
Copy 9 of 25 copies

AD-A261 940

IDA DOCUMENT D- 1063

CONTRIBUTIONS TO THE
OPERATING SYSTEMS STANDARDS WORKING GROUP OF THE
NAVY NEXT GENERATION COMPUTER RESOURCES PROGRAM

FOR FY 1989 - FY 1991

Karen D. Gordon, Task Leader

~XC

October 1991 <,

Prepared for

Space and Naval Warfare Systems Command

Approved fr public release, unlimited distribution: December 15, 1"2.

93--05999

INSTITUTE FOR DEEINSE ANALYSES
1801 N. Beauregard Street. Alexandria. Virginia 22311-1772

9 8 23 044 IDA Log No. NO 1,0-oo04

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs, (b) address issues of significant concern to the
Executive Branch, the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, and they are released
by the President of IDA.

Group Reports
Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure their high quality and
relevance to the problems studied, and are released by the President of IDA.

Papers
Papers, also authoritative and carefully considered products of IDA, address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency reports.

Documents •
IDA Documents are used for the convenience of the sponsors or the analysts (a) to record
substantive work done in quick reaction studies, (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed in the course of an investigation, or (e) to forward
information that is essentially unanalyzed and unevaluated. The review of IDA Documents
is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 89 C 0003 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

i 1992 Institute for Defense Analyses

i The Government of the United States is granted an unlimited license to reproduce this
document.

Form ApprovedRZEPORT DOCUMENTATION PAGE OMB No. 07040188

Public repoilin burdn fat this collection of infonnation, is eatimated to avt 1hurper ,cjxe inluding the tsne for reviewing uwrucuons. searching eaan data sou~rc.,
gathering and imntanutoui the data needed, mid completin ai reviewing the collection of inomianon. Sai c•niments rgarding this bmirden estmate or any other aspect of thits
collectiont of infaimatijon incliding auggeations for reducingl this bturdon to 'Akahingtorn Headquarters Suvices. Dretorate fir Information Operatiosmid Reports. 1215 Jef'ersnm
Davis Highway. Suite 1204. Arlington. VA 22202.4302, andutothe Offce of Manaeremutorasd Dudge, aperwork Ruductia, Project (0704-0188).ViWakhigton. DC 20.503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1991 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Contributions to the Operating Systems Standards Working Group of the MDA 903 89 C 0003
Navy Next Generation Computer Resources Program for FY1989 -
FY1991 Task Number T-D5-725

. AUTHOR(S)

Karen D. Gordon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT

NUMBER
Institute for Defense Analyses (IDA) IDA Document D-1063
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Space and Naval Warfare Systems Command REPORT NUMBER

SPAWAR 231-2B 1
Washington, DC 20363-5100

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, un!imited distribution: December 15, A
1992.

13. ABSTRACT (Maximum 200 words)

The Next Generation Computer Resources (NGCR) Program is a Navy standardization effort designed to
fulfill the Navy's needs for standard computer resources while at the same time allowing it to take advantage
of commercial products and investments and to field new technology more quickly and effectively. The
program is centered around the selection and adoption of open systems standards in several areas, including
backplanes, local area networks, operating system, programming support environments, graphics, and
database management systems. IDA is providing support to the NGCR Program through participation in the
NGCR Operating Systems Standards Working Group (OSSWG), a group chartered to establish commercially
based operating system interface standards for use in Navy mission-cntical computing systems in the mid-
1990s and beyond. This document is a compilation of IDA contributions to the NGCR OSSWG for the time
period from January 1989 through September 1991. It includes (I) a record of IDA support of a workshop held
on behalf of the NGCR OSSWG, (2) copies of IDA contributions to NGCR OSSWG documents, and (3) copies
of presentations given by IDA as a representative of the NGCR OSSWG.

14. SUBJECTTERMS 15. NUMBER OF PAGES
NGCR; OSSWG; POSIX; Operating System Interface; Open System Standards; 164
Mission-critical Computing. 16. PRICE CODE

17.SECURrnYCLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified I Unclassified SAR
NSN 7540-01.280-5500 Standard Form 298 (Rev. 249)

Prescribed by ANSI Std Z39-1S
298-102

IDA DOCUMENT D- 1063

CONTRIBUTIONS TO THE
OPERATING SYSTEMS STANDARDS WORKING GROUP OF THE
NAVY NEXT GENERATION COMPUTER RESOURCES PROGRAM

FOR FY 1989 - FY 1991

Karen D. Gordon, Task Leader

Accesion For

NTIS CRA&I
DTIC TAB

October 1991 Justihcc:tion

B y
Dist: ib,,io., I

Availability Codes

Ava'i ar-d / or
Dist Special

Approwd for public releae, unlimited distribution: December 15, 1M2.

]DAD
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 89 C 0003
T .sk T-D5-725

PREFACE

I

The U.S. Navy is operating a standardization effort known as the Next Genera-
tion Computer Resources (NGCR) Program. The NGCR Program is designed to fulfill
the Navy's needs for standard computer resources while at the same time allowing it to
take advantage of commercial products and investments and to field new technology
more quickly and effectively. The program is centered around the selection and adoption
of open system standards in several areas, including backplanes, local area networks,
operating systems, programming support environments, graphics, and database manage-

_ ment systems.

Since January 1989, IDA has been providing support to the NGCR Program in
the area of operating systems. At that time, the U.S. Navy Space and Naval Warfare
Systems Command formed the NGCR Operating Systems Standards Working Group
(OSSWG), of which IDA is a member. The OSSWG is chartered to establish commer-
cially-based operating system interface standards for use in Navy mission-critical comput-
ing systems in the mid-1990s and beyond.

This document, prepared in accordance with Task Order T-D5-725, is a compila-
tion of IDA contributions to the NGCR OSSWG. It covers the time period from January
1989 though September 1991. It includes (1) a record of IDA support of a workshop held
on behalf of the NGCR OSSWG, (2) copies of IDA contributions to NGCR OSSWG
documents, and (3) copies of presentations given by IDA as a representative of the
NGCR OSSWG.

S'

CONTENTS

PART 1: Support of the 1989 Workshop on Operating Systems for Mission Critical
Computing

PART 2: Contributions to the NGCR OSSWG Available Technology Report

PART 3: Contributions to the NGCR OSSWG Recommendation Report

PART 4: Contributions to the NGCR OSSWG After-Action Report

PART 5: Presentation at the Seventh IEEE Workshop on Real-Time Operating Systems

and Software

PART 6: Presentation at the Joint Eighth IEEE Workshop on Real-Time Operating Sys-
tems and Software and IFAC/IFIP Workshop on Real-Time Programming

PART 7: Contributions to the NGCR OSSWG Delta Document

vii

PART 1

Support of the

1989 Workshop on Operating Systems for Mission Critical Computing

This workshop was held in support of the NGCR OSSWG and was co-sponsored by the
Office of Naval Technology, the Office of Naval Research, the Space and Naval Warfare
Systems Command, the University of Maryland Department of Computer Science and
Institute for Advanced Computer Studies, and IDA. Karen Gordon of IDA served as a
Program Co-Chair for the workshop. In this part are copies of the following:

* Call for papers for the workshop

* Front material from the preliminary proceedings of the workshop

- Cover

- Inside cover

- Table of contents

* Program of the workshop

1

1989 WORKSHOP ON OPERATING SYSTEMS
FOR MISSION CRITICAL COMPUTING

September 19-20, 1989

Greenbelt Marriott

Greenbelt, Maryland

Co-Sponsored by

Office of Naval Technology

OMee of Naval Research
Space and Naval Warfare Systems Command

University of Maryland Department of Computer Science

University of Maryland Institute for Advanced Computer Studies

Instoute for Defense Analyses

The U.S. Navy, the University of Maryland, and the Institute for Defense Analyses are
sponsoring a workshop for the exposition of operating systems designed to meet mission
critical computing requirements. Such requirements include, but are not limited to, real-time
responsiveness, reliability, fault tolerance, and security. Operating systems that have explicitly
taken into account the support of real-time Ada applications are of particular interest, due to
the Department of Defense mandate on the use of Ada. Distributed operating systems are
also of particular interest, due to the proliferation of mission critical computing facilities that
are being realized through networks of interconnected computers.

Individuals or organizations wishing to present their operating system at this workshop are
invited to submit 8 copies of a 5-10 page paper on the operating system to Karen Gordon by
August 15, 1989. The paper should specify which mission critical computing requirements are
addressed by the operating system. The paper should explain in what way, to what extent, and
through what approaches and mechanisms the operating system attempts to meet the selected
requirements. Descriptions of commercial operating systems, as well as of operating systems
that exist in the context of research and development efforts, are solicited.

Participation at the Workshop will be limited to authors of accepted papers and
representatives of the sponsoring organizations and other invited U.S. Government agencies.
The accepted papers will be published as a Proceedings, which will be widely distributed
within the Government and also made available to the public.

Submission Deadline: August IS, 1969
Acceptance Notification: August 29, 1969

General Chain

Ashok Agrawala, Dept. of Computer Science, Univ. of Maryland, Colege Park, MD 20742, (301) 454-4968,

agrawala@mimsy.umd.edu

Advisory Conmuittee Co-Chairs:

CDR Richard Barbour, Space and Naval Warfare Systems Command, Code 324A, Washington, DC 20363-

5100, (202) 692-9207, barbour@nrl-cs.arpa
Patricia Oberndorf, Naval Air Development Center, Code 7031, Warminster, PA 18974-5000, (215) 441-2737,

tricia@Onadc.arpa

Program Committee Co-Chairs:

Karen Gordon, Inst. for Defense Analyses, Alexandria, VA 22311, (703) 845-3591, gordonoida.org

Philip Hwang, Naval Surface Warfare Center, Code U33, Silver Spring, MD 20903-5000, (202) 394-1351,

hwang@nswc-wo.arpa

3

II

PRELIMINARY PROCEEDINGS

1989 WORKSHOP
ON

OPERATING SYSTEMS

FOR

MISSION CRITICAL COMPUTING

SEPTEMBER 19 - 21, 1989

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

Office of Naval Technology
Office of Naval Researc"

Space and Naval Systems Command
_ University of Maryland Department of Computer Science
University of Maryland Institute for Advanced Computer StudiesInstitute for Defense Analyses

5

TABLE OF CONTENTS

Section

"The Sping Kernel: Operating System Support for Critical, Hard Real-Time Systems,"

John A. Stankovic and Krithi Ramamritham, University of Massachusetts A

"The ARTS Kernel: Towards Predictable Distributed Real-Tmne Systems," Hide Tokuda,
and Clifford W. Mercer, Carnegie Mellon University B....... B

"MARLTh: A Platform for Hard Real-Time Applications," Olafur Gudmundsson,
Daniel Mosse, Keng-Tai Ko, Ashok Agrawala, Satish Tripathi, University of Maryland C

"A Brief Ovenmew of The ISIS Distributed Programming Toolkit and The Meta
Distributed System," Kenneth Birman and Keith Marzullo, Cornell University...._ ____ D

"V.: A Foundation for Mission Critical Distributed Systems," Kieran Harty and
David R. Cheriton, Stanford University E

"Research on Imprecise Computations in Project QuartZ," Jane W.S. Liu, Kwei-Jay
Lin, Chung L Liu, and C. W. Gear University of Illinois F

"Software Architecture and Prescriptive Interface for Real-Time OS," Al Mok,
University of Texas G

"The Distributed iRMX Operating System: A Real-Time Disvibuted Operating
System," Timothy G. Saponas and Roger B. Demuth, Intel Corporation H

"The Structure of the Clouds Distributed Operating System," Partha Dasgupta and
Richard J. LeBianc, Jr., Georgia Institute of Technology .. I

"The StarI.ite Operating System," Robert P. Cook, University of Virginia J

"Alpha: An Operating System for the Mission-Critical Integraton and Operation of
Large, Comple, Distributed Real-Tine Systems," E. Douglas Jensen, et aL,
Concurrent Computer Corporation - K

"A Revolutionary System Architecture for Mission Crtical Computing Systems," J. C.
Browne, University of Texas L

"DRAGON SLAYER/MELODY: Distributed Operating System Support for
Mission Critical Computing" Horst F. Wedde, et al., Wayne State University-. M

"SDEA./20 and 43RS5: Navy Standard Opeating Systems," Barbara Haleen, Unisys
Corporation N

"Realtime Operating System for Secure, Mission Critical AMorsics Systems," Gary K.
Miyahara and Cynthia L Allyn, Hughes Aircraft Company .. 0

"Mach. A Foundation for System Software," Richard Rashid, et al, Carnegie Mellon
University -- .. P
"Operating System Correcess is a Mission Critcal Reqummen4," William R.

Bevier and Tad Taylor, Computational Logic, Inc..

7

"The Secure Distributed Operating System - An Overview," Rammohan
Varadarajan, Joseph R. McEnerney, and D.G. Weber, Odyssey Research Associates R

"The BUN Mission Critical Computer Architecture,* Fred J. Pollack and Kevin C.
Kahn, BiiN S

"*A Real-rime Operating System for HARTS," Dilip D. Kandlur, Daniel L. Kiskis,
and Kang Shin, University of Michigan T

"Operatng System Constiuct for Managing Real-TIme Softwae Comnplcty,* Prabba
Gopinath, Philips Laboratories, Thomas Bihari, Adaptive Machine
Technologies, Karsten Schwan and Ahmed Gheith, Georgia Institute of Technology U

"Ohoices for Mission Critical Computing" Roy H. Campbell, John H. Hine and
V'mcent F. Russo, University of Illinois V

"Understanding the Needs of Ada Runtirme Enibnmmenr " Mike Kamrad, Unisys
Corporation W
"Real-Tune Scheduling Theory and Ada" Lui Sha and John B. Goodenough,
Software Engineering Institute - X... X

"*An Overview of DARK " Roger Van Scoy, Judy Bamberger and Robert F'rth, 0
Software Engineering Institute Y

8

1989 Workshop on Operating Systems
for Mission Critical Computing

Center of Adult Education
University of Maryland
College Park, Maryland

Tuesday, September 19, 1989

01:00 - 09:00 Registration

09:00 - 10:00 Introductory Session

"* Welcome, Larry Davis, UMIACS

"* Office of Naval Technology Programs, Jane Van Fossen, ONT

"* Office of Naval Research Perspectives, Andre van Tilborg, ONR

"* Space and Naval Warfare Systems Command Programs, Richard E. Barbour, SPAWAR

"* Overview of Mission Critical Computing, Phillip Q. Hwang, NSWC

Ir,:00 - 10:20 BREAK

10:20 - 12:20 Session I - Chair: Karen D. Gordon, IDA

"* The Spring Kernel: Operating System Support for Critical, Hard Real-Time Systems, John
A. Stankovic and Krithi Ramamritham, University of Massachusetts

"* The ARTS Distributed Real-Time Operating System, Hide Tokuda, et al., Carnegie Mellon
University

"* MARUTI, Hard Real-Time Operating System, Ashok Agrawala, Satish Tripathi, and
Olafur Gudmundsson, University of Maryland

12:20 - 13:40 LUNCH

13:40 - 15:40 Session II - Chair: Roger J. Martin, NIST

"* A Brief Overview of The ISIS Distributed Programming Toolkit and The Meta Distributed
System, Kenneth Birman and Keith Marzullo, Cornell University

"* V: A Foundation for Mission Critical Distributed Systems, Kieran Harty and David R.
Cheriton, Stanford University

"* Research on Imprecise Computations in Project QuartZ, Jane W.S. Liu, et al., University of
Illinois

15:40 - 16:00 BREAK

16:00 - 17:30 Discussion Session I - Chair: Andre van Tilborg, ONR

9 Mission Critical Operating Systems / Challenges

17:30 - 19:00 DINNER

19:00 - 21:00 Evening Session I - Chair: C. Douglass Locke, IBM

• Issues in Standardization: Roger J. Martin, NIST, and Patricia Oberndorf, NADC

9

Wednesday, September 20, 1989

08:00 - 10:00 Session III - Chair: CDR Jane Van Fossen, ONT 0
* Software Architecture and Prescriptive Interface for Real-Time OS, Al Mok, University of

Texas

* The Distributed iRMX Operating System: A Real-Time Distributed Operating System,
Timothy G. Saponas and Roger B. Demuth, Intel Corporation

* The Structure of the Clouds Distributed Operating System, Partha Dasgupta and Richard
J. LeBlanc, Jr., Georgia Institute of Technology

10:00 - 10:20 BREAK

10:20 - 12:20 Session IV - Chair: Stan Wilson, NRL

"* The StarLite Operating System, Robert P. Cook, University of Virginia

"* Alpha: An Operating System for the Mission-Critical Integration and Operation of
Large, Complex, Distributed Real-Time Systems, E. Douglas Jensen, et al., Concurrent
Computer Corporation

"* A Revolutionary System Architecture for Mission Critical Computing Systems, J.C.
Browne, University of Texas

12:20 - 13:40 LUNCH

13:40 - 15:40 Session V - Chair: CDR Rick Barbour, SPAWAR

"* DRAGON SLAYER/MELODY: Distributed Operating System Support for Mission Critical
Computing, Horst F. Wedde, et al., Wayne State University

"* SDEX/20 and 43RSS, Barbara Haleen, et al., Unisys Corporation

"* Realtime Operating System for Secure, Mission Critical Avionics Systems, Gary K. Miyahara
and Cynthia L. Allyn, Hughes Aircraft Company

15:40 - 16:00 BREAK

16:00 - 17:30 Discussion Session II - Chair: Pat Watson, IBM

* Issues in Application Development: Susan Davidson, University of Pennsylvania, E. Douglas
Jensen, Concurrent Computer Corporation, Brinkley Sprunt, Carnegie Mellon University,
and John A. Stankovic, University of Massachusetts

17:30 - 19:00 DINNER

19:00 - 21:00 Evening Session H - Chair: Maj. Brian Boesch, DARPA

" Mach: A Foundation for System Software, Richard Rashid, Daniel Julin, Doug Orr, and
Richard Sanzi, Carnegie Mellon University

"* Panel-Mission Critical Operating Systems / Initiatives: Ira Goldstein, Open Software
Foundation, Richard Rashid, Carnegie Mellon University, and Homayoon Tajalli, Trusted
Information Systems

10

Thursday, September 21, 1989

08:00 - 10:00 Session VI - Chair: Patricia Oberndorf, NADC

"* Operating System Correctness is a Mission Critical Requirement, William R. Bevier and
Tad Taylor, Computational Logic, Inc.

"• The Secure Distributed Operating System-An Overview, Rammohan Varadarajan, Joseph
R. McEnerney, and D.G. Weber, Odyssey Research Associates

"* The BiiN Mission Critical Computer Architecture, Fred J. Pollack and Kevin C. Kahn, BiiN

10:00 - 10:20 BREAK

10:20 - 12:20 Session VII - Chair: James G. Smith, ONR

• A Real-Time Operating System for HARTS, Dilip D. Kandlur, Daniel L. Kiskis, and Kang
Shin, University of Michigan

* Operating System Constructs for Managing Real-Time Software Complexity, Prabha
Gopinath, et al., Philips Laboratories

• Choices for Mission Critical Computing, Roy H. Campbell, John H. Hine and Vincent F.
Russo, University of Illinois

12:20 - 13:40 LUNCH

13:40 - 15:40 Session VIII - Chair: John F. Kramer, IDA

"• Understanding the Needs of Ada Runtime Environments, Mike Kamrad, Unisys Corporation

9 Real-Time Scheduling in Ada, Mark Borger, et al., Software Engineering Institute

"* Distributed Ada Real-Time Kernel, Roger Van Scoy, et al., Software Engineering Institute

15:40 - 16:00 BREAK

16:00 - 17:30 Discussion Session III - Chair: Ashok K. Agrawala, UoM

9 Mission Critical Operating Systems / Wrapup

General Chair. Ashok Agrawala, University of Maryland
Program Co-Chairs: Karen Gordon, Institute for Defense Analyses

Phil Hwang, Naval Surface Warfare Center

I1

_ ,mtmm mmmmm

PART 2

Contributions to the

NGCR OSSWG Available Technology Report1

In this part are copies of the following IDA contributions to the NGCR OSSWG Avail-
able Technology Report:

* BiiN/OS: Summary Description

* Clouds: Summary Description

* MARUTI: Summary Description

e Trusted Mach: Summary Description

9 Clouds: Detailed Description

* Cronus: Detailed Description

& Mach: Detailed Description

* POSIX: Detailed Description

* V: Detailed Description

* Real-Time Operating System Technology

1. Version 1.3 of the NGCR (Next Generation Computer Resources) OSSWG (Operating Systems Standards
Working Group) Available Technology Report, dated 09/14/1990, was published as a component of the
Operating Systems Standards Working Group (OSSWG) Next Generation Computer Resources (NGCR)
Program First Annual Report-October 1990, R. Bergman (editor), Technical Document 2101, Naval
Ocean Systems Center, San Diego, California, October 1990.

13

I

BiiN/OS: Summary Description

Submitted by Karen Gordon (IDA)

BiiN/OS is the operating system of the Biin family of multiprocessor computers.
BiiN/OS is designed to operate in distributed computing environment; multiple, geo-
graphically distributed Biin computers can be unified into a single "distributed" system
through the Biin/OS. Biin/OS addresses fault tolerance, real-time, and security concerns.
With respect to fault tolerance, it dynamically configures hardware modules to provide
three levels of fault tolerance, which represent different tradeoffs between fault tolerance
and performance. With respect to real-time, it provides traditional real-time application
support, including preemptive, priority-based scheduling over a set of multiprocessors.
With respect to security, it provides discretionary access control through a combination of
capabilities and access control lists. In addition, BfiN/OS offers a UNIX-compatible

operating system environment through its Biin Open Standard Interface Extension
(BOSIX) tools. Points of contact: Steve Tolopka, Andy Crump, Biin, 2111 N.E. 25th
Avenue, Hillsboro, Oregon, 97124-5961, (1-800) 252-2446.

15

-I I | I I

Clouds: Summary Description

Submitted by Karen Gordon (IDA)

Clouds is a distributed operating system being developed at the Georgia Institute
of Technology. It has received major funding from NSF, NASA, and RADC. Originally,
the primary design goal of Clouds was the support of reliable, fault-tolerant distributed

computing. The object/thread programming model (in which the traditional "process" is
decomposed into an object, which serves as an abstraction of storage, and a thread,
which serves as an abstraction of computation) was conceived as a means to an end, the
end being reliable, fault-tolerant distributed computing. However, it has become an end

in itself; the support and exploitation of the object/thread programming model is now the

overriding theme of the Clouds research. Research topics include operating system sup-
port for objects, replication and consistency management using objects in a distributed

environment, and programming language/methodology/tools support for programming
distributed applications using objects. Points of contact: Rich LeBlanc and Partha Dasg-
upta, School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA, 30332, rich@gatech.edu, partha@gatech.edu.

16

MARUTI: Summary Description

Submitted by Karen Gordon (IDA)

MARUTI is a real-time distributed operating system being developed at the
University of Maryland. It has been funded, in part, by the U.S. Army Strategic Defense
Command and the Office of Naval Research. MARUTI focuses on real-time and fault-
tolerance requirements. It supports both in an object-oriented framework. With respect

to real-time requirements, MARUTI supports guaranteed-service scheduling. That is,
once it accepts a task, MARUTI guarantees that the timing constraints of the task will be
met. It utilizes replication and consistency-control mechanisms to implement user-speci-

fied fault-tolerance constraints. Point of contact: Ashok Agrawala, Department of

Computer Science, University of Maryland, College Park, MD, 20742, (301) 454-4968,
agrawala@mimsy.umd.edu.

17

Trusted Mach: Summary Description
Submitted by Karen Gordon (IDA)

The Trusted Mach project is a DARPA-sponsored research effort of Trusted
Information Systems, Inc. The goal is to build a version of Mach - Trusted Mach - that
meets the B3 level of protection as specified in the National Computer Security Center
(NCSC) Trusted Computer System Evaluation Criteria (TCSEC), the so-called "Orange
Book" [TCSEC 85]. The project adopts the idea of "incremental reference monitors." 0
At the lowest level is the Trusted Mach Kernel. At the intermediate level is the reference
monitor composed of the kernel and a trusted name ser ver. At the highest level is the
reference monitor composed of the kernel, a trusted name server, and other trusted
servers. Thus far, work has concentrated on the kernel level of a single machine. At this
time, the Trusted Mach project is utilizing a Spring 1988 version of Mach. Since this ver-
sion is not kernelized, the effort cannot yield a trusted operating system. The unkernel-
ized version of Mach is serving as a platform for research into multilevel security, not as a
base upon which to build a trusted system. The development of a trusted version is tied to
the completion of Mach kernelization. Points of contact: Steve Walker, Marty Branstad,
Trusted Information Systems, Inc., 3060 Washington Road (Route 97), Glenwood, MD,

21738.

18

• I • • m0

Clouds: Detailed Description

Submitted by Karen Gordon (IDA) and Partha Dasgupta (Georgia Institute of Technology)

The Clouds project was initiated at the Georgia Institute of Technology in 1979.

Since then, it has received major funding from NSF, NASA, and RADC. Currently, the

Clouds project exists as part of a larger NSF-sponsored project called DARE (for Distri-

buted Application Research Environment).

Clouds is a distributed operating system for a cluster of general purpose comput-

ers interconnected by a medium to high speed local area network. Its goals may be ela-

borated as follows:

* Reliability and fault tolerance. In the beginning, the primary design goal of the

Clouds distributed operating system was the support of reliable, fault-tolerant
distributed computing. While reliability/fault tolerance remains as a major goal,

the emphasis has shifted, as explained in the next paragraph.

* Object/thread model. The object/thread programming model was originally con-
ceived as a means to an end, the end being reliable and fault tolerant distributed

computing. However, it has become an end in itself; the support and exploitation
of this advanced programming paradigm is now the overriding theme of the

Clouds research. Research topics include operating system support for objects,
replication and consistency management using objects in a distributed environ-

ment, and programming language/methodology/tools support for programming
distributed applications using objects.

0 "Minimalist" philosophy for distributed operating system design and implementa-

tion. The Clouds operating system supports a minimal set of functions necessary

to run a distributed system. The object/thread model provides a structured per-

sistent memory, doing away with the need for long-term storage in the form of a

file service and complicated I/O system. The operating system does not incor-
porate services such as printing, databases, and graphics, either, since these can

be effectively implemented as user level applications. The kernel of the Clouds

operating system is also minimal, in keeping with this philosophy.

1. Language Support Services

0 Ada language support services.

* Support for other languages. The first language being supported on the Clouds
system is C++. The language has been somewhat modified (by adding keywords)
to support entry points, segmented data, persistent data, and permanent and

19

temporary memory allocation. The C++ programs define objects (and not pro-

cessing). Support for single inheritance is complete, and support for multiple

inheritance is being designed. The language defines the inheritance scheme, as

Clouds does not define inheritance (but does have the mechanisms to implement

inheritance and sharing effectively).

Ada, as well as some other languages, will be supported on Clouds at a later

date.

2. Architecture Dependent Services

The Clouds researchers plan to support Clouds-UNIX interoperability, of two dis-

tinct flavors. First, Clouds services should be made available to UNIX users and pro-

grams, through a Clouds library on UNIX, in a way that would enable a cluster of Clouds

machines to serve as a back-end distributed system to UNIX workstations. Second, esta-

blished UNIX services (e.g., mail, text processing, etc.) should be made available to

Clouds users, through a "UNIX gateway."

3. Capability and Security Services

Clouds utilizes capabilities for object naming. Each Clouds object is named and

accessed by its capability, which is globally unique and location-independent.

At this point in time, protection is not a goal of the Clouds project. Therefore,

although capabilities could be utilized for protection as well as for naming, they currently

are not being utilized for this purpose.

4. Data Base Services

Clouds does not provide database services. However, using persistent memory

and true multitasking in objects, a variety of different database schemes can be imple-

mented. These will be considered as applications on the Clouds system.

5. Data Interchange Services

Not incorporated into the operating system proper as an explicit service. How-

ever, it may be viewed as being supported by adherence to conventions.

6. Event and Error Management Services

Object-based error handling and event management will be provided by Clouds.

However, the exact nature of these services is not completely defined at this time.

20

7. File Services

A conventional file can be viewed as a special case of a Clouds object, namely

one with file data in its data space and file operations, such as read and write, which can

be invoked by threads.

However, in the Clouds programming paradigm, the need for having files goes

away. Programs do not need to store data in file-like entities, because they can keep the
data in the (permanent) data space of objects.

Just as Clouds does not files, it does not provide user-level support for file (or

disk) 1/0. The system creates the illusion of a huge virtual memory space that is per-

manent, and thus the need for using disk storage form a programmer's viewpoint is elim-

inated.

8. Generalized I/O Services

9. Graphics Kernel Services

Not incorporated into the Clouds operating system proper. Since Clouds supports

plug-in system-level objects, a graphics kernel can, in theory, be plugged into a Clouds

operating system. Clouds, however, does not dictate the facilities by the graphics kernel.

10. LPOS to LPOS Communication Services

Clouds is a distributed operating system. Its kernel is replicated at each node
that participates as part of a Clouds distributed system. The kernels implement Clouds

IPC. System services, provided by system objects, are invoked using Clouds IPC.

11. Man-Machine Interface (MMI) Services

The Clouds researchers plan to provide an X-windows interface to Clouds.

12. Networks and Communications

* Interprocess communication. Clouds provides two modes of interprocess com-

munication, both stemming from the Clouds paradigm of global persistent

objects, which can be shared on a system-wide basis. In particular, objects can

be invoked using either one of two mechanisms: remote procedure call (RPC) or

distributed shared memory (DSM). Using RPC, the thread migrates to the home

site of the object and executes there; using DSM, the invoked object is demand

paged to the site of the invoking thread. The mechanisms have orthogonal
advantages and can be chosen for optimum performance.

21

13. Process Management Services

Clouds adopts the object/thread model. The object serves as an abstraction of

storage, and the thread as an abstraction of computation. Object invocations serve as the

integrating mechanism. These abstractions are summarized below:

"* Object. In Clouds, an object is an instance of an abstract data type. It is a pas-

sive entity, in particular, a persistent virtual address space. It is used to encapsu-

late all data, programs, devices, and resources.

"* Object invocation. Objects are accessed via (and only via) object invocations, to

operations defined on the objects.

"* Thread. The thread is the active entity in Clouds, the unit of computation and

concurrency that is used to execute the code in objects. Threads traverse objects,
independently of machine boundaries, via object invocations. Threads are imple-
mented as lightweight processes. A thread that spans machine boundaries is

implemented by several processes, one per machine.

14. Project Support Environment Services

15. Reliability, Adaptability, and Maintainability Services

Clouds is being designed to offer a range of consistency-preserving mechanisms,
from "best effort" to absolute consistency.

The consistency preserving mechanisms are based on attaching consistency labels
to the operations declared in the objects. The labels allow the operations to update the

objects with (1) transaction-like semantics, for preserving inter-object consistency of

data, (2) locally atomic semantics for preserving the consistency of data locally within

one object, or (3) best-effort semantics like the way processes in conventional systems
update memory and files.

Ongoing research is addressing fault tolerance using replicated data and compu-

tation.

16. Resource Management Services

Storage management services. In Clouds, emphasis is placed on the object as an

abstraction of storage. The object is viewed as unifying the concepts of file space

(long-lived storage) and memory space (volatile storage, but essential for compu-
tation), by providing a persistent virtual address space. Since objects provide

permanent storage, the need for a traditional file system is eliminated; the file

system is replaced by object memory. Object memory is stored on disk and

22

demand paged. The demand paging happens with storage on the local machine,

if the invocation uses RPC. The demand paging occurs over the network if the

invocation uses DSM.

General resource management services. The Ra kernel manages the low-level

scheduling of threads, demand paging, and segment and memory allocation. All

other resource management tasks are done at the higher level through system

objects. Currently, the system objects under implementation will do object

management, task management, naming, and partition management. More will

be implemented as the system evolves. One of the points of the Ra approach is to

be flexible and avoid being locked into any particular resource management

scheme.

17. Scheduling Services

18. Synchronization Services

19. System Initialization and Reinitialization Services

20. System Operator Services

21. Time Services

22. Proprietary or Open

Open, since it is a government-sponsored academic research project.

23. Qualification as a Standard

The Clouds project is directed at exploring a non-conventional methodology or

paradigm for building operating systems. It is meant to demonstrate the utility and effec-

tiveness of the new methodology. It is based on a minimalist philosophy, to allow for cus-

tomization. Its focus, at this point in time, is still on the fundamental paradigm that it

advocates. As the system matures, the researchers will likely explore higher level system

services in more detail.

24. Platform Flexibility

Clouds defines a methodology that advocates unifying a distributed system using a

set of global, persistent address spaces along with necessary structuring, naming, and

consistency support. It couples long term storage with addressable memory, and decou-

ples processing from storage. Clouds also demonstrates the following:

* This environment can be built using a structured, portable minimal kernel and

plug-in system services.

23

"* Most operating system services can be handled at the application level, allowing

for customization.

"* Management of shared persistent memory can be handled effectively in a distri-

buted system.

"* Consistency of persistent memory can be handled.

"* Fault tolerance can be achieved and fine tuned through replicated objects and 0

replicated computations.

The current prototype runs on a set of Sun 3/60 machines on an Ethernet. The

design does not preclude any form of machine from multiprocessors to embedded systems

or any form of networking. 0

25. References

[Bernabeu Auban] Bernabeu Auban, Jose M., et al., "The Architecture of Ra: A Kernel

for Clouds," School of Information and Computer Science, Georgia Institute of •

Technology. [Dasgupta 881

Dasgupta, Partha, Richard J. LeBlanc, and William F. Appelbe, "The Clouds Distri-

buted Operating System: Functional Description, Implementation Details and

Related Work," Proceedings of The 8th International Conference on Distributed 0

Computing Systems, June 1988, 2-9.

[GIT 86] The School of Information and Computer Science, Georgia Institute of Technol-

ogy, "Effective Distributed Computing: A Reliable Object-Based Environment
for Computer Science Research," A Proposal to the National Science Founda-

tion's Co-ordinated Experimental Research Program, September 15, 1986.

[Pitts and Dasgupta 88] Pitts, David V. and Partha Dasgupta, "Object Memory and

Storage Management in the Clouds Kernel," Proceedings of The 8th International

Conference on Distributed Computing Systems, June 1988, 10-17. 0

24

Cronus: Detailed Description

Submitted by Karen Gordon (IDA) and Dale Brouhard (Naval Ocean Systems Center)

Cronus has been under development at BBN Laboratories since 1981. It is spon-

sored by the Rome Air Development Center (RADC).

Cronus is an environment to support coherent integration of heterogeneous com-

puter systems. Typically, the computer systems fall under a common administrative

domain, and are interconnected by one or more high-speed local area networks. The

computer systems may also be interconnected by wide area networks, via an internet

(such as the DARPA Internet). Each set of computer systems is called a "cluster." The

initial focus of Cronus has been on intracluster communication and cooperation; however,

more recently, consideration has been given to intercluster aspects. The goals of Cronus

may be elaborated as follows:

" The ultimate goal of Cronus is to integrate heterogeneous computer systems into

an effective general-purpose distributed computing environment for the develop-

ment and execution of large-scale applications.

" Heterogeneity is the key concept. The hallmark of Cronus is its support of hetero-

geneity-of both hardware and software resources. The motivation for this

emphasis is threefold: (1) to allow applications and users to take advantage of the

unique functionality offered by various hardware and software resources, (2) to

allow existing software to continue to be used, and (3) to allow familiar comput-

ing environments to continue to be used.

* In particular, Cronus is designed to interoperate with, rather than to replace or

totally encapsulate, constituent (i.e, native) operating systems.

"* In addition to heterogeneity, the Cronus project places major emphasis on provid-

ing comprehensive support for large-scale distributed application development.

The Cronus approach is to introduce layers of software on top of constituent

operating systems (or, in some cases, on bare hardware). Cronus is based on the object

model; each system resource is a typed object, and is accessed through operations defined

by the type. The object model provides an extensible architecture, in that application

developers can cast application-specific resources in terms of new object types, which can

be defined as subtypes of existing types.

Cronus supports heterogeneity by serving as a by-passable layer of abstraction

between application programs and constituent operating systems. Through this approach,

application programs gain access to a coherent, uniform (object-oriented) system

25

I " l i

interface, regardless of computer system base; however, they also retain conventional

access to constituent operating system resources and services.

The Cronus distributed operating system consists of the following components:

" Cronus kernel. The Cronus kernel supports the Cronus object model. Namely, it

implements the basic abstractions of object, operation invocation, and (Cronus)

process, as defined below. It must be installed and run on each host participating

in the Cronus distributed system. Typically, it is implemented as an application

process of the constituent operating system.

" Cronus system services. Cronus system services provide the traditional operating

system services, plus additional services specifically designed for the support of
distributed application development. Each system service is implemented by one
or more manager processes (i.e., servers), which run above the Cronus kernel as

Cronus processes. Current system services include an authentication service, a
catalog service, a configuration service, a file servic-, . .I a type definition ser-

vice.

The distributed computing architecture supported by Cronus includes the follow-
ing components as well:

& Application services. An application service is one or more processes developed
by application programmers to manage the resources that make up applications.

An application is typically composed of several services responsible for several

different object types.

* Clients. Clients are processes that use services. While any service may act as a
client to another service, most clients are processes that interact directly with

users, such as user commands, utilities, and application-specific graphical user

interfaces.

1. Language Support Services

* Ada language support services. Programming support is now being extended to

Ada, as noted below.

* Support for other languages. The fundamental assumption underlying Cronus

programming support is that large-scale applications will be developed in accor- •

dance with the object model, just as Cronus itself is. Under this assumption, the
key to application development is the definition of new object types to represent
application-specific resources and the development of new object managers to
embody the newly defined object types. Therefore, Cronus programming support

26

focuses on automating the process of developing new object managers. In particu-

lar, Cronus seeks to relieve the application developer's coding burden through the

use of a non-procedural program development specification language. Cronus

takes non-procedural specifications of a new object type, and automatically gen-

erates code for skeletal object managers (including multitasking for concurrent

operation processing, message parsing and validation, access control checks,

operation dispatching, data conversion between canonical and system-specific

data representations, and stable storage management), as well as for RPC client

stubs. The code generation process relies upon the Cronus libraries; the skeletal

object managers incorporate procedure calls to Cronus library routines for many

functions (e.g., data conversion between the canonical and system-specific

representations of common data types). The application developer completes the

object manager by providing routines that implement the operations defined by

the new object type.

Cronus programming support also includes (1) extensive subroutine libraries,

including interprocess communication routines, data conversion routines, and

RPC interfaces to Cronus objects; (2) a set of user commands; (3) a set of opera-

tor commands; (4) operations inherited by all objects, for access control, moni-

toring and control, debugging, and replication and migration support; (5) a pro-

gram to be used in conjunction with a local debugger, to assist in object manager

debugging; (6) source management control software; and (7) a bug tracking facil-

ity.

Programming support was initially focused on C, but it is now being extended to

Common Lisp and Ada. Application components have also been written in FOR-

TRAN.

2. Architecture Dependent Services

3. Capability and Security Services

In Cronus, protection is achieved through access control lists. The access control

list for an object specifies which users or groups of users have which access rights to the

object. Privileges associated with access control lists can be defined separately for each

object type. These privileges are specified by the application developer, allowing access

controls to be customized for each type. Authentication (of the identity of a user) is

implemented by an authentication manager, which subjects a user to a password-based

authentication procedure upon login.

27

Multilevel security was investigated in a research project, the Secure Distributed

Operating System (SDOS) Project. Among the conclusions of the project was the follow-

ing [Casey 87, p.19]: "Thus, the host operating system(s) on top of which SDOS [i.e., 0

secure Cronus] is implemented must have a minimum of a B2 rating, and ratings of B3 or

Al are more desirable." GEMSOS, a product of Gemini Computers, Inc., of Carmel,

California, was selected as the best candidate for serving as a multilevel secure consti-

tuent operating system.

4. Data Base Services

Distributed databases are being addressed in an ongoing research project, the

Cronus Distributed DBMS Project. The primary focus of the project is to design a distri-

buted database management system for the Cronus environment. The purpose of the

DBMS integration activity was to make a database system available from within Cronus

in the near-term while the distributed DBMS design was in progress.

The near-term goals that have been satisfied include:

" Provide host-independent access by any Cronus client to the database system

(currently Informix).

" Provide remote clients with the full functionality of the database system, including

multistatement transactions and schema manipulation operations.

" Support access control to the database system at the database, table and column

level.

"* Support client/database interactions that are optimum for the different types of

uses (e.g., highly interactive vs embedded) using SQL.

5. Data Interchange Services

Cronus uses the technique of canonical data representation to solve the problem

of data interchange in a heterogeneous computing environment. Programs process data in

formats directly supported by the systems on which they are implemented. When data is

transferred to another network component, it is encoded into a canonical form using

appropriate conversion routines. The reverse process takes place on the receiving end.

Cronus takes non-procedural specifications of a new object type, and automatically gen-

erates code for data conversion between canonical and system-specific data representa- S
tions.

28

6. Event and Error Management Services

Cronus routines that detect errors generally signal a failure by returning a special
value distinguished from the set of normal return values. Routines returning numeric

results can return ERROR, and routines that return pointer can return NULL. Before
returning, these routines generally set the "ErrorBlock"-a global structure in the pro-
gram that records error conditions. Then, the calling routine has the option of attempting
error recovery action using the information it find in the ErrorBlock, resetting the Error-
Block with its own interpretation of the error, or simply returning the error indication pro-
vided by the lower-level routine.

7.Files Services

Cronus provides a file system for storing information just as do other operating
systems. Cronus files are objects, so they are accessible through the same object-oriented,
location independent IPC facility as are other Cronus system entities. Files in the Cronus
files system are accessible from any and all hosts in the Cronus cluster automatically.

Cronus will locate a file and direct operations to that file's object manager transparently,
hiding the distributed nature of the filesystem, and providing an interface to the applica-

tion program or user that is simple and powerful.

Though, different file types are implemented as different object types, the object-
oriented nature of Cronus allows all of these file types to respond to a common set of
operations through the mechanism of inheritance. Currently, two Cronus file types are
available:

* COS files (constituent operating systems files). Ordinary local host operating sys-
tem files that have been made into objects and are accessible from anywhere

within Cronus.

9 Reliable files. Characterized by special facilities for synchronizing access by mul-
tiple simultaneous readers and writers, by enhanced read and write operations
that can simplify application programs, and by enhanced survivability in the face

of system failures.

8. Generalized I/O Services

Devices, such as line-printer, tape-driver, or terminal, are integrated into the
Cronus system as sub-types of a generalized I/O object, which supports a generalized set
of I/O operations. File- like interfaces for device I/O are supported for most devices.

9. Graphics Kernel Services

29

10. LPOS to LPOS Communications Services

Cronus Kernels communicate with one another using the Cronus Peer to Peer

protocol. Reliable delivery of datagrams is guaranteed through the use of TCP as the

transport mechanism. The Peer to Peer Protocol includes a specification for establishing

TCP links between Kernels and for closing them down. A provision is also included to

send low effort datagrams and broadcast/multicast messages between Kernels using UDP

datagrams. 0

11. Man-Machine Interface (MMI) Services

The nature of a particular native operating system determines what user interface

is supported.

12. Networks and Communications

" Network control and status. The monitoring and control system (MCS) for

Cronus includes monitoring and control of hosts and of the Cronus functions on
these hosts, of the network substrate and of gateways. 0

"* Interprocess communication. Cronus interprocess communication (IPC) is

designed to support operation invocations from clients to object managers, where
the invocations can be synchronous or asynchronous, and can have one or many
targets. It is implemented as a series of layers. 0

At the lowest layers, collectively referred to as the network layer, are standard

data communication protocols, which are typically implemented by the consti-
tuent operating systems. Currently, Transmission Control Protocol (TCP), User

Datagram Protocol (UDP), Internet Protocol (IP), and Ethernet are utilized.
However, other protocols could be substituted easily.

Above the network layer is the layer designated as the IPC layer. This layer

implements three communication primitives: Invoke, Send, and Receive. In a
typical scenario, Invoke would be used by a client process to invoke an operation 0

on an object. Using Invoke, the client references the object by name (not loca-
tion, thereby ensuring host-independent, network-transparent access to objects),

and this causes a message to be sent to the process serving as object manager of

the target object. The object manager would retrieve the message from its mes-
sage queue via the Receive primitive, perform the requested operation, and then
send a reply to the client via the Send primitive. The operation would actually be

performed by a lightweight process (or task, in Cronus terminology) created by

the object manager; thus, operations can be performed concurrently. Finally, the

30

0

client would receive the reply via the Receive primitive. The separation of the

client's Invoke from the subsequent Receive allows for asynchrony and con-

currency. It should be noted that the Send is simply an optimization of the Invoke.
It allows a message to be sent directly to a process, instead of to the process

manager.

Above the IPC layer is a layer designated as the message encodement layer. This
layer is responsible for encoding and decoding messages, using canonical (sys-
tem-independent) data representations. Cronus defines canonical data represen-
tations for many common data types and structures. It also offers extensibility by
supporting the creation of new canonical types from existing ones.

At the highest layer is a protocol designated as the Operation Protocol. This layer
defines a set of standards for interpreting messages between clients and
managers, and supports a synchronous remote-procedure-call-like (RPC-like)
programming interface for operation invocation.

Naming. Cronus has a two-level naming system. At the high level is a hierarchi-
cal symbolic name space. At the low level is the flat name space of Unique Iden-
tifiers (UIDs). A UID is a 96-bit object identifier, which is guaranteed to be
unique over all objects over all time within a cluster; sixteen bits of the UID
specify the object's type, and the remaining bits establish uniqueness. The Cronus
catalog, which is implemented as a distributed entity by the catalog managers,
provides the mapping between symbolic names and UIDs.

13. Process Management Services

Since Cronus is based on the object model, the basic abstractions are objects and
operation invocations. To implement the object model, the Cronus kernel introduces the
process as a kernel-supported object type. Thus, the basic abstractions of Cronus are the

following:

* Object. In Cronus, an object is an instance of an abstract data type, where a type
can be defined as a subtype of a parent type, and hierarchical inheritance is sup-
ported. Objects are passive entities.

* Operation invocation. Objects are accessed via (and only via) operation invoca-
tions. (This abstraction is inherent in the object abstraction.)

* Process. Processes are the active entities in Cronus. They are used to implement
object managers, as well as application programs that execute on Cronus. An
object manager is the entity that is responsible for manipulating all of the objects

31

of one or more given types on a given host using the operations defined by the
types. The Cronus system managers are simply Cronus-provided object
managers, for Cronus-defined object types. The Cronus process abstraction
corresponds to the process abstraction found in conventional operating systems,
and is typically implemented as a constituent operating system process that exe-
cutes in user space.

14. Project Support Environment Services 0

The Tropic (Transportable Operation Interface for Cronus) program allows a
user to invoke arbitrary operations on Cronus objects (e.g., interactive debugging of an
object manager on the target system).

15. Reliability, Adaptability and Maintainability Services

Cronus supports object migration and object replication. With respect to replica-
tion, the Cronus project has recently adopted the philosophy of application-specific repli-
cation management. Namely, Cronus has progressed from an inflexible weakly consistent
replication strategy to a flexible "version voting" replication strategy. In the weakly con-
sistent replication strategy, updates were propagated on a best-efforts basis, and object
managers would periodically (e.g., upon their host coming back up after being down) util-
ize Cronus-provided mechanisms to bring their copies up to date. In the version voting
replication strategy, version vectors (one for each replicated object, giving host location
and version number pairs) are used to keep track of copies and consistency, and read and
write quorums can be set to provide the application-desired balance between availability
and consistency.

Cronus delivers replication support to application developers through its object
manager programming support tools. When specifying a new object type, the application
developer defines a replication policy by selecting a Cronus-supported replication stra-
tegy and then specifying values for the parameters of the selected strategy.

Two replication strategies are now available. The first, referred to as version vot- •
ing, mandates application-specified vote quorums to perform read and update opera-
tions. Version vectors are used to detect and correct inconsistencies. The second replica-
tion strategy, referred to as weak consistency, it that provided by precious versions of the
Cronus manager development tools. BBN will be looking into other algorithms for repli-
cation. Based on the object type definition, Cronus automatically generates the code that
implements the specified replication policy.

Cronus can also dynamically locate objects on invocation, ensuring that clients
will always be able to access a copy of an object (providing one is available).

32

Atomic transaction support is being investigated in the context of distributed
database management systems, as a part of the Cronus Distributed Database Manage-

ment System Project.

16. Resource Management Services

In Cronus, global resource management is approached according to the principle

of policy/mechanism separation. That is, Cronus provides mechanisms, and the mechan-
isms enable object managers to cooperatively enforce object type-specific policies. The
mechanisms include: (1) the ability of object managers to query the status of their peer
object managers, one of which must be installed at each host where objects of the given
type exist, (2) the ability of object managers to redirect requests to peer object managers,

and (3) the ability of applications to indicate preferred hosts. These mechanisms support
high-level resource management; low-level resource management is performed by the
constituent operating systems. These mechanisms have been used in several services to

implement specific management policies, such as dynamic load balancing during Cronus

file creation.

17. Scheduling Services

Cronus object managers use a coroutine package which provides a C program-
ming interface for priority-ordered, non-preemptive multiple threads of execution within
a single constituent operating system process, along with mechanisms for synchronization

and mutual exclusion of critical sections.

18. Synchronization Services

Cronus provides concurrency control for sensitive regions via the Start Concur
and EndConcur routines. These are used in an object manager to bracket critical sections

of code and provide concurrency control for accesses to the object database. This permits
multiple operations to access the same object without fear of creating any inconsistencies

in that object or it object database.

Semaphores are provided to control access to critical data structures. Since

Cronus object managers may consist of multiple threads within a single process, sema-
phores can be used when data whose integrity must be insured may be shared by one or
more tasks. The semaphore package causes threads to sleep when they are waiting to
enter critical sections, and be awakened when the resource they are awaiting is available.

19. System Initialization and Reinitialization Services

Cronus object managers are asynchronous independent processes which are
started by the system when it boots or by other processes (users).

33

20. System Operator Services

The Cronus operator commands are used by system operators to perform system

maintenance tasks on a Cronus cluster. Currently the Cronus operator commands offer

the following services: (1) start the Cronus kernel and managers, (2) examine contents of

an object database, (3) examine contents of an object, (4) repair incorrectly replicated

directories, (5) repair incorrectly replicated objects, (6) initialize Cronus file system, (7)

initialize Cronus UNO file, (8) manipulate Cronus Broadcast Repeater, (9) examine cir- 0

cular log files, (10) stop Cronus on a particular host.

21. Time Services

Via constituent (i.e., native) operating systems.

22. Proprietary or Open

Sponsored by Rome Air Development Center (RADC).

23. Qualification as a Standard

Essentially, the Cronus approach to dealing with heterogeneity is to introduce a
layer of "standardization," in the form of the Cronus environment, between constituent

operating systems and application programs. The issue is the utility, effectiveness,
appeal, and acceptability of the Cronus environment. To date, Cronus has received only 0
isolated support outside of BBN.

24. Platform Flexibility

Cronus has achieved high portability. It is written in the C programming language.
Machine-dependent code is confined to a few modules. Cronus has been ported to a new 0

machine in as little as two man-weeks.

Cronus implementations exist for the following systems: DEC VAX with VMS,
Ultrix, and BSD Unix; SUN 2,3,4 and Sun 386i with Sun UNIX; MASSCOMP with RT
UNIX; Symbolics Lisp Machine with Genera; and IBM PC/AT with SCO Xenix. Cronus 0

implementations are planned for multiprocessor architectures.

25. References

[BBN 88a] BBN Laboratories Incorporated, Operator's Reference Manual, Release 1.3,

September 15, 1988.

[BBN 88b] BBN Laboratories Incorporated, Programmer's Reference Manual, Release
1.3, September 15, 1988.

0

34

0

[BBN 88c] BBN Laboratories Incorporated, Tutorial Documents, Release 1.3, Sep-
tember 15,1988.

[BBN 88d] BBN Laboratories Incorporated, User's Reference Manual, Release 1.3, Sep-
tember 15, 1988.

[Berets 851 Berets, James C., Ronald A. Mucci, and Richard E. Schantz, "Cronus: A
Testbed for Developing Distributed Systems," IEEE Military Communications
Conference, October 1985, 409-417.

[Berets and Sands 87] Berets, James C. and Richard M. Sands, "Introduction to Cronus:
A Distributed Operating System," Draft Paper, BBN Laboratories Incorporated,
January 1987.

[Casey 87] Casey, Thomas A., Jr., Doug Weber, and Stephen T. Vinter, "The Secure Dis-
tributed Operating System Project: Final Report," Report No. 6678, BBN
Laboratories Incorporated, October 1987.

[Dean 871 Dean, Michael A., Richard M. Sands, and Richard E. Schantz, "Canonical
Data Representation in the Cronus Distributed Operating System," Proceedings
of the IEEE Infocom '87, March 1987, 814-819.

[Dean 88] Dean, Mike, "Cronus, A Distributed Operating System: Ada Integration
Investigation," Cronus Project Technical Report No. 7, Report No. 6797, BBN
Laboratories Incorporated, April 1988.

[Gurwitz 86] Gurwitz, Robert, Michael A. Dean, and Richard E. Schantz, "Program-
ming Support in the Cronus Distributed Operating System," Proceedings of the
6th International Conference on Distributed Computing Systems, May 1986,
486-493.

[Schantz 851 Schantz, R., et al., "CRONUS, A Distributed Operating System: Phase 1
Final Report," Report No. 5885, BBN Laboratories Incorporated, January 1985.

[Schantz 86a] Schantz, R., et al., "CRONUS, A Distributed Operating System: Cronus
DOS Implementation, Final Report," Report No. 6183, BBN Laboratories Incor-
porated, March 1986.

[Schantz 86b] Schantz, Richard E., Robert H. Thomas, and Girome Bono, "The Archi-
tecture of the Cronus Distributed Operating System," Proceedings of the 6th
International Conference on Distributed Computing Systems, May 1986, 250-259.

35

[Vinter 87] Vinter, Stephen T., et al., "The Cronus Distributed DBMS Project: Func-
tional Description," Report No. 6660, BBN Laboratories Incorporated, October
1987. 0

[Vinter 88] Vinter, Stephen T., et al., "The Cronus Distributed DBMS Project: Program
Specification," Report No. 6854, BBN Laboratories Incorporated, June 1988.

36

i

Mach: Detailed Description
Submitted by Karen Gordon (IDA) and Dale Brouhard (Naval Ocean Systems Center)

The Mach project was initiated at Carnegie Mellon University (CMU) in 1984 as
the operating system effort of DARPA's Strategic Computing Initiative (SCI). Mach was
envisioned as an operating system that would (1) provide a uniform (UNIX-compatible)
software base across the architectures existing at the time, as well as the new advanced

-0 architectures being developed as part of the SCI, and (2) support the interconnection of
these architectures into distributed computing environments. Its goals may be elaborated
as follows:

Mach was designed to extend UNIX functionality to multiprocessor architec-
tures, ranging from (1) uniform access, shared memory multiprocessors (UMA,
for Uniform Memory Architecture) (e.g., Encore Multimax, Sequent Balance),
to (2) differential access, shared memory multiprocessors (NUMA, for non-
UMA) (e.g., BBN Butterfly, IBM RP3), to (3) multicomputer architectures
(NORMA, for No Remote Memory Access Architecture) (e.g., hypercube).

* Mach was designed to extend UNIX functionality to large memory architectures.

Mach was designed to extend UNIX functionality to distributed computing
environments, in which diverse architectures (i.e., uniprocessors, multiproces-
sors) interconnected by high speed networks support distributed applications.

* To take advantage of the vast supply of UNIX-based software, Mach was
designed to offer (and continues to offer) UNIX compatibility (specifically, binary
compatibility with 4.3 BSD).

Although Mach offers UNIX compatibility, it is not intended to be bound to
UNIX. The current, evolved vision is for the Mach distributed operating system to be
based on a minimal kernel upon which multiple operating system environments can be
built. At this point, the kernelization is not complete, and some UNIX functionality is still
embedded in Mach kernel code. When the kernelization is complete, it will be possible to
emulate operating system environments other than UNIX 4.3 BSD on top of the Mach
kernel.

1. Language Support Services

" Ada language support services. Mach threads (light-weight processes) could be
used to handle Ada tasking.

"• Support for other languages. An interface specification language, MIG (Mach
Interface Generator), has been developed for Mach. MIG generates C or

37

.. .---

Common Lisp RPC stubs.

2. Architecture Dependent Services

3. Capability and Security Services

" Naming and protection. As noted in the IPC section, the Mach kernel uses capa-
bilities, in the form of ports, for naming and protection on a single system.

The network message servers extend the protection to the network environment,
by implementing mechanisms to protect both the messages sent over the network
to network ports and the network port capabilities.

" Security-Trusted Mach. The Trusted Mach project is a DARPA-sponsored
research effort of Trusted Information Systems, Inc. The goal is to build a version

of Mach - Trusted Mach - that meets the B3 level of protection as specified in the
National Computer Security Center (NCSC) Trusted Computer System Evalua-
tion Criteria (TCSEC), the so-called "Orange Book" [TCSEC 85].

The project adopts the idea of "incremental reference monitors." At the lowest
level is the Trusted Mach Kernel. At the intermediate level is the reference moni-
tor composed of the kernel and a trusted name server. At the highest level is the
reference monitor composed of the kernel, a trusted name server, and other
trusted servers. Thus far, work has concentrated on the kernel level of a single

machine. Mach's ports are serving as the protected objects in Trusted Mach; its
tasks (through their threads, which are the active entities) are serving as the sub-
jects. Extensions are being developed to meet the TCSEC requirements for both
discretionary and mandatory protection.

At this time, the Trusted Mach project is utilizing a Spring 1988 version of Mach.
Since this version is not kernelized, the effort cannot yield a trusted operating sys-

tem. The unkernelized version of Mach is serving as a platform for research into
multilevel security, not as a base upon which to build a trusted system. The
development of a trusted version is tied to the completion of Mach kernelization.

"* Security-Strongbox. Strongbox is built on top of Camelot and Mach. It is based

upon the new concept of "self-securing" programs, i.e., programs that can run
securely on distributed operating systems (such as Mach) that provide only

minimal security facilities.

Two key algorithms implemented by Strongbox are zero knowledge authentica-
tion and fingerprinting.

38

S

It should be noted that Strongbox is (currently) concerned with the security issues

that arise from protecting the privacy of data and ensuring the integrity of data
from alteration; security issues of denial of service, covert channel analysis, and
traffic analysis of message patterns have not been considered, although they

could be.

4. Data Base Services

Camelot is a distributed transaction processing facility built on top of Mach. As
such, it addresses the requirements of reliability and fault-tolerance. Its basic abstraction

is the transaction. A transaction is a collection of operations that exhibits three proper-
ties: atomicity, permanence, and serializability.

5. Data Interchange Services

Matchmaker is an interface specification language for use with existing program-
ming languages. Differences in type representation by various programming languages

within each machine are handled by Matchmaker. Data representation issues across
machine boundaries are handled through message server processes. Byte reordering and
machine specific conversions are performed by the message servers with the responsibility

for conversion always resting with the receiving host.

6. Event and Error Management Services

Mach utilizes message passing for the invocation of exception handlers. When a
thread raises an exception, a message is sent to its thread exception port to notify its
error handler, which executes in a separate thread. If no handler exists or the handler
fails to recover the exception, the message is forwarded to the exception port of the task
in which the exception-incurring thread exists.

A debugger can intercept unhandled exceptions for all threads in a task by
attaching itself to the task exception port. This enables a debugger to coexist with error
handlers, in that the debugger is aware only of those exceptions not handled by an error

handler.

7. File Services

The current vision is for Mach to be based on a minimal kernel upon which multi-
ple file systems can be built. At this point, the kernelization is not complete, and the
UNIX file system (4.3BSD)functionality is still embedded in Mach kernel code.

39

8. Generalized I/O Services

Currently, the UNIX I/O interface is used with low-level device drivers residing in

the Mach kernel. Virtual-memory based file-mapping replaces buffer management in the

standard I/O libraries

9. Graphics Kernel Services

Integration of IPC and virtual memory management (e.g., copy-on-write) provide S
some support for a graphics kernel.

10. LPOS to LPOS Communication Services

11. Man-Machine Interface (MMI) Services

X-Windows is used as a basis for the MMI along with the UNIX shells.

12. Networks and Communications

" Interprocess communication. Mach interprocess communication ([PC) is based

on the port and message abstractions. Ports are the reference objects in Mach,

and, as such, are viewed as playing the same role as capabilities in an object-

oriented system. Objects such as tasks, threads, and memory objects are

represented as ports, and operations on these objects are performed by sending

messages to the ports that represent them. Only tasks with send rights to a port 0
can send messages to it, and only the (single) task with receive rights to a port can

receive messages from it.

Messages can be sent and received synchronously (as in Remote Procedure Calls

(RPCs)) or asynchronously. They can contain capabilities. In fact, the only way

for a task to acquire a capability is to receive it in a message.

In Mach, the kernel itself implements local IPC only. However, a user-state task,

called the network message server, transparently extends IPC into a network

environment. This task maintains mappings of local "proxy" ports to global "net- S

work" ports. It forwards messages using network protocols of its choice.

"* Naming. The Netmsgserver passes all the Mach IPC message between machines.

It also provides network wide p(rt register and lookup functions.

The Environment Manager caa register or look up ports or named strings but
does not communicate with other Environment Managers.

40

13. Process Management Services

* Basic abstractions. Mach divides the process abstraction into two orthogonal

abstractions: the task and the thread. A task is a collection of system resources.

These include a virtual address space and a set of port rights. The thread is the

basic unit of computation; it is the specification of an execution state within a

task. Mach allows multiple threads to execute within a single task.

Operations on tasks and threads are invoked by sending a message to a port

representing the task or thread. Threads maybe be created, destroyed,

suspended, and resumed.

Tasks are related to one another in a tree structure by task-creation operations.

Regions of virtual memory may be marked for future child tasks as either inherit-

able read/write, copy-on-write, or as neither.

14. Project Support Environment Services

15. Reliability, Adaptability, and Maintainability Services

* Reliability and fault tolerance-Camelot and Avalon. Camelot is a distributed

transaction processing facility built on top of Mach. As such, it addresses the

requirements of reliability and fault-tolerance. Its basic abstraction is the transac-
tion. A transaction is a collection of operations that exhibits three properties:

atomicity, permanence, and serializability.

Avalon is built on top of Camelot and Mach. It is implemented as a preprocessor

for C++. It provides language support for reliable distributed systems based on
atomic transactions.

16. Resource Management Services

Storage management. Mach places major emphasis on virtual memory manage-
ment, especially in the areas of portability, advanced functionality, and

memory/communication integration. In regard to portability, Mach virtual

memory management assumes minimal hardware support, and is carefully con-

structed to isolate machine-dependent code into a single module. Not ably, it

achieves improved performance, even while it minimizes hardware dependen-
cies.

In regard to advanced functionality, Mach supports large, sparse virtual address

spaces; memory mapped files; shared libraries; copy-on-write virtual copy opera-

tions; copy-on-write and read/write memory sharing between tasks, through

41

0

inheritance (which is specified on a per-page basis as shared, copy, or none) of

memory regions from a parent task to a child task; and user-provided memory

objects and pagers. 0

In regard to memory/communication integration, the Mach project emphasizes

the complementary roles that memory and communication can play. Namely,

Mach uses memory mapping techniques (i.e., copy-on-write sharing) to accom-

plish communication; an entire address space may be sent in a single message 0

with no actual data copy operations performed. In the other direction, Mach

implements virtual memory through its IPC facilities; in particular, it maps pro-

cess addresses onto memory objects, which are represented by ports and

accessed via messages. This is what enables user-provided memory objects. 0

17. Scheduling Services

* Real-Time Mach. Real-Time Mach provides an integrated time-driven

scheduler, with support for both periodic and aperiodic threads. Rate monotonic

scheduling policies are used for periodic threads. Value function scheduling poli- 0

cies (derived from Locke's thesis, as was Alpha's) are used for aperiodic threads.

Real-Time Mach uses piecewise linear approximations to continuous value func-

tions for efficiency. For a collection of periodic and aperiodic threads, the

periodic threads are scheduled first, and then the aperiodic on a best effort basis.

Real-Time Mach implements policy/mechanism separation. Currently, seven

scheduling policies are implemented. Different applications or experiments can

utilize different policies.

Tools and a test bed have been developed to support Real-Time Mach. They 0

allow workloads to be specified, and schedules to be constructed, examined,

simulated, and monitored.

Currently, Real-Time Mach has been applied only in a uniprocessor environment

and only to CPU scheduling. Plans call for it to be applied in a multiprocessor 0
environment and to other resource types (e.g., memory, I/O). Also, impacts of

interactions (requiring synchronization) among threads remain to be considered.

18. Synchronization Services

Mach provides constructs for protection of critical regions and synchronization.

Lock and unlock primitives are used with mutex variable to provide mutual exclusion.

Wait and signal primitive are used with condition variables to provide synchronization.

2

42

0

At a higher level, Matchmaker and MIG provide a synchronous/asynchronous

RPC interface.

19. System Initialization and Reinitialization Services

20. System Operator Services

Based on UNIX.

21. Thne Services

Based on UNIX.

22. Proprietary or Open

Mach is open. It has been widely distributed (to over 200 institutions, 2/3 of which
are corporations, 1/3 universities).

23. Qualification as a Standard

In initiating the Mach project, DARPA aimed to capitalize on the de facto stan-
dard status of UNIX. Mach's UNIX compatibility is fundamental to its success and popu-
larity. The Mach project is meant to rebuild the core of UNIX while retaining its external

interfaces.

DARPA is participating in the various UNIX standardization efforts, such as
POSIX and OSF. It definitely wants to exert its influence and make Mach a dominant
operating system. Inasmuch as UNIX qualifies as a standard, Mach also does.

24. Platform Flexibility

As pointed out in the introduction, Mach was designed to extend UNIX func-
tionality to multiprocessor architectures, ranging from (1) uniform access, shared
memory multiprocessors (UMA, for Uniform Memory Architecture) (e.g., Encore Mul-

timax, Sequent Balance), to (2) differential access, shared memory multiprocessors
(NUMA, for non-UMA) (e.g., BBN Butterfly, IBM RP3), to (3) multicomputer architec-
tures (NORMA, for No Remote Memory Access Architecture) (e.g., hypercube). Mach
was designed to extend UNIX functionality to large memory architectures. Mach was

designed to extend UNIX functionality to distributed computing environments, in which
diverse architectures (i.e., uniprocessors, multiprocessors) interconnected by high speed
networks support distributed applications.

Mach has achieved high portability. It typically takes less than three man-months

to port Mach to a new hardware base.

43

pl I 1

Mach's performance has been measured and compared to that of other operating

systems. Initial indications are that its performance is generally competitive with other

UNIX implementations such as SunOS, and markedly better in some cases (fork opera-

tion, large compilation). Its multiprocessor performance has also been measured and

shown to be competitive with, for example, other Sequent and Encore operating systems.

A key to Mach's performance gains is its implementation of virtual memory and its

integration of virtual memory and communication.

25. References

[Accetta 86] Accetta, Mike, et al., "Mach: A New Kernel Foundation for UNIX
Development," Computer Science Department, Carnegie Mellon University,
Draft Paper, 1 May 1986. 0

[Baron 881 Baron, Robert V., MACH Kernel Interface Manual, Computer Science
Department, Carnegie Mellon University, Draft Paper, 15 February 1988.

[Cooper and Draves 87] "C Threads," Computer Science Department, Carnegie Mellon
University, Draft Paper, 2 March 1987.

[Draves 88] Draves, Richard R., Michael B. Jones, and Mary R. Thompson, "MIG - Thel

MACH Interface Generator," Computer Science Department, Carnegie Mellon
University, Draft Paper, 26 February 1988.

[Jensen 851 Jensen, E. Douglas, C. Douglass Locke, and Hideyuki Tokuda, "A Time-

Driven Scheduling Model for Real-Time Operating Systems," Proceedings of
IEEE Real-Time Systems Symposium, December 1985, 112-122.

[Jones and Rashid 86] "Mach and Matchmaker: Kernel and Language Support for 0
Object-Oriented Distributed Systems," Proceedings of the 1st Annual ACM

Conference on Object-Oriented Programming Systems, Languages, and Applica-

tions (OOPSLA), September 1986.

[Leblanc and Miller 88] Leblanc, Thomas J. and Barton P. Miller, editors, "Summary of 0
ACM Workshop on Parallel and Distributed Debugging," held May 5-6, 1988,

University of Wisconsin, Madison, Wisconsin, ACM Operating Systems Review

22, 4 (October 1988), 7-19.

[Lehoczky 86] Lehoczky, John P., Hide Tokuda, Lui Sha, and Dennis Cornhill, "ART: 0

An Advanced Real-Time Technology Project," Computer Science Department,

Carnegie Mellon University, Draft Paper, November 28.1986.

44

[Locke 86] Locke, C. Douglass, Best-Effort Decision Making for Real-Time Scheduling,

Ph.D. Dissertation, Carnegie Mellon University, 1986.

[Rashid 87a] Rashid, Richard F., "From RIG to Accent to Mach: The Evolution of a

Network Operating System," Computer Science Department, Carnegie Mellon

University, 28 August 1987.

[Rashid 87b] Rashid, Richard, et al., "Machine-Independent Virtual Memory Manage-
ment for Paged Uniprocessor and Multiprocessor Architectures," Proceedings of

the ACM Conference on Architectural Support for Programming Languages and

Operating Systems, October 1987.

[Sansom 86] Sansom, Robert D., Daniel P. Julin, and Richard F. Rashid, "Extending a

Capability Based System into a Network Environment," Technical Report
CMU-CS-86-115, Computer Science Department, Carnegie Mellon University, 24
April 1986.

[Spector and Swedlow 881 Spector, Alfred Z. and Kathryn R. Swedlow, editors, Guide to
the Camelot Distributed Transaction Facility: Release 1, Computer Science
Department, Mach/Camelot, Carnegie Mellon University, Draft of February 4,
1988.

[TCSEC 85] "Department of Defense Trusted Computer System Evaluation Criteria,"
National Computer Security Center, DoD 5200.28-STD, December 1985.

[Tevanian 87] Tevanian, Avadis, Jr., Architecture-Independent Virtual Memory Manage-
ment for Parallel and Distributed Environments: The Mach Approach, Ph.D.

Thesis, Technical Report CMU-CS-88-106, Computer Science Department, Car-
negie Mellon University, December 1987.

[TIS 88] Trusted Information Systems, Inc., "Trusted Mach Presentation," Ellicott City,
Maryland, 7 December 1988.

[Tokuda 871 Tokuda, Hideyuki, James W. Wendorf, and Huay-Yong Wang, "Implemen-
tation of a Time-Driven Scheduler for Real-Time Operating Systems," IEEE 8th
Real-Time Systems Symposium, December 1987.

[Tokuda 88] Tokuda, Hideyuki, Makoto Kotera, and Clifford W. Mercer, "A Real-Time

Monitor for a Distributed Real-Time Operating System," ACM SIGOPS/SIG-
PLAN Workshop on Distributed/Parallel Debugging.

[Tokuda and Kotera 88] Tokuda, Hideyuki, and Makoto Kotera, "Scheduler 1-2-3: An
Interactive Schedulability Analyzer for Real-Time Systems," Computer Science

45

Department, Carnegie Mellon University, February 15, 1988.

[Yee 88] Yee, Bennet S., J.D. Tygar, Alfred Z. Spector, "Strongbox: A Self-Securing •
Protection System for Distributed Programs," Technical Report CMU-CS-87-184,
Computer Science Department, Carnegie Mellon University, 4 January 1988.

[Young 87] Young, Michael, et al., "The Duality of Memory and Communication in the
Implementation of a Multiprocessor Operating System," Proceedings of the 11th

Symposium on Operating Systems Principles, November 1987.

0

460

POSIX: Detailed Description

Submitted by Doug Locke (IBM) and Karen Gordon (IDA)

The IEEE Portable Operating System (POSIX) interface standard is based on
earlier UNIX operating system interfaces. This standard defines an application program
interface to an underlying set of operating system functions; it does not specify the struc-
ture, functions, or performance of the underlying operating system beyond the specific
functionality visible at the application program interface level.

This standards committee, IEEE P1003, has created an initial version of the
interface standard which completed balloting in August, 1988, and is therefore identified
as IEEE 1003.1-1988. In addition, this committee includes a number of smaller working
groups which are expected to present extensions or application-specific interfaces for this
standard for official balloting before 6/90; draft versions of these extensions are currently
available.

In this section, we describe the characteristics of the POSIX interface standard,
including information from current draft extensions of the 1003.2 (Shells and System Util-
ities) working group, the 1003.4 Real-Time Extensions working group (Draft 7), and the
1003.5 Ada Bindings working group, using the framework of the NGCR-OSSWG Refer-
ence Model.

1. Language Support Services

The POSIX standard is currently expressed in terms of the C language, but is
planned for language-independent revision for future releases.

The POSIX Ada Binding working group, IEEE P1003.5 is currently defining an
interface to POSIX from the Ada language; this interface is expected to enter formal bal-
loting by 6/90. The Ada language interface will provide access to all POSIX functions;
initially, the Ada bindings working group is targeting 1003.1-1988, but plans to target the
real-time extensions from 1003.4 immediately following the initial 1003.1-1988 work.
Similarly, the POSIX interface must support all Ada functionality.

As with many commercial operating system interfaces, the POSIX process
semantic model currently provides a poor match to Ada tasking, although the provision
(in the POSIX 1003.4 Real-Time Extensions) of asynchronous I/O is expected to signifi-
cantly improve the ability of Ada implementations to support Ada tasking within the pro-
cess model by removing opportunities for blocking system calls issued by one Ada task to
block the entire Ada program in the POSIX process. Beyond the POSIX process model,
a light-weight concurrency mechanism within a POSIX process (i.e., threads) is also
under active consideration by the 1003.4 Real-Time Extensions working group; if

47

accepted, its presence is expected to significantly improve the semantic match between

POSIX and Ada tasking, greatly enhancing the suitability of POSIX to handle Ada task-

ing (see Process Services description). In addition, the timer and event mechanisms (also •

defined in the 1003.4 Real-Time Extensions) can be used effectively to implement the

Ada delay and exception mechanisms.

2. Architecture Dependent Services

By its nature, the POSIX interface definition is architecture independent; this has

been a primary requirement during its definition, and one which has been rigorously

enforced by the many processor vendors participating in its definition. Beyond the

POSIX standard, conforming implementations are expected to provide implementation-

defined services to support specific architectures, but they are constrained to do this in 0
ways which will not violate the POSIX standard.

3. Capability and Security Services

The current standard specifies file-level permissions for read, write and execute

by the owner, a specified group of users, or all users. Further security facilities are

planned and are under consideration by a POSIX Security working group 1003.6. Prior to

the definition of such security extensions, conforming implementations are free to extend
the standard to provide appropriate discretionary and mandatory access controls

required to conform to NSCS Orange Book security requirements. 0

4. Data Base Services

While POSIX does not specifically include database support at the application

interface, it does provide functions which may be used as building blocks in the construc-

tion of database functions. For example, the POSIX 1003.4 Real-Time Extensions draft

defines extensions which support database functions, including real-time files (e.g., con-

tiguous files for which application response produces predictable temporal and I/O per-

formance), semaphores to allow data consistency controls, and asynchronous I/O func-

tions to allow concurrent multiple I/O operations and computations within a POSIX pro- 0
cess. For further information, see File Service and Synchronization Service descriptions.

5. Data Interchange Services

POSIX provides a "pipe" facility for serial communications between processes

using the standard file service interfaces. For this facility, each process opens its end of

the pipe, which then transmits characters between them.

Additionally, the POSIX 1003.4 Real-Time Extension provides support for mes-

sage passing as a form of interprocess communication (shared memory is an alternate

48

form, which is also supported.) It views the capability of passing messages with both high

and deterministic performance as being crucial in real-time systems. It implements mes-

sage passing through "message queue special files," i.e, objects named within the file sys-

tem (although this definition places message queues in the file system name space, this

does not imply that the function need be handled by the file management portions of the

operating system; neither does it necessarily imply a FIFO queueing discipline.). Mes-

sage queue special files can be opened for use by multiple sending and receiving

processes.

Functions

The POSIX 1003.4 message passing facilities provide the following functions:

* Creating a message queue special file.

* Opening and closing a specified message queue special file.

* Sending a message to a specified message queue special file. The message to be

sent is identified by a pointer (to a buffer in which the message is held) and a

length. If the length is zero, then the pointer itself is the message, which facili-
tates an optimization for very short messages. This optimization entails passing

the contents of the pointer to the receiver as the event value field in the asynchro-

nous event notification associated with the message. This is an optimization in

that the asynchronous event notification not only notifies the receiver of a mes-

sage receipt, but also passes the message as part of the notification. It should be

noted that the pointer's worth of information can indeed be a pointer - to a buffer

in shared memory, for example. The sender can specify that the message is to be

sent either synchronously, in which case the sender blocks until the message is

delivered to the receiver, or asynchronously, in which case the sender does not

block. In the asynchronous case, the sender can further specify whether or not

asynchronous event notification is to occur upon receipt. If the message is held in
a buffer (as opposed to a very short message entirely contained in a buffer
pointer), then the sender can specify how the contents of the buffer is to be

transferred - by transferring control of the buffer to the receiver, by copying the

contents of the buffer into an intermediate system buffer, or by granting access to
the buffer to the receiver so that the receiver can copy the contents. Finally, the

sender can associate a "type" with the message, which the receiver can use to

selectively receive messages. The type can be used to prioritize messages, for

example.

49

I

" Sending a message to a specified list of message queue special files, thus provid-

ing a multicast capability.

" Receiving a message from a specified message queue special file. The receiver

can specify that the message is to be received asynchronously, via an asynchro-

nous event notification, or synchronously. If synchronous receipt is specified,

then the receiver can further specify that the receipt is to be blocking (the receiver

blocks until a message is available) or conditional (the receiver does not block, 0

but only receives a message if one is available). The "type" field can be used to

used to selectively receive messages in one of three ways: (1) FIFO delivery, (2)

prioritized delivery, with FIFO for messages of equal priority (i.e., type), and (3)

FIFO delivery of a specified type.

"* Allocating (by the sender) and freeing (by the receiver) a system-provided "mes-

sage buffer" to hold the message, thus minimizing message copying.

" Setting the values of and getting the values of attributes of a specified message

queue special file. Attributes include the maximum number of messages, max-

imum number of bytes, whether or not to "wrap" new messages over old ones,

etc.

"* Getting the status of a specified message queue special file.
0

6. Event and Error Management Services

A "signal" mechanism is provided which allows operating system or application
defined events to be sent to a process. The process may elect to handle the signal asyn-

chronously or to ignore it, in which case the process will be terminated, along with its chil- 0
dren. If two signals arrive before the first is handled, the first will be lost; the signal

mechanism is therefore considered unreliable.

The POSIX 1003.4 Real-Time Extension provides an additional service; an event

mechanism is available providing for delivery of reliable asynchronous event notifica- •
tions.

POSIX 1003.4 views asynchronous event notification as being essential in real-

time systems. It strives to provide a general purpose, uniform, reliable interface tha. 1-s

both determinism and high performance. Its asynchronous event notification facilities 0

consist of the following: (1) event definition data structure, (2) event trap routine func-

tion prototype definition, and (3) the functions cited below. In defining an event, a user

specifies an event trap routine, an application-defined event value to be passed to the

event trap routine identifying the source of the event, the event class (i.e., a grouping of

50

related events, including a priority in case of multiple event occurrences) within which the
event trap routine executes, and the event class mask to be in effect during execution of
the event trap routine.

Examples of predefined asynchronous events defined in the POSIX 1003.4 Real-
Time Extensions standard include asynchronous I/O completion, timer expiration, mes-
sage arrival, as well as user-defined events.

Functions

The POSIX 1003.4 asynchronous event notification facilities provide the follow-
ing functions:

9 Changing or examining the event class mask of the invoking process. Event
classes that are included in the mask are blocked from being delivered via asyn-
chronous event trap routines. Events are queued if they occur when masked.

9 Waiting for asynchronous event notifications for specified event classes, in one of
two modes. In the first mode, the event processing is handled by the associated
event trap routines; that is, the invoker is "enabling" the delivery of asynchronous
event notifications to their respective trap routines. In the second mode, referred
to as polling, the event processing is handled in-line; that is, the event notification
(i.e., event class and application-defined event value) is delivered to the caller as
part of the return from the invocation of the wait. The caller can specify that the
wait be one of the following: (1) zero, in which case the caller does not wait, but
only enables pending event notifications to be delivered, (2) indefinite, or (3) sub-
ject to a specified timeout period.

* Causing a specified application-defined event to be raised for the invoking pro-
cess.

* Changing the number of queue entries to be used to hold events which have been
raised but not yet delivered to the invoking process.

o Achieving reliable exits from event trap routines via non- local jumps.

o Associating a specified signal with a specified event class. This is a desirable, but
not mandatory, capability that enables a deterministic delivery order to be
achieved for signals.

Notes

o Event classes establish a prioritization for event notification delivery, in the sense
that if event notifications of different event classes are queued, then they are

51

dequeued in order of event class, and in FIFO order for event notifications of

equal event class.

The POSIX 1003.4 asynchronous event notification facilities are purposefully not

intended to provide interprocess communication, although they are used as a

delivery mechanism by the IPC mechanism described under Data Interchange

Services.

7. File Services

The POSIX file system consists of a hierarchically organized set of files. The

hierarchy consists of a set of file directories which in turn contain pointers either to other

directories or to individual files. File descriptors may be entered into more than one

directory; a file is not deleted until it is removed from the last directory in which it is

entered. In addition, the file system may contain "special" files which are visible in a

directory, but may or may not have representations in permanent storage and do not

imply that their associated functions are performed by the file management portions of

the operating system. They are used for operations which cross process boundaries, such 0

as semaphores and shared memory.

The POSIX 1003.4 Real-Time Extensions define three extensions to the file ser-

vices for use in developing real-time and database applications. These services are real-

time files, asynchronous I/O services, and synchronized I/O services. 0

7.1 Real-time Files

The POSIX 1003.4 Real-Time Extensions draft views the capability of perform-

ing I/O operations with both deterministic and high performance as being crucial in real-
time systems. It recognizes that contiguous files are a traditional mechanism for provid-

ing deterministic high performance I/O, since most real-time systems utilize rotating mag-

netic disks as their file storage media, but rather than provide a specific interface to con-
tiguous files, it provides a more general interface to "real-time files." Of course, an imple-

mentation may choose to implement real-time files using contiguous files, but it is not
forced to do so. An implementation is free to take advantage of advanced or non-tradi-

tional media that can provide deterministic high performance without relying on con-

tiguity, within a framework provided by the POSIX 1003.4 real-time file facilities.

The approach that POSIX 1003.4 takes to real-time file support is to make some

critical (performance-related) attributes of the operating system's implementation of files

and I/O not only visible to applications but also to some extent application controllable
(i.e., at least "influenceable," through hints related to characteristics of the application,

which the operating system can take into account).

52

Deterministic high performance means predictable (i.e, time bounded) and very

short delay times.

Functions

The POSIX 1003.4 real-time file facilities provide the following functions:

* Creating a real-time file. In doing so, a process communicates to the system what

it perceives as being desirable attributes of the real-time file, and it receives in
return information on the actual attributes of the file as created by the system. As
stated in the POSIX 1003.4 document [POSIX 1003.4 draft 7, p. 167], "A con-

forming application should compare all of the requested and returned attributes
to ensure a sufficient set have been honored."

" Communicating to the system desirable attributes of a specified (previously
created) real-time file. Again, the specification of desirable attributes is just a
request to the system. The process receives in return information on the actual

attributes, and must decide how to proceed based on that information.

"* Getting the actual attributes of a specified real-time file or of real-time files of a
specified file system.

"* Obtaining a suitably aligned buffer of a specified size either from a specified data
area or from the system.

Notes

"* Performance-related implementation attributes include the following: (1) amount
of data to be transferred in real-time I/O operations, (2) space reserved for a file
or file system, (3) whether or not file is to be extended, and (4) size of extents.

" Hints, or advisory information, that an application can offer the operating system

include the following: (1) file allocation should be optimized for sequential
access, which can be taken to mean that contiguous allocation is desirable, (2)
remaining file space should be zeroed upon truncation of the file, (3) reaccess of
currently accessed data is unlikely, so a least recently used (LRU) caching policy

might not be advantageous. (4) read-ahead might not be advantageous, and (5)
application is doing its own caching, so system caching might not be advanta-

geous.

7.2 Asynchronous I/O Services

The POSIX 1003.4 Real-Time Extensions provide an additional capability to per-
form file 1/0 asynchronously, allowing processes to perform multiple concurrent I/O

53

operations concurrently with computations on I/O data.

Functions 9

The POSIX 1003.4 asynchronous I/O facilities provide the following functions:

" Asynchronously reading and writing a specified file. Control returns to the

invoker when the read or write request has been initiated, or, at a minimum, when

it has been queued to occur. The invoker can define an event and associate it with 0

the asynchronous I/O operation, in which case the event is raised upon comple-

tion of the operation. Alternatively, the invoker can poll for completion by check-

ing a field in the control block specified for the I/O operation. The invoker can

also specify an asynchronous I/O operation priority to be used in determining the

order of execution of asynchronous I/O operations with respect to one another.

The significance of the priority is implementation- specific.

"* Initiating a list of I/O requests with a single system call.

"* Cancelling a specified asynchronous I/0 request; or, cancelling all asynchronous •

I/0 requests to a specified file.

7.3 Synchronized I/0 Services

In addition, the POSIX 1003.4 Real-Time Extensions working group recognizes 0

that some applications require assurance of I/O completion, particularly in database

applications. It views the capability of receiving such assurance as being vital in real-time

systems. The POSIX 1003.4 Real-Time Extensions draft refers to I/O that is to be done

with assurance of completion as "synchronized I/O."

Two types of synchronization are defined in POSIX 1003.4:

" Synchronized I/O data integrity completion. Completion is defined to occur for

reads when data becomes available to the reading process. It is defined to occur

for writes when both the data and the file system information necessary for

retrieval of the data have been successfully transferred.

"* Synchronized I/0 file integrity completion: completion is defined to occur when,

in addition to the above, all file system information relevant to the I/O operation

has been successfully transferred.

Data is said to be successfully transferred "when the associated I/O peripheral in some

implementation-defined fashion assures that all data is readable on any subsequent open

of the file in the absence of a failure of the physical storage medium" [POSIX Draft 7,

0.11I. '5

54

Functions

The POSIX 1003.4 synchronized I/O facilities provide the following functions:

" Specifying that I/O completion for a specified file is to be (re-)defined as either
synchronized I/O data integrity completion or as synchronized I/O file integrity
completion. A process can make this specification for a file that is being opened
(as part of the POSIX openo function) or for one that is already open (via the

POSIX fcntl0 function).

" Requesting that all outstanding I/O requests for a specified file are to be "com-
pleted" in accordance with the definition of either synchronized I/O data integrity
completion or as synchronized I/O file integrity completion. The request can be
either synchronous (i.e., control returns to the invoking process upon the comple-
tion of all the outstanding I/O operations) or asynchronous (i.e., control returns
when the request is queued). In the asynchronous case, a specified asynchronous

event notification will occur upon completion.

8. Generalized I/O Services

Device I/O in POSIX is handled in the same way as file I/O. Device access is
made through the normal file system operations, although additional primitives are avail-
able to control devices.

9. Graphics Kernel Services

See the Man-Machine Interface (MMI) Services description.

10. LPOS to LPOS Communications Services

At the POSIX application interface, no functions are provided for inter-LPOS
services. Conforming implementations are expected to provide such services tran-
sparently using normal POSIX functions, or using implementation-defined extensions.

11. Man-Machine Interface (MMI) Services

The POSIX 1003.2 Shells and Utilities working group is currently balloting a draft
standard which provides for a tty-style command interface at the man-machine interface
level which is virtually identical to the UNIX interface. The provision of functions to con-
trol user consoles at the application functional interface makes it possible to implement
virtually any man-machine interface desired; typical examples provided by conforming
implementations might include X-windows (from MIT), MOTIF (from the Open
Software Foundation), and Open Look (from Unix International). A separate IEEE
standard committee called 1102 is defining a standard with respect to a graphics

55

0,l mnu m m annlnnn ~ nn

interface, based on X-windows.

12. Networks and Communications

POSIX itself does not (now) address coi.,munications directly. Conforming

POSIX implementations are free to provide any level of communications control desired,

including transparent distributed facilities in which the existence of multiple processors is

not visible to the application.

13. Process Management Services

The POSIX 1003.1-1988 standard offers "heavy-weight" process concurrency.

Each process has a separate address space, and shares file descriptors and other control

structures with its parent. Operating system primitives to manage processes are very easy

to use (i.e., fork() and execo).

A proposal to add "light-weight" a concurrency model (called "threads") within

a POSIX process is under active consideration by the POSIX 1003.4 Real-Time Exten-

sion working group. This would provide for multiple threads of control to exist within

processes, including mutual exclusion primitives (e.g., mutex). These threads would

carry very little state information (i.e., stack pointers and registers) which would make

them extremely "light weight" and thus allow extremely fast implementations. They

would be priority scheduled in the same way as POSIX processes (see Scheduling Ser-

vices), using the same set of possible priorities.

14. Project Support Environment Services

The POSIX interface description does not explicitly describe project support

environment services.

15. Reliability, Adaptability and Maintainability Services

The POSIX interface standard includes extensive error checking for every ser-

vice, defining a complete set of error returns when errors are detected, as well as an asyn-

chronous error facility (i.e., signals and events). Actual management of error conditions,

including reconfiguration, is intended to be handled by applications using these error indi-

cations with standard POSIX functions.

16. Resource Management Services

The POSIX 1003.2 Shells and Utilities working group includes user-accessible

memory management services (e.g., malloco) which provide for memory allocation
within the process memory space. The POSIX process model provides for the process

memory spaces to be mutually disjoint; thus, the memory management services need not

56

be included in the POSIX kernel services.

The POSIX 1003.4 Real-Time Extension, however, views the shared memory
paradigm as being an important, traditional, high-performance mechanism for interpro-
cess communication in real-time systems. It thus supports shared memory objects as
"shared memory special files," i.e., objects named within the standard file system (the
use of the file system name space does not imply that management and mapping of shared
memory need be implemented using the file management services of the operating sys-
tem). It enables shared memory special files to be mapped into a process's virtual address
space.

Functions

The POSIX 1003.4 shared memory facilities provide the following functions:

"* Creating a shared memory special file.

* Opening and closing a specified shared memory special file.

"* Mapping (and unmapping) a specified segment of a specified shared memory spe-
cial file into a process's virtual address space at a specified address.

Notes

" Semaphores (see Synchronization Services discussion) are envisioned as a
mechanism for synchronizing access to shared memory.

" The shared memory facilities are designed to be extensible, in that common glo-
bal objects other than shared memory special files can be mapped into a process's
address space through the shared memory facilities, in an implementation-
specific way. The only restriction is that the objects be named and accessed
through the standard file system facilities. One specific extension singled out in
the POSIX 1003.4 Draft 7 document as being particularly relevant in the real-time
computing domain is to enable a process to utilize the shared memory facilities to
map sections of physical address space into its virtual address space.

" The shared memory facilities are designed to support high- performance data
sharing, and, in particular, not shared libraries. "The features of executable
shared memory special files and mapping shared memory with execute-only per-
mission are open issues" [POSIX 1003.4 Draft 7, p. 56].

In addition, the POSIX 1003.4 Real-Time Extension working group supports the
notion that a process should be able to lock its address space, or specified regions
thereof, into memory. Such a capability is viewed as being crucial to deterministic high

57

performance, which is essential in real-time systems.

Functions

The POSIX 1003.4 process memory locking facilities provide the following func-

tions:

"* Locking and unlocking specified regions of a process's address space into

memory.

Notes

"* The process memory locking interface defined by POSIX 1003.4 enables

processes to specify certain "logical" regions of their address space for locking.

These include the data region, the text region, the stack region, the shared

memory region, and the executable region. However, it recognizes that some sys-

tems cannot support locking such memory regions separately; therefore it makes

the locking of logical regions optional.

17. Scheduling Services

The POSIX standard (IEEE 1003.1-1988) currently does not define the process

scheduling to be performed. The POSIX 1003.4 Real-Time Extension, however, views

preemptive, dynamic priority-driven scheduling as being fundamental to real-time sys-
tems. It supports two variants of preemptive, dynamic-priority-driven scheduling. The

variants are distinguished by the way in which processes of equal priority are scheduled.

In the first variant, runnable processes of equal priority are scheduled according to a
first-in-first-out (FIFO) policy.(It should be noted that if a process sets its priority to its

current priority, the process is viewed as "entering" the queue; so, it becomes the last, or

newest, member of the queue, regardless of its previous position.)In the second variant,

runnable processes of equal priority are scheduled according to a round-robin (RR) pol-

icy, with a specified time slice.

Functions 0

The POSIX 1003.4 scheduling facilities provide the following functions:

"* Setting the priority of and getting the priority of a specified process.

"* Setting the "scheduling policy" of and getting the scheduling policy of a specified

process. The scheduling policy can be: (1) preemptive, dynamic-priority-driven,
FIFO within a priority level, (2) preemptive, dynamic-priority-driven, RR within

a priority level, with a specified time slice, or (3) implementation-specific.

58

ML__

Notes

* It is recognized in the POSIX 1003.4 Draft 7 document that issues pertaining to

priority inversion, preemption of (non-processor) resources, and lightweight
processes remain to be addressed.

18. Synchronization Services

The POSIX 1003.4 Real-Time Extension adopts the binary semaphore as the
basic means of process synchronization. It notes that the binary semaphore is a
"minimal" synchronization mechanism, and that other mechanisms such as counting
semaphores and monitors can be implemented on top of the binary semaphore. It sup-
ports semaphores as "semaphore special files," i.e., objects named within the file system
(although it must be noted that the standard does not imply that the semaphore functions
need be performed by the file management portions of the operating system. In fact, the
standard explicitly defines this facility in such a way as to allow implementations to avoid
system calls for successful semaphore accesses.).

Functions

The POSIX 1003.4 semaphore facilities provide the following functions:

* Creating a semaphore special file.

* Opening and closing a specified semaphore special file.

& Doing a P-operation (Dijkstra, "Co-operating Sequential Processes", 1968) on a
semaphore represented by a specified semaphore special file. The P-operation
can be invoked either unconditionally or conditionally. When invoked condition-
ally, the P-operation is performed only if the semaphore is in an unlocked state, in
which case the P-operation causes the semaphore to enter a locked state and the
invoking process to become the holder of the semaphore. It should be noted that
blocked processes are granted the semaphore in priority order, with FIFO order-
ing for processes of equal priority.

* Doing a V-operation on a semaphore represented by a specified semaphore spe-
cial file. The V-operation can be invoked either unconditionally or conditionally.
When invoked conditionally, the V-operation is performed only if other processes
are currently blocked by the semaphore.

Notes

The POSIX 1003.4 document notes [POSIX 1003.4 Draft 7, p.61]: "Since sema-
phores have been defined as a special file, they may be opened by two processes that do

59

not share physical address space if a distributed file system is utilized." It goes on to state
[POSIX 1003.4 Draft 7, p. 671: "Semaphores are only required to operate when the
processes using a common semaphore have the same physical address space. If a distri- 9
buted file system is used, a mechanism shall be provided to ensure that only processes

that have the same physical address space can access the semaphore."

19. System Initialization and Reinitialization Services

The POSIX interface specification leaves system initialization and reinitialization
services to be defined by the implementation.

20. System Operator Services

The POSIX interface specification leaves system operator services to be defined
by the implementation.

21. Time Services

The POSIX 1003.1-1988 standard provides for interrogating and reading time and
date, as well as a sleep() function to delay for a set period of time. The standard defines
these functions in units which are, however, unacceptably coarse for use by real-time sys-
tems.

The POSIX 1003.4 Real-Time Extension to POSIX provides additional fine reso-
lution interfaces to system-wide timers and to per-process interval timers that make time
visible to processes and enable processes to schedule timer events in a variety of useful
ways. It views such interfaces as being essential to real-time systems, which are dis-
tinguished by the significance of the role that time and timing constraints play in them.

Functions
0

The POSIX 1003.4 timer facilities provide the following functions:

" Setting the value of, getting the value of, and getting the resolution of a specified

system-wide timer. 0

"* Creating and destroying a per-process interval timer, based upon a specified sys-
tem-wide timer and a specified delivery mechanism (signals, events, or imple-
mentation-specific). If events are specified, then the application programmer
defines an event and writes an event trap routine in accordance with the POSIX 0
1003.4 asynchronous event notification facilities (see Event and Error Manage-

ment Services).

60

* Setting the value of, getting the value of, and petting the resolution of a specified
per-process interval timer. The "value" of an interval timer consists of two parts:
(1) timer interval and (2) remaining time to the next timer expiration. The
remaining time to the next timer expiration can be set to a given offset from the
current time (as known by the associated system-wide timer), or to a given abso-
lute value. The timer interval, if nonzero, indicates that periodic timer expira-

* tions are to begin occurring after the initial timer expiration, where the period is
equal to the specified timer interval.

Notes

9 The data structure that is used to represent time provides for nanosecond resolu-
tion.

22. Proprietary or Open

As an IEEE standard, POSIX is fully open for implementation by any operating
* system vendor.

23. Qualification as a Standard

The POSIX standard is controlled by IEEE (P1003 committee).

* 24. Platform Flexibility

There are no known hardware platforms unable to support a conforming POSIX
implementation.

61

V: Detailed Description
Submitted by Karen Gordon (IDA)

The V distributed operating system, developed under the leadership of David

Cheriton at Stanford University, is designed for a cluster of workstations interconnected
by a high-performance network. It has been running at Stanford University since 1982. It
currently runs on SUN and MicroVAX workstations, which are interconnected by a
10-megabit Ethernet. Its goals can be elaborated as follows:

"* The V project strives for minimization of the kernel.

"* The V project strives for high performance, in particular, high-performance inter-
* process communication.

"* V's target application domains include real-time, interactive timesharing, and
batch applications. Real-time requirements have always been a major Linsidera-
tion. Interactive timesharing has been the primary application, though. V is used

* to transform a cluster of workstations into a distributed system that offers users
the same resource and information sharing capabilities traditionally provided by
a centralized timesharing system. Recent work has investigated the possibility of
supporting large distributed parallel applications.

* The V distributed operating system consists of the following components:

"* V kernel. The design of the V kernel is based on two key concepts. The first is
that a kernel should be "minimal." Namely, it should implement an interconnec-
tion mechanism between applications and system services, but not the system ser-

* vices themselves. Thus, interprocess communication (IPC) lies at the core of the
V kernel. The second key concept is that the kernel must satisfy the following
"integrity constraint": the kernel cannot depend upon the correctness of anything
outside of itself for its own correctness. If the kernel fails, then it must be either
the kernel's fault or the hardware's fault. This integrity constraint limits the
minimization (of the kernel) that can be achieved. Currently, the V kernel
includes the following servers in addition to the IPC facility: a communication
server (which implements the management component of IPC), a time server, a
process server, a memory management server, and a device server. However, the
design is periodically re-examined to determine whether further reduction of the
kernel is possible.

" V system servers. These servers provide the traditional operating system ser-
vices. They are implemented above the kernel, at the user process level, as mul-
tiprocess programs (based on lightweight processes). They are accessed through

63

the V IPC mechanism. Current servers include a file server, a printer server, a

display server, a pipe server, an Internet server, and a team server (which

manages the execution of programs). Servers under development include a log

server for optical disk storage and a time synchronization server.

1. Language Support Services

"* Ada language support services.

" Support for other languages. The V distributed operating system offers program-

ming support in the form of various run-time libraries. The libraries implement

conventional programming interfaces such as Pascal I/O and C stdio. V also

offers a set of system commands.

2. Architecture Dependent Services

* Internetwork communication. V incorporates a system server known as the Inter-

net server, which implements the DoD TCP/IP suite of protocols. 0
3. Capability and Security Services

Regarding protection, each process is encapsulated in an address space, and can

communicate with other processes only via IPC.

VMTP, the transport protocol underlying V IPC, incorporates security mechan-

isms, including "entity domains" and encryption. In VMTP, direct communication can

occur only on an intra-domain basis, thus ensuring the isolation between security levels

required for mandatory access control. The idea is to have one domain per security level.

Entities can belong to more than one domain, so trusted servers could communicate with

users of different security levels. Encryption can be used as a mechanism to facilitate the

secure authentication of subjects required for discretionary access control.

4. Data Base Services

5. Data Interchange Services

6. Event and Error Management Services

V incorporates an exception server outside the kernel. The kernel process server

causes the exception-incurring process to send a message describing its problem to the

exception server. The exception server then takes action, for example, invoking an

interactive debugger.

64

7. File Services

* File Server. V implements file services outside the kernel via the file server, which

implements a UNIX-like file system.

The file system utilizes a contiguous allocation scheme that results in most files

being data contiguous on the disk.

Naming. V has a three-level naming system. At the highest level are character-

string names, which are used for permanent objects such as files. At the next

level are object identifiers, which are used for transient objects such as open files.

At the lowest level are entity identifiers, which identify transport-level endpoints

(such as processes or groups of processes).

8. Generalized I/O Services

The V project has developed a uniform I/O interface called the UIO interface as

its system-level I/O interface (as opposed to its application-level I/O interface, which is

implemented by the run-time libraries). The UIO interface is based on an abstraction

known as the UIO object, which corresponds to an open file in conventional systems. The

UIO interface provides some support for record I/O, locking, atomic transactions, and

replication. It further supports the notion of optional and exceptional (escape-mode)

functionality.

9. Graphics Services

V incorporates a display server, which supports multiple views, zooming, and

redraw.

10. LPOS to LPOS Communication Services

The V kernel is replicated at each participating network node. The kernels

cooperate to provide the image of a single unified distributed system, in which processes

execute in address spaces and communicate using V LPC. Kernel services (e.g., process

management, memory management, communication management, device management)

are themselves invoked via V IPC.

11. Man-Machine Interface (MMI) Services

The V display server implements multi-window facilities using a bitmap display.

12. Networks and Communications

* Interprocess communication. V IPC is message-based. It has two distinguishing

features. First, it is optimized for request-response behavior. Typically, a server

65

runs as a dedicated process or team of processes. A client requests a service by

sending a message to the server, and then waiting for the response. The request-

response transaction (which is sometimes referred to as Remote Procedure Call

(RPC) in the V literature) is considered fundamental in V. It directly implements
the predominant fetch operation (typified by file read); namely, a client sends a

request for data and receives the data in the server's corresponding response.

Second, V IPC supports multicast, both as a multi-destination delivery mechan-
ism and as a binding (or logical addressing) mechanism. Multicast is considered
fundamental to the implementation of problem-oriented shared memory, and has
proved invaluable in the implementation of the V distributed operating system
itself.

A transport level protocol, known as the Versatile Message Transaction Protocol
(VMTP), has been developed to support V IPC. In addition to request-response
and multicast transactions, VMTP also supports forwarding and streaming. In
regard to streaming, it should be noted that VMTP, unlike other transport proto-
cols, strives first for low delay, and then attempts to build high throughput capa-
bilities (e.g., streaming) on top of the low delay foundation.

In part to support real-time applications, VMTP provides datagram message
transactions, prioritized message transmission and delivery, and conditional mes-
sage delivery (i.e., delivery only if the receiver is awaiting a message when the
message arrives).

9 Pipe Server. V incorporates a pipe server that implements UNIX-like pipes.

13. Process Management Services

9 Basic abstractions. In the V literature, the V kernel is described as a "software
backplane." Just as a hardware backplane provides slots, power, and communi-
cation, the V kernel provides address spaces, lightweight processes, and interpro-
cess communication (in the form of message transactions). Thus, the basic
abstractions of the V kernel are the following:

- Address space. The V kernel separates the conventional process
abstraction into two components. The first component is the address
space, which holds programs (and open files).

- Lightweight process. The second component of the process abstraction is
the lightweight process, which is the locus of control within an executing
program. Multiple lightweight processes may exist within an address

66

• m • -- -,• == = mmmmlllmmmmmlm m mm m m m m

space, and are referred to as a "team" of processes.

Message transaction. Processes communicate via message transactions.

In the basic scenario, a client sends a request message to a server, and

then blocks (awaiting a response message). The server receives the

request message, performs the requested service, and then replies to the

client with a response message.

* Kernel process server. The kernel process server implements operations to

create, destroy, query, modify, and migrate processes.

14. Project Support Environment Services

15. Reliability, Adaptability, and Maintainability Services

e Reliability and fault tolerance. V supports the notion of a process group as a set

of processes identified by a "group identifier." The processes may reside at any

node in the distributed system. The process group mechanism and multicast com-

munication are used to implement distributed and replicated services. Both dis-
tribution and replication enhance reliability and fault tolerance.

16. Resource Management Services

"* Storage management. In V, an address space consists of ranges of addresses,
called regions. The memory management system (1) binds regions to portions of

open files (UIO objects), (2) manages physical memory as a cache for data from

the open files, and (3) maintains the consistency of the cached data. The transfer

of pages into the cache, as well as the mapping, is done on demand.

In part to support real-time applications, V enables programs to be specified as

memory-resident.

"* Device Management. The kernel device server implements access to devices

supported by the kernel, including disk, network interface, mouse, frame buffer,

keyboard, serial line, and tape. The device server is device-independent code
that interfaces between the process-level client and the driver modules for the

individual devices. The device server implements the UIO interface.

Process-level servers (e.g., file server, Internet server, display server) implement

extended abstractions using the basic interfaces provided by the kernel device

server.

67

17. Scheduling Services

In regard to processor scheduling, the kernel provides simple priority-based

scheduling. In the uniprocessor case, the kernel allocates the processor to the highest

priority process in the ready queue. In the multiprocessor case, a process is associated

with a processor and its ready queue. The kernel schedules processes so that each pro-

cessor is always executing the highest priority process in its own ready queue. In addi-

tion, the kernel periodically attempts to balance the load by changing the process-to-pro-

cessor associations.

Above the kernel, a d dicated scheduler process implements a higher level of

scheduling. The scheduler manipulates priorities to effect time-slicing among interactive

and background processes. A number of high priority levels are reserved for real-time 6

processes and are not subject to the priority manipulations of the scheduler.

18. Synchronization Services

19. System Initialization and Reinitialization Services

20. System Operator Services

21. Time Services

One of the V kernel servers is a time server. The kernel time server maintains the
current time of day, and it enables a process to read the time, set the time, and delay for a

specified period of time. An operation for awaking a process that is delaying is also pro-

vided.

Time synchronization across nodes is implemented by a process outside the ker-

nel.

22. Proprietary or Open

The protocols and interfaces are open.

23. Qualification as a Standard

The V project emphasizes protocols and interfaces as a means of defining and

building distributed systems. Efforts are underway to promulgate some of its protocols,
most notably VMTP, through the DoD data communication protocol standards process.

The naming and I/O protocols represent significant contributions to distributed system

technology, and have played major roles in the development of the V distributed operat-
ing system. Other protocols of interest include ones for remote execution, migration,

time synchronization, and atomic transactions.

68

24. Platform Flexibility

, is a distributed operating system designed for a cluster of workstations inter-

connected by a high-performance network. It currently runs on SUN and MicroVAX

workstations, which are interconnected by a 10-megabit Ethernet.

V is being extended to run on shared memory multiprocessor machines. Targets

include the DEC Firefly multiprocessor workstation and VMP, a shared memory mul-

tiprocessor machine designed and built at Stanford.

25. References

Primary

[Cheriton 88b] Cheriton, David R., "The V Distributed System," Communications of the

ACM 31, 3 (March 1988), 314-333. This article presents an excellent overview of

the V distributed operating system. It is the primary source for the above sum-

mary. Some of the material in the summary was taken verbatim from the article.

Secondary

[Cheriton 84] Cheriton, David R., "The V Kernel: A Software Base for Distributed Sys-

tems," IEEE Software, (April 1984), 19-42.

[Cheriton 86a] Cheriton, David R., "Problem-oriented Shared Memory: A Decentral-

ized Approach to Distributed System Design," Proceedings of The 6th Interna-

tional Conference on Distributed Computing Systems, May 1986, 190-197.

[Cheriton 86b] Cheriton, David R., "VMTP: A Transport Protocol for the Next Genera-

tion of Communication Systems," Proceedings of SIGCOMM 86, August 1986,

406-415.

[Cheriton 87a] Cheriton, David R., "UIO: A Uniform I/O System Interface," ACM

Transactions on Computer Systems 5, 1 (February 1987), 12-46.

[Cheriton 87b] Cheriton, David R., "Effective Use of Large RAM Diskless Workstations

with the V Virtual Memory System," Computer Science Department, Stanford

University, February 16, 1987.

[Cheriton 88a] Cheriton, David R., "VMTP: Versatile Message Transaction Protocol,"

RFC 1045, SRI Network Information Center, February 1988.

[Cheriton 88c] Cheriton, David R., "Exploiting Recursion to Simplify RPC Communica-

tion Architectures," Computer Science Department, Stanford University, Draft

Paper, March 21, 1988.

69

[Cheriton and Mann 88] Cheriton, David R. and Timothy P. Mann, "Decentralizing a

Global Naming Service for Improved Performance and Fault Tolerance," to

appear in ACM Transactions on Computer Systems, (1988).

[Cheriton and Roy 85] Cheriton, David R. and Paul J. Roy, "Performance of the V

Storage Server: A Preliminary Report," Proceedings of the ACM Conference on

Computer Science, March 1985.

[Cheriton and Zwaenepoel 85] Cheriton, David R. and Willy Zwaenepoel, "Distributed

Process Groups in the V Kernel," ACM Transactions on Computer Systems 3, 2

(May 1985), 77-107.

[Finlayson and Cheriton 87] Finlayson, Ross S. and David R. Cheriton, "Log Files: An

Extended File Service Exploiting Write-Once Storage," Proceedings of the 11th

Symposium on Operating System Principles, November 1987, 139-148.

[Kanakia and Cheriton 87] Kanakia, Hemant (Electrical Engineering Department) and

David R. Cheriton (Computer Science Department), "The VMP Network

Adapter Board (NAB): High-Performance Network Communication for Mul-

tiprocessors," Stanford University, December 14, 1987.

[Tanenbaum and van Renesse 85] Tanenbaum, Andrew S. and Robbert van Renesse,

"Distributed Operating Systems," Computing Surveys 17, 4 (December 1985),

419-470.

[Theimer 85] Theimer, Marvin M., Keith A. Lantz, and David R. Cheriton, "Preempt-

able Remote Execution Facilities for the V-System," Proceedings of the 10th

Symposium on Operating System Principles, December 1985.

70

700

0in

Real-Time Operating System Technology'

Submitted by Karen Gordon (IDA)

1. REAL-TIME COMPUTING SYSTEMS

Real-time computing systems are designated as such because of the significance

of the role that the time dimension plays in them. In the premier issue (dated June 1989)

of The Journal of Real-Time Systems, the introductory editorial characterizes real-time

systems as that category of systems in which "the correctness of the system depends not

only on the logical results of computations but also on the time at which the results are

produced" [Stankovic 89, p. 6).

Thus, in real-time computing systems, timeliness is mandatory. Timing con-
straints are imposed by the environment in which the real-time computing system exists.

Typically, the environment consists of a larger controlled system (e.g., automobile, air-
craft, ship, submarine, missile, hospital patient monitoring system, air traffic control sys-

tem, factory floor, nuclear power plant, etc.), which is in turn embedded in and affected

by its physical environment. The real-time computing system is the controlling system.
Failure to meet environment-imposed timing constraints can have catastrophic conse-

quences, such as loss of life, loss of the controlled system, or failure of the mission of the

controlled system.

The qualifiers "hard" and "soft" are often used in conjunction with the term
"real-time system." While precise definitions have not been agreed upon, the general dis-

tinction seems to lie in the nature of the timing constraints. Hard real-time systems have

timing constraints that are both rigid and mandatory. For example, a task may have an
absolute upper bound on response time that must never be exceeded. Such an upper

bound is referred to as a hard deadline. Soft real-time systems, on the other hand, have

more flexible timing constraints (sometimes referred to as soft deadlines). In the exam-

ple, flexibility could entail (1) relaxing the requirement that the upper bound never be
exceeded, by moving from deterministic performance specifications to stochastic specifi-

cations (e.g., response to an operator action must occur within 350 milliseconds with 97%

probability), or (2) relaxing the upper bound itself, so that a response computed after the
"upper bound" is still usable, although in some sense less valuable [Jensen 851
[Locke 86], or (3) some combination of the above.

1. This paper was included as Section 3.4 of Version 0.7 (dated 01/18/1990) of the NGCR OSSWG
Available Technology Report. However, due to an OSSWG management decision to streamline the
report by removing discussions of mission-critical operating system issues, this paper and other issue
papers were not included in Version 1.3 (dated 09/14/1990) of the NGCR OSSWG Available Technology
Report, which was published in the OSSWG's First Annual Report.

71

2. REAL-TIME APPLICATION DEVELOPMENT FRAMEWORKS

In general, development of real-time applications is undertaken in one of two

divergent frameworks: a periodic framework or an aperiodic, asynchronous event-driven
framework. In a periodic framework, an application is developed as a collection of
periodic tasks. A periodic task is one that is initiated at regular time intervals, or periods.

The periodic framework has the advantage that timing constraints are explicitly
taken into account through the period mechanism. The end of each period is the hard
deadline for the task initiated at the beginning of the period. Period lengths are chosen so
that an application can "keep pace" with its environment. Since task arrivals are syn-
chronous, a system can be sized to guarantee that all deadlines are met. The disadvan-
tage of the purely periodic framework is that it does not accommodate asynchronous 0
events (or aperiodic tasks), which inevitably occur in all but the simplest control systems.

However, the periodic framework can be adapted to deal with asynchronous
events in various ways. For example, a periodic task can be created to service asynchro-
nous events (in which case the periodic task in effect "polls" for event occurrences), or
asynchronous events can be processed as background tasks. In the June 1989 issue of The
Journal of Real-Time Systems [Sprunt 89], Sprunt, Sha, and Lehoczky present methods
for scheduling aperiodic tasks in a specific periodic framework-the rate monotonic
framework.2 Their methods provide lower average response times for aperiodic tasks 0
than either polling or background processing, while at the same time maintaining guaran-

tees of meeting all periodic task deadlines.

In an aperiodic framework, processing is not primarily periodic but is instead
event-driven. Events occur asynchronously. Typically, priorities are used to establish a •
service ordering for events. In general, the resource management objective is to process
events as fast as possible, subject to their priorities. In this type of framework, it is

periodic tasks that are anomalous. The problem is not the fact that their interarrival
times are constant but the fact that they have hard deadlines and expect 100% to be met.
Unless sufficient processor time is reserved for periodic tasks, for example, by giving all 0

periodic tasks higher priorities than all aperiodic tasks, then providing such deterministic
assurance is infeasible. Aperiodic tasks with hard deadlines suffer from the same lack of
deterministic assurance, unless they are well-behaved in the sense of having some reason-
able minimum separation time and can have sufficient processor time dedicated to them.
In general, as soon as a stochastic component (namely, aperiodic tasks or asynchronous

2. In a rate monotonic framework, tasks are assigned static priorities according to their arrival rates: tasks
with higher rates are assigned higher priorities. Task scheduling is preemptive priority-driven. The rate
monotonic algorithm was shown to be optimal among the class of preemptive, static priority driven
algorithm by Liu and Layland (Liu and Layland 73]. 0

72

0

events) is introduced into a system's workload, assurance must be cast in stochastic terms
rather than absolute, deterministic terms.

The disadvantage of the traditional (priority-driven) aperiodic framework is that

it lacks mechanisms for dealing with time. Timing constraints are not specified, either
explicitly or implicitly. Consequently, methods are not available for ensuring that the tim-
ing constraints are met. The application developer is afforded little support in sizing the
system to ensure that "as fast as possible" is indeed fast enough. In efforts to address this
concern, methods for introducing timing constraints into aperiodic frameworks have been
proposed and investigated [Jensen 85] [Locke 86], but have not yet made the transition to
become a part of the state of the practice in real-time computing.

3. OPERATING SYSTEM SUPPORT FOR REAL-TIME COMPUT-
ING

As recently pointed out by Stankovic [Stankovic 88], today's real-time systems
are built through brute-force techniques and at inordinate expense. As systems become
ever larger and more complex, a more "scientific" approach is called for. An important
ingredient of any scientific approach is an operating system designed to meet the unique
needs of real-time computing, i.e., a real-time operating system.

Operating systems that claim to be real-time generally offer one or more of the
following categories of services and features: mission-driven/application-directed
resource management, timely response to events, predictable service times and overhead
times, and time services that make time visible and accessible to applications. The signi-
ficance of each of these categories is discussed below. It should be noted that most real-
time operating systems are targeted to only one of the two real-time application develop-
ment frameworks described above and that the importance of the different categories of
services and features varies according to the target framework. For example, time ser-
vices, specifically ones that enable periodic initiation of tasks, are more critical in a
periodic development framework, while timely response to events is more critical in an
aperiodic framework.

3.1 MISSION-DRIVEN/APPLICATION-DIRECTED RESOURCE MANAGE-
MENT

Over the past two decades, operating system research has been focused primarily
on interactive computing. Common resource management goals have been to minimize
average delay, maximize average throughput, and ensure "fairness" to competing users.
While such efficiency-related and fairness-related goals may be well suited to the require-
ments of interactive computing, they do not adequately meet the requirements of

73

real-time computing. As discussed above, real-time computing systems are distinguished
by the presence of environment-imposed timing constraints.

A real-time operating system must be designed in accordance with the fact that a
real-time computing system exists to perform a mission. The operating system should be
supportive of the mission: the resource management provided by the operating system
should be neither efficiency-driven nor fairness-driven, but mission-driven. In particular,
resource management should be driven by the time constraints of the mission, as con-
veyed to the operating system by the application. It is the responsibility of the application
to specify resource management attributes to the operating system, and it is the responsi-
bility of the operating system to manage all resources according to the application-speci-
fied attributes.

Mission-driven, application-directed resource management entails the following:

a. Application-directed allocation: In order to provide fast and predictable per-
formance, a real-time operating system should enable an application pro-
grammer to specify certain "allocation attributes." For example, an applica- 0
tion programmer might need to specify that a given program be memory-
resident or that a given file be contiguous.

b. Application-directed scheduling: Applications should have the capability to
specify certain "scheduling attributes" that enable the operating system to S
impose an effective ordering on tasks or events. The operating system should
take the scheduling attributes into account whenever contention or queueing
occurs.

The issue of exactly what the scheduling attributes should be is the topic of
considerable controversy in the research community. Some believe that
preemptive priorities are sufficient; others contend that the concept of priority
must be broken down into complementary aspects of "urgency" and "impor-
tance," where urgency is meant to capture nearness of deadlines and "impor-
tance" is meant to capture criticality to the mission [Jensen 85]. A few go
further, introducing even more resource management attributes, and making
the scheduling problem even more complex.

c. Application-directed synchronization: The synchronization of concurrent
activities should be controllable by an application. For example, an applica-
tion should be able to specify whether operations (e.g., I/O, message passing)
are to be done synchronously or asynchronously. While asynchronous opera-
tions introduce some complexity, they have been found to be useful in

74

S.. . . • ' l l I

real-time applications. The reasoning behind the provision of asynchronous

operations is that synchronous operations may unnecessarily impede the for-

ward progress of a path of execution.

3.2 TIMELY RESPONSE TO EVENTS

A real-time system must maintain its integrity with respect to the state of its

environment. This can be viewed as a requirement to maintain external consistency, i.e.,

consistency between the actual state of the environment and the real-time system's per-

ceived state of the environment. At the same time, internal consistency must also be

maintained. That is, multiple concurrent tasks that constitute an application must have

accurate perceptions of the states of one another.

If occurrences that alter the state of the environment or the system itself are

viewed as events, then what is required is timely response to events. In other words, a

real-time operating system should be able to respond to both external and internal events

in a timely--both fast and predictable-manner; moreover, it should ensure that applica-

tions can also respond to events in a timely manner, through timely event notifications to

applicatic is.

3.3 PREI)ICTABLE SERVICE TIMES AND OVERHEAD TIMES

To facilitate the predictability of the performance of a real-time application, the

executior. times of operating system functions that the application explicitly invokes (via
system calls), as well as those that it implicitly invokes, should be bounded. The bounds

should no, greatly exceed the means; otherwise, excessive resources may have to be dedi-

cated to the application to assure acceptable performance.

3.4 TIME SERVICES

A real-time operating system should provide services that make time visible and

accessible to applications. For example, applications should be able to set the time, read
the time, and schedule events to orcur at specified times, such as at periodic time inter-

vals.

4. EXISTING REAL-TIME OPERATING SYSTEMS

4.1 TABLE-DRIVEN REAL-TIME EXECUTIVES: CYCLIC EXECUTIVES

Cyclic executives are designed to support a periodic application development

framework. They are discussed in depth by Baker and Shaw in the June 1989 issue of The

Journal of Real-Time Systems [Baker and Shaw 89]. Briefly speaking, a cyclic executive

has a single responsibility: to interleave the executions of periodic tasks according to a

75

fixed, predetermined schedule. The schedule is often specified in a static scheduling

table, which indicates which pieces of which tasks are to be executed in what order during

each time frame of each scheduling cycle. The scheduling table is formulated by the

application developer as a key part of the application development. The formulation of a

scheduling table can be viewed as a bin-packing problem, in which tasks are fit into cycles

in such a way that all deadlines can be met.

The real-time services and features described above are addressed by cyclic exe-
cutives as follows:

a. Mission-driven/application-directed resource management: Resource

management decisions are deterministic. They are dictated by the application

developer via the scheduling table.

b. Timely response to events: Asynchronous events and aperiodic tasks typically
are handled by mechanisms such as polling or background processing. Timely

response can be achieved through frequent polling.

c. Predictability of service times and o.'-uhead times: A cyclic executive is

essentially a table-driven scheduler. Predictability of service times is a non-

issue, since services (other than scheduling) are not offered. Predictability of
overhead can be accomplished by straightforward measurement, since the
only function of the cyclic executive-scheduling-is driven by static schedul-

ing tables, which capture scheduling decisions made off-line by the application

developer.

d. Time services: Periodic timer interrupts are vital to cyclic executives. They

dictate frame boundaries and synchronize the system to the scheduling table.

4.2 PRIORITY-DRIVEN REAL-TIME EXECUTIVES

Stankovic and Ramarnritham offer a concise description of today's priority-
driven real-time executives in a paper presented at the 1987 Real-Time Systems Sympo- 0
sium [Stankovic and Ramamritham 87]. In the paper, they characterize most existing

real-time executives or kernels as being "stripped down and optimized versions of
timesharing operating systems." This is not surprising, given the previously noted fact
that operating system research and development over the past two decades has been

focused on the interactive or timesharing domain. In effect, familiar operating system 0
concepts have been and are continuing to be used to construct new operating systems that

can meet the unique demands of real-time computing. The two major design objectives
are (1) minimization of overhead, which is the motivation behind the effort to "strip

down" general-purpose timesharing operating systems, and (2) speed, which is the

76

motivation behind optimization efforts.

Stankovic and Ramamritham go on to enumerate several specific characteristics

of today's priority-driven real-time executives [Stankovic and Ramamritham, p.1 4 61.
Below, we quote those characteristics in terms of our four general categories of real-time

services and features:

a. Mission-driven/application-directed resource management: (1) priority

scheduling, (2) the ability to lock code and data in memory,3 and (3) the pres-

ence of special sequential files that can accumulate data at a fast rate.

b. Timely response to events: (1) the ability to respond to external interrupts

quickly, (2) the minimization of intervals during which interrupts are disabled,

(3) multi-tasking with task coordination being supported by features such as

mailboxes, events, signals, and semaphores.

c. Predictability of service times and overhead times: (1) a small size (with its

* associated minimal functionality), (2) fixed or variable sized partitions for

memory management (no virtual memory), and (3) a fast context switch.

d. Time services: (1) support of a real-time clock, (2) primitives to delay tasks

for a fixed amount of time and to pause/resume tasks, and (3) special alarms

and timeouts.

It should be noted that placement of the characteristics under the four service/feature

categories involved some judgment calls, because some of the characteristics play roles in

more than one category. For example, fast context switching contributes to timely

response to events, as well as to predictability.

Priority-driven real-time executives as described above can support aperiodic

real-time application development frameworks, as well as priority-driven periodic frame-

works such as the rate monotonic framework.

4.3 PRIORITY-DRIVEN REAL-TIME OPERATING SYSTEMS

In this section, we discuss a class of real-time operating system that is closely

related to the above class. The distinction between the two is that the real-time executives

discussed above are intended solely for real-time computing, whereas the real-time

operating systems of this section are, in a sense, general-purpose operating systems capa-

ble of meeting the demands of real-time computing.

3. This characteristic is quoted from a revised list that appears in the IEEE Computer Society Press
Tutorial Hard Real-Time Systems [Stankovic and Ramamritham 88, p. 4].

77

Rather than speaking in generalities, we focus on the IEEE P1003.4 RealTime

Extension for Portable Operating Systems (POSIX 1003.4). It is useful to do so, because
POSIX 1003.4 arguably captures the state-of-the-practice in real-time operating systems.

Since POSIX 1003.4 is described in depth later in this document (in Section 5.4.4
of Version 0.7 of the NGCR OSSWG Available Technology Report), we simply put it into

context here, by presenting its interfaces in terms of our four real-time service/feature

categories: 0

a. Mission-driven/application-directed resource management: In this vein,

POSIX 1003.4 offers (1) preemptive, dynamic priority-driven scheduling,
(2) process memory locking, (3) real-time files, (4) asynchronous I/0, and

(5) synchronized I/O. Additionally, POSIX 1003.4 attempts to take priorities
into account in every interface in which contention or queueing can occur.

b. Timely response to events: To support this, POSIX 1003.4 offers (1) interpro-
cess communication in the form of shared memory and semaphores, as well as
in the form of message passing, (2) asynchronous event notification, and

(3) threads, or lightweight processes.

c. Predictability of service times and overhead times: The POSIX 1003.4 philo-

sophy here is to define metrics for each of its interfaces and to require vendors
to report the values of the metrics. Thus, standard metrics are defined, but 0
standard values are not.

d. Time services: POSIX 1003.4 provides interfaces to system-wide timers and
per-process interval timers that make time visible to processes and enable

processes to schedule timer events in a variety of useful ways, including 0

periodically.

POSIX 1003.4, as well as priority-driven real-time operating systems in general,

can support aperiodic real-time application development frameworks, as well as priority-
driven periodic frameworks such as the rate monotonic framework. 0

REFERENCES

[Baker and Shaw 89] Baker, T.P. and A. Shaw, "The Cyclic Executive Model and Ada,"
The Journal of Real-Time Systems 1, 1 (June 1989), 7-25. 0

[Jensen 85] Jensen, E.D., C.D. Locke, and H. Tokuda, "A Time-Driven Scheduling

Model for Real-Time Operating Systems," Proceedings of IEEE Real-Time Sys-

tems Symposium, December 1985, 112-122.

0

78

0

[Liu and Layland 73] Liu, C.L. and J.W. Layland, "Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment," Journal of the ACM 20, 1 (Janu-
ary 1973), 46-61.

[Locke 86] Locke, C. Douglass, Best-Effort Decision Making for Real-Time Scheduling,
Ph.D. Dissertation, Carnegie Mellon University, 1986.

[Sprunt 89] Sprunt, B., L. Sha, and J. Lehoczky, "Aperiodic Task Scheduling for Hard-
Real-Time Systems," The Journal of Real-Time Systems 1, 1 (June 1989), 27-60.

[Stankovic 881 Stankovic, J.A., "Misconceptions About Real-Time Computing: A Seri-
ous Problem for Next-Generation Systems," IEEE Computer 21, 10 (October
1988), 10-19.

[Stankovic 89] Stankovic, J.A., W.A. Halang, and M. Tokoro, editors, "Editorial," The
Journal of Real-Time Systems 1, 1 (June 1989), 5-6.

[Stankovic and Ramamritham 87] Stankovic, J.A. and K. Ramamritham, "The Design
of the Spring Kernel," Proceedings of the Real-Time Systems Symposium,
December 1987, 146-157.

[Stankovic and Ramarmritham 88] Stankovic, J.A. and K. Ramamritham, Hard Real-
Time Systems, Computer Society Press of the IEEE, Washington, D.C., 1988.

79

PART 3

Contributions to the

NGCR OSSWG Recommendation Report'

In this part is a copy of the IDA contribution to the NGCR OSSWG Recommendation
• Report. The IDA contribution provides rationale for the choice of a single candidate as

the NGCR operating system interface standard baseline.

1. This report was published as the Recommendation Report for the Next-Generation Computer Resources
(NGCR) Operating Systems Interface Standard Baseline, D.P. Juttelstad (editor), Technical Document
6902, Naval Underwater Systems Center, Newport, Rhode Island, 1 June 1990.

81

Rationale for Single-Candidate Baseline

Submitted by Karen Gordon (IDA)

The charter of the NGCR OSSWG is to establish a commercially-based family of

operating system interface standards for use in the development and deployment of Navy

mission-critical computing systems in the mid-1990s and beyond. Candidates for NGCR

standardization include existing public interface standards, as well as existing interface

definitions (for example, based on commercial products or research prototypes) that

could become public standards. The goal of the OSSWG has been to seek to adopt exist-

ing standard/definition(s), if possible, and to resort to Navy adaptations of existing stan-

dards/definitions, or (in the worst case) Navy-created standards only if demanded by

* technical considerations.

Almost from the outset, as evident in the charter, the OSSWG anticipated that

technical considerations would prevent the Navy from adopting a single existing operat-

ing system interface standard/definition as the NGCR standard. The OSSWG believed

* that, at the very least, the NGCR standard would have to comprise multiple existing stan-

dards/definitions. The OSSWG was prepared to find a composite solution buried in the

Evaluation Results. The Evaluation Process was developed with this mind-set; it was

designed not to compute a single winner, but instead to reveal multiple winners, which

together would constitute the composite solution.

It was envisioned that multiple winners would be revealed through two mechan-

isms: (1) separation of technical issues into 16 service classes, with scores computed for

each service class on the basis of Weight Set 1, and (2) formulation of representation

application domains (RADs), with scores computed for each RAD on the basis of Weight

0 Set 2. The expectation was that each candidate would be better suited to some service

classes and to some RADs than to other service classes and RADs. The RADs, in par-

ticular, were intended to reveal different "winners" for different domains.

Needless to say, the OSSWG was surprised when the RAD results were com-

puted. The RADs failed to point out strengths and weaknesses of the candidates. For

each candidate, scores varied hardly at all across the seemingly disparate application

domains. According to the RAD results, a candidate's effectiveness simply was not a

function of application domain.

The OSSWG struggled with the RAD results during the March 1990 meeting (and

for days before and weeks after). The OSSWG questioned the formulation of the RADs.

Numerous variations on the RADs were defined, and the raw evaluation data was

applied to the variations. The results did not change appreciably. At the March 1990

meeting, the Available Technology Subgroup constructed two new sets of application

83

0

domains (in an ad hoc manner) and then considered the candidates in light of the

domains. Almost every candidate was "suitable" for every domain. The major excep-

tion was Cronus, which was judged by the Available Technology Subgroup to be unsuit-

able for real-time applications.

The OSSWG considered developing a composite solution from another

viewpoint-that of layering, with the layers being kernel, LPOS, and SRAX. At the

March 1990 meeting, the Available Technology Subgroup considered the utility of defin-

ing a composite standard in terms of these layers. It concluded that such a composite

standard was not called for. One of the arguments against adopting per-layer standards

was that only the LPOS layer is ready for standardization. The LPOS layer is well under-

stood and well represented in the OSSWG Requirements Document. Perhaps most

importantly, there seems to be substantial support for a particular interface at the LPOS

layer (namely, POSIX). The kernel layer and SRAX layer have not reached the same

levels of understanding or consensus.

The Available Technology Subgroup considered what it would mean to the

NGCR Program to (initially) limit standardization to the LPOS layer. It concluded that a

standard that addresses only the LPOS layer indeed would be useful and not handicap-

ping. The goal is application portability, not LPOS portability. Any kernel-like func-

tionality that is demanded by applications could be (and already is in some candidates)

incorporated into the LPOS layer. That is, specific kernel-like services could be reached 0

through the LPOS without (implicitly) embedding a complete kernel in the NGCR stan-

dard. Moreover, by not mandating a particular kernel, the Navy would gain the advan-

tage that it could have its LPOS interface standard implemented on many different ker-

nels (maybe different ones for different applications). In other words, the Navy could 0

obtain the necessary functionality without unnecessarily constraining implementations of

the NGCR operating system interface standard. As for the SRAX layer, its functionality

could be supplied in part by network protocols and in part by applications themselves, as

it is today. While further standardization at the SRAX may be desirable in the long term,

it is probably not desirable at this time. 0

In short, the OSSWG realized that the Evaluation Results did not point to a com-

posite solution; per-RAD winners did not come forward, and the concept of per-layer

winners was rejected. The results of the technical evaluation indicated that three candi-

dates might be acceptable. The OSSWG decided that the three candidates should be 9

carefully examined to validate the Evaluation Results and to aid in interpretation of the

Evaluation Results. The scores on programmatic issues should be taken into account in

this examination. Then, if two or three candidates proved to be acceptable from a techn-

ical standpoint and from a programmatic standpoint, one of the acceptable candidates •

84

should be singled out for recommendation by the OSSWG to the NGCR Program Office

as the basis for NGCR operating system interface standardization. The OSSWG believes

that, under the circumstances, a multiple-candidate solution would be disadvantageous; a

multiple-candidate solution would (1) dilute NGCR resources and (2) fracture industry

support. To maximize Navy influence and to achieve cost effectiveness, the NGCR Pro-
gram should focus its efforts on a single candidate.

It should be noted that by recommending a single-candidate solution, the OSSWG
is not ruling out the possibility of a family of standards. All that is ruled out is the possi-

bility of a family based on an NGCR collection of divergent candidates. A family based

on a single candidate is still possible and in fact probable. At this point, the OSSWG
believes that the "family" will take the form of a "series" or "set" of NGCR Interface

Standards that can be tailored or scaled to any particular application (interface) require-
ments. It is anticipated that defining the precise form of tailoring will be a major order of

business for the next phase of the OSSWG.

85

PART 4

Contributions to the

NGCR OSSWG After-Action Report1

In this part are copies of the following IDA contributions to the NGCR OSSWG After-
Action Report:

* Utility of the Evaluation Process Itself

* Credibility of the Raw Scores

1. This report was published as the After-Action Report for the Next-Generation Computer Resources
(NGCR) Operating Systems Interface Standard Baseline Selection Process, J.T. Oblinger (editor),
Technical Document 6904, Naval Underwater Systems Center, Newport, Rhode Island, 1 June 1990.

87

Utility of the Evaluation Process Itself

Submitted by Karen Gordon (IDA)

The evaluation process itself (as opposed to its results) played an invaluable role
in the OSSWG efforts: the evaluation process was the catalyst that enabled consensus

building to occur.

First, by forcing evaluators to walk through documentation on each candidate

and to consider each candidate in terms of many specific requirements, the scoring phase
of the evaluation process increased the evaluators' objective knowledge of the candi-
dates. Moreover, and of no less consequence, it helped evaluators to develop stronger
subjective or intuitive feelings about the candidates.

Then, in the analysis phase, the evaluation process drove the OSSWG to consider
the candidates from another viewpoint. "Why did the RAD scores turn out so uniform for
each candidate?" It was expected that any given candidate would score much higher in

some RADs than in others. "What is it about the RADs or about the candidates that
makes a candidate's effectiveness indistinguishable with respect to such seemingly diver-
gent RADs?" The struggle with these questions shed new light on the candidates, as well

as on the overall task of the OSSWG.

0

0

0

89

Credibility of the Raw Scores

Submitted by Karen Gordon (IDA) and Tim Saponas (Intel)

When confronted with the results of preliminary analysis, the OSSWG faced the

question of "Do the numbers really mean anything?" Three key points caused concern:

1. The dispersion of the raw scores (for a given criterion for a given candidate) was

much larger than anticipated or desired. For example, certain candidates had

extremely large sigmas which often were a result of an extremely widely spread

bimodal distribution.

2. In some cases, the raw scores for a candidate clearly failed to accurately reflect its

capabilities. For example, the results provided a high mean score for a requirement

that clearly should be satisfied by a single interface, but further inspection of the

candidate's documentation failed to reveal an interface satisfying the requirement.

3. The Representative Application Domain (RAD) scores were uniform across RADs

* (i.e., for any given candidate, its scores varied little from one RAD to another

RAD). See [Section 3.6 of the NGCR OSSWG After-Action Report] for a discus-
sion of the RAD scores.

It was realized that many factors led to these problems, e.g., imprecisely defined

* candidates, misleading cross matrices, unclear requirements, subjective requirements

(such as the programmatic issues and many of the general requirements), varying back-
grounds of evaluators, and insufficient opportunity to seek an "all in one room" consensus
on the evaluation scores.

* The following recommendations possibly would have addressed some of these

issues:

1. Screening of candidate documentation. Many of the candidates provided a large

amount of documentation much of which had nothing to do with OS interfaces. In

• some cases, the documentation did not deal with the actual candidate, but rather
systems that ran on top of the candidate. A subcommittee of the OSSWG could

have been formed to work with the candidate sponsors to ensure that only proper
documentation was passed on to the evaluators.

* 2. Screening of cross matrices. All of the candidate sponsors eventually provided the

evaluators with cross matrices that attempted to show how the candidate satisfied

each of the requirements. The OSSWG recommended that the sponsors provide

the cross matrices but did not specify a format for the document. The result was a
set of documents with a wide variety of formats ranging from documents that either

91

explicitly named interfaces satisfying the requirements (or cited explicit pages in the

candidate documentation where the interface could be found) to documents that

tried to have general discussions about the requirement with suggestions of possible

solutions. The latter tended to mislead the evaluators and avoid the issue of clearly
identifying the interfaces. This problem could have been addressed by explicitly

requiring a cross matrix from each sponsor that followed a fixed format that

required the candidate sponsor to clearly identify the interface satisfying each

requirement.

3. Evaluator education on the requirements. While considerable effort went into the

refinement of the requirements and the requirements document, the evaluators were
never formally briefed on all the requirements. It should be noted that at the
December meeting of the OSSWG, the evaluators were provided some clarification

on the requirements but only as part of a forum intended for assigning weights. For
this case though the group was divided in half with each subgroup dealing with only
half the interface. This resulted in several different interpretations of the require-

ments by the evaluators. A briefing would have allowed evaluators to clarify this 0
confusion and have moved the group towards a more standard interpretation. In
addition, it would also have identified the strengths and weaknesses in the require-

ments document.

4. Lack of a consensus building meeting. The evaluators were asked to perform their 0
evaluation in isolation. They were not brought together until after their evaluations
were committed. This left no opportunity for the evaluators to share the knowledge

they had obtained and adjust their scores. A consensus building meeting would

have allowed this information exchange and moved the OSSWG towards a con-

sensus.

0

92

PART 5

Presentation at the

Seventh IEEE Workshop on Real-Time Operating Systems and Software

This workshop was held on May 10-11, 1990, at the University of Virginia in Charlottes-
* ville, Virginia. On the first morning of the workshop, a panel session entitled "RT OS

Standards: They are here, but are they good?" was held. The panel was chaired by Hide
Tokuda of Carnegie Mellon University. He invited Karen Gordon of IDA to serve on the
panel as a representative of the NGCR OSSWG. In this part is a copy of the presentation
given by Karen Gordon as her position statement at the panel session.

93

0~Co
4)(.

c Z ui

co cc ýd *

0 ccz

0)CO) O4

(.0

0- 95

0 E w0

C.,

0 Lo rio 0 o

oww

Lmm4~~~I 0m0i

Z EE
0I U1g00

00

0-

Occ

CO

0 CO 0
0Cr

co 0 00 o

0 00)

C 00
0 REM96

>%0

C)

0

w cc

ca.

00

c
z

LUU

* b.j

mI

Lu
aw

W w

0
0W

97

x Lam

65 o 00
4) XU C)a

0 oa)

0W

Cc 0c 0.

"Ea

za coOco

AN ~0 m ý 0C
LLU 0 >

Cl) C~aLow5 ow o
El 0 aw MWO

oo .- = 0

z) L 0 0 0)
low 4) 98

0 Smoul 0

00

00

0

I- CL
0(4m

.C4

(I) M

z 0c
Ow 0

co 0Cm
U m ~4 £on~

00

wco WI a

0 0=

I- CI,0 E&

z Cu a.0

0 CL)CO0

-4rn 0 on

99

c 00
r0

0 v-

0 E

0. w

0 -C

9J

CC

00

CLC

0 C.
* 0

ca * -

1=0 0

c c
M I SZ

5 C

0 L6s~ I
100

PART 6

Presentation at the

Joint
• Eighth IEEE Workshop on Real-Time Operating Systems and Software

IFAC/IFIP Workshop on Real-Time Programming

This workshop was held on May 15-17, 1991, in Atlanta, Georgia. On the first afternoon
of the workshop, a panel session entitled "Operating Systems: Interfaces/Standards" was
held. The panel was chaired by Doug Locke of IBM. He invited Karen Gordon of IDA
to serve on the panel as a representative of the NGCR OSSWG. In this part is a copy of
the presentation given by Karen Gordon as her position statement at the panel session.

101

0m• m m

ClC

CL 7i

00
* cc.0cc)C

zC

>C

w
*L

xm

010

C 0)

CC.)
0 a
C, 0

C0 00)
>% 05.2 *oo= ~ 00 -0

0 c0
Ch) 0

EUC 0n0gs0 CD
0~~ M0 CO J

Ec, C.aCh~~
a

.22"E00. m0 :

0~ -pwl

M 0 a

co E.

0 MCo 0M
(1) Cl

Q & . = ,.

Cc Ir 0

cr, 0 0 0L

10

00

0

%6-.

* .c
C/) E 0

Dm~ 0 0o ,C
.6-0E0 a0

LL. E O- cc C.4 Nc
01- E

0~ NE 0 0
E 1C.UC N Lo)

0 mOow)nu

cu EJ CIO 0

L)-r .Ct 0) 0c0

EU u-' c, cC

0 0 c Ma
Low 0m 0 a)t

0 c %1- - 0 0o

-~~% -rom 0,CC C J C
>% 0 *No

C.) 0 ma

CoJ Cc C Co

11 I i I c 2mism

0 =)a)> t
CL > M 0 4- 13 (1

0)

,m r_ (..-O W

oow

,. .8..0

0" ""u

-o,,,_ .,(.5 -

4.'I I, III

owd :E .0

0 .0
U M~oo

Co C.)

E0 000 0 E u

r E o

0

0 CO) 'O CU

W L. =

cc owC. CO) 4) Cc

> EUC 0 ENW0

z -0 0):=U
r.L 106

CL Cl CL l

PART 7

Contributions to the

NGCR OSSWG Delta Document1

In this part are copies of the following IDA contributions to the NGCR OSSWG Delta
* Document:

"* Data Sheets for Service Class 9 (November 1990)

"* Revised Data Sheets for Service Class 9, Criteria 11 and 12 (September 1991)

* * Resolution of Deltas for Service Class 9, Criteria 11, 12, and 13 (September
1991)

"* Resolution of Deltas for Service Class 13, Criteria 7 and 11 (September 1991)

1. This document currently exists as a working draft entitled DELTA Document for the Next Generation
Computer Resources (NGCR) Operating Systems Interface Standard Baseline.

107

0

Data Sheets for Service Class 9 (November 1990)

To be included in Appendix A of the DELTA Document for the Next Generation
Computer Resources (NGCR) Operating Systems Interface Standard Baseline

Submitted by Karen Gordon (IDA)

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 1
Criteria Name: Create Process
Requirement Document Paragraph: 2.9.1

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 49 (fork) and 50 (exec)
Paragraph: 3.1.1 (fork) and 3.1.2 (exec)

Capabilities Summary: Creating (and starting) a new
process is accomplished via a sequence of two function
calls, (1) fork and (2) one of the functions in the
exec family. The fork function creates a new (child)
process, which is a duplicate of the calling (parent)
process. The exec functions replace the current pro-
cess image with a new process image.

3. Delta Description: The fork and exec functions accom-
plish the OSSWG Create Process (2.9.1) and Start Pro-
cess (2.9.3) functions. That is, processes are started
upon creation. The fork and exec functions do not pro-
vide the ability to specify process attributes.

4. Comments:

109

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 1
Criteria Name: Create Process
Requirement Document Paragraph: 2.9.1

2. POSIX Reference
Document Number: P1003.4a
Draft: D4 (August 10,1990)
Revision:
Page: 21-23 (thread creation attributes) and 23-24
(thread creation)
Paragraph: 3.3.1 (thread creation attributes) and 3.3.2
(thread creation)

Capabilities Summary: Threads are created with attri-
butes specified by a threads attributes object. The
functions pthread _attr create, pthreadattr delete,
pthreadattrsetstacksize, and
pthreadattrgetstacksize are defined for creating,
deleting, setting, and examining thread creation attri-
butes. Threads are created via the function
pthreadcreate.

3. Delta Description: P1003.4a satisfies this requirement.
The attribute specification method is sufficiently gen-
eral and extensible.

4. Comments: Two additional functions were added at the
October 1990 POSIX meeting:
pthreadattrsetcontentionscope and
pthreadattrgetcontentionscope. The scope can be
local or global.

110

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 2
Criteria Name: Terminate Process
Requirement Document Paragraph: 2.9.2

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 56 (_exit) and 62 (kill)
Paragraph: 3.2.2 (_exit) and 3.3.2 (kill)

Capabilities Summary: The exit function terminates the
calling process. The kill function sends a specified
signal to a specified process or group of processes.
The termination signal is SIGKILL, which cannot be
caught or ignored, and whose default action is abnormal
termination of the process.

3. Delta Description: In regard to termination of POSIX..I
processes, 1003.1 satisfies this requirement.

4. Comments:

iI

Im.m - n m n ~ unm nnu numun m

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 2
Criteria Name: Terminate Process
Requirement Document Paragraph: 2.9.2

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 26 (pthreadexit) and 69-80 (thread cancellation)
Paragraph: 3.3.5 (pthread exit) and Section 6 (thread
cancellation)

Capabilities Summary: The pthreadexit function ter-
minates the calling thread. In Draft D4, the thread
cancellation mechanism was defined to allow a thread to
terminate the execution of any other thread in the pro-
cess in a controlled manner. The function is
pthreadcancel. The target thread (i.e., the one being
canceled) is allowed to hold cancellation requests
pending by setting its cancelability state (via the
functions pthreadsetcancel and
pthreadsetasynchcancel) and by creating cancellation
points (via the function pthreadtestcancel). The tar-
get thread can perform application-specific cleanup
processing when the notice of cancellation is acted •
upon. The thread does so by pushing and popping
cleanup routines onto its cleanup stack (via the func-
tions pthreadcleanuppush and pthreadcleanuppop).

3. Delta Description: P1003.4a almost satisfies this
requirement via the pthread exit and the pthreadcancel
interfaces, combined with the interfaces for establish-
ing cleanup handlers. The burden of releasing
resources is on the writer of the thread cleanup
handlers. The notion of disabling cancelability and/or
allowing cancelability only at specific cancellation
points is the only major incompatibility with this
requirement. For purposes of fault tolerance, the NGCR
OS must have some sort of absoulte interface to force a
thread to terminate (or at least not compete for the
CPU) if it refuses to terminate cooperatively. Depend-
ing on the scheduling policy, this could perhaps be
accomplished via pthread setprio (to a priority that
never executes), but a clean "pthreadabort" interface
would be an appropriate portable solution. The conse-
quences of an uncoordinated asynchronous abort of a
thread are understood, and such an abort is not
required under most circumstances (even in an Ada abort
statement); but to deny the requirement is akin to
denying that "kill -9" is ever needed in a standard
UNIX system.

112

4. Comments: Note that Draft D4 states that the cleanup
routine is executed when the thread terminates normally
(via pthread exit). (As I recall,) thread cancellation
was covered in the signal interface during the October
1990 POSIX meeting. So, this requirement needs to be
revisited when the next draft becomes available.

113

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 3
Criteria Name: Start Process
Requirement Document Paragraph: 2.9.3

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 49 (fork) and 50 (exec)
Paragraph: 3.1.1 (fork) and 3.1.2 (exec)

Capabilities Summary: (Creating) and starting a new
process is accomplished via a sequence of two function
calls, (1) fork and (2) one of the functions in the
exec family. The fork function creates a new (child)
process, which is a duplicate of the calling (parent)
process. The exec functions replace the current pro-
cess image with a new process image.

3. Delta Description: The fork and exec functions accom-
plish the OSSWG Create Process (2.9.1) and Start Pro-
cess (2.9.3) functions. That is, processes are started
upon creation. 1003.1 does not provide separate and
explicit Start Process and Stop Process functions.

4. Comments:

114

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 3
Criteria Name: Start Process
Requirement Document Paragraph: 2.9.3

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 23 (pthreadcreate), 32 (rationale), 57
(pthreadcond wait), and 56 (pthreadcondsignal and
pthreadcond_broadcast)
Paragraph: 3.3.2 (pthreadcreate), 3.5.2.3 (rationale),
5.3.7 (pthreadcond wait), and 5.3.6
(pthreadcond signal and pthreadcondbroadcast)

Capabilities Summary: The P1003.4a function
pthreadcreate does both creation and starting.

3. Delta Description: As stated in the rationale, P1003.4a
satisfies this requirement through its thread synchron-
ization mechanisms. The start-routine of the created
thread can synchronize by waiting on a condition vari-
able (via pthreadcondwait), which the start operation
will signal. The only disadvantage to this scheme is
the additional pair of context switches between thread
creation and thread start. While this may be con-
sidered as having a negative impact on performance,
real-time embedded systems seldom engage in the
(already high-cost) act of process creation during
time-critical scenarios. Thus, the pthreads approach
is adequate.

4. Comments:

115

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 4
Criteria Name: Stop Process
Requirement Document Paragraph: 2.9.4

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page:
Paragraph:

Capabilities Summary: 0

3. Delta Description: 1003.1 does not provide separate and
explicit Start Process and Stop Process functions.

4. Comments:

116

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 4
Criteria Name: Stop Process
Requirement Document Paragraph: 2.9.4

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page:
Paragraph:

Capabilities Summary:

3. Delta Description: 1003.4a does not provide separate
and explicit Start and Stop functions. However, such
preparation for restart could be accomplished through a
combination of POSIX.4 asynchronous event notification
(as extended to per-thread), per-thread setjmp/longjmp
processing, and pthreadcondwait. The thread would,
of course, need to have anticipated the requirement to
stop for potential restart and would have to cooperate.
Since restarting of a thread must be a planned activity
in the design of a system, the pthreads approach is
adequate.

4. Comments:

117

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 5
Criteria Name: Suspend Process
Requirement Document Paragraph: 2.9.5

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 68
Paragraph: 3.4.2 (pause)

Capabilities Summary: The pause function suspends the S
calling process until delivery of a signal.

3. Delta Description: A process can suspend itself using
pause. 1003.1 does not provide explicit interfaces for
a process to suspend and resume another process.

4. Comments:

110

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 5
Criteria Name: Suspend Process
Requirement Document Paragraph: 2.9.5

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 33 (rationale) and 57 (pthread condwait)
Paragraph: 3.5.2.4 (rationale) and 5.3.7
(pthreadcondwait)

Capabilities Summary: The function pthreadcondwait
causes the calling thread to wait on the specified con-
dition variable.

3. Delta description: As noted in the rationale, Draft D4
does not provide explicit interfaces for suspending or
resuming a given thread. However, P1003.4a partially
satisfies this by providing condition variables on
which a thread may suspend itself, and a mechanism for
resuming that thread by signaling the condition. The
rationale mentions that asynchronous suspension of
threads is beyond the scope of the current proposal
because it is considered error-prone and would intro-
duce unnecessary complexity because of additional
state(s) that would be associated with a thread. The
current workaround to the OSSWG requirement would
require each suspendable thread to include code allow-
ing it to "voluntarily" suspend itself upon being told
to do so via one of several synchronous or asynchronous
IPC facilities. This is probably adequate if we allow
uncooperative thread to be terminated asynchronously
(see Criteria 2 under Service Class 9).

4. Comments:

119

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 6
Criteria Name: Resume Process
Requirement Document Paragraph: 2.9.6

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 68
Paragraph: 3.4.2

Capabilities Summary: A process that has executed the
pause function is suspended until delivery of a signal
whose action is either to execute a signal-catching
function or to terminate the process. For resuming
execution, the action must be to execute a signal-
catching function. Execution resumes after the
signal-catching function returns.

3. Delta Description: 1003.1 does not provide explicit
interfaces for a process to suspend and resume another
process.

4. Comments:

120

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 6
Criteria Name: Resume Process
Requirement Document Paragraph: 2.9.6

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 33 (rationale) and 56 (pthreadcondsignal and
pthreadcondbroadcast)
Paragraph: 3.5.2.4 (rationale) and 5.3.6
(pthreadcond signal and pthread_condbroadcast)

Capabilities Summary: The functions pthread cond signal
and pthreadcondbroadcast are used to wake up one or
more threads suspended because they're waiting on a
condition variable.

3. Delta Description: As noted in the rationale, Draft D4
does not provide explicit interfaces for suspending and
resuming a given thread. However, this requirement can
be met indirectly through the condition variable syn-
chronization mechanism. A thread suspended via
pthread cond wait can be resumed via
pthread cond signal. Furthermore, Draft D4 goes beyond
the stated NGCR OSSWG requirement by providing
pthreadcondbroadcast, which could be used to wake
several related suspended threads with a single invoca-
tion.

4. Comments:

121

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 7
Criteria Name: Delay Process
Requirement Document Paragraph: 2.9.7

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 69
Paragraph: 3.4.3

Capabilities Summary: The sleep function can be used to 0
suspend the calling process for a specified number of
seconds.

3. Delta Description: Resolution of seconds may be unac-
ceptable. 1003.1 does not provide an explicit inter-
face for a process to delay another process. 0

4. Comments:

122

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Nurber: 7
Criteria Name: Delay Process
Requirement Document Paragraph: 2.9.7

2. POSIX Reference
Document Number: P1003.4
Draft: D9
Revision:
Page: 126 (nanosleep) and 124 (abstimer)
Paragraph: 8.4.5 (nanosleep) and 8.4.4 (abstimer)

Capabilities Summary: A process can delay itself for a
specified amount of time, given in nanoseconds, via the
nanosleep function. The actual resolution supported by
the nanosleep function may not be nanoseconds; the
resolution can be obtained via the ressleep function.
A process can delay itself until an absolute time via
the abstimer function (specified as a one-shot timer).

3. Delta Description: 1003.4 does not provide an explicit
interface for a process to delay another process. How-
ever, a process could use an IPC mechanism to Lell
another process to voluntarily delay itself.

4. Comments:

123

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 7
Criteria Name: Delay Process
Requirement Document Paragraph: 2.9.7

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 21 (nanosleep)
Paragraph: 3.3 (nanosleep)

Capabilities Summary: The POSIX.4 nanosleep function is
redefined so that only the calling thread (and not pro-
cess) is suspended.

3. Delta Description: P1003.4a does not provide an expli-
cit interface for a thread to delay until an absolute
time. The function abstimer is not explicitly redefined
to work on a per-thread basis; however, in the defini-
tion of thread on p. 10 of Draft D4, it is stated that
each thread has its own state of any timer. (Whit
about per-process interval timers? Do they become
per-thread?) P1003.4a does not provide an explicit
interface for a thread to delay another thread. Thus,
one thread forcing another thread to delay would
require cooperative code in each thread. The thread to
be delayed would have to recognize and act upon an IPC
request to delay itself.

4. Comments:

124

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 8
Criteria Name: Interprocess Communication
Requirement Document Paragraph: 2.9.8

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 62 (kill, or Send a Signal to a Process), 109
(pipe), and 83-120 (files, directories, and I/O)
Paragraph: 3.3.2 (kill), 6.1 (pipe), and 5 and 6
(files, directories, and I/O)

Capabilities Summary: The kill function sends a speci-
fied signal to a specified process. A pipe is an
interprocess communication channel. The pipe function
creates a pipe. Then, one process can write to the
pipe, and another process can read from the pipe. Data
is buffered in the pipe, and it is read on a FIFO
basis.

3. Delta Description: These mechanisms provide limited IPC
capabilities. 1003.4 adds binary semaphores, shared
memory, interprocess message passing, realtime files,
asynchronous I/O, and synchronized I/O.

4. Comments: 1003.1 provides interfaces for file and
directory management and for I/O. Descriptions of
these interfaces are not offered here, but instead are
presumed to be covered under Service Class 6 (File
Interfaces).

125

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 8
Criteria Name: Interprocess Communication
Requirement Document Paragraph: 2.9.8

2. POSIX Reference
Document Number: P1003.4
Draft: D9
Revision:
Page: 21-32 (binary semaphores); 43-60 (shared memory);
137-176 (message passing); 177-236 (realtime files,
asynchronous I/O, synchronized I/O)
Paragraph: Section 3 (binary semaphores); Section 5
(shared memory); Section 9 (message passing); Sections
12, 11, and 10 (realtime files, asynchronous I/O, syn-
chronized I/O)

Capabilities Summary:

"o Binary semaphores. These are adopted as the
P1003.4 high-performance process synchronization
mechanism. Binary semaphores are referred to as
binary semaphore special files; they are objects
named within the file system name space. Sema-
phores can be persistent (state preserved from
last close to first open) or non-persistent
(always in unlocked state at first open). Opera-
tions are semwait (P operation), semifwait (condi-
tional P operation), sempost (V operation), and
semifpost (conditional V operation). The mksem
operation creates a binary semaphore special file,
and the unlink removes it. The open and close
operations apply to the use of binary semaphore
special files.

"o Shared memory. P1003.4 provides shared memory as
a mechanism for high-performance process synchron-
ization and communication. Shared memory is sup-
ported through the mechanism of shared memory spe-
cial files, objects named within the file system
name space. Shared memory special files can be
persistent (contents preserved across the
"unreferenced" state) or non-persistent (contents
undefined when file becomes unreferenced). Func-
tions include mkshm (create shared memory special
file), unlink (remove file), open, close, shmmap
(map shared memory into process's address space),
and shmunmap (unmap). A shared memory special
file can be opened read only, write only, or
read/write.

126

o Message passing. P1003.4 provides message passing
as a mechanism for interprocess communication.
Message passing is supported through message queue
special files, objects names within the file sys-
tem name space. The functions mkmq (make message
queue special file), unlink (remove file), open,
and close are provided. Message queue attributes
for flow and resource control can be set and exam-
ined via the functions mqsetattr and mqgetattr.
Messages can be sent synchronously or asynchro-
nously via the function mqsend and the use of
flags to indicate type of sending; messages can be
received synchronously or asynchronously via the
function mqreceive and the use of flags. Short
messages (a pointer's worth of data) can be sent
and received as event data via the functions mqpu-
tevt and mqgetevt. Message data buffers can be
allocated and freed via the functions msgalloc and
msgfree. Messages (either all messages sent by a
specified process or all messages) can be purged
from the message queue via the function mqpurge.
The process identifier of the sending process of a
specified message can be obtained via the function
mqgetpid.

3. Delta Description: When combined, 1003.1 and P1003.4
meet the stated requirement, which is to offer a wide
variety of services for processes to exchange informa-
tion.

4. Comments: 1003.4 provides interfaces for "realtime
files" and and for asynchronous I/O and "synchronized
I/O". Descriptions of these interfaces are not offered
here, but instead are presumed to be covered under Ser-
vice Class 6 (File Interfaces).

127

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 8
Criteria Name: Interprocess Communication
Requirement Document Paragraph: 2.9.8

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 20 (binary semaphores), 21 (message passing),
91-109 (signals)
Paragraph: 3.3 (binary semaphores), 3.3 (message pass-
ing) and I/O), Section 9 (signals)

Capabilities Summary:

o Shared memory. Threads within a process share
memory by default. Mutexes and condition vari-
ables are provided as synchronization mechanisms.

o Binary semaphores. The function semwait is rede-
fined so that only the calling thread is
suspended.

o Message passing. The functions mqsend and mqre-
ceive are redefined so that only the calling
thread is suspended.

o Signals. The signal mechanism is redefined to
optionally work on a per-thread basis.

3. Delta Description: P1003.4 plus P1003.4a provide a more
than adequate foundation for IPC among heavyweight
and/or lightweight processes.

4. Comments: The discussion of files and I/O is presumed
to be covered in the context of Service Class 6 (File
Interfaces). The signal facilities underwent a major
revision at the October 1990 POSIX meeting, so this
requirement needs to be revisited when the next draft
of P1003.4a becomes available.

128

0

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 9
Criteria Name: Examine Process Attributes
Requirement Document Paragraph: 2.9.9

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 71
Paragraph: Section 4 (Process Environment)

Capabilities Summary: 4.1.1: Get process and parent
process ids of calling process. 4.2.1: Get real and
effective user and group ids of calling process.
4.2.3: Get supplementary group ids of calling process.
4.2.4: Get name of user associated with calling pro-
cess. 4.3.1: Get process group id of calling process.
4.7.1: Get id of current controlling terminal for cal-
ling process.

3. Delta Description: 1003.1 does not provide an explicit
interface for a process to examine the attributes of
another process.

4. Comments:

129

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 9
Criteria Name: Examine Process Attributes
Requirement Document Paragraph: 2.9.9

2. POSIX Reference
Document Number: P1003.4
Draft: D9 (December 1989)
Revision:
Page: 67 (get sched priority) and 69 (get sched policy)
Paragraph: 6.5.2 (priority) and 6.5.4 (policy)

Capabilities Summary: The getprio and getscheduler
functions return the priority and scheduling policy of
a specified process.

3. Delta Description:

4. Comments:

130

0

0

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 9
Criteria Name: Examine Process Attributes
Requirement Document Paragraph: 2.9.9

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 21 (thread creation attributes), 26
(pthreadself), and 41 (thread creation scheduling
attributes)
Paragraph: 3.3.1 (thread creation attributes), 3.3.6
(pthreadself), and 4.3.1 (thread creation scheduling
atttibutes)

Capabilities Summary: P1003.4a provides a thread attri-
butes object that is used to create threads. As noted
in the rationale, the attributes object is purposely
defined as an opaque type to facilitate extensibility.
In Draft D4, functions to examine the stacksize attri-
bute in a specified attributes object are defined
(pthreadattrgetstacksize). Functions to examine
scheduling attributes are also defined (i.e.,
pthreadattrgetinheritsched, pthread_attr_getsched,
and pthreadattrgetprio). In addition, functions to
examine the dynamic values of scheduling attributes for
a specified thread are defined (i.e.,
pthreadgetscheduler, pthreadgetprio). The function
pthreadself can be used to examine the thread ID of
the calling thread.

3. Delta Description: P1003.4a seems to satisfy this
requirement.

4. Comments: Note that 4 new functions are required for
each new attribute to be supported by an implementa-
tion, two to get and set static attributes in the
attributes object and two to get and set dynamic attri-
butes. The next draft of P1003.4a should be reviewed
when it becomes available, since some revisions con-
cerning attribute objects were made during the October
1990 POSIX meeting.

131

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 10
Criteria Name: Modify Process Attributes
Requirement Document Paragraph: 2.9.10

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 71
Paragraph: Section 4 (Process Environment)

Capabilities Summary: 4.2.2: Set user and group ids of
calling process. 4.3.2: Create session and set pro-
cess group id for the calling process.

3. Delta Description: 1003.1 does not provide an explicit
interface for a process to modify the attributes of
another process.

4. Comments:

132

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 10
Criteria Name: Modify Process Attributes
Requirement Document Paragraph: 2.9.10

2. POSIX Reference
Document Number: P1003.4
Draft: D9
Revision:
Page: 65 (set sched priority) and 68 (set sched policy)
Paragraph: 6.5.1 (priority) and 6.5.3 (policy)

Capabilities Summary: The setprio function sets the
priority of a specified process to a specified value.
The setscheduler function sets the scheduling policy
and priority of a specified process to specified
values.

3. Delta Description: P1003.4 provides only limited capa-
bilities here.

4. Comments:

133

1. Service Class Number: 9 0
Service Class Name: Process Management Interfaces
Criteria Number: 10
Criteria Name: Modify Process Attributes
Requirement Document Paragraph: 2.9.10

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 21 (thread creation attributes) and 41 (thread
creation scheduling attributes)
Paragraph: 3.3.1 (thread creation attributes) and 4.3.1
(thread creation scheduling atttibutes)

Capabilities Summary: P1003.4a provides a thread attri-
butes object that is used to create threads. As noted
in the rationale, the attributes object is purposely
defined as an opaque type to facilitate extensibility.
In Draft D4, a function to modify the stacksize attri-
bute in a specified attributes object is defined
(pthreadattrsetstacksize). Functions to modify
scheduling attributes are also defined (i.e.,
pthreadattrsetinheritsched, pthreadattr setsched,
and pthreadattr setprio). In addition, functions to
dynamically modify the values of scheduling attributes 0
for a specified thread are defined (i.e.,
pthreadsetscheduler, pthreadsetprio).

3. Delta Description: P1003.4a seems to satisfy this
requirement.

4. Comments: Note that 4 new functions are required for
each new attribute to be supported by an implementa-
tion, two to get and set static attributes in the
attributes object and two to get and set dynamic
attributes. The next draft of P1003.4a should be
reviewed when it becomes available, since some revi-
sions concerning attribute objects were made during the S
October 1990 POSIX meeting. Question: why is there no
pthreadsetstacksize?

134

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 11
Criteria Name: Examine Process Status
Requirement Document Paragraph: 2.9.11

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: None
Paragraph:

Capabilities Summary:

3. Delta Description: 1003.1 does not provide explicit
interfaces for examining process status in regard to
state of the process (terminated, stopped, suspended,
blocked, etc.).

4. Comments:

135

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 11
Criteria Name: Examine Process Status
Requirement Document Paragraph: 2.9.11

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: None
Paragraph:

Capabilities Summary:

3. Delta Description: 1003.4a does not provide explicit
interfaces for examining thread status in regard to
state of the thread (terminated, stopped, suspended,
blocked, etc.).

4. Comments: A non-blocking alternative to pthread join
might parially or fully satisfy this requirement. An
explicit interface for this purpose would be better.

136

* 1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 12
Criteria Name: Process Identification
Requirement Document Paragraph: 2.9.12

S2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 33
Paragraph: Definition of process ID

Capabilities Summary: Each process in the system is
uniquely identified during its lifetime by a positive
integer. "System" is defined to be implementation of
1003.1. Extent of distribution possible in a system is
not defined.

3. Delta Description: 1003.1 does not explicitly address
distributed systems.

4. Comments:

137

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 12
Criteria Name: Process Identification
Requirement Document Paragraph: 2.9.12

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 10
Paragraph: Definition of thread ID

Capabilities Summary: According to Draft D4, each
thread in a process is uniquely identified during its
lifetime by its thread ID. Although implementations
may have thread IDs which are unique in a system,
applications should only assume that thread IDs are
usable and unique within a single process.

3. Delta Description: Threads are guaranteed to be
uniquely identified only within a process. Processes
are uniquely defined within a system. So, a thread is
uniquely defined by its process ID and thread ID pair.
Distributed systems are not explicitly considered.

4. Comments:

1

0

0

138

0

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 13
Criteria Name: Save/Restart Process
Requirement Document Paragraph: 2.9.13

2. POSIX Reference: None
Document Number:
Draft:
Revision:
Page:
Paragraph:

Capabilities Summary:

3. Delta Description:

4. Comments: At this time, these interfaces are considered
to be out of POSIX scope.

139

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 13
Criteria Name: Save/Restart Process
Requirement Document Paragraph: 2.9.13

2. POSIX Reference: None
Document Number:
Draft:
Revision:
Page:
Paragraph:

Capabilities Summary:

3. Delta Description: At this time, these interfaces are
considered to be out of POSIX scope.

4. Comments: There are no interfaces by which one thread
may query the state of another thread, nore is there
any apparent method for a thread to be asynchronously
restarted. A cooperative thread could be set up to
checkpoint itself and restart from a checkpoint of its
own design upon receipt of a synchronous or asynchro-
nous IPC request to do so. However, it is the nature
of embedded mission criticial systems that need for
restarting a process from a saved state usually occurs
under circumstances when the to-be-restarted process is
less than cooperative, i.e., in fault tolerant recovery
situations. Therefore, it is imperative that the
pthreads standard address the issue ofportable inter-
faces to thread save/restore capabilities. This may
require spcification of an opaque type to hold an
abstract thread state.

140

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 14
Criteria Name: Program Management Function
Requirement Document Paragraph: 2.9.14

2. POSIX Reference
Document Number: IEEE Std 1003.1-1988
Draft:
Revision:
Page: 32
Paragraph: Definition of process

Capabilities Summary: A process is an address space and
single thread of control that executes within that
address space, and its required system resources. Each
process is a member of a process group, and each pro-
cess group is a member of a session.

3. Delta Description: 1003.4a provides for multiple
threads of control within a process. Then, the process
corresponds to an Ada program, and the threads to Ada
tasks.

4. Comments:

141

1. Service Class Number: 9
Service Class Name: Process Management Interfaces
Criteria Number: 14
Criteria Name: Program Management Function
Requirement Document Paragraph: 2.9.14

2. POSIX Reference
Document Number: P1003.4a
Draft: D4
Revision:
Page: 29-33
Paragraph: 3.5 (Rationale Relating to Thread Manage-
ment)

Capabilities Summary: P1003.4a provides pthreads as a
mechanism for enabling multiple flows of control to
exist within a single POSIX.I process.

3. Delta Description: 1003.4a satisfies this requirement
by providing a concurrency abstraction (pthreads) which
runs within the context of a POSIX.l process. The pro-
cess, with its loosely coupled IPC mechanisms, limited
shared memory capability, and inherently heavyweight
context matches the requirement for a "program" well
(and that is its most frequent use in typical timeshar-
ing UNIX systems), while pthreads provides the con-
currency model within the context of a process. In
regard to Ada, an Ada program corresponds to a POSIX.I
process, and an Ada task to a pthread.

4. Coments:

References: 1003.1, 1003.4 (D9), 1003.4a (D4), the NGCR
OSSWG POSIX cross matrix, the NGCR OSSWG evaluation comments
and rationales, and Frank Prindle's white paper "Pthreads
Meets NGCR"

142

Revised Data Sheets for Service Class 9, Criteria 11 and 12 (September 1991)

To be included in Appendix A of the DELTA Document for the Next Generation
Computer Resources (NGCR) Operating Systems Interface Standard Baseline

Submitted by Karen Gordon (IDA)

9.11

1. Service Class Number .9
Service Class Name :Process Management Interfaces
Criteria Number :11
Criteria Name :Examine Process Status
Requirement Document Paragraph :20.9.11

2. POSIX Reference
Document Number :IEEE Std 1003.1-1990
Draft
Revision
Page 47, 49, 231
Paragraph : 3.2.1

Capabilities Summary: The wait() and waitpid()
functions allow the calling process to obtain status
information on child processes-- whether they have
terminated or stopped.

3. Delta Description: The wait() and waitpid()
functions provide limited status (terminated, stopped, and
why (e.g., caused by which signal)) on limited processes
(child processes). Richer status information is required.
The ability to examine status of general processes (i.e.,
non-children) is required.

4. Comments:

(1) p. 47: A non-blocking version of waitpid() is
available; it is indicated by a "WNOHANG" flag in the
options argument.

(2) p. 49: "An implementation may define additional
circumstances under which wait() or waitpid() reports
status."

(3) p. 231: "Nothing in POSIX.I prevents an implementation
from providing extensions that permit a process to get
status from a grandchild or any other process."

(4) Tihe UNIX mechanism for obtaining process status is the
"ps" command. Likely places for the "ps" command to appear
in POSIX include 1003.2 and 1003.7 (note: check with these
groups and their drafts).

143

9.11

1. Service Class Number :9
Service Class Name :Process Management Interfaces
Criteria Number :11
Criteria Name :Examine Process Status
Requirement Document Paragraph :20.9.11

2. POSIX Reference
Document Number :P1003.4a
Draft :D5
Revision
Page : 29, 30
Paragraph : 3.4.3

Capabilities Summary: p. 29: "The pthread join
function suspends execution of the calling thread until the
target thread terminates." This interface provides limited
status information--whether a thread has terminated.

3. Delta Description: Richer status information is
required.

4. Comments: A non-blocking alternative to
pthread join might partially or fully satisfy this
requirement. (See non-blocking alternative to waitpid for
process.) As suggested on p. 30 of P1003.4a/D5, condition
variables could be used to achieve effect of non-blocking
join. An explicit interface for this purpose would be
better.

1

144

0

9.12

1. Service Class Number :9
Service Class Name :Process Management Interfaces
Criteria Number :12
Criteria Name :Process Identification
Requirement Document Paragraph :20.9.12

2. POSIX Reference
Document Number :IEEE Std 1003.1-1990
Draft
Revision
Page : 18
Paragraph :Definition of process ID

Capabilities Summary: Each process in the system is
uniquely identified during its lifetime by a positive
integer. "System" is defined to be an implementation of
1003.1.

3. Delta Description: None

4. Comments:

(1) A 1003.1 system could span multiple processors
(connected by shared memory or network); such a
multiprocessor or distributed operating system
implementation of a 1003.1 "system" is not precluded. In
this case, the process id would be unique across all the
platforms composing the system.

(2) Many aspects of distribution (naming, communication,
management, etc., across multiple POSIX "systems") are
covered under networking services (e.g., 1003.17 (Directory)
for naming, 1003.12 (PII) for communication) and system
administration (i.e., 1003.7 for management).

(3) From p. 18, "In addition, if there exists a process
group whose process group ID is equal to that process ID,
the process ID shall not be reused by the system until the
process group lifetime ends."

(4) From p. 18, regarding process lifetime: Ends only after
a process terminates AND the parent process executes a
wait() or waitpid() for the process. That is, a process is
in an inactive state after it has terminated but before it
has been "wait"ed for by its parent; during this inactive
period, its process id cannot be reused. So, process ID
uniqueness can be preserved by refraining from the execution
of the "wait" or "waitpid".

145

9.12

1. Service Class Number :9
Service Class Name :Process Management Interfaces
Criteria Number :12
Criteria Name :Process Identification
Requirement Document Paragraph :20.9.12

2. POSIX Reference
Document Number :P1003.4a
Draft :D5
Revision
Page :10
Paragraph :Definition of thread ID

Capabilities Summary: According to Draft D5, each
thread in a process is uniquely identified luring its
lifetime by its thread ID. (Although implementations may
have thread IDs which are unique in a system, applications
should only assume that thread IDs are usable and unique
within a single process.) In the context of a system
running multiple processes, any thread in the system can be
uniquely identified by a pair of IDs--the first component of
the pair being the process ID of the process in which the
thread resides, and the second component being the thread ID
of the thread itself.

3. Delta Description: None

4. Comments: From p. 11: "A conforming implementation
is free to reuse a thread ID after the thread terminates and
pthreaddetach() is called for that thread." So, by not
detaching a thread, thread ID uniqueness throughout the
lifetime of the process can be guaranteed. Process ID
uniqueness can be guaranteed as indicated above.

1
146

S

Resolution of Deltas for Service Class 9, Criteria 11, 12, and 13 (September 1991)

To be included in Section 6 of the DELTA Document for the Next Generation Computer
Resources (NGCR) Operating Systems Interface Standard Baseline

Submitted by Karen Gordon (IDA)

9.0 Process Management Interfaces

9.11 Examine Process Status

Requirement: The OSIF shall provide the ability for
processes to examine the current status of a particular
process. This requirement would be classified as (a)
Required. Note that status here is not intended to include
cumulative execution time; the capability to obtain
cumulative execution time is covered as Criteria 3 in
Service Class 13 (Synchronization and Scheduling).

Description of Deltas: The wait() and waitpid() functions
provide limited status (terminated, stopped, and why (e.g.,
caused by which signal)) on limited processes (child
processes). Richer status information is required. The
ability to examine status of general processes (i.e., non-
children) is required.

Resolution Alternatives:

1) Enhance existing 1003.1 wait() and waitpid() interfacesto include this capability - Extensions of wait() and
waitpid() to provide richer status information and to allow
status querying to general processes are discussed in
1003.1, but not included in the standard. It is unlikely
that consensus to include the extensions could be achieved.

2) Incorporate UNIX "ps" command functionality into a POSIX
standard. The functionality should be incorporated as a
system call, and also as a command ("ps" is available only
as a command in present UNIX implementations).

Recommendation: The 1003.7 and 1003.2 drafts should be
reviewed to determine whether "ps" is on the agenda. The
1003.2 and/or 1003.7 groups should be approached with a
proposal to include the capability for examining process
status in their drafts (if not already on the agenda of one
of the groups). The system call version of "ps" might need
to be placed in another draft (possibly one of Working Group
1003.4's drafts).

147

9.11 Examine Thread Status

Requirement: The OSIF shall provide the ability for threads
to examine the current status of a particular thread. This
requirement would be classified as (a) Required. Note
that status here is not intended to include cumulative
execution time; the capability to obtain cumulative
execution time is covered as Criteria 3 in Service Class 13
(Synchronization and Scheduling).

Description of Deltas: The pthreadjoin function provides
limited status information--whether a thread has terminated.
Richer status information is required.

A non-blocking alternative to pthread join might partially
or fully satisfy this requirement. (See non-blocking
alternative to waitpid for process.) As suggested on p. 30
of P1003.4a/D5, condition variables could be used to achieve
effect of non-blocking join. An explicit interface for this
purpose would be better.

Resolution Alternatives:

1) Frank Prindle's proposal for pthread timedjoin (as part
of timeouts for blocking services proposal for 1003.4b).

2) Investigate extending UNIX "ps" command functionality to
threads and incorporating into a POSIX standard (probably
one in the P1003.4 series, since threads are addressed in
the 1003.4 Working Group).

Recommendation: Alternative 1) (Frank's proposal) meets
part of the requirement. To get the richer status
information, alternative 2) should also be pursued.

148

S• • m r

9.12 Process (Thread) Identification

Requirement: The OSIF shall support the unambiguous
identification of processes (threads). This requirement
would be classified as (a) Required.

Description of Deltas: None (See revised data sheets).

149

9.13 Save/Restart Process

Requirement: The OSIF shall support the ability for
processes to be restarted from a saved state. This
requirement would be classified as (a) Required.

Description of Deltas: At this time, these interfaces are
considered to be out of POSIX scope.

Note: check the P1003.1a draft; it was reported that

checkpointing may currently be an agenda item there.

Resolution Alternatives:

1) Investigate checkpointing/restarting of processes and
threads, possibly in the context of a broader OSSWG fault
tolerance proposal. Consider 1003.7 and 1003.4 as forums
for making proposals.

2) Levy the requirements and the OSIF general
requirements on vendors but do not provide a standard as
such - This alternative relies on vendors to develop some
commercial existing practice in this area on which to
potentially standardize at a later date.

Recommendation: Alternative 1) is recommended, while it is
recognized that program managers can always resort to
Alternative 2). Checkpointing a process that is
communicating with others or checkpointing a thread (that is
sharing memory with other threads) seems to be difficult and
demands further study.

1

150

0

Resolution of Deltas for Service Class 13, Criteria 7 and 11 (September 1991)

To be included in Section 6 of the DELTA Document for the Next Generation
Computer Resources (NGCR) Operating Systems Interface Standard Baseline

Submitted by Karen Gordon (IDA)

13.0 Synchronization and Scheduling Interfaces

13.7 Periodic Scheduling

Requirement: The OSIF shall provide for the periodic
scheduling of a process (thread). This requirement would
be classified as (a) Required.

Description of Deltas: From Delta Document data sheets:
"Need guarantee that there will be no unreasonable delay in
the runnability of a process (thread) once a specified
periodic time has arrived."

Resolution Alternatives:

1) Define what is meant by "no unreasonable delay" and
enhance existing POSIX interfaces to include this
capability.

2) Accept the POSIX approach--performance metrics--and
require vendors to report values for the performance metrics
cited in Section 8.4 of 1003.4/D10 (pp. 147-149) (in
particular, clock/timer granularity and timer expiration
service latencies) and also in Section 7.4 (event dispatch
latency).

Recommendation: Alternative 2). Since the definition of
"no unreasonable delay" is implementation-dependent and
application-dependent, the POSIX approach of specifying
performance metrics and requiring their values to be
reported is recommended. (Note: the delta for 13.7
(periodic scheduling) could be viewed as "none".)

151

13.11 Precise Scheduling (Jitter Management%

Requirement: The OSIF shall provide the ability for an
application to indicate to the scheduler an exact (actually,
within some tolerance) specified time for starting a process
(thread). This requirement would be classified as (a)
Required.

Description of Deltas: From Delta Document data sheets:
"Need guarantee that there will be no unreasonable delay in
the runnability of a process (thread) once a specified
precise time has arrived or precise interval has expired."

Resolution Alternatives:

1) Define what is meant by "no unreasonable delay" and
enhance existing POSIX interfaces to include this
capability.

2) Accept the POSIX approach--performance metrics--and
require vendors to report values for the performance metrics
cited in Section 8.4 of 1003.4/DlO (pp.147-149) (in
particular, clock/timer granularity, clock jitter, and timer
expiration service latencies) and also in Section 7.4 (event
dispatch latency).

Recommendation: Alternative 2). Since the definition of
11no unreasonable delay" is implementation-dependent and
application-dependent, the POSIX approach of specifying
performance metrics and requiring their values to be
reported is recommended. (Note: the delta for 13.11
(precise scheduling) could be viewed as "none".)

152

