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Abstract

The problems of pressure shock and longitudinal impact on

a semi-infinite circular tube are studied. The considerations

are performed within the framework of the linear theory of

elasticity. The problems were reduced to the system of Bessel

differential equations by using double integral transforms. The

solutions are obtained in the terms of Fourier and Laplace

integral which could be evaluated by numerical methods.
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Introduction

Problems of wave propagation in waveguides in view of

their importance in numerous applications have received

considerable attention in the literature devoted to

elastodynamics. The bulk of the study of elastic waves is

concerned with rods and plates. The cylindrical rod of circular

cross section is a classical example of a medium involving the

complexities of dispersive propagation. Pochhammer [1] was the

first who derived frequency equations for the cases of

compressional, flexural and torsional harmonic waves traveling

in an infinite elastic rod. The frequency equations are

connected with a stress free lateral surface of the rod and

they constitute a basis for investigations of both steady

vibration and transient wave propagation.

This report deals with two dynamic problems of a

semi-infinite circular elastic tube. The first oroblem is

related to mixed pressure conditions, the second one is devoted

to the longitudinal impact. The analysis is performed within

the framework of the linear theory of elasticity. The

considered problems belong to the class involving mixed edge

conditions.

The method of solution of the first problem is based on

the double integral transforms (Fourier and Laplace transform

and it leads to solutions given in the terms of Fourier and

Laplace integrals , which can be calculated by using analytical

approximations or numerical analysis.

A similar mixed-pressure problems of infinite circular

rods were solved by Folk et al [2] and is also presented in the

Achenbach book [3]. By using integral transforms and employing

the analysis of Pochhammer's frequency equations to the

procedure of an inversion of Laplace transforms, the solution

of the wave problem was expressed in the terms of Fourier

integrals. The Fourier integrals could not be evaluated

rigorously by analytical means, however, a satisfactory

approximation was obtained by the method of stationary phase.
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The second problem considered in this report deals with

the impact of a semi-infinite circular elastic tube. The

solution is given under assumptions that the end of tube has no

tangential stresses but is suddenly set into motion with a

constant velocity and the lateral surfaces are free of

pressures. The analogous problem for a semi-infinite bar was

solved by Skalak [11]. His method was to split the problem into

two parts. In the first part the collision of two half-spaces

was considered. In the second part he investigated an infinite

bar with an equal and opposite stresses travelling along the

lateral surface. Using the principle of superposition a stress

free lateral surface was ens',red. In Section 2 Skalak's results

are adopted to the prcblem of circular tube. The solution of

the impact problem is presented in the form of Fourier

exponential and Laplace integrals, which can be calculated by

using analytical approximations or numerical analysis.

Transient wave problems in elastic waveguides were

considered by many authors. In the survey by Miklowitz [4] one

can find a coverage of general literature up to 1964. Solutions

of many wave problems are also presented in Miklowitz book [5).

Longitudinal harmonic motions of a cylindrical tube on the

basis of the three-dimensional theory of elasticity were

considered by Gosh [6], where the frequency equation are

derived. The discussion of the characteristic equations for

this problem and the phase velocity (for the case of Poisson's

ratio i = 0.3) are presented in [7]. Some numerical results for

the longitudinal impact problem of a circular tube obtained by

using the numerical integration along the bicharacteristics,

are given in [8].

Understanding of dispersion behaviour in bars and tubes

are of great importance in all experimental techniques used to

test mechanical characteristics of materials at high loading or

strain rates, for example [12-14]. One prominent example is the

Split Hopkinson Bar technique (Kolsky apparatus), where a thin

wafer specimen is inserted between two instrumented Hopkinson

bars [12]. A more exact analysis of wave dispersion in the SHB

enables for a more exact interpretation of oscillograms, and
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consequently, for a more exact determination of a specimen

response at different loading conditions [15,16].

Since it is expected that the lateral inertia causing the

Pochhammer-Chree vibrations are substantially reduced in tubes,

application of tubes instead of bars as measuring devices in

wave transmission seems to be reasonable. So far, some

applications of tubes for material testing at high strain rates

were already proposed, [17,18]. However, in those applications

a simple one-dimensional wave appro;-imation was commonly used.

The main target of this study is to make analysis of the

wave-guide tubes more precise, specially for short pulses.

l.The mixed problem of pressure shock

1. 1 Form'ulation of the problem

A semi-infinite cylindrical elastic tube of inner radius

a and outer radius b , which are referred to cylindrical

coordinates (r,e,z) where the z-axis coinciding with the axis

of the tube, Fig.l, is considered. Let X, Aj be Lame constants

and p be the mass density of the tube material. The problem is

restricted to the axisymmetric case of motion, thus the

displacement vector u is independent on the variable e and

u(r,z,t) = ( u r(r,z,t); 0; u z(r,z,t) ) (1.1)

where t denotes the time.

The equations of motion of the linear elasticity take the form

a 2 u 1 au u a2 u
(X.+ 2P) (_ + - _ + +2

0r r Or r Or Oz

a2 u a2 u 92
O2u Ou Ozu

_ r tzr

Ozz 2 Or dz at2



2u I u u

(X + r r Z -

(x 2p ) ( . .. + .. .... + .. .
Or Oz r Oz dz2

1 O u C2 2 21u' 3  )u
r

P r_ ( _ __ . .....- ) p . (1 .2 )
r Oz Or Oz Or Or 2  Ot2

The stress components are expressed by the displacements ur

u as followsz

Ou U ( Ou Ou
2, --- z + X ( r + __r + +zz (9r Z

Ou au
S • _( r + .... ) , (1.3)zr a z dr

)u U Ou Ou
C U

C/ 2ju r + X ( r + r + ...
Or r ar dz

Consider the boundary conditions

S( r,z=O,t ) = f(t),

U ( r,z=O,t ) 0 , for r E -,a,b> , t (0,M) (1.4)

and

a•rr(r=a,zt) = o (r=b,z,t) = 0

arz (r=azt) = rz (r=bzt) = 0, for z e (0,o) , t e (0,co)

where f(.) is a given function, provided that f(t) = 0 for t<0.

A futher condition is that the displacements and the stresses

vanish at infinity , z -> c .Assiming that the semi-infinite

c4rcu'ar tube is at rest prior to timze instant t C, e-,;atics

(1.4) and (1.5) are supplemented by the initial conditions
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du
u(r, z, t=O) = ___ (rzt=) =0

at (1.6)

au
uz(r,z,t=0) = - (r,z,t=0) = 0 ,for r E <ab> ,z E(0,co).

at

By introducing the displacement potentials 0 ,w as follows

U -
ur

Or az

ap a

u - az + r (r w) (1.7)
Oz raz ar

the equations of motion (1.1) are separated into two following

equations

1 2

V - 2 --- ) 0(r,z,t) = 0
c atz

22 11 #

( 2 z -. 2 2 W(r,z,t) 0 , (1.8)

r c2  at

22
where

0 1 a 82

V7 --- + - + (1.9)
Or 2  r Or az2

and

2 +2p
2 - C 2 = (1.10)

S p " z p

Substituting equations (1.7) into (1.3) the stress components

may be written in the terms of displacement potentials in the

form a
' =ZrX 7�+2 - ( . )2

Or r Or az

a 1 0
az= x7 + 2, - [ + - (r w) ] (1.1[]

Oz Oz Or
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a a• aw a a•p 1 a
+ + (r

zr Oz Or az ar Oz ar

By using equations (1.8) and (1.11) we have

162 22

a = 2p ( - -)+ -rr 02 2 O•2

r Or az C at

0z 2 0012 0 10 1 0

a = P- - 2p( --- +-- ) + 2p ... (r ,),, (1.12)zz atz 2 r2 r Or r ar Oz

a2 a2 Wa2 '

a zr = 2p ( -- - --- ) + p
zrOr dz Oz2 at 2

From boundary condition (1.4)2 and equation (1.7), it follows

that

do alp
- , for z = 0 , r e <a,b> , t - (0,o). (1.13)

ar az
By using (1.13) , (1.12)2 and boundary condition (1.4). one

obtains

a2

p ---- (r,z=0,t) = - f(t) , for r - <a,b>, t E (0,co) (1.14)
at

2

Because the potential 0 is independent on r at z 0 (see

Eq.(1.14) ), then 00/ar 0 for z = 0 , and from (1.13) it

follows that

(r,z=0,t) = 0 for r e <a,b> , t e (0,o) (1.15)
az

Equations (1.14) and (1.15) constitute boundary conditions at

z = 0 for the "displaceent potentials. The intal n

(1.6) together with (1.7) imply
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0(r,z..O) = (r,z,Q) =0
at

v'(r,z,0) =--(r,z,0) =0 .(.6

at

Moreover, the potentials 0 and w has to vanish at infinity

1.2 Sollutio. by tntee'ral transforms-

Let us denote by ,according to [9]:

f(r,ý,t) Y s(f(r,z,t); z->ý } = ff(r,z,t) sin(ýz) dz

S 0

Co-p

f(r~z,p) X tf(r~z,t); t->p } f f(r,z,t) e dt . (1.17)
0

Of
If lim f(r,z,t) lrn ýj (r,z,t) = 0 then it follows that

at

Of
Y az(-- ; z-->ý fs(r,ý,t) -f(r,z=0,t) ,(1.18)

a 2
Y f -- ; z---> -ý 2 s(r,ý,t) + ý f(r~z=0,t)

a 2 fO

O2 Of
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and

a2 f

t-->p p f(r,z,p) - p lim f(r,z,t)
at 2  t->

Cf
lira ..... (r,z,t) (1.19)

t->o0 at

provided ,that If(r,z,t)l < K(r,z) exp(2-t) where K(r,z) is

an arbitrary function and Re p = r >

Applying Fourier sine transform with respect to z to

equation (1.8) it follows that

2Ps i 2 s

_ - + - - + ý o(r,z=0,t) (1.20)r2 r ar C2 at2

and using Laplace transform to (1.20) one has

7-s -1 s2

r2+ r Or - & + 0(r,z=Op) :- 0 (1.21)drz rar c2
I

The boundary condition (1.14) after Laplace transformation

yields

f(p)
0 (r'z=0,p) = -- - (1.22,

Pp

where

f(p) : ( f(t) ; t ->p } (1.23)

Substituting (1.22) intr. (1.21) the following Bessel equation

is found

O Z (r,&,p) 1 30 (r, ,p) 2 Sf(p)
+~ ~ --- - ( 0... - 2 • S(:,[,p) = - ..-... , (1.24)

Or 2  r Or pp2

where 2
z 2• P

= + -- (1.25)2
cC



Applying Fourier cosine transform with respect to z to equation

(1.8) 2 one finds

2C 1 OC 1 1h 2 WC

+ - -- W - (r,z=0,t)-22 (1.26)
r ar Oz r 2 C 2 at

However, by means of boundary condition (1.15) the equation

(1.26) is reduced to (after Laplace transform):

2-C -c

2C

61r 2  r ar 2

where

2

2 2 p
03 + .-- (1.28ý)

2

The general solutions of equations (1.24) and (1.27) may be

written in the form, [5]:

-s-et (r, ,p) Al1 (c r) + A 2K 0 (cx r) 22 f(p)
P p~

--C
w~ (r,ý,p) =B1(3 rI + BK ((K r) ,(1.29)

where 1 0(-) 1 11. and K(.) , K(. are the modified Bessel

functions of the first and the second kinds, respectively. Here

A,1 A 2, B I B Zare unknown functions of the variables ý, p and

they have to be determined by the use of boundary conditions on

the lateral surfaces of the tube given in (1.5). In order to do

this the equations (1.12) are transfomed ,thus

asr 2Pa ( - + ~ ~ )+ ---- ,(1.30)

I1t is emphasized that for the analogy problem of a rod, the

following conditions should be assumed :A,=B,= 0 to ensure

finite potentials, displacements and stresses at r=0.
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2 [ . (r,z=0,p) + + - (r z=G0,p)r 
z

+ p p Va .3

From (1.15) , (1.13) and (1.31) it is obtained

aS
-c 2c 2 c
c, = 2• ( --- - W .... +) + p P W 12 41

r (9Or

Employing the following relations, according to [10]:

d1° (Ox) dK (Ox)
Ox - 0 :I(/x) ' = - 0 K, (OX)

I (9((x) 1

ax 1 0 !3x) x I I(x)

aK (Ox) 1
= -,3 Ko(?x) - K K(x)

and using equation (1.29) it is found

-- s
: A I I (or) - A 2 K c (r)

2---S
@2 S

A c [, I (cxr) - I (ar) + A ct [c K (or) + K K(cr)]ar 2 0 r 1- 2 or: i

ac

O B [ Io(Pr) - - I (or)) + B [-f3 K (,Or)- K O(r)],dr r 1 2 r 1

arr

2 -- c

D f....2 +( 2 ) I (OgrI - rI ((3) ] +ar2 I r z r 0

22 1Z r 0

r

Bz ( (•+ -2 K K(Ogr) + -• Ko((3r) ]1 (1 .34)

r

Substituting equations (1.29) and (1.34) into (1 .30) and (1.32)

one finds
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aC (r,,p) = 2p [ A a (ar) - A2 K (cr) + B (2
-- r

2 2
pp 2 pp

2a I,(Ur) + B (2 y4 - ) K,(13r) ]

2

-S (r,•,p) = A [ (2p a 2 + .. ) I0 (ar) - 2pa I (ar) ] +Crr r 2 0r I
C

2 p2 
1

2

A [ (2iaa +-- ) Ko(ar) + 2 K± (r ] +
22 0 rKar

C
I

B 2, t C P 1 (fPr) - - I (Pr) ] + B 2p • [-P K (r) -
10 r 2

1 K (fPr) f - 2 -(p) (1.35)
r I (X +2p)c2

Let us introduce the following notations:

e (r) 1 I (ar) ,

e (r) - K i K(ar)

2
pp

2( r) = ([ + •- I(Prl),

2
pp

e (r) E + K) ((r) , (1.36)

42

Xp a

dz(r) = (2 x2 + I) I (ar) - 2/p I (ar)

2 r1

C

d (r) = (2p cx + -- l (g) K (or +i r ]p -, ( rI

d (r) -2/p a + -O r)+ K K(()/r) K

2 2 r rI

The boundary conditions (1.5) together with equations (1.35)

11
and (1.36) yield the system of four linear algebraic equations,
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for unknowns Ai, A2 , B1, B , in the form:

X f(p)
AI d (a) + A2 d (a) + B d (a) + B d 4(a) = . .....

, : f(p)

A d (b) + A d 2(b) + B d 3(b) + B2 d4 (b) =
1 22 132(X+2ý) ot

A e (a) + A e (a) + B e (a) + B e (a)=0 , (1.37)

A e (b) + A2 e 2(b) + B e (b) + B2 e 4(o) = 0

The solution of equations (1.37) can be written in the form

W W W W4
A2 A' A 2 A B (1.38)

where

d1(a) d (a) d (a) d4(a)

d (b) d (b) d 3 (b) d4 (b)

A=det e (a) e (a) e (a) e (a)

eI(b) e 2 (b) e3(b) e4 (b)

x f(p)

(X+2p) )2 d2 (a) da (a) d4(a)

x [ f(p)
W : det - d (b) d (b) d (b)

(X+2p)c 2  2 3 4

0 e2(a) e 3 (a) e4(a)

0 e 2 (b) ea(b) e4(b)

12



d (a ) ------ ..... d d (a ) d (a)
2 34

f (p)

W det dd(b) - d3(b) d (b) (1.39)
(X+2p)c

e (a) 0 e (a) e (a)

e (b) 0 e (b) e 4(b)

x ý f (p)
dI(a) d (a) . ......--- d (a)

(X+2• )c

X • :f(p)

d (b) d (b) ..... .. 2  d (b)
W =det(+2)

e (a) e (a) 0 e4(a)

eI(b) e2 (b) 0 e 4(b)

X " f(p)

d (a) d (a) d (a)2 3 ( k+ 2- )2

1 f(p)

d (b) d (b) d (b) X f)2
W e 3 (,\+2p)cx 2

4

e 1 (a) e2 (a) e3 (a) 0

e (b) e 2 (b) e 3 (b) 0

Substituting the solution given by (1.38) into (1.29) one has

-S w 2 w f(p)
S1(r0•'P) - A 1o(ar) + K K0 (ar) - 2 2

pp

w w
wC(r''P) - Ii (fr) + -K (Pr) r (1.40)
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From equations (1.7) and (1.40) it tollows that

W w W
u, (r,$,p) c= I (c0r) - A ( K (cxr) + 4 l(r) t

w4

K ( r 1.41)

W W w
u z (r,c,p) A 0 (tr) + K0 (ar) + f( ?(Or) -

w 4 f(p)
f (3 K(/9r) + . . .0 2

p p

Substituting (1.38) into (1.35) one obtains

2 p
cr , W I (cr) - W • c K (cxr) + W ( +z r 1 1 :3

2 2

2 ) I (fr) + W 4 •2 + ) K,(r) ]

5s ( 
2 

,p)
o~(rA [ (2W • + .... ) I(c(r) - 2+ - I (cr) ]

02 r

w 2 2 X
W2 2 P

L[ (2p c + 2 ) Ko (cr) + 2p - K (+r) ]2 0r

c ±

w w
2 [ (3 I ((3r) - ( I - 2p • [ 3 K ((3r) +

-K (tr) ] - (1.42)r I (X+2pc )a2

Using equations (1.12)2 and (1.40) after some manipulations one

has
-S2 (2 2 2o5 (r,',p) = - P - 2p ) (ar) + P P -

2pa )K 0(atr) - 2~A 0 3 ((3r) +

w
4 2p Ko(0r) - 2 f(p) - (1.43)

14



Equations (1.41) , (1.42) and (1.43) represent. the solution

(called the formal one) of the considered problem expressed iri

the terms of Fourier sine-Laplace or Fourier cosine-Laplace

transforms. It should be emphasized that r, , , W

L=1,2,3,4, (see Eqs. (1.25), (1.28) , (1.36) and (1.39) ) are

functions of transform parameters ý and p. Using the inversion

theorems of the Laplace and Fourier transforms the solution can

be written in the form

1 cc +ric - pt

u,(r,z,t) = 2 u u (rOp) e sin(ýz)dp d ,Si 0 r-iOO _

I cc T+icoo pt
z(r, z, t) = - i ' u (r,%,p) e cos(ýz)dp d ,

1 i 0 r -i0

1 00 Y +ico -_ pt
S(r, z, t) -- f f a C(r,ý,p) e cos(ýz)dp d, (1.44)z2 i 0 Z -i r

1 - c V+ ic+ :7 _- p t

0 (rzt) =- . f f as (r, ,p) e sin(ýz)dp dý
71 1 0 z'-icxo

1 0 ;v + OOpt
S,(r z ,t) = 2 f f (r, ,p) e sin(ýz)dp d&

n i 0 r -ico

The function f(.), if the boundary condition is given as

(1.4) ., is yet undefined. The possibility of the following

cases of impulses can be mentioned:

Case 1 lrx./fntety short imputse

Let function f(.) (see Eq.(1.4) ) be given

f(t) = -f 6(t) (1.45)

where f 0  f0 >0 is a constant and 6(.) is the Dirac

function, then

f(p) = - fo (1.46)

15



Case 2 ln/fniteLy Lone imPuLse

It is assumed

f(t) = - f H(t) (1.47)0

where H(.) is the Heaviside step function, then

f(p) =f /p (1.48)
0

Case 3 lmp'u•se oi finite Leneht

It is assumed

f(t) -fi0 H(t) H(T - t) (1.49)0

where T, T > 0, is a duration of the impulse. In this case one

has

f

f(p) ) ( 1 - e- T  ). (1.50)
p

2.jThe problem of longqitudinal impact

The problem presented above is related to the mixed

conditions of shock pressure at the end of the semi-infinite

circular elastic tube. Consider now the problem shown in Fig.2.

Two semi-infinite circular tubes, moving in opposite directions

with speed v ,are assumed to contact at the instant t=0 and at

the plane z=0. The lateral surfaces of tubes are free of

loads. The analogical problem for two semi-infinite circular

bars was solved by Skalak [11], and such approach and also some

results of [11] will be used further on.

The solution of the problem considered is derived by

application of the superposition principle for two separate

problems. The first of them is limited to two elastic

16



semi-spaces, moving in opposite directions with speed v. They
are assumed to contact at the instant t=O and at the plane zz-0.
After time t=O the semi-spaces are assumed to behave as a
single, solid space, like the tubes considered above, which are

assumed to behave for t > 0 as a single, infinite tube. The

solution of this problem is given in [11] in the form:

u (r,z,t) = 0

u (r,z t)={+vt for +z > c t,

- v z/c for IzI < c t . (2.1)

The displacements assumed above induce the following stresses,

when using equations (1.3) and (2.1):

'zr(r,z,t) = 0 ,

a 0 for Izi > c t t
(r=z -(X+2p) v /c for Izi < c t (2.2)

S(r,z,t) = for IzI > c t

rr - x v !Ct I

It is seen from equations (2.2) that the solution of the first
problem case non-zero radial tractions on the lateral surfaces
of the circular tube. Applying the principle of superposition

to ensure a stress free lateral surfaces of the infinte tube
the second problem is considered , which is defined by
equations of motion (1.2), the boundary conditions

0 (r=azt) = czr(r=b,zt) = 0

S0 for Izl >c t (2.3)
arr(ra,z,t) = •rr(rb,z,t) X v/c for IzI <c t

for z e (-oo ,+o) , t e (0, +co)

and the initial conditions given in (1.6) for z E (-c.+co). A
futher condition is that the displacements and the stresses

vanish when Izi -> CO
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The solution of the problem is found by usinq

displacement potentials <ý and W introduced in (1.7) and Fourier

exponential transforms

f (r,, t) E-- {f(r,z,t); z-->ý} f f f(r,z,t) e dz (2.4)
-CO

as well as Laplace transform defined by (1.17) with respect to

t Using (2.4) one has

af 
FJ4, - ; z--> } = i ý f (r,ý,t)

Ozf

Y ( ...- . z-->ý I} -- - f (r,&,t) (2. 5'1
az2

af( r, z, t)

provided, that lim f(r,z,t) lim 0

Applying Fourier exponential transform and Laplace transform to

equations (1.8) one obtains

a , (r''p) 1 O,) 2 -F
+ -. . ............. a .r, ,p ) : 0 ,

arz r Or

2-F O~F(a wF(r,', p) 1 _Fr_ _ ) 1 -

+ . ..... .......... + 2 ) (r,ý ,p ) = 0 (2 .6 )
Or r Or r

where a is given in (1.25) and (3z is determined by (1.28)

The general solution of equations (2.6) ,-an be written

in the form:
2

-F0 (rj,p) = C 10 (ar) + C2 Ko (ar)

WF(r,ý,p) = D I (ar) + D K (1r) (2.7)

where C , Cz, D , are unknown functions of the variables [,

p and they have to be determined by using boundary conditions

(2.3). Applying Fourier and Laplace transforms to equations
it has emphasized that for the analogic problem of a rod the

conditions C =02-- 0 sholud be assumed to ensure finite

potentials, displacements and stresses at r=0

18



(1.12) one has (by using (2.5) and (1.19) ):

FF F

-FF 2 p
-F(1 2 2:

2P2

Or Or c

-F PP -
= i ) W (2I8)SOr

Substituting (2.7) into (2.8) and employing (1.33) it follows,

that
.- F2

•'r(r, ý, p) = Ct (2P Ct + .... z ) I (0tr) - 2p +rI (cr

c

X p2

C (2u c + --- ) K (ar) + 2P K (crr)
2 2 0 r

c
I

1
D 2p i [ I ((3r) - I ((3r) ] + D 2p i 3 [ K3 (Or) +

1
- K (f3r) 1 , (2.9)
r ±

-Fzr(r,&,p) 2d [-C i C I I (or) + C2 i a KI (r) +

2 2
2 2

D( + 2P ) I ((3r) + Dz({ + -i--- ) K,((r) ]"

Using the notations introduced in (1.36), the boundary

conditions (2.3) together with (2.9) the following system of

linear algebraic equations for unknowns C , C2 , Di, D is found

C d (a) + C2d 2(a) - L i da (a) - D i d4(a) :R F(,p)

Cd I(b) + C 2d (b) DI i d a(b) D2 i d4(b) = -F(,p)

-C i e (a) - C 2 i e 2 (a) + D e (a) + D2 e 4 (a) =0, (2.10)

-C i e (b) - C2 i e2 (b) + D e (b) + D2 e 4(b) 0

where

19



-F00COkv z -p

RF( ,p) : I H( ct - IzI ) e-iz ept dz dt

2 k v

2 2 2 (2. 11)
p + < c ±

The solution of equations (2.10) can be written in the form

T T T T
C I = T " 2 D I T ' = T (2.12)

where

,I (a) d 2 (a) -id (a) -id (a J
d1 (b) d2 (b) -id 3 (b) -id (b)

T det -ie (a) -ie (a) e (a) e (a)

-ie (b) -ie 2 (b) e 3 (b) e (b)

-FRF(•,p) d2 (a) -id (a) -id (a)

-F
T dz(b) _id3(b) -id4(b)

T± det 0 -ie (a) e (a) e (a) (2.13)

0 -ie (b) e (b) e (b)

-F
d (a) RF(•,p) -id (a) -id (a)

-FdI (b) RF•p -id (b) -id (b)

T =det -ie (a) 0 e (a) e (a)

-ie (b) 0 e (b) e (b)

dI (a) d2 (a) RF(, -id (a)

-Fd I(b) d 2(b) RF( -p id (b)

T = det -ie I(a) -ie (a) 0 e (a)

-ie (b) -ie (b) 0 e,(b)

20



d(a) d (a) -id3(a) RF(•,p)

dI(b) d 2(b) -id 3(b) RF(&,p)

T4 det -ie (a) -ie (a) e 3 (a) 0

-ie (b) -ie2 (b) e 3 (b) 0

and d(.) , e(.) , t-- ,2 ,3 ,4 are defined by equation

(1.36).

Substituting (2.12) into (2.7) and using (1.7) and (1.12) after

some manipulations one obtains

-F
T T I .( r) -T K Kx r) - T i 1 1 ((?r)

T i K.((?r) ] (2.14)

-F I
u (r,ý,p) = - [ T iý I (ar) + T i& K (cr) +

zT 0 2 0

T 3  (3 lo (3r) - T4 (3 KO (ir) ]

and

-F 2p--F ([ -T i ý C I (cxr) + T i ý c K (ctr) +

zr 'T 2 1

2 2
2 PP 2 PP

T ( + I IO- ) K,(3r) ]
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-F T Xp
(r ,• ,p ) -- [ (2p a + --.... ) I ( a r) r- 2P +r r T 2 r

c I

2 2 Xp

S (2p + __ ) K(otr) + 2• r K,(r) 3]
c

1T 1

2A i [ Io + K (pr) ] (2 15,

T - 2 ) r (or) I T P pT 
4

f3~ Ko (f~r) +]

Equations (2.14) and (2.15) represent the solution ,ca2led the

formal one ,of the considered impact problem expressed in terms

of Fourier and Laplace transforms. The inversion of these
transforms would be difficult to carry out because T, T
S=1, 2, 3, 4, are the functions of transform parameters ( and
p, equations (2.13), (1.36), (1.28). Using the inversion

theorems of the Laplace and Fourier exponential transforms the

solution can be written in the form

1 O Y+iOO -F i~z pt
u (rzt) = - u (r,ý,p) e e dp dý

4 i -• 2 . t

1 C O +iov -F "z pt
u (r,z,t) =- $f $ U (r,[,p) e e dp dý

42 Z

1 0 '-+iO -F i'z pt
a, (r,z,t) - 2 f cf (r,ý,p) e e dp d ,

4 z i -o r-ioo
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1F ei+ F ept
c (rr ( zt 2. f f C r, ,p)

4 z i -co i•
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