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The direct numerical simulation of dissipative, highly compressible turbu-
lent flow is performed using a pseudospectral Fourier technique. The govern-
ing equations are cast in a form where the important physical variables are
the fluid velocity and the natural logarithms of the fluid density and temper-
ature. Bulk viscosity is utilized to model polyatomic gases more accurately
and to ensure numerical stability in the presence of strong shocks. Numeri-
cal examples include three-dimensional supersonic homogeneous turbulence and
two-dimensional shock-turbulence interactions.
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1 Introduction

The primary topic to be discussed in this paper is the direct numerical simulation
of those highly compressible turbulent flows which can be described by the
single-fluid Navier-Stokes equations within the constraint of periodic boundary
conditions. While modern theoretical analyses of compressible turbulent flows
began with the work of Moyal [1], their direct numerical simulation is much
more recent. Following the seminal work of Passot and Pouquet [2], many other
authors have also used Fourier methods, for example, Erlebacher et al., [3],
Blaisdell ei at., [4], Sarkar et at., [5], Kida and Orszag [6], and Zang et at., [7].

Here, Fourier methods are extended in two principal ways. First, we de-
scribe a technique which has proven useful previously [8]: the governing equa-
tions are cast in a form where the important physical variables are not the fluid
density and temperature directly, but rather their natural logarithms; this en-
sures adherence to a physical constraint of positive-definiteness which may be
computationally violated in non-logarithmic formulations, leading to numerical
instability. Second, bulk viscosity is utilized, both to model polyatomic gases
more accurately and concomitantly to ensure numerical stability in the presence
of strong shocks.

The efficacy of using logarithmic variables and physical values of bulk viscos-
ity will be shown through several numerical examples. In particular, logarithmic
variables will allow for the simulation of supersonic homogeneous turbulent flow,
while bulk viscosity will enable the resolution of shock structure. These numer-
ical examples will be followed by a conclusion where extensions of the current
work will be discussed.

2 Basic Equations

The basic equations of compressible fluid dynamics may be expressed as

OP
t-+V-pu = 0 (1)

Opu
a-u +V-PUU = -VP+lVj PVU+(ý!+pB,)IV.u] (2)

5 -+ .pu = -(y-l)pV.u+(-y-a)V.(KVT)

+r(-r- 1) [2 Tij + PB(V U)1] (3)

Here, rij = Oiuj + 9jui - 2/36jjV u and I = [6ij is the unit dyadic.
The equation of state will be that of an ideal gas, p = RpT/m, where

R/m = cp - c,; R is the ideal gas constant, m is the molecular weight of
the gas and cp and c, are the specific heats at constant pressure and volume,
respectively. Here, we will consider polytropic gases, i.e., gases such that the



specific heats and their ratio -y = c,/c, are taken to be constants. In this case,

the speed of sound c satisfies c2 = 7RT/m = -yp/p.

We can non-dimensionalize the equations (1)-(3) in terms of reference values
Po, T0, and uo. Thus, using c. = -yRT,/m and Pa = pC,/0 we have (in the
following, dimensionless quantities have a superscript attached, e.g., p*):

P = PoP*

U = U0o*

T = ToT*

*2*

P = PoP* = pocop*T*/p7 (4)

Now we choose a length scale Lo so that t = tt* where t, = Lo/uo. Then
dividing (1) by pa/to, (2) by poUo/to, and (using Rim c,(-y - 1)) dividing (3)
by pa/to gives:

0p*
_r--:+ _ •pu = 0 (5)

at* * 1 *.
OP---- + V.. p*u*u* - I-V. p* T*

+ V p*V.u* + (L- + fi) IV. - uj (6)

OP*T*O--- + V. -p*T*u* = - - l)p*TV. • u- + V. - (c*V.T*)

+ O-Y-y( -1)[- 2rj r + tl(V.-_U)] (7)

Here, Mo u 0/co is the reference Mach number and the dimensionless transport
coefficients are:

if*= p/(pouoLo)

PB = /LB/(pouaLo)

t*= K/(cpouLo) (8)

and the tý,- are the same as previously defined, except now in terms of the
corresponding dimensionless quantities.

In (8), we recognize p* = I/Re, i.e., the dimensionless shear viscosity is the
inverse of the Reynolds number Re. Although the transport coefficients which
appear in the fluid equations are generally dependent on p or T or both, here
we will operate under the assumption that these coefficients are all constant.
Then the Prandtl number is Pr = cp1/K = ap*/K* and the ratio of bulk to
shear viscosity /3 = PB//I = ph/p* will also be constant.

Using the quantities developed above, we can write the dimensionless fluid
equations in a more compact form. First, we will drop the '"' from the d(imen-
sionless quantities, remembering that we are now dealing with non-dimensional
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equations. Second, we will choose the reference velocity as uo = c, so that
M= 1. Then, since y, p, PB, and tc are all constants, the equations become

ap
5-+V-pu = 0 (9)

0pu +V.puu = - VpTOt 7

+PV. [Vu+ ( +3)IV.u] (10)

-pT +V'pTu = -(-y-1)pTV.u+ KV 2T
at

(The dimensionless pressure is p = pT/y.) These are the set of basic equations
with which we will simulate the motion of a compressible fluid. In particular.
by judiciously choosing appropriate values for it, /3, and K, we will be able to
simulate both turbulence and shocks, as well as their interaction.

3 Logarithmic Variables

Although the variables p and T may take values only between 0 and oxc, it.
is always possible in a dis.-rete numerical simulation to inadvertently assign
these variables non-positive values. When this occurs, an instability generally
arises which stops the simulation. One sure way to avoid this is to express
the basic equations in terms of logarithmic variables: A = Inp and a = InT.
This is particularly appropriate when we wish to simulate fluid flows in which
compressibility plays an important role, as in the case where shocks are present.
Since this is the case at hand, we will use these logarithmic variables here.

Placing p = eA and T = e' into (9)-(l1) yields the basic non-dimensional
equations in a logarithmic formulation:

+u. VA = -V.u (12)
at
aut + u.VU= : -eV(A + a)

+= -(y )V •+ e[Vu + +(• V • u] (
at

+ -Y(y - l)le., (A+e) I[ 2 1 + 7, (V + U)2] (14)

( 3



It will be seen presently that these equations, though not in conservative form

[91, are well suited to simulating highly compressible fluid motion.

4 Transport Coefficients

Along with the value given to the ratio of specific heats y, a very important
feature of any simulation of fluid dynamics is the set of values assigned to
the dimensionless transport coefficients It, /iB, and K. Although all of these
coefficients vary with temperature and pressure, here they will be assumed to
be constant. An investigation of the effects that their dependence on density
and temperature may have will be deferred.

The values assigned to these dimensionless coefficients depend on both the
physical references u,, Lo, and To, and on numerical constraints, such as grid
spacing. It is well known, for example, that the ratio of the largest dynamically
important scales to the smallest is proportional to Re 3/ 4 [10]. Assuming that
the constant of proportionality is about one, and since current computers limit

the total number of points on a grid to about 106, we have Re < 500 for a three-
dimensional grid and Re < 10' for a two-dimensional grid, approximately. Note
that this is the Reynolds number based on a characteristic physical length, and
not the microscale Reynolds number, which is based on an average turbulent
eddy size. Other numerical constraints, such as a limit on available computa-
tional time, reduce grid sizes from their potential maximum and further reduce
the maximum Re which may be considered.

However, once it = I/Re is set, the other transport coefficients follow some-
what directly. Since Pi- = y-/;L- I and since I < -y < 5/3 for common gases,
we see K ; it. The value of ItB, or equivalently 03 = liB/lt, is highly dependent
on whether the gas is polyatomic or not; although monatomic gases have /3 z 0,

polyatomic gases range from /3 z I for air to /3 z 30 for molecular hydrogen to
t3 • l03 for carbon dioxide [Ill].

5 Numerical Method

Here, we will use a Fourier pseudospectral technique [12] to numerically solve the

logarithmic variable equations (12)-(14). In this method, the physical variables

A, u, and a are expanded in terms of discrete Fourier series, e.g.,

A(x) = E A (k) ,ik x (15)

Ikl<N/2

The argument of the variable will be used to denote whether it is in x-space:
\(x), or in k-space: A(k). In the above equation, n is the spatial dimension and

N is the number of points on the numerical grid in one dimension (in 2D the
grid is N x N and in 3D it is N x N x N). When discrete forward or inverse
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Fourier transforms are needed, they are found using a fast Fourier transform
(FFT) subroutine.

Notice that the maximum value of any component of k is strictly less than
N/2. The reason is that a Fourier coefficient which has one of the components
of k equal to N/2 has only a real part, as far as the FFT is concerned. Multiply-
ing this component by ik yields the corresponding components of its gradient,
for example, which have only imaginary parts. An FFT, however, ignores the
imaginary part of such a component, so that its contribution to any derivative
is always zero. It is therefore prudent to never include such components in any
FFT-based miethod for the numerical solution of differential equations.

When the Fourier expansions of the physical variables are placed into the
small set of partial differential equations (PDEs) (12)-(14), the result is a large
set of ordinary differential equations (ODEs), one equation for every value of
k which the FFT utilizes. Although either the set of PDEs in x-space or the
set of ODEs in k-space can be time-integrated, here it is the ODEs which are
integrated forward in time. The reason is that the numerical arrays in k-space
contain fewer nonzero elements than the arrays in x-space. Since Iki < N/2
and since the arrays in either space contain about N' elements, then the ratio
of nonzero array elements in k-space to x-space is ir/4 = 0.79 in 2-D and
7r/6 = 0.52 in 3D (i.e., the ratio of the area of a circle to the area of the square
which just encloses it, and the volume of a sphere to the volume of a cube which
just encloses it, respectively). Thus, one may always reduce the size of a majority
of the arrays in a k-space-based computer code so that they are minimal and
yet contain all essential information. When it is necessary to perform an FFT to
x-space, a minimal array is mapped into a full-sized FFT array; this is needed
only to evaluate products of two x-space arrays, so only two full-sized FFT
arrays are actually needed. Since the total number of arrays needed in a typical
simulation are usually much greater than two, memory requirements in 2-D
may be reduced by about 20% and in 3D by about 50%. (The argument in this
paragraph also pertains to fully spectral methods where fkl < kma, < N/2.)

Although minimal arrays are critical in order to maximize N, on modern
supercomputers with very large memories such a large value of N may lead to
prohibitively long run times. Since grid sizes are kept to a reasonable value
in the work to be presented in this paper, minimal arrays are not used here
(though they have been implemented previously [131). Nonetheless, this is the
motivation for solving the ODEs in k-space.

The time-integration method used here was a 'third-order partially corrected
Adams-Bashforth scheme' [14]. The timne-step size was variable and inversely
proportional to the largest absolute modal value (Rma,-) from the right-hand-
side of (12)-(14) at each iteration:

At= Q /R,n ar if Rmaz > I
1 ft if R,, _< I 1

where typically 10-2 < (v < 10-1. This method of determining A2 automatically
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satisfies the necessary stability conditions [2].
In the pseudospectral method presented here, shock structure is resolved.

This is done by considering cases where 13 = pih/it is large enough so that
whatever shocks occur are of a naturally limited steepness [15]; for example,
the gas under consideration can be H 2 (molecular hydrogen) or some mixture
containing H2, or the characteristic length L, can be assumed small for an
arbitrary polyatomic gas. In contrast, numerical solutions of the Euler equations
require methods that use shock-capturing or shock-fitting [12, pp. 255-273].

6 Initial Conditions

In order to begin a simulation, the initial values of A, u, and a need to be
specified (but not the boundary conditions, which are periodic). The initial
turbulent velocity is set according to

ku(k) - k 4 exp(-2k2 /ko) (17)

where k,, is the wave number at which the spectrum peaks; the phase of the

u(k) are initially random. In setting the initial conditions on the velocity it is
useful to decompose it into 'incompressible' and 'compressible' parts; in terms
of Fourier coefficients, the decomposition is easily effected:

=(k) uS(k) + uc(k) (18)

where the solenoidal (i.c, incompressible) part uW and compressible part ui are,

W"(k) = (I -lkk).u (k)

u'(k) = kk -iu(k) (19)

and where k is the unit vector in the direction of k. The k = 0 component of
u-' corresponds to the mean flow velocity.

For the moment assume that we have an initially incompressible flow. Then
ut =0 and p = I at t = 0; upon taking the divergence of (10) and defining
T I + 7', we find the fluctuation T' initially satisfies:

_V2 T' = 7 YAiiju'-s
-- •li Uj

= S(x) (2U)

In terms of Fourier coefficients, the temperature fluctuations which are consis-
tent with the assumption of an initially incompressible flow are given by

T'(k) = k- 2 S(k) where k > 0 (21)

Since T'(x) > -I in order that T > 0, and since T' -yix u'2, then i"' must
be scaled accordingly. The mean Value of I1,'1 2 (denoted by (I11, 2)) is the Mi-
tial turbulent Mach number squared M,'. The maximum fluctuation of ju-'2



is larger than M', and we expect that maxMt - -y in order that the con-
straint T' > -1 is obeyed. Here, when initial flow conditions with close to
maximal incompressible velocities are desired, the initial velocity is scaled so
that minT'(x) = -0.99.

In truly incompressible initial conditions, the flow is subsonic. However,
we are at liberty to choose A, ii, and a arbitrarily as initial conditions for the
Navier-Stokes equations. Thus, supersonic (max [u(x)j > 1) initial turbulent
flow conditions can be specified. For example, A(k), uc(k), WS(k), and a(k) can
be specified independently of one another. As another example, an initially in-
compressible flow field can be specified (to represent a local region of turbulence)
and a compressible flow field (corresponding to an approaching shock front) can
be added to it. These alternatives will, in fact, enable us to investigate highly
compressible homogeneous turbulence and shock-turbulence interactions.

7 Numerical Results

The pseudospectral logarithmic variable method was implemented in both a 3D
code and a 2D code. The 3D code was used to simulate supersonic isotropic
turbulence on a 643 grid, while the 2D code was used to examine the passage of a
region of turbulent flow through a shock on a 5122 grid. These numerical studies
will be discussed following the definition of some quantitative flow measures.

It will be usefld at this point to define a number of quantities which measure
certain characteristics of a turbulent flow and its simulation. First, the mean of
a quantity Q averaged over its values at all grid points xi will be denoted by

(Q) = I-E1 Q(xi) (22)

where n = 2 for 2D and n = 3 for 3D. The turbulent Mach number Mt, average
wavenumber kave, dissipation wavenumber kD, microscale Reynolds number R\
and compressibility index X are then

Mt = ((Il12) / (T)) 1,2

k,,,v = [((Ud uj)2 ) / (,ui,)] 1/2

kD = ((E)/ ,)) /4

RX, = (11,12)1/2 A,,.,/,.

X = (11,'12) / (1,1I2) (23)

In the dimensionless system adopted here, v = p. Also, Aat,, = 27r/k,1 ,, and the
local dissipation rate e is

6 = iL [(V x 11)2 + (/3 + 4/3)(V _1)2] (24)

Dissipation clearly has a part related to vorticity V x u and to dilatation V • ii.
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7.1 3D Homogeneous Supersonic Turbulence

In the previously cited work [2-7], initial RMS Mach numbers were never above
Mt = 0.8, and usually were much less. One possible reason for this limitation
is the occurrence of negative values of density or temperature on the numerical
grid, which can lead to such local instabilities as effectively negative diffusion.
Here, these possibilities are explicitly avoided through the use of logarithmic
variables. The initial RMS Mach number for the test cases considered ranged
from Mt = 1 to Mt = 2 and there were no problems experienced in these 643
simulations (such as conservation of energy) as long as the dissipation wave
number began and remained less than kmnax= 3 2 .

Consider two cases for which Mt = I initially; in these cases, half of the
physical volume contains flow with supersonic velocity at t = 0. In both cases,
-y = 1.4, It = 0.01, /3 = 0, and K = 0.7 (the Prandtl number is thus approximately
unity); these values correspond roughly to those of air. Also at t = 0, A = 0
everywhere and the velocity satisfied (17), with k, = 6.

The difference between the two runs lay in the value of Y. In run 3D64A,
X = 0.25 while in run 3D64B, X = 0.75 at t = 0. Both simulations ran until
almost t 1 at about 14 cpu-sec/At; the fluctuation in total energy was less
than 0.2% for 3D64A and less than 0.5% for 3D64B. In Figures 1 and 2, the time
variation of the quantities Mj and X, and in Figures 3 and 4, the time variations
of Rx, kave, and kD are shown for runs 3D64A and 3D64B, respectively. For
these runs, kD < kax 32, so that both are numerically well resov/ed.

One difference between the two runs manifests itself in the evolution of
enstrophy ((V x it) 2 ) and mean square divergence ((V7. -i)2). These quantities
are are presented in Figures 5 and 6 for runs 3D64A and 3D64B, respectively.
Since /3 = 0 for these runs, a consideration of (24), along with Figures 5 and
6, shows that dissipation occurs primarly due to vortical motion, rather than
to dilatational motion (although for a short time after the start of run 3D64B
dilatational motion is actually more important).

Another difference is in the relation between the solenoidal and compressible
velocity spectra, as shown in Figures 7 and 8, for runs 3D64A and 3D64B,
respectively. Figures 7 and 8, which correspond to I = 0.57 and t = 0.56,
respectively, show that the dominant part of the velocity spectra at the highest
k-values is the compressible one. However, Figure 8, corresponding to run 3D64B
which had an initial value of J3 = 0.75, indicates that the compressible part of
the velocity spectra is also dominant over the medium as well as high k-values.

7.2 2D Shock-Turbulence Interaction

In addition to the homogeneous 3D runs just described, a set of 2D runs on a
5122 grid were completed. These runs, 2D512A, 2D512B, and 2D512C, differed
initially only in the value of J3 assigned to each: 10, 30, and 100, respectively;
for all three runs, pt = 0.001, K = 0.7, and -Y = 1.4. All the runs began
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with identical initial conditions, which consisted of a region of incompressible
turbulence satisfying (17) with k, = 9 filling the left half of the 2D grid and
a shock wave in the right half of the grid. Using the shock jump conditions
[10, p. 335], density, temperature, and velocity corresponding to a Mach 2
shock were set inside the right half of the grid, while in the left half of the
grid the mean density was < p >= I and the mean velocity was < u, >= 2
(the frame of reference was such that the shock front was initially stationary
and the turbulent region was moving from left to right into it). At the edges
of the turbulent region, there were transition regions of twenty grid points in
the x-direction (i.e., the streamwise direction) in which the interior turbulent
velocity field went smoothly to zero (by a squared-cosine taper). The turbulent
temperature fluctuations were determined by (21).

Similarly, there was a squared-cosine taper from the free stream values of
density, temperature, and velocity to their jump values, and back again, over
the twenty grid points on the outside edges of the shocked region. Thus, we
begin on the leftmost edge of the grid with freestream values, make a transition
into a turbulent region, make another transition out of the turbulent region
back into the freestream values and then a transition into the shocked region,
followed by a transition back to freestream values on the rightmost edge of the
grid. This resulted in a periodic set of initial conditions which could be treated
by a Fourier method. These initial conditions can be thought of as 1) a one-
dimensional Mach 2 shock wave, and 2) a localized region of eddy turbulence
placed into the freestream flow (and moving with it) just ahead of the shock
front.

Once evolution began, the front of the shock steepened slightly, and the
density and temperature increased slightly, leading to a pressure jump ratio of
5 across the shock front (it was initially 4.5). Based onl this pressure ratio the
Mach number of the shock should have risen to 2.1; the shock front, which would
have remained stationary in the reference frame chosen, was observed to move
forward at a relative velocity of 0.1, in accordance with expectations. During
the same time, the back of the initial shock pulse spread into a rarefaction
wave. As an example of the time variation of Rx, kD, and k,,e, consider Figure
9, which pertains to run 2D512B, and is similar for the other 2D runs. Since
kD < km,,,, = 256, it. would appear that the turbulence is sufficiently well
resolved.

The resolution of the shock front, in turn, gets better with increasing values
of /3. Consider Figures 10, 11, and 12, where spanwise averages for vorticity
and pressure are shown for the three runs for the same time (I = 0.567). In
Figure 10, which corresponds to (3 = 10, there are some oscillations in the shock
front; these oscilations disappear, however, in the Figures II and 12, which
correspond to /3 = 30 and /3 = 100, respectively. To visualize what happens to
the turbulence as it crosses the shock front, consider Fiqures 13 and 14, which
show a small section of the grid for runs 2D512A and 2D512B (/3 = 10 and
/3 = 30, respectively), both at t = 0.567.
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InI Fiqures II and 12, the vorticity jumps by a factor of about 2.5, which is
also the case for Figure 10, if the initial overshoot is ignored. This is consistent
with linear theory [16, 17]. The shape of the shocks is also consistent with the
results from previous simulations using ENO methods [18].

8 Conclusion

InI this paper, two primary extensions of pseudospectral Fourier methods for
solving the compressible Navier-Stokes equations have been described. First, by
using a 'logarithmic variable' foriulation of the basic equations, it, was shown
that. supersonic homogeneous turbulence could easily be simulated. Second,
by using realistic values of the ratio of bulk viscosity to shear viscosity, it. was
demonstrated that shock structure could be resolved and shock-turbulence in-
teractions could be examined by direct. numerical simulation.

The logarithinic variable method is not an explicitly conservative formula-
tion, though it. was seen that the global energy was very well conserved. In]
addition, the Rankine -Hugoniot relation between pressure jumnp across a shock
and upstream Mach number was also seen to hold. Although these measures
indicate that the numerical method was accurately solving the equation.s of mo-
tion, an exhaustive study was not performed. Such a study is more appropriately
done in a one-dimension simulation, rather than the two- and three-dimensional
simulations presented here, and will be deferred.

Note that shock capture and resolution is facilitated by the naturally occur-
ring bulk viscosity term. It had been found in pioneering work in the numerical
solution of flow problems involving shocks [9], that the introduction of an 'art i-
ficial viscosity' was necessary to ensure numerical stability in solving the Euler
equations. Other viable stabilization techniques for the Euler equations, includ-
ing spectral filtering and smoothing, have also been developed [19]. In1 additlion
to these techniques for Euler flows, 'hyperviscosity' methods have been applied
in solving compressible Navier-Stokes flows, for the pIrpose of increasing the
effective Reynolds number of a simulation, as well as ensuring stability [20]. In
comparison to these algorithmic approaches, the novelty here is, again, that, we
use a physically motivated approach involving the bulk viscosity. It imay prove
useful to compare these different, methods in greater detail, but this is beyond

Ihe scope of the present work.
Although the distrilbution of grid points is not concentrated at the shock

front., this is not a disadvantage. InI particular, the presence of turbulence also
requires a sufficient number of grid points for it-s resolution; thus it. is advan-
trageoiiS to have an even distribution of grid points, since small scale dynamnic
activity is occuring at essentially all parts of the grid. In this way, the small
scale structure of turbulence and the small scale structure of shock fronts are
treated equally.

In tihe future, we hope to incorporate reacting flows within the kind of siii-
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ulations described here. This is an important application, since a turbulent,
reacting flow, in the presence of shocks, occurs in many situations of interest
to thle aerospace andl astrop~hysical communities. OIne specific area of interest
is in the supersonic, ti~rlulent combustion which occurs in a scraiiijet, engine.
Another is the inflow through the accretion shock around a black hole.
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Figure 1. RMS Mach number Mt and compressibility index X for run 3D64A.
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Figure 2. RMS Mach number Mt and compressibility index X for run 3D64B.
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Figure 3. Microscale Reynolds number RA, average wave number kave,

and dissipation wave number kD for run 3D64A.
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Figure 4. Microscale Reynolds number Rx, average wave number ka,

and dissipation wave number kp for run 3D64B.
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Figure 5. Enstrophy and mean square divergence for run 3D64A.
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Figure 6. Enstrophy and mean square divergence for run 3D64B.
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Figure 7. Solenoidal and compressible velocity spectra for run 3D64A.
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Figure 8. Solenoidal and compressible velocity spectra for run 3D64B.
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Figure 9. Microscale Reynolds number RA, average wave number kave,

and dissipation wave number kD for run 2D512B.
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Figure 10. Spanwise averages for pressure and RMS vorticity for run 2D512A.
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Figure 11. Spanwise averages for pressure and RMS vorticity for run 2D512B.
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Figure 12. Spanwise averages for pressure and RMS vorticity for run 2D512C.
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Vorticity Contours for Run 2D512A at t=0.749
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Figure 13. Vorticity contours for a small section of run 2D512A.
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Figure 14. Vorticity contours for a small section of run 2D5121.
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