inlet plane consists of air and that the diffusion of payload into the airstream from the

chamber wall does not effect the inlet flow. During actual grenade operation the inlet flow

consists of pyrotechnic combustion gases (e.g. H20, C0 2 ) the exact nature of which was
unavailable for the numerical simulations. A subsonic inlet flow velocity assumption is used

in accordance with the elliptic nature of the governing equations. Initial conditions for all

dependent variables are supplied by the inlet boundary conditions. The turbulence model is

initialized using k = k. = aV., e = k"SCý°'5/(.37x°0 SRe-°0 4). The initial turbulence kinetic

energy is specified as (1/a)% of the inlet kinetic energy.

The exit plane is located at the nozzle throat where the flow is assumed to be subsonic.

The streamlines at the exit plane are assumed to be parallel to the symmetry axis; thus, the

gradients of all dependent variables along these streamlines are zero. These assumptions are

5



reasonable since experience for large Reynolds numbers has shown that the exact nature of

the exit plane boundary conditions has little effect on the flowfield solution when convection

is significant (i.e. large inlet mass flow) (Bradshaw et.al. 1981, Khalil et.al. 1975).

For mass continuity, the symmetry axis is considered to be a streamline of the flow, thus

= constant. Along the symmetry axis r = 0, thus e0t/az = 00/&r = 0 via Equation

12. The value of b along this boundary can be determined from values of 0 adjacent to

the boundary using a one-sided finite-difference for 00/Or at the axis. From Equation 12,

the boundary value for w is zero. The axis boundary values for the remaining dependent

variables, 0, are determined from 610/Or = 0.

The no-slip condition (u = w = 0, and v/r = Q, where IQ is the wall spinrate) is

applied to the solid walls. Therefore 0 = constant, via Equation 12. For convenience k = 0

is chosen. One-sided finite-differences for 0i0/Or and 80/az are used in Equation 12 to

determine the wall value for w. For an inert wall, the normal gradient of all mass fractions,

Ormj/On, are set to zero. For a wall with payload material, the boundary condition is based

on the assumption that the payload material is continually vaporizing (mpoyl..d = 1, Mir =

0, mjixtur = 0). The wall temperature is set to the vaporization temperature of the payload,

Tril = Trap. Figure 2 shows the results of a thermogravimetric analysis of yellow dye (i.e.

payload material) (Turetsky 1991). The percent weight loss of the sample is plotted as a

function of temperature. Note that vaporization of the material (i.e. significant weight loss)

occurs over a narrow temperature range, supporting the use of such a boundary condition.

The rate of burning (regression rate) on the payload surface varies as a function of position

along the surface and is computed from the temperature gradient normal to the wall,
r = - (19)

prhv~ Or (9

where xp and pp are the thermal conductivity and density of the solid payload, and hv,.

is the heat of vaporization of a unit mass of payload. Values of the thermal conductivity,

density, and heat of vaporization can be determined for most grenade payload materials.

The boundary conditions for the payload surface are based on the assumption of single

diffusion, i.e. diffusion of gaseous payload molecules into the airstream without diffusion of

air molecules into the payload material. Single diffusion has been studied by R.D. Present

(1958). The general equation of mutual/thermal diffusion is given by,

Gi = nuj - nr ±('-) + nTdT (j = 1,2) (20)
dz - In +T

where n, = molecular density of species j, n = Ej ni, u1 = convection velocity of species j,

z = diffusion direction, r = mass diffusion coefficient (VA/3, A = the molecular mean free

path), and PT = thermal diffusion coefficient (K/(phv.v)). The equation of "single diffusion"

8



can be obtained by assuming that air molecules (j=1) are moving in a boundary layer so

that ul = 0 and payload molecules (j=2) are at rest, u2  0. In addition, the payload

molecules are closely packed so that n, < n2 . As a result,

Gr=G,-0, GP0,= G2 = -- (n, +n 2 )r ( n ) + n2frT dT (21)

The mass diffusion terms of Equation 21 are incorporated in the Ji terms of Equation 5 and

rT is customarily neglected.

The payload surface boundary condition may also be prescribed using a surface ablation

model such as described by Moss (1976). In this model the payload vaporization temper-

ature and heat of vaporization are prescribed as functions of the pressure applied to the

material surface. An equation similar to Equation 19 is used along with these functions in a

iterative/coupling procedure with the governing equations in order to prescribe the payload

surface boundary condition. The use of an ablation model, as opposed to assuming that the

payload surface is continually vaporizing (Tw.. = Tvp) is more critical for cases where the

vaporization characteristics of the material are a strong function of pressure and temperature

(i.e. unlike that shown in Fig. 2). The major drawback to using an ablation model is the

increased computational cost of the iterative procedure and the requirement of experimental

data in the form Trp = T,.p(p), h,,.p = h,,p(p).

Boundary conditions for turbulence variables, k and E, are k = 0, f = .056#(8u/Or)2/p
for solid walls and k = lO-V', 1 = k"5/L for the inlet flow. Along the chamber axis and

exit plane Ok/Or = Of/Or = 0, Ok/Oz = Of/Oz = 0, respectively.

2.4 Computational Algorithm. Equation 13 can be reduced to a successive-substitution

formula for flow variable 4 at each node on the computational grid. Central finite-differences

are used for the diffusive and source terms and upwind differences for the convective terms.

Using upwind differencing in the species conservation equations (Eq. 5) reduces the occur-

rence of negative species mass fractions in mixing layers. The resulting system of equations

for the entire grid is solved using a Gauss-Seidel relaxation scheme (Nusca 1989). Each iter-

ation cycle is made up of M sub-cycles, where M is the number of equations being considered

(M must be at least 2 since the equations for 0 = w/r and 4, = 0 are the minimum required

to define the flow). In each sub-cycle, grid points are scanned row by row and a single

variable is updated. The variables w/r and , are updated in order followed by all other
variables. When all sub-cycles are completed a new iteration cycle is started in which the

values of the variables from the latest iteration are immediately used. This is consistent with

the Gauss-Seidel methodology (Carnahan 1969). Convergence is satisfied when the greatest

relative change in any flow variable is smaller than a prescribed tolerance.

7



3. RESULTS

In order to demonstrate the numerical method, simulations were performed for an exper-

imental grenade model loaded with yellow dye payload simulant that has been the subject
of testing at CRDEC. In these tests the grenade's inner chamber was instrumented with

pressure transducers and thermocouples (for temperature measurements). The chamber was
lined with yellow dye payload material about .25 inches in thickness. A typical test run yields

measured values for the chamber inlet pressure and temperature (due mainly to pyrotechnic
ignition) of about 3.5 psig (1.24 atm) and 425 C. The nozzle or exit plane values were mea-
sured as 1.5 psig (1.1 atm) and 375 C. These values were used as boundary conditions for

the numerical simulation. The chemical properties of the yellow dye payload material were

measured as T,,p = 241 C, h,,P = 102.9 J/g, M = 273 g/mole. The density and thermal
conductivity of the dye have not been measured but were taken as pp = 1.8 g/mole and cp =

.00143 cal/s-cm-C, respectively. Sensitivity studies using the present numerical model show

that the predicted payload regression rate depends significantly on the value of •p and less
on the value of pp. The inlet gas was assumed to be air with M = 28.8 g/mole and the M
of the air/payload gas mixture taken as 150 g/mole.

Figure 3 shows the computational grid (or mesh) used for flowfield simulation within

the grenade's inner chamber, bounded axially by the inlet and nozzle and radially by the
symmetry axis and chamber wall. The chamber is cylindrical with an overall length of 4.0

inches and .375 inches in diameter. These dimensions represent the chamber shape before
payload surface regression. Note that the vertical axis in Figure 3 has been magnified for

clarity by a factor of 10 over the horizontal axis. About 131 grid points were used in the axial

direction with 35 points in the radial direction; the grid points were unevenly distributed in
order to cluster points along the boundaries (except at the symmetry axis). Figure 4 shows

the computed velocity vectors (i.e. arrows whose length is representative of the magnitude

of local gas velocity and direction indicates the orientation of the local velocity) displayed at

every 6th axial grid point and every other radial point (for clarity). A thick boundary layer

that develops along the chamber wall (i.e. payload surface) can be observed. The computed
average chamber exit velocity is approximately 121 ft/s. The surface of the payload material

was allowed to ablate (i.e. regress) for .25 seconds resulting in the shape shown in Figure 5

(computational grid). Note that the material surface has been blunted at the chamber inlet

but more evenly eroded over most of the surface with the exception of a discontinuity at the
payload/nozzle wall junction (z = 3.5 inches). Figure 6 shows the computed velocity vectors

for this chamber shape. Due to the contour of the chamber entrance, the flow is significantly
accelerated (indicated by longer arrows in the figure) forming a thinner boundary layer

along the payload surface (i.e. larger Re). The computed average chamber exit velocity is

8



approximately 276 ft/s. Figure 7 shows the distribution of payload regression rate (Eq. 19)

along the payload surface for both the initial time and .25 seconds elapsed time. Payload

regression rate is largest near the chamber inlet and nearly uniform over most of the payload
surface. The regression rate increases with elapsed time.

Figure 8 shows radial profiles of axial velocity component at both the initial and elapsed

time as well as two axial positions along the chamber - midlength, z = 2in, and the exit

plane, z = 4in. Consistent with the imposed boundary conditions the velocity is zero at the
chamber wall (r = .1875in) and the velocity gradient is zero at the chamber axis (r = 0).

The retarding effect of the wall boundary layer on the velocity profile can also be observed.

Note that the profiles at chamber midlength show the payload surface regressing from r =
.1875in to about .195in from the centerline while the profiles at chamber exit show no wall

regression since the chamber wall is solid at this location. Comparing the chamber midlength

profiles with those at the exit plane show that the boundary layer (or mixing layer) thickens
with axial location downstream of the inlet. Comparing the initial time profiles with those

at the elapsed time show that the gas flow is significantly accelerated as the payload surface

regresses and the boundary layer thickness decreases (i.e. larger Re).

Figure 9 shows radial profiles of gas temperature at both the initial and elapsed time

as well as two axial positions along the chamber - midlength, z = 2in, and the exit plane,
z = 4in. Consistent with the imposed boundary conditions the temperature is T,.p at the

payload surface while the temperature gradient is zero at both the chamber axis and the

solid chamber wall at the nozzle (adiabatic wall condition). Note that the profiles at chamber

midlength show the payload surface regressing from r = .1875in to about .195in from the

centerline while the profiles at chamber exit show no wall regression since the chamber wall

is solid at this location. Within the boundary layer established on the payload surface the

temperature of the air/payload mixture is gradually increased until it reaches the centerline

(i.e. inlet) value. Comparing the chamber midlength profiles with those at the exit plane

show that the thermal boundary layer thickens with axial location downstream of the inlet.
Comparing the initial time profiles with those at the elapsed time show that the gas flow is

slightly hotter at any chosen radial position within the mixing layer.

Figures 10 and 11 show radial profiles of mixture (payload + air) mass fraction at both

the initial and elapsed time as well as two axial positions along the chamber - midlength,

z = 2in, and the exit plane, z = 4in. Consistent with the imposed boundary conditions

the mixture mass fraction, mwdxt~u, is zero at the payload surface (i.e. mpnyloa4 = 1, mk

= 0) and along the chamber centerline (i.e. mpyld = 0, m• = 1). Along solid walls (i.e.

chamber exit) and at the chamber centerline the gradient of , is zero. The mixture

mass fraction is exactly or nearly unity at some point in the flowfield where npayloa and

9



mrn are equivalent. Note that the profiles at chamber midlength show the payload surface

regressing from r = .1875in to about .195in from the centerline while the profiles at chamber

exit show no wall regression since the chamber wall is solid at this location. Comparing

the chamber midlength profiles with those at the exit plane show that the chamber core

flow, consisting of air (mmixtu,, = 0), thins from a radial position of about .12in to .10in at

the initial time and .15in to .13in at the elapsed time. The diffusion of payload material

into the core flow is advanced with axial position as the boundary layer imposed on the

payload surface grows. Comparing the initial time profiles with those at the elapsed time

show that the mixing layer (i.e. highest mixture concentration) follows the payload surface

as regression progresses.

4. CONCLUSIONS

Material dissemination from the payload chamber inside a dual-chamber grenade has been

simulated using computational fluid dynamics. A thermal dissemination technique that uses

the hot, moving gases generated from combustion of a pyrotechnic within the grenade has

been investigated. The dissemination process is initiated by ablation and vaporization of

the payload material from exposure to the thermal effects of pyrotechnic combustion. This

material in gaseous form is entrained in this flow and expelled from the grenade. The Navier-

Stokes equations along with chemical species conservation equations were used to simulate

the diffusion and convection processes of the flowfield within the grenade's payload chamber.

Numerical simulations reveal that diffusion of the payload material is accomplished within

a boundary layer that is established along the payload surface (chamber wall) and that a

core flow, basically unaffected by the payload ablation, resides over about one-half of the

chamber diameter. Thermal exposure of the payload mixture to the hot combustion gases

from the pyrotechnic is concentrated in this layer where the temperature is below that of the

core flow gases. As the payload surface regresses, the flow thru the chamber is accelerated

and the diffusion/mixing layer follows the regressing surface which results in an expansion

of the core flow. The regression rate increases with elapsed time (since pyrotechnic ignition)

as the shape of the payload surface (chamber wall) is contoured by material ablation.

10



STANDARD FUZE

STARTER MIX -..,,

.4.? +

PYRO-MIX -- +

CENTER TUBE PRIOR TO FUNCTIONING
4.4

.4."

PAYLOAD IN SOLID ANNULAR TUBE

BURN4ING Ii~?
PYAO-MSx--1 HOT, HIGH

+I I ,,VELOCITYIIý GASES
+ N / + ABLATE FUNCTIONING

SJ1ll PAYLOAD

+__ BLOW-OUT

COVER

PAY OýASSEINAION (NOZZLE
PAYLA DSSEINAION OPTIONAL)

Figure 1. Schematic showing operation of the dual-chamber grenade thermal
dissemination (M. Miller, U.S. Army CRDEC, used with permission)

11



1iO-
Solvent Yellow 33/Argon

100- •,---

80-

too-

70\

so \

40-

'I
30-

20-

10

0

0 t00 200 300 400 560 600

Temperature (*C)

Figure 2. Measured weight change (%) of solvent yellow dye sample during heating from
0 to 600 C in argon atmosphere. Measurements done using thermogravimetric
analyzer at CRDEC (Turetsky 1991)

12



Co

Cý

11 1 1 1 1 L
1- .......

0.0 0.8 ..6..4 .2..4.0.
.. .. ..(i .......)..

ODiur 3.7 .... CabrEi

......... ... . .. ... - .: ............-....... C C:

........... ----- ---
C) ........... - -- ~ - 9 4 4 :C C C C Cc

C 11U.~I.I- I 1i-lIn IM

0.0 0.8 1.6 2.4 3.2 4.0

z (in1)

Figure 4. Computed tieoniay vetrfied for initial chamber shape

M1



CD

Paylohambe Exit,,i

CD

Figure4 5.CmuainlgiCfrcabrsaeatrh2 eodfpylad be surfac

(0

CD ..... .I.. ... .

-4I

CD

0.0 0.8 1.6 2.4 3.2 4.0
z (in)

Figure 6. Computatida veloiyvetrfld for chamber shape after .25 seconds of payloadsufc

srabelabaiio

41



0 .25

0
0

0,o20

C~ ~time 

0.00j secs.

0 .15 ------- 0 .2 5 s e c s ---

U , .0 5oi

0 

3.5

w s)).n0e0Alon payload Surface (in)

~jg re . C i s ted a lo nce~ Alo ng rt 
it~ Cal

f1itac5ao'



11-1 0.20

v 0.18 - .... .. ..............

6 0.16 NUI

S 0.14

E 0.12
o-" 0 ,1 0 •

E 0.08 t = .00 s, z = 2 in--
0 t = .00 s. z = 4 in

0 06 ................

U 00.25 s, z 4 inS0 .0 4 r- . .............. ,.................... ............. ......... .
C ot
--• 0.02j-

o3 0 .0 0  I I I ,

0 40 80 120 160 200 240 280 320

Axial Velocity (ft/s)

Figure 8. Computed radial profiles of axial component of gas flow velocity; results for

initial and elapsed time shown at the chamber midlength and nozzle exit

0.20FF•,7,. 0"2I.18 •.•...

6 0.16 IN,

�i 0.14

E 0 12
r 0.10 -

(.3

E 0.08- t.00s, z = 2 in
0 .00s1 z=4 in0.06 ............--• -s.,. I -........

0 6 t .25 sz2 in
U 0.04 s z=-4'in

C
"- 0.02

0.00 I I I I L____
450 475 500 525 550 575 600 625 650 675 700

Temperature (K)

Figure 9. Computed radial profiles of gas temperature; results for initial and elapsed time
shown at the chamber midlength and nozzle exit

16



11-. 0.20 -

'- 0.18

d,_ 0.16

0,o.14

-0
E o.12
a
- 0.10C)

E 0.08
0- 0.06 t -z 2 in (midlength)
0) t = .25 s z =2 in"U 0.04

"0.02
et, 0.00 ! I I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Moss Fraction of Payload + Air Mixture

Figure 10. Computed radial profiles of gas composition (mixture mass fraction); results
for initial and elapsed time shown at the chamber midlength

." 0.20
C:

.......................................
" ........ . .........................

f, 0.14

-oE 0.12
0

A- 0.10

E o.o8
0.0 .. t =.00 s, 4 in (exit)".-0.06 O s,z Z ----. )

.= . ................... .............. o ...... . ....... . •

0t0 .25 s, z = 4 in(') 0 .0 4 .... ....... ............ I... ........... . .. .. . .. . ... .. . .. ... .. ..... . . . .. .. . . .
C:
0

"- 0.02
S0.00 - ... I I I J0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mass Fraction of Payload + Air Mixture

Figure 11. Computed radial profiles of gas composition (mixture mass fraction); results
for initial and elapsed time shown at the chamber nozzle exit

17



INTENTIONALLY LEFT BLANK

18



5. REFERENCES

Ames Research Staff, "Equations, Tables, and Charts for Compressible Flow," NACA Re-
port 1135, 1958.

Bradshaw, P., Cebeci, T., and Whitelaw, J.H., Engineering Calculation Methods for
Turbulent Flows, Academic Press, New York, 1981.

Carnahan, B., Luther, H.A., and Wilkes, J.O., Applied Numerical Methods, John Wiley and
Sons, New York, 1969.

Khalil, E.E., Spalding, D.B., and Whitelaw, J.H., "The Calculation of Local Flow Properties
in Two-Dimensional Furnaces," International Journal of Heat and Mass Transfer, 1975,

Vol. 18, pp. 775.

Kim, Y.M., and Chung, T.J., "Finite-Element Analysis of Turbulent Diffusion Flames,"
AIAAKJoiaU , Vol. 27, No. 3, March 1989, pp. 330-339.

Moss, J.N., "Radiative Viscous-Shock-Layer Solutions with Coupled Ablation Injection,"

AIAA Journal, Vol. 14, No. 9, Sept. 1976, pp. 1311-1317.

Nusca, M.J., Chakravarthy, S.R., Goldberg, U.C., "Computational Fluid Dynamics Capa-
bility for the Solid-Fuel Ramjet Projectile," BRL-TR-2958, U.S. Army Ballistic Re-

search Laboratory, Aberdeen Proving Ground, MD, December, 1988. (See also, AIAA
Journal of Propulsion and Power, Vol. 6, No. 3, May-June 1990, pp. 256-262.)

Nusca, M.J., "Steady Flow Combustion Model for Solid-Fuel Ramjet Projectiles," BRL-TR

2987, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April,
1989. (See also, AIAA Journal of Propulsion and Power, Vol. 6, No. 3, May-June 1990,
pp. 348-352.)

Nusca, M.J., "Numerical Simulation of Reacting Flow in a Thermally Choked Ram Accelera-
tor - Model Development and Validation," BRL-TR-3222, U.S. Army Ballistic Research

19



Laboratory, Aberdeen Proving Ground, MD, April, 1991. (See also, AIAA-91-2490, Pro-

ceedings of the 27th AIAA Joint Propulsion Conference, June 24-27, 1991, Sacramento,

CA, and Proceedings of the 28th JANNAF Combustion Subcommittee Meeting, Brooks

AFB, San Antonio, TX, Oct. 28 - Nov. 1, 1991.)

Present, R.D., Kinetic Theory of Gases, McGraw-Hill Book Co., New York, 1958.

Schlichting, H., Boundary Layer Theory., 7th ed., translated by J. Kestin, McGraw-Hill, NY,

1979.

Stull, D.R., and Prophet, H., "JANNAF Thermochemical Tables," 2nd ed., National Bureau

of Standards, NSRDS-Rept. 37, June 1971.

Turetsky, A., personal communication, U.S. Army Chemical Research Development and

Engineering Center (CRDEC), Aberdeen Proving Ground, MD, December 1991.

20



LIST OF SYMBOLS

CP specific heat capacity, constant p

h molar specific enthalpy

A towL enthalpy

hV&P payload material heat of vaporization

J flow rate or flux

k turbulence kinetic energy

L characteristic length

m species mass fraction

M molecular weight

n molecular density

N number of species

p static pressure

Pr Prandtl Number

r radial direction

payload surface regression rate

specific gas constant, (y - 1)c,/'/

universal gas constant, R Ej Mj

Re Reynolds Number

Sc Schmidt Number

t time

T static temperature

u radial velocity component

v azimuthal velocity component

V magnitude of the local velocity vector

w axial velocity component

X mole fraction

z axial direction
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Greek Symbols

If ratio of specific heats

r diffusion coefficient

f turbulence dissipation rate

0 azimuthal direction

K thermal conductivity

A molecular viscosity

p density

9 shear stress vector

4, general flow variable

stream function

w vorticity

Superscripts

unit vector

"- total or stagnation quantity

rate

Subscripts

eff effective

h enthalpy contribution

j j-th mixture component or species

k turbulence kinetic energy contribution

p constant pressure

p payload quantity

r radial component or radial direction

t turbulence quantity
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z axial component

f turbulence dissipation rate

0 azimuthal component

00 freestream quantity
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