SECURITY CLASSIFICATION OF 7ris PAGE Lnclassified

- __'_REPORT AD-A961 563 T

e

1a. REPORT SECURITY CLASSIFICATION IR I
nclasstied RINRAR

2a. SECURITY CLASSIFICATION A

2b. DECLASSIFICATION / DOWNG Unlimited
4 PERFORMING ORGANIZATION T NUMT) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
TR-87-819
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. . (If applicable)
Cornell University Office of Naval Research
6¢. ADDRESS (City, State, and ZIP Code) ' 7b. ADDRESS (City, State, and ZIP Code)}
Department of Computer Science 800 North Quincy Street
Upson Hall, Cornell University Arlington, VA 22217-5000
Ithaca, NY 14853-7501
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicatle) NOOOO14—-86~K~0092
Office of Naval Research
8(8 AgDRESS (gfy, State, dn% ZIP Code) 10. SOURCE OF FUNDING NUMBERS
00 North Quincy Street ROGRAN T m— TR
Arlington, VA 22217-5000 ELEMENT NO NO. NO ACCESSION N

11 TITLE (Include Securrty Classification)

The Trainset Railroad Simulation

12. PERSONAL AUTHOR(S)]
Richard A. Brown and Fred B. Schneider, Editcrs, Jacob Aizikowitz, Thomas Bressoud, Tony Lek

13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF aspom (Year, Month, Day) |15 PAGE COUNT
Interim FROM TO 93,0 120

16. SUPPLEMENTARY NOTATION

17. COSAT!I CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP __ | process control, real-time testbed, railroad control

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
A prototype real-time process control application is described. A simulator for this
application is available--its interface is specified.

93-04442
WA TR

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
T UNCLASSIFIEDAUNLIMITED (O sAME AS ReT I pTic USERS
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢. QFFICE SYMBOL
Fred B. Schneider (607) 255-9221
DD FORM 1473, 8a mar 83 APR edit:an may be used until exhausted.

SECURITY CLASSIFICATION OF THIS PAGE

All ather editians are absolete

S o 110

The Trainset Railroad Simulation

Richard A. Brown (Editor)*
Fred B. Schneider (Editor)
Jacob Aizikowitz**
Thomas C. Bressoud
Tony Lekas*™**

TR 93-1329 ——
February 1993 @E@@ M_M_* N

NTiS Crasj {
LGHc 1ap 9] i
Unanno g -~)
Jir_o.f.'f'(_‘_;:‘(‘)

b e e LT {
By j

S a e e —

Dot ;T” i
L__.,-___“-_ . S

Avariatiiny Codes]

o

Urst ; SutCia!

8

_! Ayt ‘;‘[()-(‘ {
{
{

I
i
i

P SO

Department of Computer Science

Cornell University
Ithaca, NY 14853-7501

*Department of Mathematics, St. Olaf College, Northfield, MN 55057
**Electronics for Imaging, 950 Eim Avenue, San Bruno, CA 34066
***Digital Equipment Corporation, 9 Northeastern Boulevard, Salem, NH 03079

The Trainset Railroad Sunulation

Richard A. Brown! and Fred B. Schneider, Fditors

Jacob Aizikowitz? Thomas C. Bressoud Tony Lekas?

The RR Project

Department of Computer Science
Cornell University
Ithaca. NY 14850

February 13. 1993

'Department of Mathematics, St. Olaf College. Northfield. MN 53037
2Electronics for Imaging. 950 Elm Avenue. San Bruno. CA 94066
*Digital Equipment Corporation. 9 Northeastern Boulevard, Salem. NH 03079

Copyright (© 1993 Richard A. Brown and Fred B. Sclineider.
All rights reserved.

Permission to copy in whole or in part without payvment of fee 15 granted for
nonprofit educational and research purposes provided that all such whole or
partial copies include the following: a notice that such copying is by permission
of the copyright owners: an acknowledgement of the authors and individual
contributors to the work: and all applicable portions of the copyright notice.
Copying. reproducing or republishing in whole or in part for any commercial
purpose or for other purpose is prohibited without written permission of the
copyright owners.

Contents

Preface

0 Introduction and Overview

Obtaininga Copy
1 Trainset User’s Guide
1.1 Getting Started
1.2 How to Build a Layvout of Blocks and Trains
1.3 Howto Runalayout
1.4 Control Programs

2 Trainset Railroads

2.1 Introduction
2.2 Blocks
2.3 Tramns ..o

3 Automatic Control Interface (ACI)

3.1 Introduction o
3.2 Initial-State Download
3.3 Commands
3.4 Queries
30 Voung . ..o

3.6 Timer Facilities

4 Low-Level Interface (LLI)

4.1 Introduction
4.2 Messages
4.3 Imtiauing Communication
4.4 Imtal-State Download
45 Commands and Queries
4.6 Quit Message From the Simwulator.

A Constants Used by Trainset

21
2]

30
30
30
35

38
3%
39
40
43
45
47

50
50
52
53
53
54

55

B Code Listings: ACI
B.! aci.h. Interface Header File

B.2 acitest.c. Example Using the ACI Interface . . .

C Code Listings: LLI
C.l cpi.h. Interface Header File

C.2 aci.c, Example Using the LLI Interface

D Reference Pages

111

56
36
60

Preface

I became intrigued with real-time systers in the spring of 1986, Here was an
application dornain where using formal methods is justified. because the cost
1n life and property of programmer errors could be so great. Here also was an
application domain where making assumptions about hardware failure modes
1s lnappropriate. and so a system must be able to tolerate so-called Byzantine
failures. My research efforts had been concerned with these two subjects. thus
putting me in the enviable position of having discovered a “problem” for my
various “solutions”.

Attacking a real process-control problem seemed like a good way to get a
better understanding of the area. But, which problemi? The problem had to
be simple enough so that Computer Science issues dominated any application-
dependent details. Yet. the problem could not be too simple or else some key
aspect of real-time systems might be overlooked. 1 was aware that various
research groups (e.g.. at University of Newcastle upon Tyne and at University
of Waterloo) had used electric toy trains as a vehicle [sic] for such research.
and so that was an obvious place to start. After studving a bit of railroading.
however. it became clear that toy trains are not accurate models of reality
they change the problem too much. For examiple, real trains cannot accelerate
or decelerate as rapidly as toy trains do. Therefore. a control program for
a real train must anticipate changes to train speed: a control program for a
toy train need not. Somie of the inaccuracies of toy trains ran be corrected
by modifying the electronics used to control the trains. but dealing with this
and the other customn hardware necessary for integrating a toy train set with
a computer system seemed like a black hole (as only custom hardware can be)
that I should avoid. Thus. I decided to build a railroad simulator along with
support software for constructing railroad layouts. controlling those layouts from
networks of computers, and monitoring such control experiments.

After the first version of the railroad simulator was built, it became clear
that my circumstances were not unique. Other scientists were also becoming
interested in studying real-time programming issues and theyv. too. felt that a
prototype application could be a useful research tool. Courses on real-time sys-
tems would benefit from using this software in laboratory exercises. particularly
because specialized hardware and software were not required. So. we cleaned-

up the code. wrote some user documentation. and put together this software
distribution,

The Trainset system. as our railroad simulation software 1s now known.
is the work ol many people over the last 3 vears. Jacob Alzikowitz defined
aur model of railroads and wrote the first railroad simulator in the spring of
1987: 1t ran under SUNOS Unix. Jacob also supervised MEng. students Ellen
Blood. Anthony Pellegrint. and Jane Smidesang in produang an X10 graph-
1cs interface to the system. Michael Abbott. an undergraduate. then defined
and implemented a high-level interlace to the simulator for use by control pro-
grams. ‘This software was then rewritten and ported to VMS, ULTRIX. and
X11/DECWindows by Tony Lekas. a DEC engineer working with us as part of
a DEC-funded research project at Cornell. Dick Brown joined the project in
Fall 1989, spending that year and the following spring term on a major rewrite
of the svstern and writing documentation for what we had. Dick was assisted
by Thomas Bressoud. who rewrote and documented the lavout editor and part
of the graphies monitor software. Most recently. Donald Wihiardja has helped
us debug the installation procedure.

This software development effort would not have been possible without fi.
nancial support from a number of sources. My research in concurrent and
distributed systems has been funded by grants from the National Science Foun-
dation since 1978 and from the Office of Naval Research since 1983, Dr. Andre
van Tilborg. now the division director for Computer Science at ONR. was es-
pecially supportive as my ONR program manager during the initial stages of
this project. and Gary Koob, his successor. has continued that tradition. Fund-
mg from Digital Equipment Corporation was also critical to the success of this
project. Ed Balkovich of DEC encouraged me to apply for funding under Digi-
tal's External Research Program (ERP) and then served as our corporate liaison.
helping to transfer our research results to engineers at DEC who could benefit
from them. The DEC ERP funds allowed us to procure hardware for the labo-
ratory used to develop this software and to run real-time systems experiments.
John Gannon, the Software Engineering Program manager at NSF for]1988-89.
alerted me to the NSF Software Capitalization Initiative and encouraged me to
apply. Funding from that program supported Dick Brown's stay at Cornell and
is largely responsible for transforming our research prototype into a system that
could be widely distributed.

Fred B. Schneider
Ithaca. New York

Chapter 0

Introduction and Overview

Trainset is a real-time simulation of a railroad. The software consists of a sim-
ulator. an interactive graphics editor for defining railrcad layouts and graphics
monitor programs for displaying the state of the railroad and manually control-
ling it. Two communications interfaces to the simulator are provided.

e The control program interface (CPI) is used by computer programs that
control Trainset railroads. The CPI consists of library routines and data
structures, collectively called the ACY {Automatic Control Interface). and
low-level message formats and related facilities. called the LLI (Low-Level
Interface).

o The monitor interface is used only by the graphics monitor programs.

These interfaces can be in use simultaneously.

Trainset has been implemented in ' language on Digital Equipment Corp.
Ultnix, using DECwindows/X-11 and TCP/IP or DECnet.

This manual introduces Trainset and gives specifications for the railroads it
implements. The document also discusses the mechanics of using Trainset and
provides other information that a researcher or student should know in order to
write control programs that interact with Trainset railroad layouts.

The manual is organized as follows.

Chapter 1 is a tutorial on using the software. It includes instructions for
running a demonstration, creating and simulating a railroad layout and writing
programs to control a Trainset railroad. A simple programming example is
discussed to illustrate the use of the ACI.

Chapter 2 specifies the attributes of simulated railroads that Trainset sup-
ports.

Chapter 3 discusses the ACL. A high-level mechanism is presented for estab-
lishing a connection with a running Trainset railroad simulation and receiving
an initial-state download of that railroad. Commands and queries are described

for interacting with a Trainset railroad. Utlity routines that provide tier
facilities are introduced, and a service is discussed that supports the writing of
fault-tolerant control programs.

Chapter 4 documents the LLI. This information will be of interest to pro-
grammers who wish to bypass the ACI layer or reunplement it for other envi-
ronments.

The appendices include reference pages for the programs that comprise
Trainset and selected code listings.

A separate installation guide accompanies the software distribution.

Obtaining a Copy

You may obtain a copy of the Trainset software. installation instructions and
the text of this manual from either of the Internet sites listed below.

® ftp.cs.cornell.edu (Cornell University)
e ftp.stolaf.edu {St. Olaf College)

In either case. use the file-transfer program ftp to open a connection to the
desired host. Use the login name anonymous. and provide your own Internet
address as the password.

After logging n. issue the ftp command c¢d pub/trainset to access the
Trainset distribution directory. Among the files in that directory are:

o README. which briefly describes Trainset and the contents of the distri-
bution directory,

e install.dvi. installation manual for Trainset (in TFX output format).
¢ ts.dvi. the text of this manual.! and
e trainset.tar.Z, the source code package for Trainset.

See the manual page for ftp(1) for file transfer instructions. Use £tp file type
binary for .dvi and .tar.Z files. The source code package trainset.tar.2
may be unpacked on most Unix systems by issuing the following command:

% zcat trainset.tar.Z | tar xvf -

See the manual pages for compress(1) and tar{1) for more information about
this unpacking procedure.

[print this manual complete with figures. install Trainset at your local site and follow
the printing instructions provided in the installation manual.

Chapter 1

Trainset User’s Guide

1.1 Getting Started

Trainset consists of programs to support interaction with a simulated railroad.
Users can control the railroad manually and watch it in action by using graphics
monitor programs. In addition computer programs. called control pregrams.
may be written to control a Trainset railroad.

The rest of this section gives you a chance to get acquainted with Trainset.
In subsequent sections we explain how to create and run your own railroad
layout and how to use the ACI library.

1.1.1 Invoking the Programs

To start the Trainset software. enter the following ceinmaid.

% ts

(The symbol % is assumed to be your shell srorapt.) Three windows will open
on your display, as shown in Figure 1.1. One of these, the Simulator Window.
1s a terminal window that displays messages from the sitnulation. The other two
windows make up the graphics monitor. The Viewer window shows the current
positions of the raiiroad tracks and trains in a simulation. The Control Panel
window has controls and indicators, including pushbuttons and slide bars: it is
a graphical interface for controlling trains and switch blocks manually.!

The sample ratlroad layout displayed in the Viewer window of Figure 1.1
has two trains and 24 blocks.? Fach train has two ends: one is called the head

'The names of the programs that comprise Trainset are tsim for the simulator, tsview for
the Viewer, tapanal for the Control Panel and tsed for the layout editor. tsed is discussed
in Section 1.2 below.

?A careful reader may observe that the 24 block identifiers in Figure 1.1 range from 1 to
5 and 7 to 25. ldentifier 6 is associated with a subblock of the cross block cr 5. as explained
in Section 2.2.3.

K Viewer
Control
kY,
!
r
g @ g 16}
+
3 M P ———
m 25 K Corzrol Farc, IR
Cortrol
f
i
o
[
| ot
[e
T
[
3
7 i !
. Throttle . Reverse
T Teain 2 !
e Operations! |
ot v oo ,
“- | Ererst
N Simulator_Winaow + el "
his is sim/simulator “_, o s !
Rdded client, channel O. descrip 5. wime 2720, protocol O, ciiemt_id Of4 i
ident message “panel/parellX” H o " Srastop ' |
Addea client. charmel 1. descrip 6. time 5460, protocol 0. client_is 1 /T |
1dent message “dwt,viewer/viewerl¥” 1 it ! i
Throttie { Roverss i

Figure 1.1: Sample railroad layout

{ndicated by an angle bracket) and the other s called the tad findicated by a
square bracket). A block's type (see Section 2.2} 1s defined by s Label

rg for reqular blocks.
st for station blocks,
ja for jen blocks,

cr for cross blocks and

sw for swetch blocks.

Most blocks in the lavout of Figure 1.1 are represented by stratght lines or ares.

eg..

those labelled rg 1. rg 2 and st 11 Five such blocks are thickened 10

indicate that they are occupied by a train. Three blocks (er 5. jn B and sw 14}

have

other block types that are represented by cireled symbols in the layout

The control panel comprises one subwindow for each train and a pushbution
for each switeh block. Each switch block's pushbution can toggle that swich
block’s setting between the straight and turned settings bach tramn’s subwindow
mcludes the following controls and indicators.

L]

Two slide bars labelled Speed and Goal that display the train's current
speed and the goal speed desired for that traimn.

A slide bar labelled Throttle for setting a new goal speed. An operational
train accelerates or decelerates when its goal speed differs from s current
speed.

Two labels showing the name of the train (e.g . Train 1) and its state
(Operational. Derailed or Collided).

Two indicator lights. EmerStop and StaStop. The EmerStop light is iliu-
minated white the train is perforiming an emergency stop. The StaStop
light is Hluminated when the train is capable of petforming a station stop.
described later.

Three pushbuttons. EmerStop. StaStop and Reverse. The EmerStop
pushbution can be used to begin an emergency stop of the train. The
StaStop pushbutton can be used to enable the station-stop feature for
that train. The Reverse pushbutton changes the direction of the train’s
motion if the train is stopped.

1.1.2 Using the Control Panel

The best way to familiarize vourself with the features of the Centrol Panelisto
try them. observing their effects as displaved in the Viewer window Below are

sowe suggested steps for getting acquainted with the systens, using the samiple
layout of Figure 1.1.%

When describing graphics manipulations. we will use the following terms for
mouse-oriented input operations. The mouse button to press and release is the
left mouse button (for standard workstation window managers)

e Lo click on a pushbutton or icon. move the mouse pointer into the push-
button or icon area. then press the mouse button down and release it
tmmediately.

e To drag from gne pownt Lo another in a window, position the mouse cursor
at the starting point. then press the mouse button and hold it down
while moving the mouse icon to the finish point. Finally, release the
mouse button.

o To drag a shide bar to a value v, first position the mouse pointer over the
inner region that contains the indicator arrow for that shde bar graphic.
Then. press the mouse button and hold it down while moving the mouse
cursor right or left until the desired value ¢ is displaved on the numerical
display. Finally. release the mouse button. Due to variation in graphics
display resolution. it may not be possible to enter arbitrary desired values
using a slide bar.

Before starting. identify the controls and indicators for each train and switch
block in the Control Panel window. The Speed. Goal and Throttle slide bars
for each train display the initial value zeio. Each train is operational. and
neither of the StaStop and EmerStop indicator lights is iliuminated.

[r(,”lick (once) on the pushbution for the switch block sw 14 J

When you click on the pushbutton. the switch block toggles between the straight
and turned settings. Observe that there is a delay after pressing the pushbutton
hefore the switch block setting actually changes on the screen. This delay has
two causes: communication time and the time that it actually takes for a switch
block. which is a large mechanical device, to change setting.

;[Click on the switch block pushbuttor again to toggle the switch
!ﬁiock back to the straight setting.

Click on the Stastop and EmerStop pushbuttons for Train 2. |

i
[Do not click on the Reverse pushbutton for Train 2 nor any

| pushbuttons for Train 1 at this time.

*Suggested actions are enclosed in boxes,

6

When the StaStop indicator light is on. we say that train is m station-
stop mode: likewise. the EmerStop indicator light shows whether the train is
in emergency-stop mode. Note that the StaStop indicator light can be tHuun-
nated. but the EmerStop indicator light cannot be illuminated yet. An opera-
tional train’s station-stop mode can be enabled or disabled whether that train
1s moving or not. Emergency-stop mode cannot be enabled for a train unless
that train is moving.

We are now ready to set a train in motion.

train to a value near 40 {m/sec).

Accelerate Train 1 by dragging the Throttle slide bar for that!

Notice that several things happen when you do this.
o The goal speed indicator, labelled Goal. now shows the throttle value.

e The current speed indicator. labelled Speed. begins changing from the
previous speed fzero in this case) towards the goal speed.

o The train at the top of the Viewer window begins moving (forward towards
the left, in this case).

The goal speed 1s not reached instantaneously. A train ordinarily changes speed
at a fixed rate of acceleraiion. as explained in Section 2.3.2. and it takes time
Lo accelerate from 0 to 40 m/sec.

Observe that a block is highlighted in the Viewer window if any part of that
block is occupied by a train.

Drag the Throttle slide bar to about 35 mi/sec, then drag it to
about 45 m/sec before the train has completed accelerating to
a5 m/sec.

This exercise shows that a new goal speed value overrides a previous one when
the throttle is changed. even if a previous goal speed has not vet been reached.

There is a maxirnum speed limit of 60 m/sec for each block in the sample
layout of Figure 1.1. If a train exceeds this limit. that train derails. All minimum
speed limits in the sample layout are zero. Using the editor tsed (see Section 1.2
below) it is possible to create new layouts having different shapes and block
speed limits or to modify the features of an existing lavout. However, there is
no provision for changing the attributes of a layout while it is being simulated.

Next. request an emergency stop.

Click on the EmerStop pushbutton for Train 1.

-~

Observe that the EmerStop indicator light is illuminated while an emergency
stop is in progress and goes off as soon as the stop has completed. Another way
to stop a train is by simply setting that train’s throtile to zero. An emergency
stop. like a throttle change. overrides any prior motion plan. Thus. during an
emergency stop a train’s Goal speed is zero and its current speed decreases
toward zero. There are two important differences between using the throttle to
decelerate to zero and using emergency stop.

e Emergency stops use a larger deceleration rate.

e Nothing can override an emergency stop, other than derailment or collision
of the train.

In particular. dragging the Throttle slide bar has no effect during an erergency
stop. Nor does an emergency stop cause the throttle bar to move. The throttle
1s simply ignored until the emergency stop has completed and the throttle is
dragged again.

Station blocks differ from regular blocks in that they have a station-stop
feature. To test this feature, perform the following steps.

Click on the StaStop pushbutton of Train 1 so that the StaStop
indicator light becomes illuminated (station-stop mode).

Drag that train’s Throttle slide bar to 30 m/sec or less.]

The next time that Train 1 enters a station block (either st 11 or st 16). it
will immediately begin slowing down so that it comes to a halt exactly at the
opposite terminator of that block. Three conditions are required for a train to
begin performing a station stop.

e That train must have station-stop mode enabled.
e That train must have speed at most the station-stop speed.
e That train must be entering a station block.

The station-stop speed (30 m/sec in the sample lavout of Figure 1.1} is specified
for each station block when a layout is created.

Observe that the station-stop indicator automatically goes off as soon as a
station stop begins.

Allow Train 1 te complete a station stop. 7

Unlike emergency stops. it is possible to abort a station stop by changing
the throttle value for che train involved. If a station stop is aborted. then no
station stop is performed until the three station-stop conditions are again met
on eniry into a station block.

A train’s direction can only be changed when that train is stopped.

ey N . .
| Click on Train 1's Reverse pushbutton (once) while that train is
33 stopped.

P

I'Then drag that train’s throttle slide bar to a positive value. e.g..
§30 (m/sec).

Train 1 will begin to move backwards: that is. the head-end retreats and the
tail-end advances.

Up to now. both trains have remained in the Operational state. In order
to become acquainted with another train state. try the following.

Let Train 1 travel (backwards) around the lavout until 1t derails
al block jn 8.

When a train enters a join block (such as jn 8) from the tail terminator
(the one attached to rg 9 in the sample layout), then the train will deraii. If a
train derails. the state label for that train changes to Derailed and the train
stops moving.

Trains that are not Operational do not respond to commands. Thus. once a
train derails, there is no way to set that train in motion again. short of starting
another simulation. Page 35 lists all the conditions under which a train will
derail.

Click on the pushbutton for switch block sw 14 once so that the
switch block changes to the turned setting.

Drag the Throttle slide bar for Train 2 to a positive value, e.g..
30 m/sec.

Observe that attempting to enter a disconnected terminator of a switch block
would cause a train to derail.
Finally. observe what happens when trains collide.

[Allow Train 2 to continue until it collides with Train 1.]

The state labels of both trains involved in a collision change to Collided. Hence-

forth, neither train will respond to any commands, so the demonstration has

ended—in disaster! Fortunately, simulated trains are inexpensive to replace.
Page 36 lists all possible collision conditions.

1.1.3 Shutting the Programs Down

The programs that comprise Trainset may be shut down by selecting Quit
All in the Command menu of the Control Panel or Viewer.

Exercises

1. Start a sinulation of the default layout by issuing the ts command. Set
both trains in motion around the track simultaneously. with Train 1 trav-
elling forward and Train 2 travelling backward.

2. Perform Exercise 1. Then. begin toggling the setting of the switch block
sw 14so that Train 1 always passes through sw 14 when sv 14 is straight
and Train 2 always passes through that switch block when it is turned.

Note: This is not as easy as it may sound! Keeping both trains travelling
along different paths in this layout is a challenge. particularly if both are
moving as fast as possible. Train speed adjustinents and switch block
setting changes must be coordinated and must be issued far enough in
advance so that the trains neither collide nor occupy a switch block while
it changes setting.

1.2 How to Build a Layout of Blocks and Trains

tsedis an interactive graphics editor for defining and modifving railroad layouts.

1.2.1 Invoking tsed

To stast tsed. enter the following command.

% tsed [filename]
The editor may also be invoked by entering:

% ts -edit [filename]

When tsed is started, two windows appear on your display. as shown in
Figure 1.2. The larger window that is overlaid with a grid pattern is the canvas
window (Figure 1.2a). A railroad layout can be created in the canvas window.
The distance between two adjacent parallel dotted lines in the grid is called a
grid division.

The smaller window is called the tools window (Figure 1.2b). It consists of
twelve icons representing operations called the tools that are available in tsed
for creating and modifying blocks and trains. The tools are applied using the
mouse operations described on Page 6. Figure 1.3 shows the tools window
together with the names of its tools.

The tools window contains one or more tools for each of the five types of
blocks in Trainset. Note that the tools window includes two tools for creating
switch blocks. The Switch Block 1 and Switch Block 2 tools differ in the
orientation of the switch block; each is a mirror image of the other. Also. there
are three tools for creating regular blocks: Straight Block, Arc Block 1 and
Arc Block 2. A straight block is a regular block consisting of a line segment.
and an arc blockis a regular block consisting of a circular segment. Arc Block 1

10

Fie CQustamize

JO

D
W
..... D
D
=

Q

IiQc
%

QU — — 1 0D
Message Window

(a) Canvas Window {b) Tools Window

Figure 1.2: tsed Windows

Select Cross Block
Erase Join Block
Straight Block Switch Block 1

Station Block Switch Block 2

Arc Block 1 Train

Arc Block 2 Rotaie

Vo))OI][U E4
Sl NS ==

Figure 1.3: Annotated Tools Window

H

and Arc Block 2 differ only in the radius of the arcs they create. The Are
Block 1 tool creates ares with radius two grid divisions. and the Arc Block 2
tool creates arcs with radius four grid divisions.

The remainder of this section is a two-part tutorial on using tsed for creating
and editing railroad layouts. Section 1.2.2 introduces you to the various tsed
tools. A series of exercises demonstrates how 1o construct a layout and how to
make simple editing changes. Section 1.2.3 explains how to set attributes such
as block speed limits. how to save a layoul in a file. and how to exit from the
editor.

1.2.2 Using the tsed tools
The Current Tool

In tsed. one tool is enabled at any given time: it is called the current tool The
current tool 1s indicated in the tools window by being highlighted. The message
area at the bottom of the canvas window also displays the name of the current
tool. On startup. Select is the current tool.

[e B T
i Click on a tool icon other than Select to choose a different current
tool. Repeat one or more times.

Regular and Station Blocks

Straight regular blocks and station blocks are created in a layout by dragging
with the mouse from one point to another in the canvas window when the
corresponding straight block or station block is the current tool. This procedure
creates a line segment between the starting and stopping points of the drag
operation. The starting point is called the head lerminator of the block. and
the stopping point is called the tail terminator.

{Click on the Straight Block tool icon. —]

Create a horizontal regular block by dragging from right to left
{starting near the middle of the canvas window. as shown in Fig-
lure 1.4a.

All lincar blocks (Straight and Station) created by tsed arc constrained
to be vertical. horizontal or at a +453° diagonal. To aid in alignment. tsed
enforces additional constraints on the placement and length of a block relative
to the dimensions of the canvas window grid.

[Click on the Station Block tool icon. |

T
‘j
-

(a) (b)

"
-

© ’ (d)

Figure 1.4: Tutorial Steps

Now create a station block in the canvas window by dragging from
the right endpoint of the existing straight block to a pomnt further
{to the right. as shown in Figure 1.4b.

When a new block is created. tsed establishes a connection with an existing
block if the new head terminator is within a few pixels of an existing terminator.
tsed also constrains the slope of the new block to match the slope of the existing
block at that terminator.

Station blocks and straight regular blocks appear graphically to be identical
except for their labels. Regular blocks (whether straight or arc) are labelled rg.
and station blocks are labelled st.

The Erase and Select tools are used for modifving objects already on the
canvas window. Erase enables vou to remove a block or train that you have
created. Select enables you to reposition the label for a block or to designate
a block whose attributes you wish to change.

T -
{ Click on the Erase tool icon.

i Now. erase the straight block by clicking on it. J

1 Click on Lthe Select tool icon.]

13

1

I Now drag the label for the station block to a new position above
tthe block.

The result of these changes are shown in Figure 1.4c.

Arc blocks are created by dragging when the current toolis Arc Block 1 or
Arc Block 2. The starting point of the drag operation determines the location
of the arc block’'s head terminator. The extent of the arc is determined by the
ending point of the drag operation and depends on the location of the head
terminator and. if the arc block is attached to another block. the slope of that
block.

[Click on the Arc Block 1 tool icon. |

fCreate an arc block connected to the station block by dragging
from the left endpoint of the station block toward a point that
produces a 90° arc pointing downward. as shown in Figure 1.4d.

When using the Straight Plock. Station Block. Arc Block 1 or Arc
Block 2 tools, you can cancel creation of a block after a drag operation has
already been initiated by finishing that drag operation within a few pixels of its
starting point.

Start dragging to create another arc block connected to the last
arc block, then cancel the creation of a new block by finishing that
drag operation al its starting point.

Iconic Blocks: Crosses, Joins and Switches

The Cross Block. Join Block, Switch Block 1 and Switch Block 2 tools
always create blocks that have a fixed size and shape. In tsed. these blocks are
referred to as sconic blocks. They are created by clicking with the mouse rather
than by dragging.

When an iconic-block tool is current and the mouse cursor is in the canvas
window, the cursor takes the form of the icon for the current tool. Along
the outer circle of such a cursor are enlarged points called hot spots at which
connections with other blocks can be made.

Click on the Join Block tool icon. Observe that the mouse cursor
changes to the form of a join block whenever the cursor is in the
canvas window.

Position the mouse cursor so that the hot spot at its right head
1s over the unattached terminator of the arc block. This requires
slight overlapping between the arc block and the join-block cursor;
see Figure 1.3a.

14

st 2 - : . - . st 2

(a) Before Clicking (b) After Clicking

Figure 1.5: Join Block Creation

i Now click with the mouse and create the join block of Figure l.5bJ

Note that the newly created join block is constrained so that the slope of the
join block and the slope of the arc block agree at their common terminator.

tsed does not make more than one connection when an iconic block is cre-
ated. Thus. during an editing session. it is probably best to create iconic blocks
before creating the regular and station blocks they are attached to.

The Rotate tool enables you to rotate an iconic block clockwise by one hot
spot.

L(.‘Iick on the Rotate tool icon.]

Now click on the join block created in step 15. Observe that the
join block labelled jn 4 rotates so that its tail terminator beconies
the terminator attached to the arc block.

iCIick on the join block a second time to rotate again. J

If an iconic block is not connected to any other block. the Rotate tool
rotates it by one-eighth turns. If a switch block 1s rotated through a full circle
using the Rotate tool. it changes orientation.

Trains

A train may be created in a layout by dragging when Train is the current
tool. The drag operation begins at the position desired for the head end of a
train, continues along the blocks to be occupied by that train, and stops at the
position desired for that train’s tail end. The head end of a train is indicated
in the layout by an angle bracket. and the tail end is indicated by a square
bracket. All blocks occupied by a train are highlighted. The head end of a train
1s constrained by tsed to start in a regular or station block.

15

(b) After Train Creation

Figure 1.6: OQval Layout

16

{Erase all blocks currently on the layout. 'Then. create an oval
{layout as in Figure 1.6a made of four straight blocks and four arc
{blocks. using the Straight Block and Arc Block 1 tools.

It is not necessary that the block identifiers. 1.e.. the -inmbers in the labels.
match those in Figure 1.6a.

[Elick on the Train tool icon. j

Create a train on the oval by dragging clockwise from the point
marked A to that marked B in Figure 1.6a, resulting in Fig-
ure 1.6b.

If, while creating a train, you drag across the starting point, the brackets
that indicate train ends reverse their directions. Also, observe that a whole
block is highlighted if any part of that block is occupied by a train.

You should now feel comfortable with the basic drag and click operations
for creating blocks and trains in a layout. In the next part of this tsed tutorial.
you will learn how to store a layout in a file. how to specify attributes such as
speed limits for individual blocks. and how to exit tsed.

If you would prefer to return to this tutorial at a later time. select Quit?
from the File menu now. and invoke tsed again when you are ready for the
remainder of the tutorial. There is no need to save your present work. since it
will not be used in the second part of the tutorial.

1.2.3 Creating a figure-eight layout file

Qur goal is to create the figure-eight layout illustrated in Figure 1.7 and then
save that layout in a file mylayout.l. All blocks in the layout should have
minimum speed of 0 (m/sec) and maximum speed of 70. except that the station
blocks at the top and bottom of the layout are 10 have minimunispeed of 0 and
maximum speed of 50.

Select New from the File menu. If you are continuing from the first
part of the tutorial, tsed will ask if you wish to discard changes
in the canvas window; click on the Yes button. In response to the
prompt. enter mylayout as the name of the file to be created.

By invoking the New command above. mylayout .l becomes the curren! file
name. This name is indicated in the title for the canvas window. Prior to the
New command there was no current file name. When naming a file. the extension
-1 is automatically appended by tsed if you do not include it. Pathnames that

*Quit will be discussed in detail on Page 21,

X tsed: mylayout.l HEEEENEEEEEEETEE
- Dy R A

Fite

10

F
1

o

3

Figure 1.7: A figure-eight lavout

1%

(hange strasght block attnbutes;
0

j
Minimum Velocity

60
L j

Maximum Velocity

Q

Stop Velocity

i Change l Cance

Figure 1.8: Change Default Block Attributes subwindow

do not begin with a slash /" are interpreted relative to the current working
directory.

The default minimum and maximum speeds for blocks can be changed by
choosing the Change Default Block Attributes entry {rom the Customize
menu. A changed default value applies to blocks created after the change: 1t
does not affect blocks already created. Change Default Block Attributes is
itself a rmenu whose subentries are the various block types.

{Change the default attributes for straight blocks by choosing
|Change Default Block Attributes from th: Customize menu
éand moving the cursor to the right until the subentries appear,
I Select the Straight subentry.

After this step. a subwindow will appear that contains three slide bars as
shown in Figure 1.8 The slide bar on the top determines the mintmum speed
for straight blocks and 1s normally 0. The slide bar in the middle determines
the maximum speed, which is 60 at present. The slide bar on the bottom is
disabled for straight blocks since it defines the station stop speed. an attribute
that is only applicable to station blocks.

Set a new maximum speed by dragging the middle slide bar to 70
Leave the minimum speed at ().

Click on the Change pushbutton to make the new default speed
limits effective.

The steps above change the default inaximumspeed for straight blocks only.
We also need arc blocks and cross blocks that have a maximum speed of 70.

19

Change the default maximumspeed to 70 for arc blocks. using the
Arc subentry in the Change Default Block Attributes menu
under Customize and proceeding as above.

?lso change the default maximum speed to 70 for cross blocks. 1

You are now ready to create the blocks of your layvout. Refer to Figure 1.7
for illustration of the steps below.

Create a cross block near the center of the lavout at an intersection
pomnt of two perpendicular dotted lines in the grid.

Rotate the new cross block once using the Rotate tool. The
subblocks of the cross should form an *x" as opposed to a '+

Create two straight blocks of exactly the same length, each form-
ing the diagonal of a square with sides about 4 grid divisions long,
so that the head terminators of the straight blocks are attached
to the upper hot spots of the cross block.

Note that the grid assists you in determining when blocks have exactly the
same length.

Create two arc blocks with 135° extent and head terminators at-
tached to the straight blocks that you just created.

('reate a station block that connects to both unattached termina-
tors of the arc blocks.

The attributes of an individual block may be customized by selecting that
block with the Select tool and choosing Change Block Attributes from the
Customize menu.

| Click on the Select tool icon. 1

Click on station block st 7 in the canvas window to select it for
customization.

{Choose Change Block Attributes from the Customize menu.T

In the subwindow that appears, set a new maximum speed by
dragging the slide bar in the middle to 30.

The station stop speed is another attribute that may be adjusted for station
blocks using Change Block Attributes. (See Section 2.2.3 for a discussion of
the station stop speed.) We will leave the default vaiue at 30 for this layout.

20

T

P . . .
i Create the fower portion of a figure-eight layout using a procedur

lsimilar to the previous seven steps.

\

IPlace a train on the figure-eight layout. 7

L

You have now created the desired figure-eight layout. It is time to save your
work and exit from the editor.

rSave the figure-eight layout by choosing Save froni the File memq

Either the Save entry or the Save as ... entry in the File menu may be
used to save your work in a file. The difference is that Save as ... always
prompts vou for a file name. while Save uses the current file name if there is
one.

Finally, end the editing session:

I—E(it tsed by choosing Quit from the File menu. ﬁl

The Quit command checks for any unsaved changes before exiting. If any
are found, Quit gives you the option of writing them to a file first. The Close
command is similar to Quit. except tsed does not exit after checking for unsaved
changes. Instead. a Close causes tsed to enter a state with an empty canvas
window and no current filename.

1.3 How to Run a Layout

A railroad layout mylayout created using tsed can be simulated by issuing the
following command.

% ts -layout mylayout
A Trainset simulation will start and search for a file called mylayout .1, first
searching in the current working directory. then in the standard location for
layouts, as explained in the manual page for ts in Appendix D.

1.4 Control Programs

The Automatic Control Interface (ACI) is a library of procedures and data
structure definitions for writing programs that control a Trainset railroad.
The principal data type associated with the ACI. LayoutData. represents
various attributes of the blocks and trains in a railroad layout. LayoutData is
described in Section 3.2 and defined in Appendix B.].
The ACI routines may be classified into five categories.

21

I.

2.

The ACI GetDownload procedure establishes a network connection with a
running railroad simulator and receives a report of the state of the railroad
being simulated. GetDownload returns a pointer to an internally allocated
data structure of type LayoutData holding the state information that has
been received. See Section 3.2 for further detatls.

ACI commands enable a program to change certain attributes of blocks
and trains. Seven command types are available.
e SetSwitch initiates a setting change for a switch block.

e Accelerate and Decelerate initiate changing the speed of a train
at a constant rate for a specified time period.

e SetSpeed initiates changing the speed of a train towards a specified
goal speed.

e SetDirection changes the direction of a train that is stopped.

s EmergencyStop halts a train using a deceleration rate that is quicker
than the rate for Decelerate.

e StationStop enables a train to conie to a complete stop at a known
location in a station block. provided that the train enters that station
block slowly enough.

See Section 3.3 for more details about ACI commands.

ACI queries enable a control program to obtain state information about a
rallroad after a download has been received. Four query types are avail-
able.

e GetBlockOccupancy indicates whether a specified block is occupied.

® GetSwitchPosit returns the setting of a switch block.

¢ GetTrainStatus indicates whether a train is operational.

* GetTrainMotion indicates whether a train is moving.
See Section 3.4 for more information.

ACl voting service procedures. SetSegNumber and NewSeqNumber. interact
with a command arbitration facility in the simulator. This service is useful
when implementing fault-tolerant control programs. See Section 3.5.

ACT utility procedures. InitTimer. GetTimer. AwaitTimer. CancelTimer
and Sleep. provide high-level general purpose timing facilities. See Sec-
tion 3.6.

22

/* demo.c -- simple demonstration ¢f the ACI */
#include "aci.h" /* ACI definitions and declarations =/

#define MAX_HOSTNAME 100

#define POLLING_INTERVAL 0.100 /#* Seconds */
#define POLLIRG_TIMEOUT 200.0 /#* Seconds */
#define NULL (void *#) O /* generic null pointer */

int poll_timeout_flag = 0; /#* flag for terminating polling loops */

/#*#tt*#t**#*##****t***t*#****t#*#i#t**##t****##t###ttttt#t*tti’#t#**##t“#t
* set_poll_timeout_flag is executed by a timer that is used to prevent

* infinite polling loops.
*#******t******#*****!##***##**#*mt*tt**##t#**#t**###l‘t*t#tt#tt#tt*l*#!*‘/

void
set_poll_timeout_flag()
{

poll_timeout _flagt+;
}

/*#*#***ktt#*tt##ﬁ*t*t#**t*##*t#*i***###**t**tttt*#*tt*t**tt#ttt!tt‘-##ttltt
*

* This program shows the mechkanics of the ACI layer of the control

* program interface, by initiating a connection with the simulator,

* receiving the state of the railroad, meving a train, and making some

* gqueries.

»”
*****#**##****#t#**#***#*##*##**t*#*#tt*#tiitt##*tit#tt#*#**#ttt*t#tt*t#tt/

main(arge, argv)
int argc;
char *argv([];

char *progname; /* name of this program */

char *hostname = ""; /% host that is running simulatoxr */

int simnum = O; /* distinguishes betveen simulators running on same host */
Seconds timeout = 20.0; /#* maximum second to connect to simulator */
LayoutData *datap; /¢ pointer to entire received railroad state info */

Figure 1.9: demo.c. an example using the ACI (beginning).

23

TrainData *tp; /* pointers to parts of received layout data */

BlockData *bp;

int T=1, B=1; /* identifiers of a train and a block */
enum Occupancy occ; /* return values from queries */

enum TrainMotion tm;
int n; /% loop counter */

/*
* Collect command line args

*/

progname = *argv++;
it (arge)
hostname = *argv++;
it (argc)
simnum = atoi(*argv++);
if (arge)
timeout = atof(*argv++);

/*

* Connect and get the state of the railroad.
* Then, use received values to check the identifiers T and B.

*/

datap = GetDownload(hostname, simnum, progname, timeout);
it (datap == (LayoutData *) 0) {
printf("couldn’t get initial download!'\n");

exit (1);
}

if (T <= 1 || T >= datap->train_ct) {
printf(“sample train ID %d out of range [1..%d]!'\n", T, datap->train_ct);

exit (1);
}

if (B <=1 || B >= datap->block_ct) {
printf("sample block ID %d out of range [1,.%d]!\n", B, datap->block_ct);

exit (1);

}

Figure [.9: demo.c. an example using the ACI (continued).

24

/»
* Print some sample values.

*/

printf ("Number of trains: %d. Number of blocks: Yd\n",
datap->train_ct, datap->block_ct);

tp = &datap->trains([T];
print?(“Train %d has length %.2f, with front at block %d offset %.2f\n",
(7] tp->length, tp->front.block, tp->front.offset);

bp = &datap->blocks[B];
printf("Block %d has length %.2f, max speed %.2f and min speed %.2f\n",
vp->length, bp->max_speed, bp->min_speed);
if (bp->type == BT_REGULAR)
printf("This is a regular block, connected to blecks %d and %d\n\n",

bp->t.rg.tail, bp->t.rg.head);
/*
* Perform some accelerations and decelerations of train T.
*/
printf{"beginning acceleration\n");
Accelerate(T, 20.0);
printf(“pausing...\n");
10 Sleep(25.0);

printf(“"beginning deceleration\n");
Decelerate(T, 5.0);

=]

/*
* Travel until block B is occupied (or timeout occurs)

*/
printf(“polling until block %d is reached...\n", B);
poll_timeout_flag = 0;
InitTimer (POLLING_TIMECUT, O, set_poll_timeout_flag);

vhile ((occ = GetBlockOccupancy(B)) == OC_FREE && 'poll_timeout_flag)
Sleep(POLLING_INTERVAL);

Figure 1.9: demo.c. an example using the ACT (continued).

25

133

it (occ == OC_ERROR) {
printf(“error getting block occupancyi\n"};
exit (1);
}
it (poll_timeout_flag) {
printf("polling timed out after %t seconds\n", POLLING_TIMEOUT);
exit (1);
}
CancelTimer();
/* assertion: occ == OC_OCCUPIED */

/%
* Perform an emergency stop, then poll until train stops
*/

printf("performing emergency stop\n");
EmergencyStop(T);

printf("polling until trainp stops...\n");
poll_timeout_flag = 0;
InitTimer {(POLLING_TIMEOUT, 0, set_poll_timeout_flag);

while ((tm = GetTrainMotion(T)) == TM_MOVING && 'poll_timeout_flag)
Sleep(POLLING_INTERVAL);

if (tm == TM_ERROR) {
printf("error when querying about train metion!\n");
exit (1);
}
if (poll_timeout_flag) {
printf("polling timed out after %f seconds\n", POCLLIKRG_TIMEQUT);
exit (1);
}
CancelTimer();
/* assertion: tm == TM_STOPPED #*/

printf("train has s%opped.\n");

exit (0);

Figure 1.9: demo.c. an example using the ACI (concluded}.

26

The example program demo. ¢ (see Figure 1.9) illustrates the use of the ACL
This program connects to a simulation and receives the state of a railroad. then
attempts to move a train in that railroad to a certamn block and perform an
emergency stop. Sonie key points about the code are indicated by numbers D]

etc.

m The include file aci.h contains declarations and definitions required for
compiling a source file that uses the ACI. In order to create an executable.
one must link with the ACI library 1ibaci.a.

E] Time values passed to the ACI timer procedures are always floating-point
quantities representing seconds. An ACl type Seconds is defined for such
quantities.

@ set_polling_timeout is the procedure that will be invoked if a tsuser
timer expires.® Such a procedure cannot be invoked with arguments. so it
changes a global variable polling. timeout in order to inform the main
program about timer expiration.

E] The file aci.h defines a number of data types besides LayoutData. The
type TrainData is used to represent download information received for a
train: likewise. BlockData represents download information for a block.
Both TrainData and BlockData are component types used in the defini-
tion of LayoutData. Enumerated types, including Cccupancy and Train-
Motion, are used for command arguments and query return values. Trains
and blocks have unique positive integer identifiers.

E] GetDownload takes four arguments, returns a null pointer on failure. etc.
Chapter 3 is the reference for this and the other ACI procedures.

Several examples of references to a LayoutData structure follow the invo-
cation of GetDownload. More direct references such as

datap->trains [T-1].length
datap->blocks [B-1].t.rg.tail

could be used in place of those that involve tp and bp in demo.c. Observe
that the index of a train in datap->trains is always one less than that
train’s identifier. A similar remark holds for blocks.

The function PrintDownload in Appendix B.2 includes examples of refer-
ences to every component in a LayoutData structure.

Checkiug the values of T and B at is not strictly necessary in this
program. since their values are known to be valid in this case. It i1s a
good defensive programming practice to include such checks anyway. as
protection against future changes.

5Note: As explained in Section 3.6, a call to InitTimer overrides any prior calls. Thus. we
speak of “the ACI timer,” because only one such timer can be in effect at any time.

27

@ ACI commands such as Accelerate are non-blocking and return no values.
‘They print no warnings about unreasonable arguments. The conunand

Accelerate(T, 20.0);

requests that train T accelerate for a duration of 20 seconds. increasing its
speed during that period at the predefined fixed acceleration.

©10.11| ‘The instruction
Sleep(25.0);

causes demo.c (not the Trainset simulator!) to suspend execution for 23
sec. This is long enough that the subsequent Decelerate command E]
1s unlikely to interfere with the prior Accelerate command E

The train would begin to reduce its speed as soon as the Decelerate
command is received. even if the prior acceleration had not been in eflect
for the acceleration’s entire duration. For example. if the Sleep had been
for 10 seconds instead of 25, then train T would accelerate for about 10
seconds. then decelerate for 3 seconds.

E The query GetBlockOccupancy is used so that train T may reach block
B That query is issued frequently until block B is found to be occupied
or until an error or timeout occurs. This technique of frequent queryving
is called polling. The ACI timer is set up before the shile statement to
provide timeout mechanism for leaving that loop.

! 13’ The loop guard condition shows that there are two ways to leave the loop.

o If occ differs from OC_FREE, i.e.. occ has value OC_OCCUPIED or
OC_ERROR. then the loop will be exited. (Query errors can be caused
by invalid arguments. loss of communication with the railroad. etc.)

s If polling_timeout has a non-zero value. then the loop will be ex-
ited. polling_timeout changes from zero to a non-zero value if the
timer expires {see and the invocatjon of InitTimer).

E 14.13.16| Before concluding that occ = OC_OCCUPIED, which would indicate occu-
pancy of block B. it is necessary to eliminate the other events that can
cause the loop to exit.

i 17[A period of tune elapses between the moment that block B becomes oc-
cupled and the time when the control program demo.c¢ can act on that
information. This time period arises from the following causes.

¢ Delay from polling. Some time necessarily elapses between the
mornent that block B becomes occupied and the time when that sen-
sor is checked. The sensor is checked by each successful call to the

28

18

query GetBlockOccupancy. Thus. if GetBlockOccupancy succeeds
this period is bounded by the execution time of one iteration of the
polling loop. except possibly when block B is found to be oceupied
on the first GetBlockOccupancy query.

¢ Network delay. This is the time required for a sensor value 1o be
communicated to the control program.

¢ Local processing delay. Once the process that is running demo.c
receives a communication that block B was occupied. several further
steps occur: the query function returns: the polling loop exits: checks
are performed in order to deduce that block occupancy was in fact
the reason for loop exit: and the timer is cancelled. Fach of these
steps requires local processing time.

Such delays can affect the correctness of control programs. For example,
the occupancy of a block might change by the time that a control program
could take action on that occupancy information. In particular. it is not
correct to conclude that block B is currently occupied based solely on the
fact that occ has the value DC_OCCUPIED at [E

i [The command EmergencyStop causes a train to reduce its speed to zero

quickly. Unlike Accelerate and Decelerate. the effects of EmergencyStop
cannot be interrupted by another command.

Polling with the query GetTrainMotion is used in demo.c to determine

when the train has come to a complete stop.

Exercises

I.

Write a program that uses the ACI to cause both trains in the sample
layout (see Figure 1.1} to move around the track for five minutes. then
stop. {Compare to Exercise 1 of Section 1.1.2.) The trains need not travel
on different loops.

. As in the loop [12], a timer is set up just before the while statement

in order to guard against an infinite loop. Is this timer necessary. or is
that loop certain to exit in a reasonable amount of time without a timer?
(Hint: Consider the specifications of GetTrainMotion in Section 3.4.4.)

29

Chapter 2

Trainset Railroads

2.1 Introduction

Trainset railroads are idealized versions of real railroads. This chapter dis-
cusses the attributes and operation of Trainset railroads. You will see that
while Trainset railroads are simpler than their real-life counterparts. the sim-
plifications are ones that do not make it appreciably easier to write programis
to control the railroad.

2.2 Blocks

In a Trainset railroad. a layout consists of an assembly of blocks together with
movable trains that occupy some of those blocks. See Figure 1.1 for an example.

Every block is assigned a unique block D) B, a length L, a marimum speed
bmat MX,, and a minimum speed limat AN, We expect!

0 < MN, < MX, < MAXFLOAT.

Each block has a set of terminators that delimit the track implementing that
block.

As in real railroads. each block has an associated sensor called a track crrcuil,
that indicates whether that block is occupied by a train. Polling a track circuit
only returns one bit of information signifving whether the associated track block
15 occupied. Note