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INTRODUCTION

The Macro Function Language, MFL, is a signal processing

language developed out of NADC's MULTISENSOR STANDARD MACRO

FUNCTION STUDY contract N62269-79-C-01 16 performed by the

Submarine Signal Division of Raytheon Company. This study

identified and characterized signal processing macro functions

which are common to multiple sensor areas. Signal processing macro

functions are a complete set of primitive functions, control

operators and array transformations for signal processing

operations. (See figure 1.) A complete set of primitives provides all

the functions needed to solve signal processing problems, and

permits the solution to be stated in a form familiar to a signal

processing analyst.

NADC formalized this Macro Function Set into the MFL language

under contract N62269-83-C-0441 performed by Raytheon. The

development of MFL has been an effort to first look at signal

processing applications, then at a primitive macro function set that

would conveniently express those applications, and finally formalize

those primitives into a signal processing language, MFL. This report

wiil take the development process a step further by defining the

hardware that will most efficiently execute MFL.

Traditionally, computer systems were developed by designing

hardware, then writing microcode, assembly language, on up to a
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common programming language such as ADA or Pascal. This emphasis

on hardware was due to the relative high cost of hardware. In the

current state of the art, software costs are far greater than

hardware over the life of a signal processor. Because of this , MFL

attempts to standardize the software interface to hardware. This

interface will standardize the software between signal processors

designed to run MFL down to the microcode level. This report will

examine this standard interface and its effect on hardware designs.

This report deals with the hardware considerations that MFL

requires for an efficient implementation with only a brief

introduction to the language. For a complete description of the

language see NADC report #N62269-83-C-0441.
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AN MFL OVERVIEW

Signal processing data is highly structured. The data is

naturally in the form of arrays of vectors and matrices. This is in

contrast to data processing where the data is random and

unstrL'ctured and the emphasis is on procedural control. The

structure on the data must be provided by the language. Exactly as

the math of signal processing applies functions to arrays MFL

applies functions to arrays. This close tie of MFL to signal

processing math makes the language easy to learn for someone who

is already familiar with the mathematics of signal processing (in

fact too much procedural programming experience can actually be a

hindrance to learning MFL). MFL performs array manipulation using a

construct called the array transformation. The array

transformation, to be discussed later, can conveniently express any

sequencing or rearrangement of data within arrays. ( eg. --

transpose)

In an efficient vector processor, operations to align and select

elements from arrays must occur in parallel with arithmetic

operations. These tasks can complicate arithmetic hardware, and th0

programming of that hardware, if the alignment or shifting must be

done in the arithmetic unit. MFL breaks data manipulation and math

processing into a natural division of tasks. The data manipulation is

done by the MFL array transformation code which gives the

programmer a flexible addressing mechanism. The math processing

is done by the MFL math primitives.
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These two types of MFL code are partitioned graphically as shown in

figure 1.

B function

EA
Figure 2

The four boxes in figure 2 represent the four fields of MFL code.

The boxes marked A,B, C hold the array transformation code, the

code that selects and aligns elements from data arrays in memory,

and the data descriptors. The box marked "function" holds the math

primitives and control operators. In figure 3 a generic MFL

processor is shown. The code from boxes A,B C in figure 2 drive the

smart port hardware ports A, B, C. The math primitives, the code in

the box marked "function" in figure 2, drive the arithmetic unit in

figure 3.
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INTELLIGENT
MEMORY

COMMAND
INTERPRETER

ARITHMETIC ACCUMULATOR
UNIT

A GENERIC MFL MACHINE

Figure 3
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The general format of an array transformation and data

descriptor is:

DATANAME
C16 10;20

IM4 A3 A2 Al AO0
IL4 L3L2 I B 0

The data name, DATANAME is the name of the array. The second line

says 16 bit complex data and a 10 by 20 array. The third line, delta

1, 2, 3 and 4, gives the displacement directions, the displacement

direction is either in the row, column or depth directions, and delta

0 is the starting point for the read. The fourth line gives the length

of each of the displacements, L1, L2, L3, and L4, that is how far the

read in that direction is to be, and the boundary mode, B, (wrap

around or zero fill,) which tells what to do when the end of the row

or column is reached.

For this report it is important to know the graphical

layout of MFL code, i.e. the fields that hold the array

transformations and data descriptors and the field that holds the

mathematical instructions of the signal processing operation. This

division buys the programmer a straight forward way of dividing up

the signal processing operation and as this report will show, if the

hardware is built for the language, it eliminates the need to change

microcode with each new application. The microcoding then is part

of the hardware design cycle and after that it is not dealt with.
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MFL can be viewed as a group of reduced instruction sets

optimized for signal processing. Each set can be efficiently

implemented directly in hardware to eliminate the need for

microcode.

A PROGRAMMING EXAMPLE FROM THE MFL WORKSTATION

A complete MFL workstation, for writing and debugging MFL

code, has been implemented on a Macintosh computer. Figure 4

shows a MFL program on the workstation. The program is called

dcpdcr.mfl, and is an adaptive filter for estimating and removing

the DC component from a waveform to fcrm a zero-mean waveform.

The figure shows the workstation's user interface. A precomputed

estimate of DC average, SO, is first subtracted from the input sine

wave, X. Then the new DC average is found. Since the sine wave, X,

is a vector, it's average is simply the sum of it'.. elements divided

by it's number of elements (denoted by X[l]). This average is

weighted by the factor A and used to update the DC average

estimate, SO. The figure shows the output, Y, of the program after

the program has executed. Data in any of the windows can easily be

changed and the algorithm re-executed. This example is given to

show the windowed interactive enviroment of the workstation and a

complete MFL program.
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Figure 4 Adaptive DC Removal Program



NAWCADWAR-92100-50 10

Basic MFL Design

The MFL language specifications should be used to design an

efficient MFL processor. Two key points in MFL processor design

philosophy are: (1) an MFL processor is in effect a high level

machine, the processor is built to optimize the constructs of the

language, and the Assembly language programming for this machine-

MFL- is then a high level language; (2) the MFL processor can be

viewed as 4 processors running in lock step. The code that drives

each of the 4 processors ( 3 smart ports and the arithmetic unit) is

the code in the 4 boxes in the MFL code fields on the left of figure 5.

The four MFL processors that the code in each of these fields drive

are on the right of figure 5. These four processors can be

completely independent at run time or they can be controlled by a

Command interpreter (see Command interpreter section the

independence of the four processors can vary).
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FL GRAPHICALM O INTELLIGENT MEMORYA-!

R LB

IN ~IN

Figure 5

A MFL processor is a three address machine, the three

addresses being supplied by smart ports A, B, and C with a

Arithmetic Unit optimized to perform the class of algorithms the

processor will work on. During each cycle of a MFL processor the

two input data elements are supplied to the upper stage of the AU by

smart ports B and C and smart port A writes the output of the lower

stage into memory. These 4 elements, the Smart Ports and the AU,

are the pipe in a MFL processor.
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ARITHMETIC UNIT

The MFL Arithmetic Unit is a simplified AU. It doesn't need the

shifters, status registers, pre- and post scalers, or rounders of

current arithmetic units. No data formatting or sequencing is done

in the arithmetic unit-it is strictly a number cruncher. A separate

and flexible addressing, sequencing and data formatting mechanism

is found in each of the Smart Ports of the MFL processor. When data

reaches the AU it is formatted and ready for processing. Therefore,

a uniform number representation for the inputs and outputs of the

AU is needed and this function is handled by the Data Formatter

portion of the Smart Port.

A basic two stage MFL AU is shown in figure 6. This two stage

AU, with a ALU and multiplier in the upper stage and a ALU and

accumulator in the lower, fits a multiply-accumulate structure of

many DSP algorithms. There are many AU structures that fit in a

MFL design. A MFL AU is solely the number cruncher of the processor

and it should be designed to optimize the class of problems that the

processor will work on.
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B C

_ I 0I

-V ACCUMULATOR

A

Figure 6

Figure 7 shows the mapping of the AU code of a multiply-

accumulate example to the AU shown of figure 6. The MFL code

reads, from left to right: multiply the inputs from smart ports B and

C then add them to the previous product. This multiply accumulate
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form has the structure: (#)(#) + (#)(#) . ....... The machine code of

the adaptor would select the multiply operation for the upper stage

and the add-accumulate operation for the lower stage.

8 ,O

NI ACC.]

Figure 7
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Smar Port 'C
Code

-C I_ 
_

rod B Function 1 : Function 2
Code

arPoA LOWER STAGE

Figure 8

The MFL adaptor, a simple compiler, translates each half of the

MFL function field into the machine code that drives the two stages

of the MFL AU (figure 8). The left side of the function field drives

the lower stage and the right side drives the lower stage. A single

stage, triple or even a quadruple stage AU is possible, it merely

complicates the adaptor's mapping of the MFL function code to the

AU.
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SMART PORTS

The MFL Smart Ports are as important as the AU in a MFL

processor. A successfully designed MFL processor will be based on

the effective implementation of this key element. In this section

the Smart Port will be discussed and the basic Smart Port

architecture will be covered in detail with particular attention paid

to the address generator which is the central feature of the MFL

Smart Port processor.

In traditional AU design, the AU must transform data items into a

form appropriate for the AU operation. The AU's then switch

between modes of data formatting and arithmetic manipulation for

each data item. This switching usually requires additional control

from the processor control unit. The Smart Port removes this

overhead from the AU and the Command Interpreter-- the processor

control unit of MFL.

The Smart Port fetches individual elements from memory and

delivers them to the AU in the right form and the right order. The

Smart Port primitives, the MFL array transformation code, are a set

of data manipulation operators. These primitives are translated into

the machine code that drives the Smart Port. Once initialized the

accessing of data items goes on concurrently with the AU

processing. Thus, the Smart Port is a completely separate processor

with it's own programming code, the array transformation, that

works concurrently and in lock step with the AU. The Smart Port can

access long strings of data items for processing by the AU without

intervention by the processor control unit. Before taking a detailed

look at the Smart Ports address generator architecture it will be
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helpful to briefly review the MFL array transformation code since

the architecture is designed around this part of the language.

Survey of Array Transformations

(for complete documentation, see NADC Report #N62269-83-C-0441

MACRO FUNCTION SET FORMALIZATION)

The general form of an array transformation is:

DATANAME
C16 10;20

{A4 A3 A2 Al A 0
{L4 L3 L2 LII B

Where DATANAME is the filename. The second line reads complex 16

bit data in a 10X20 array. The deltas in the third line are the

displacements or the directions that the reads take place in. The

delta-zero being the starting point of the first read. For example a

normal read for a matrix would look like this:

DATANAME

C16 10;20

(jib0

{JIIw)

delta-1 is an "i" therefore the direction of the first read would be in

the row direction. The "Li below the delta-i, in this example a "I"

means read to the end of the row. If the programmer only wanted a

certain number of data items from the row read, say 5, the code

would look like:
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DATANAME

C16 10;20

{jil0)

{J5 w}

One could have read the data in transposed order by reading in the

column direction for the row elements. The code would the be:

DATANAME

C16 10;20

{ i10}
{IJIw}

This array would then be delivered to the Arithmetic Unit column by

column instead of row by row. The delta-i, Li sets are in effect DO

loops. The first set being the inner loop and the delta-2, L2 being

the outer loop. The "w" in the lower right hand corner is the

boundary mode. In this example the boundary mode is "wrap around".

Wrap around means that when the number of reads in the

displacement direction, the"L1" "L2"'s etc, exceed the number of

elements in the row, the reading wraps around to the first element

in the row until the "LI" number of data points has been output.

SMART PORT ARCHITECTURE

The Smart Port supplies data to the Arithmetic Unit by executing

the addressing sequences specified by MFL's array transformation

code. Two Smart Ports read data from memory to the AU, ports C

and B, and a third writes the AU output back into memory, port A.

Figure 9 shows an implementation of an MFL processor (the Air

Force's AOSP).
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MEMIORY

PORT SM PORT A SM PORT B SM PORT C

AU
'4

'4 '

INTERPRETER I

on.1

ii n f4

Figure 9 AOSPS MFSP

Note the AU in the processor of figure 9. It has been optimized.

with 4 multipliers and two ALU's in the first stage and 4 ALU's in

the second stage, for the class of problems the processor will work

on.

The architecture of each AOSP Smart Port is shown in figure 10.
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Figure 10 AOSP Smart Port
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The AOSP Smart Port includes an address generator, a data

formatter, and a memory controller. The address generator produces

addresses to access a data array stored in the memory banks. The

data formatter translates the data to a form convenient for the AU.

In the AOSP configuration, the data is packed in memory in 64 bit

words and the data sent to the AU is unpacked and left justified.

The memory controller provides control for the address generator

and the data formatter, as well as providing interfaces to the AU

(control lines) and the Cl (ABUS). The memory controller initiates

and controls all memory accesses by the Smart Port.

The key piece of hardware in the MFL Smart Port is the address

generator and in the next section of the report, the address

generator will be covered in detail. The array transformation code

of MFL is the program code of the address generator.

ADDRESS GENERATOR ARCHITECTURE

This section will examine the Smart Ports address generator

architecture with a few examples of a register by register mapping

of MFL code into the address generator registers. These examples

will show that, instead of microcode, the Smart Port is programmed

by simply passing parameters to it's registers. This concept of

parameter passing vs. microcode is a key feature in the flexibility

and programability of an MFL design. Thus the array transformation,
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the MFL code that drives the Smart Port, sets up the registers of the

Smart Port and the Smart Port is simply a processor that has been

hardwired to perform one function--the array transformation.

MFL array transformation code has the form:

DATANAME
C16 10;20

(A4 A3 A2 All •0 0
(L4 L3L2 L1 B

Because the MFL processor is built around the MFL language the

processor can be thought of as a high level machine, and the low

level program code of the machine is MFL, MFL is then to the user a

high level language. The translation from the MFL code to the actual

machine code that drives the hardware is then a simple process and

the MFL code can be thought of as the microcode of the MFL

processor, (the lowest level, simplest mnemonic, closest to the

hardware, code of the processor).

In this first array transformation example, the simple, low level

relationship of MFL code to architecture can be seen. The MFL code

has a one to one relationship with the register contents and

programming of the different parts of the hardware. Figure 11 is an

overall look at the address generator architecture. On the left in the

length section, the length register holds the L1, L2, etc. values and

the length counter is a simple counter that increments at each cycle.

The comparison of the length counter with the length register

determines which loop the address generator is processing. The
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examples will demonstrate this process in detail. The registers on

the right hold the delta displacements and the delta accumulators

hold the current output index. The current output index is then used

to compute the address of data to be fetched from or deposited into

memory.

The length counter and delta accumulator's registers are like

odometers that count up to their respective limits--the L#'s . and

then reset. The level number is a 2-bit address that holds the

current *level" of the pointers. The boundary adjust checks to see if

the current output index is over the actual row and column length

and resets the index accordingly, (wrap around and zero fill). The

final address is calculated by the formula:

(column index)(row length) + (row index) + (base address) - memory

address.

The row and column length adjust is the simple test:

1) if index <0 (wrap around) add row length

(zero fill) set zero fill flag

2) if index >- row length

(wrap around) subtract row length

(zero fill) set zero fill flag

In wrap around mode when the reading hits the end of a row it wraps

around to the begining of the row and in the zero fill mode when the

end of the row is reached zeros are outputed till the end of the read.
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The first example is a 7 point sliding window operating across a

vector. Figure 11 shows the overall architecture of the Smart Port

for this read. The MFL code of this example is: { 2i i I 0)

{2571w)

The code tells the port to read 7 data points, slide two points over,

read 7 more, etc, until 25 sets of 7 data points have been read.

data element#

0 1 23 4 5678 9 .................................. n
vec t or--.-Pl I I I 1111!1111 I I

1 23 45 6 7
sliding window1 I. . .l Ii Iif j IjI - o. output of first read

1 23 4 5 6 7
ft345a I output of second read

Before the Smart Port can execute the required MFL code, the

array transformation, the code must first be decoded and loaded into

the Smart Port registers. The number of points to be output are
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loaded into the address generator's length registers (the inner loop

is on top) and the delta displacements are loaded into the delta

registers (again the inner loop is on top). Finally, the length

counters are initialized to zero and the delta accumulators are

initialized to the starting point for the first read. The initial state

of the registers is shown in figure 12. Note the one to one mapping

of register with the array transformation code.

ADDRESS GENERATOR

Lm DELTA
LENGTH t DELTA ACMU? TOR

INNER LOOP --"

OUTER LOOP 22

COMPA%

INM

GENERATOR

Figure 12
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During the first cycle, the delta accumulator values (first index) is

output, the length counter is compared with first length register,

the counter is less than the length register, the counter is

incremented and the contents of the delta register is added to it's

accumulator. The results of this first cycle is shown in figure 13.

ADRESS GENERATOR

M MDELTA

..ENG- CONE DELTA ACCUMLJATOR

INNER LOOP !.4l 7 -•••

OUTER LOOP 25 0

Figure 13

,f I.I
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In the next cycle, the current index is first output, the Li length

register is compared with it's counter, the counter is greater than

the contents of the length register, so the level stays at one and the

length counter is incremented by one. The contents of the delta-1

register are added to its accumulator. This simple incrementing and

adding process goes on until the length's counter reaches 7, ( 7

indexes have been output). The result is shown in figure 14.
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ADDRESS GENERATOR

LENGTH DELTA
LENGTH M DELTA ACCUMULAtor

INNER LOOP717
OUTER LOOP 25 0

COMPAR

t+

INDEX
TO

ADORSS

GEofATaR

Figure 14

In the next cycle when the length's counter is compared to the L1

register they are equal therefore the level is incremented to level

2, the counter of level 2 is incremented and the accumulator at level

1 is reset. D2 is added to its accumulator and the first level's delta

accumulator is reset and the level goes back to one for another round
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on the inner loop of the array transformation. The result is shown in

figure 15.

This process continues until the outer loop, here 1-2, has reached

it's limit and the array transformation is finished.

ADDRESS GENERATOR

LENGTH DELTA

LENGTH a DELTA ACCUMATOR

INNER LOOP

OUTER LOOP

INE

TO 1,

ADDORESS
GENERATOR

Figure 15
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The next example will be a sliding window on a matrix. The

output will be a block of data. Consider the MFL code:

(j 2i i 10)

S3 25 7 Iw
Graphically the read looks like:

***25

eggs 25

3X25X25
Mor reitr n onesaeneddt oti xml u h

proes of_ _ lodn n ylngtruhteary rnfraini
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basically the same. Delta registers are needed for each read in the

"i" direction. Here, referring back to the general form of the array

transformation, there is a read in the "i" or row direction, in the Li

and L2 slot and in the "j" or column direction in the L3 slot. After

the registers are initialized the result is shown in figure 16.
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i component I component

LENGTH LENGTH DELTA DELTA

REGISTER COUNTER ACCUMULATOR ACCUMULATORDELTA_ DLI

REGISTER REGISTER

ADDRSS RW INE COLUM NE

S- _S'_0W_ ' i

I I

BASE ADDRESS
LENGTH ENGTHT'. . .I

MEMORY 16
:ADDRESS

I OW

LENGT

FiurI1
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The next slide shows the result of the first cycle as in the

first example: the length counter has been incremented and the

delta's have been added to their accumulators. The result is shown in

figure 17.
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i component j component

LENGTH LENGT DELTA IDELTA
REGISTER COUNTR ACCUMULATOR R ACCUMULATRDELTA DELTA.

REGISTER REGISTER

-t -

ADJUST AJS

CACLTE ADDRESS

MEMORY ADDRESS

Figure 17

And again after another cycle:
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i component j component

LENGTH LENGTH DELTA I DELTA

REGISTER CO ACCUMULATOR ACCUMULATOR
DELTA __ DELTA

BOUNDRY i BOUNDRY
ADJUST ADJUST

MEMORY ADDR~ESS

Figure 18
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The cycles continue at this level until the L1 register equals it's

counter register as shown in figure 19:

I component J component

REGISTER COUNTER ACCUMULATrOR I ACMLTR
DELTA DELTA

REGISTER" REGISTER4 CUUAO AC----4 ATOR

BOUNDRY BOUNDRY

ADJUST ADJUST

CALMUATE ADDRESS

MEMORY ADDRESS

Figure 19
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Then the level moves up by one, the second level length counter is

incremented and the second level deltas are added to their

accumulators

the result is shown in figure 20:
i component component

LENGTH LENGTH DELTA DELTA
REGISTER COUNTER ACOJMITOR ACCUMULATORDELTA DELTA

0FT 0 0I

BOUNDRY BOUNDRY
ADJUST ADJUST[ -- A

MEMORY ADDRESS

Figure 20
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And the level drops back to the first
i component j component

LENGTH LENGTH DELTA DETA
REGISTER COUNR ACCUMUIATOR ACCUMULATOR

DELTA DELTA.

REGMEMORY ADREGSSE

- u0 re 21

25 2. 2 0

BOUNDRY BOUNDRY
ADJUST ADJUST

IFI

MMORY ADDRESS

Figure 21
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And the inner loop is repeated. This goes on until the L2 counter is

equal to the L2 length register as shown in figure 22:

i component j component

LENGTH LENGTH DELTA I DELTA
REGISTER COUNTERI ACCUMULATOR R ACCUMULATOR

DELTA DELTA.
REGISTER REGISTER

0 0

. 25 --- , 2,5 2 --- 4 5

BOUNDRY BOUNDRY
ADJUST ADJUST

CAiLCULATE AUDRESS

MEMORY ADDRESS

Figure 22
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Then the pointer moves up one to the third level, the length counter

at that level is incremented and all the length counters below it are

cleared. The result is shown in the next figure.

i component component

LENGTH LENGTH DELTA DELTA
REGISTER COUNTER I ACCUMULATOR T ACCUMUTOR

DELTA DELTA
REGISTER REGISTER

7 0 10 0 0

25 25 2 50 0 0

BOUNDRY BOUNDRY
ADJUST ADJUST

WALUMT ADDRESS

MEMORY ADDRESS

Figure 23
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And the level drops back down to the first level, doing the inner

loops again until the L3 register equals 3.

i component j component

LENGTH LENGTH DELTA DEL)6TA
REGISTER COUNTER ACCUMULATOR 1P ACCUMULATORREGISTER MISTERR R

7 -- 4 0 10 1 "

~I T --. ,l ' 0--'4

r

MEMORY ADDRESS

Figure 24
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In conclusion smart memory operations can be summarized:

INTELLIGENT MEMORY OPERATIONS

TYPE: OPERATION:
- Address Generation - Array Transformation

- Element Selection and alignment - Unpack/Pack Data

- Select REAL or IM part

- Unsigned-Signed Conversion

- Set Output to Zero/One

- Left/Right Shift

SPEED ISSUES

A key technology question in the smart port processor is

whether or not it can keep up with the AU. AU's generally run at high

clock rates and the Smart Port of a MFL processor is now part of the

pipe and must feed the AU its data, formatted and in the right order,

in lock step with the AU. A critical technical point to consider is

whether or not the Smart Port can keep up with the AU. The AU's

pipeline is in effect extended to include the Smart Port. In each

clock cycle, the Smart Port(s) must generate 3 addresses, access

and deliver 2 data points, and store 1. MFL follows the current trend
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of RISC instruction sets. As the memory technologies have

increased access times, the RISC trend has been to perform more

accesses and in simpler instructions per operation. In the older

complex instruction set architectures, because of the slower

memory access speeds, the central processor tried to do as much

processing as possible on each memory access. Now that memory

technologies and therefore memory accesses have caught up to AU

speeds, ECL 5ns, GaAs Ins and static with RAMS 35ns access times,

the older complex processing instructions have been broken down to

a smaller and simpler instruction sets so that there are more

processing cycles and memory accesses per operation and they run

at higher speeds. With hardware hardwired to perform complex

instructions a speed penalty was paid but now with simpler

instructions and faster memories the RISC philosophy has increased

processing speeds.

The Smart Port architecture that was reviewed in the previous

section shows the amount of processing required for each Smart

Port operation. This processing added to the access time of the

memory technology used increases the overall access time of the

Smart Port. In order to have the fastest access time for the overall

Smart Port, a pipelined architecture is suggested. Then the access

time of the memory chips themselves become the limiting factor in

the speed of the Smart Port and the processing required for each

access is done in the pipeline and is transparent to the actual

access. An increase in speed beyond the access time of the memory

chips would require interleaving between memory banks. In MFL this

adds a very diffucult complication because of the array

transformations. Array transformations allow the memory to be
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read in a completely arbitrary, programable way within a single

memory, but in an interleaving strategy reads must be interleaved

across memory banks for full throughput. This requires that the data

be stored in a prearranged order for the array transformation to

work properly. Thus the limiting factor is a straight forward MFL

Smart Port design is simply a memory technology with an access

time that matches the cycle time of the Arithmetic Unit.

In conclusion the MFL Smart Port is a processor hardwired to

perform array transformations. It is programmed by passing

parameters to its registers. Because of the amount of processing

per cycle to be done in the Smart Port a pipelined processor for the

Smart Port is suggested.
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Command Interpreter

The Command Interpreter coordinates the processing of the

three Smart Ports and the Arithmetic unit. The role of the Command

Interpreter at runtime varies depending on how independent the four

MFL processors are: the AU, and the three Smart Ports. The CO is

responsible for setting up the Smart Ports and the AU, program

sequencing, address modification (looping), and data fetch requests.

It obtains the required description of data arguments through their

data descriptors and sets up the appropriate pipeline operations

required to execute the instructions.

The Command Interpreter function can be performed during run

time or at compile time. In the run time mode the four processors of

the MFL processor operate in a master-slave function to the

Command Interpreter. In general the Cl does not involve itself with

the detailed control of the AU and Smart Ports after set up in this

mode. By releiving the CI of this burden it can anticipate the next

instruction and begin the next set up.

The two main functions of the Command Interpreter in this run

time mode are:

Interpreting MFL commands from the four code fields,
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C

translating these commands into the appropriate machine code and

delivering that code to the specified processors-the AU or Smart

Ports.

SMART
PORT

Command . C
Interpreter _

ARITHMETIC
n-bit UNIT ACC.
set up
code

A

The command interpreter then is a program interpreter and

intellegent program counter. It puts the MFL code into hardware and
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then is a program sequencer during run time controlling program

flow and looping operations.

On the other hand the role of the Command Interpreter during

run time could be eliminated by a MFL compiler that handles the

Command Interpreter's function at compile time. The sequencing of

the four processors would be coordirnated and the opcodes and data

would be down loaded to the four processors. Then at run time the

processor would have no outside involvement. The four MFL

processors would then be four completely independent processors

running in lock step. This approach helps with one of the potential

bottlenecks in a MFL processor: the set up time to pass parameters

to the smart ports. The MFL processors in this mode

would then each have it's own microstore to hold their run time code

as shown in the next figure.
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MEMORY

SMART PORT SMART PORT SMART PORT

MICRO A MICRO B MICRO C
STORE STORE STORE

ARITHMETIC
UNIT

M I CRO
STORE0

In summary, the Command Interpretter then coordinates the

processing of the four independent MFL processors: the Arithmetic

Unit and the three Smart Ports, and it can perform this program

sequencing at run time or at compile time.
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CONCLUSION

In conclusion the MFL processor can be thought of as four

independent processors working in lock step. The code in the four MFL

code fields drive the different MFL processors. MFL has a low

instruction set up overhead because this division of tasks to the four

MFL processors: the 3 Smart

Ports and the Arithmetic Unit. MFL also has a mathematically based

complete instruction set with a unique array transformation capability.

In this factored parallel operation of a MFL processor each cycle

must: generate three addresses(SP)-access 2 and store 1 data point

(SP), perform 2 arithmetic operations (AU), and perform the Command

Interpretter's functions if the Command Interpretter is operating in the

interpretter mode.

MFL has the unique capability of high level to low level code

efficiency when the hardware has been built around the language. The

break down of this code from a macro level to the machine code is

shown in the next figure.
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USER programs, macros, primitives

IMFLSBSET I IJ +/

COMPILER

__ _ Machine Code

OBJECT CODE for AU and Smart Port

Figure 1

Macros can easily be built from all the lower constructs of the

language so that the engineer can program in a very high level of code

only invoking commands such as FFT, or BANDSHIFT and supplying the

proper inputs. The engineer familiar with the signal processing math

can also go below the macro level and write his own customized MFL

code. MFL is very different from microcode in this respect. The

progression from the highest level to the most primitive, MFL subset
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level as shown in figure 1, is structured and orderly and much easier

code for a programmer to read than microcode. Microcode is also a very

hard language to reread once the programmer has left the program for

any length of time, the code quickly becomes unintelligible. MFL, at

first glance, is a bit confusing but once the language is learned, the

code becomes very readable due to it's close ties to the math of the

algorithm and code left for any length of time is easy to pick up and

read, if programming with macros, an attribute that most HOL strive

for.

MFL is a complete set of signal processing primitive mathematical

and control functions. This set can be trimmed and the hardware then

optimized to suit a particular class of problems that the processor will

perform. Thus MFL can be thought of as a hardware design philosophy

that will deliver a signal processor whose lowest level of code will be

programmed in MFL.

The next section of this report is a brief overview of the salient

features of the MFL language and the MFL processor.
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Synopsis of MFL

A line of Macro Function Language, MFL, code is written in a four

field template shown in figure 2.

Graphic Format:
, C

B ' |l' f

B,C Smart ports READING
A Smart Port WRITING

f Arithmetic Functions

Figure 2
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The code within each of these four fields drives a different

processor within the MFL processor. In figure 3 the code within the

fields marked A, B, C and "f" on the left of the figure, drive the four

processors in the generic MFL machine on the right.

MFL Graphical

Code Layout

MEMORY

CODE FOR
PORT CSm rS at

UNIT

Fig 3 Smart
Port A

Figure 3
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Smart port code, array transformations, has the form:

DATANAME '
C16 10;20

A4 A3 421 I 'A 0
{L4 L3 L2 L1 B

Figure 4

The smart port is a special purpose processor hardwired to perform the

array transformation. The smart port is programmed by passing the

parameters shown in figure 4 to registers in the smart port, instead of

microcoding the smart port. The MFL Smart Port, with the variables

from figure 3 for a two dimensional read, are shown with their

register's initialized in figure 5.
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ADDRESS GENERATOR

DELTA
LENGTH ACCUMULATOR

LENGTH COUNTER DELTA

BasnAdres Ro ,nde Counne

Ine L1 0 .- • D1 DOLoop=,

Outer L2 0 D2 DO

Loop-

COMPARE'D

loop
level 4- "•BOUNDRY ADJUST INDE .....
number ....

CALCULATEl ..

ADDRESS '

Base Address Row Index Column Index

Row Length

Memory Address
Figure 5
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The MFL Arithmetic Unit, AU, is a simplified AU. The data passed

to the AU is formatted and in the right order. The AU then is simply the

number chruncher of the MFL processor and should be designed to

optimize the class of problems that it will work on. The basic primitive

MFL AU code is shown in the following figure.
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Minimum Function Box Code Primitives

+ Add '• And
Subtract

x Multiply ~ Nand
Equal To

* Conjugate Multiply Or
< Less Than
> Greator Than ~v Nor

Maximum
Minimum > Greator Than or

Equal To
<Less Than or

Equal To

Minimum Functgion Box Control Operators

A i B Single Stream
A B f C Corresponding Elements
A f / B Reducti o n

B f2"fl C f2 real part of B & C
fl Imaginary part of B & C

O'f C combine function =
(RE C) f (IM C)

f2 :fl composite -
executed right to left
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