Research and Development Technical Report
SLCET-TR-91-29

EXTRUDED FILMS FROM MODIFIED POLYPROPYLENE RESIN: DIELECTRIC AND BREAKDOWN STUDIES

Robert J. Mammone
William L. Wade, Jr.
Michael Binder
ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY

APRIL 1992

DISTRIBUTION STATEMENT
Approved for public release.
Distribution is unlimited.

93-04134

U. S. ARMY LABORATORY COMMAND
Electronics Technology and Devices Laboratory
Fort Monmouth, NJ 07703-5601
DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.
EXTRUDED FILMS FROM MODIFIED POLYPROPYLENE RESIN:
DIELECTRIC AND BREAKDOWN STUDIES

Robert J. Mamrone, William L. Wade, Jr. and Michael Pinder

Thin films (approximately 25 microns) formed by melt-extruding polypropylene resin after it had been briefly exposed to a low-pressure, low-temperature, CF₄/O₂ gas plasma had significantly increased dielectric breakdown strengths with very little accompanying changes in dielectric properties.
CONTENTS

INTRODUCTION ... 1
EXPERIMENTAL .. 1
RESULTS AND DISCUSSION 2
CONCLUSIONS .. 2
ACKNOWLEDGEMENTS .. 2

TABLE

1. Comparison of dielectric properties for PP films 3

Accession For.

Table: Availability Codes
Dist.	Avail and/or Special
A-1 | Special
INTRODUCTION

High reliability, spirally wound, film capacitors for industrial applications require high quality dielectric films. Film limitations are presently due to poor insulation resistance and/or low dielectric breakdown strengths. Dielectric breakdown strengths, V_b, expressed in V/micron or kV/mil of thin polymer films play a key role in determining ultimate attainable energy densities when these films are used as dielectrics in capacitor applications. This is because energy densities of film capacitors increase as the square of the voltage across the capacitor. If V_b of polymer films can be increased, capacitors can be operated at higher voltages which translates into higher electrostatic energy densities.

Since the capacitor industry is cost and performance driven, constantly increasing demands are being made to lower cost, and improve reliability and performance of materials. One rapid and inexpensive way to increase V_b of polymer films is to briefly expose polymer films to low pressure, low temperature gas plasmas. However, much less information is available on effects of gas plasmas on finely divided powders where morphological changes, as well as modification of specific surface areas, surface functionalities and charge densities, may occur. Such alterations in properties for powders with extremely high surface-to-volume ratios could subsequently affect wetting, adhesion and stability. Surface effects of treated resins may also manifest themselves as changes in bulk dielectric properties when they are subsequently melt extruded into films. In the present study, we measured V_b and other dielectric properties on melt extruded polypropylene, PP, films where the powdered resin had been briefly exposed (prior to melt extrusion) to CF$_4$/O$_2$ gas plasmas.

EXPERIMENTAL

Pellets of PP resin (Himont 6823) were milled in a Thomas-Wiley mill and exposed to 96% CF$_4$/4% O$_2$ gas plasma by evenly distributing a thin layer of ground-up resin on aluminum foil in a Branson/IPC (Fort Washington, PA) Model 4150 barrel plasma etcher at power levels of approximately 0.006 W/cm2 for 4 minutes. Treated and untreated PP resins were sieved, and portions of powder captured by 30 or 40 mesh screens were extruded on a screw-type, Randcastle Microextruder under the following conditions: screw RPM, 50; die temperature, 450°F; barrel zone temperatures were 177°C for zone 1, 204°C for zone 2, and 232°C for zone 3. Translucent PP films, approximately 25 microns thick and 40 mm wide, were made from both untreated PP resin and PP resin that had been exposed to 96% CF$_4$/4% O$_2$ plasma.
Breakdown voltages of these PP films were measured in air at room temperature by ramping the voltage from zero volts at 500 volts per second until breakdown occurred and the film could not hold off additional voltage.

RESULTS AND DISCUSSION

Table 1 lists dielectric properties of two kinds of PP film: PP film extruded from unexposed PP resin and PP film extruded from PP resin that had been briefly exposed to CF$_4$/O$_2$ plasma. The data clearly show that exposure of PP resin (prior to melt extrusion) to CF$_4$/O$_2$ plasma increased the subsequent breakdown voltages of formed films by about 75% without significantly affecting either the dielectric constant or dielectric loss. This dramatic increase in breakdown voltage may be simply due to removal of surface contaminants and/or inhibitors or antioxidants which would be normally adsorbed on powdered resin surfaces. These species would have become trapped within the PP film during melt extrusion, thereby lowering breakdown voltages. Exposure of powdered resins to CF$_4$/O$_2$ plasma may be removing these impurities, and the resulting purer resins yield films having higher breakdown voltages. Another possible explanation is that reaction of powdered PP resin surfaces with CF$_4$/O$_2$ plasma forms thin, crosslinked or chemically modified (perhaps fluorinated) surface layers. When this resin, with high surface-to-volume ratios, is then melt extruded, the chemically modified species, formerly on the surface, now blend into the bulk to form films having higher breakdown voltages than films formed from pure PP resin. This explanation, however, does not explain why these films, formed from plasma treated resins, show no substantial difference in bulk dielectric properties over films formed from untreated resins.

CONCLUSIONS

Breakdown voltages of thin, melt extruded PP films can be substantially increased by briefly exposing ground-up PP resin (prior to melt extrusion) to low pressure, low temperature, CF$_4$/O$_2$ gas plasma.

ACKNOWLEDGEMENTS

We thank Dr. Sol Gilman for his thoughtful guidance, and encouragement, as well as participation in extensive technical discussions.
TABLE 1. Comparison of dielectric properties (dielectric constant, dielectric loss and breakdown voltage) for PP films (24-28 microns thick) melt extruded from 30 mesh PP resin which had been briefly exposed to 96% CF$_4$/4% O$_2$ gas plasma.

<table>
<thead>
<tr>
<th>Property</th>
<th>Baseline</th>
<th>Exposed to CF$_4$/O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@1000 Hz</td>
<td>2.19</td>
<td>2.25</td>
</tr>
<tr>
<td>@10,000 Hz</td>
<td>2.19</td>
<td>2.25</td>
</tr>
<tr>
<td>Dielectric loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@1000 Hz</td>
<td>6.6 \times 10^{-4}</td>
<td>7.26 \times 10^{-4}</td>
</tr>
<tr>
<td>@10,000 Hz</td>
<td>5.5 \times 10^{-4}</td>
<td>6.35 \times 10^{-4}</td>
</tr>
<tr>
<td>Breakdown Voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kV/mil</td>
<td>5.2</td>
<td>9.1</td>
</tr>
<tr>
<td>V/micron</td>
<td>205</td>
<td>358</td>
</tr>
</tbody>
</table>
Defense Technical Information Center*
ATTN: DTIC-FDAC
Cameron Station (Bldg 5) (*Note: Two copies for DTIC will
Alexandria, VA 22304-6145 be sent from STINFO Office.)

Director
US Army Material Systems Analysis Actv
ATTN: DRXS-Y-MP
001 Aberdeen Proving Ground, MD 21005

Commander, AMC
ATTN: AMOCE-SC
5001 Eisenhower Ave.
001 Alexandria, VA 22333-0001

Commander, LABCOM
ATTN: AMSLC-CG, CO, CS (In turn)
2800 Powder Mill Road
001 Adelphi, MD 20783-1145

Commander, LABCOM
ATTN: AMSLC-CT
2800 Powder Mill Road
001 Adelphi, MD 20783-1145

Commander,
US Army Laboratory Command
Fort Monmouth, NJ 07703-5601
1 - SLCET-DD
2 - SLCET-DT (M. Howard)
1 - SLCET-DR-B
22 - Originating Office

Commander, CECOM
R&D Technical Library
Fort Monmouth, NJ 07703-5703
1 - ASQNC-ELC-IS-L-R (Tech Library)
3 - ASQNC-ELC-IS-L-R (STINFO)

Advisory Group on Electron Devices
ATTN: Documents
2011 Crystal Drive, Suite 307
002 Arlington, VA 22202
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>Naval Research Laboratory, Washington, DC 20375-5000</td>
</tr>
<tr>
<td>Cdr, Atmospheric Sciences Lab</td>
<td>White Sands Missile Range, NM 88002</td>
</tr>
<tr>
<td>Cdr, PM JTFUSION</td>
<td>Harry Diamond Laboratories, 2800 Powder Hill Road, Adelphi, MD 20783-1145</td>
</tr>
<tr>
<td>Deputies for Science & Technology Office, Asst Sec Army (R&D)</td>
<td>Washington, DC 20310</td>
</tr>
<tr>
<td>HQDA (DANA-ARZ-D/Dr. F.D. Verderame)</td>
<td>Washington, DC 20310</td>
</tr>
<tr>
<td>Dir, Electronic Warfare/Reconnaissance Surveillance and Target Acquisition Ctr</td>
<td>Fort Monmouth, NJ 07703-5206</td>
</tr>
<tr>
<td>Dir, Reconnaissance Surveillance and Target Acquisition Systems Directorate</td>
<td>Fort Monmouth, NJ 07703-5206</td>
</tr>
<tr>
<td>Cdr, Marine Corps Liaison Office</td>
<td>Fort Monmouth, NJ 07703-5033</td>
</tr>
<tr>
<td>Dir, US Army Signals Warfare Ctr</td>
<td>Vint Hill Farms Station, Warrenton, VA 22186-5100</td>
</tr>
<tr>
<td>Dir, Night Vision & Electro-Optics Ctr</td>
<td>Fort Belvoir, VA 22060-5677</td>
</tr>
</tbody>
</table>
ELECTRONICS TECHNOLOGY AND DEVICES LABORATORY
Supplemental Contract Distribution List (Elective)

Dow Chemical Company
M.E. Pruitt Research Center
Midland, MI 48674
ATTN: Dr. Don Dix

ABB Power T&D Company
300 North Curry Pike
Bloomington, IN 47402
ATTN: George S. Papadopoulos

Michigan Molecular Institute
1910 West St., Andrews Road
Midland, MI 48640
ATTN: Dr. Robert Hotchkiss

E.I. DuPont
P.O. Box 27001
Richmond, VA 23261
ATTN: Dr. Thomas K. Bednarz

Westinghouse Electric Corp.
R&D Center
1310 Beulah Road
Pittsburgh, PA 15235
ATTN: Dr. L. Mandlkorn

E.I. DuPont, Electronics Dept.
BMP21-2126
P.O. Box 80021
Wilmington, DE 19880-0021
ATTN: Dr. Roger O. Uhler

3M Company
3M Center
St. Paul, MN 55411-1000
ATTN: Dr. Dave Redmond

Celanese Hoechst
86 Morris Avenue
Summit, NJ 07901
ATTN: Bill Timmons

Sprague
Film Capacitor Group
Longwood, FL 32750
ATTN: Dr. Mark Carter

Eni Chem Americas, Inc.
2000 Princeton Park Corp. Ctr.
Monmouth Junction, NJ 08852
ATTN: Dr. Alex Jen

3M Company
3M Center
St. Paul, MN 55144-1000
ATTN: Dr. E.F. Hampl

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109
ATTN: Dr. S.P.S. Yen

Aerovox, Inc.
740 Belleville Ave.
New Bedford, MA 02745
ATTN: Tim Egan

Sandia National Laboratories
Passive Components-Division 2552
P.O. Box 5800
Albuquerque, NM 87185
ATTN: Dr. James O. Harris

General Electric
Capacitor and Power Division
381 Upper Broadway
Fort Edwards, NY 12828
ATTN: Don Nicols-MESS

General Electric
Capacitor Division
381 Upper Broadway
Fort Edwards, NY 12828
ATTN: Larry Bock
3M Company
Federal Systems Research and Development
Building 224-2S-25
St. Paul, MN 55144
ATTN: Ed Westlund

Maxwell Laboratories, Inc.
888 Balboa Avenue
San Diego, CA 92123-1506
ATTN: Joel B. Ennis

Defense Nuclear Agency
6801 Telegraph Road
Alexandria, VA 22310
ATTN: John Farber

Commander
U.S. Army AMC COM, ARDEC
ATTN: SMCAR-FSP-E/E. J. Zimpo
Bldg. 1530
Picatinny Arsenal, NJ 07801

Allied-Signal, Inc.
P.O. Box 1987R
Morristown, NJ 07960
ATTN: Dr. Cheng-Jiu Wu

Exfluor Research Company
P.O. Box 7807
Austin, TX 78713
ATTN: Dr. H. Kawa

Defense Nuclear Agency
6801 Telegraph Road
Alexandria, VA 22310
ATTN: Janet Meiserhelder

GE Corporate Research & Development
K1-2S86, P.O. Box 8
Schenectady, NY 12301
ATTN: Dr. Clive Reed