
U.S. DEPARTMENT OF COMMERCE
National Institute of Standardls and Technology

_____AD-A261 273
_________________ fII I i ll~ I'IýI1

National PDES Testbed
Report Series

NIST STEP
__ __ __ __ Worki.ng Form
_____________ Programmer s
______________ Reference

NATIONAL

TESTBED '*ý!ýiii:iiýi:::::ý:i:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _..._ _ 1..1.....
...

93-03999 -

%$RIk~t5wA.NSTATEME16& rLST
Approved for pu-blic releasel98 2 2~) 2 7 ~Distrib'jtjo 4~j4

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

-National PDFS Testbed

NATIONAL
_ _ NIST STEP

Working Form
- Programmer's

Reference
Stephen Nowland Clark

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

June 11, 1990

NMr"

Disclaimer
No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied

UNIX is a trademark of AT&T Technologies, Inc.

. , II • I I I I I II I I III

Table Of Contents

1 Introduction .. 1
1. 1 Context .. 1

2 STEPparse Control Flow ... 2
2.1 First Pass: Parsing .. 2
2.2 Second Pass: Output Generation .. 2

3 W orking Form Im plem entation .. 3
3.1 Primitive Types .. 3
3.2 STEP W orking Form M anager Module ... 3
3.3 Code Organization and Conventions ... 3
3.4 Memory Management and Garbage Collection 4
3.5 Object .. 4
3.6 Product ... 6

4 W riting An O utput M odule .. 7
4.1 Layout of the C Source .. 8
4.2 Output Module Linkage Mechanisms ... 9

5 W orking Form Routines ... 9
5.1 W orking Form Manager ... 9
5.2 Object ... 10
5.3 Product ... 19

6 STEP Working Form Error Codes ... 20

Appendix A: References ... 23

Accesion For
NTIS CRA&I

DTIC TAB
Unannounced
Justification

By
Distribution I

Availability Codes

Avail and/or
Dist Special

Sww-fl 1

liil.

NIST STEP Working Form
Programmer's Reference

Stephen Nowland Clark

1 Introduction

The NIST STEP physical file parser [Clark90c], and its associated STEP parser,
STEPparse, are Public Domain tools for manipulating product models stored in the
STEP physical file format [Altemueller88]. These tools are a part of the NIST PDES
Toolkit [Clark90a], and are geared particularly toward building STEP translators. This
reference manual discusses the internals of the STEP Working Form, including
STEPparse. The reader is assumed to be familiar with the design of the Toolkit
([Clark90a], [Clark90b], [Clark90c]). In some cases, technical knowledge of the Ex-
press Working Form [Clark90e] is also required.

The STEP Working Form relies on the NIST Express Working Form [Clark90b] as an
in-core data dictionary, which provides a context in which STEP models can be inter-
preted. The tight dependency of the STEP Working Form abstractions on those of the
Express Working Form is due to the schema-independent nature of the former. The
STEP Working Form, and, in particular, STEPparse, contain no knowledge of any par-
ticular information model. Applications built on these tools can thus manipulate STEP
product models in the context of any number of Express information models without
requiring recompilation.

1.1 Context
The PDES (Product Data Exchange using STEP) activity is the United States' effort in
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors'
CAD/CAM systems and other manufacturing-related software [Smith88]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-
kit is an evolving, research-oriented set of software tools. This document is one of a set
of reports which describe various aspects of the Toolkit. An overview of the Toolkit is
provided in [Clark90a], along with references to the other documents in the set.

For further information on the STEP Working Form or other components of the Toolkit,
or to obtain a copy of the software, use the attached order form.

NIST STEP Working Form Programmer's Reference Page 1

Stephen Nowland Clark

2 STEPparse Control Flow

A STEPparse translator consists of two separate passes: parsing and output generation.
The first pass builds an instantiated P rodu ct representing the product model specified
in the STEP input file. This Product can then be traversed by an output module in
the second pass, producing whatever report is desired. It is anticipated that users will
need output formats other than those provided with the NIST Toolkit. The process of
writing a report generator for a new output format is discussed in detail in section 4.

2.1 First Pass: Parsing
The first pass of a STEPparse translator is a very simple parser. The STEPparse gram-
mar itself is independent of any conceptual schema. The lexical analyzer recognizes
any entity class name simply as an identifier, the actions associated with rules in the
grammar then interpret th;s name as refering to a particular Express entity, and con-
struct appropriate objects. As each construct is parsed, it is added to the Working Form.
Because the STEP physical file format does not allow forward references to as-yet-un-
defined entity instances, all symbol references can be (and are) resolved during this
parsing pass, so that no symbol resolution pass is required.

The STEPparse parser is written using the standard UNIXTM parser generation languag-
es, Yacc and Lex. The grammar is processed by Bison, the Free Software Founda-
tion'sI implementation of Yacc. The lexical analyzer is produced by Flex 2, a fast,
Public Domain implementation of Lex.

2.2 Second Pass: Output Generation
The report or output generation pass manages the production of the various output files.
In the dynamically linked version of STEPparse, this pass loads successive output mod-
ules dynamically, calling each to traverse the Working Form. The dynamic linking
mechanism is discussed briefly in [Clark90d]. It is also possible to build a statically
linked translator, with a particular output module loaded in at build time; this is, in fact,
the only mechanism available in an environment which is not derived from BSD 4.2
UNIX.

A report generator is an object module, most likely written in C, which has been com-
piled as a component module for a larger program (i.e., with the -c option to a Unix C
compiler). In the dynamically linked version, the object module is linked into the run-
ning parser, and its entry point (by convention a function called printfile 0)) is

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,
whose ultimate goal is to provide a free implementation of the UNIX operating system and environment.
These tools are not in the Public Domain: FSF retains ownership and copyright priviledges, but grants free
distribution rights under certain terms. At this writing, further information is available by electronic mail on
the Internet from gnu@prep.ai.mit.edu.
2. Vern Paxson's Fast Lex is usually distributed with GNU software, although, being in the Public Domain,
it is not an FSF product and does not come under the FSF licensing restrictions.

NIST STEP Working Form Programmer's Reference Page 2

Stephen Nowland Clark

called. The code of this module consists of calls to STEP Working Form access func-
tions and to standard output routines. Chapter 4 provides a detailed description of the
creation of a new output module.

3 Working Form Implementation

As in the Express Working Form [Clark90d], the Object abstraction is implemented as
a Symbol header block with a pointer to a private st ruct Object. This C structure
contains the real definition of the abstraction, but is never manipulated directly outside
of the Object module. Product is implemented as a pointer to a private structure,
struct Product.

Most stylistic and other conventions from the Express Working Form are equally valid
for STEP; they are reiterated here for emphasis.

3.1 Primitive Types
The STEP Working Form makes use of several modules from the Toolkit general li-
braries, including the Error and LinkedList modules. These are described in
[Clark90d].

3.2 STEP Working Form Manager Module

In addition to the abstractions discussed in [Clark90c], 1 ibstep. a contains one more
(conceptual) module, the package manager. Defined in step. c and step. h, this
module includes calls to intialize the entire STEP (and Express) Working Form pack-
age, and to run each of the passes of a STEPparse translator.

3.3 Code Organization and Conventions
Each abstraction is implemented as a separate module. Modules share only their inter-
face specifications with other modules. A module Foo is composed of two C source
files, foo. c and foo. h. The former contains the body of the module, including all
non-inlined functions. The latter contains function prototypes for the module, as well
as all type and macro definitions. In addition, global variables are defined here, using
a mechanism which allows the same declarations to be used both for extern declara-
tions in other modules and the actual storage definition in the declaring module. These
globals can also be given constant initializers. Finally, foo. h contains inline function
definitions. In a compiler which supports inline functions, these are declared static
inline in every module which includes foo. h, including foo. c itself. In other
compilers, they are undefined except when included in foo . c, when they are compiled
as ordinary functions. foo. c resides in -pdes /src/step/; foo. h in
-pdes/include/.

The type defined by module Foo is named Foo, and its private structure is struct
Foo. Access functions are named as FO0 function () ; this function prefix is abbre-
viated for longer abstraction names, so that access functions for type
Foolhardy_Bartender might be of the form FOOBARfunction(). Some

NIST STEP Working Form Programmcr's Refercnce Page 3

Stephen Nowland Clark

functions may be implemented as macros; these macros are not distinguished typo-
graphically from other functions, and are guaranteed not to have unpleasant side effects
like evaluating arguments more than once. These macros are thus virtually indistin-
guishable from functions. Functions which are intended for internal use only are named
FO 0funct ion (), and are usually static as well, unless this is not possible. Glo-
bal variables are often named FO _variable; most enumeration identifiers and con-
stants are named FOOCONSTANT (although these latter two rules are by no means
universal).

Every abstraction defines a constant FOONULL, which represents an empty or missing
value of the type. In addition, there are several operations which are defined for every
type; these are primarily general management operations. Each abstraction defines at
least one creation function, e.g. FOOcreate 0 . The parameters to this creation func-
tion vary, depending on the abstraction. A permanent copy of an object (as opposed to
a temporary copy which will immediately be read and discarded) can be obtained by
calling FOOcopy (foe). This helps the system keep track of references to an object,
ensuring that it is not prematurely garbage-collected. Similarly, when an object or a
copy is no longer needed, it should be released by calling FOO free (foo) , allowing
it to be garbage-collected if appropriate.

For each abstraction, there is a function FOOis foo (obj) which returns true if
and only if its argument is a foo. This is useful when dealing with a heterogeneous list,
for example.

3.4 Memory Management and Garbage Collection

In reading various portions of the STEP Working Form documentation, one may get the
impression that the Working Form does some reasonably intelligent memory manage-
ment. This is not true. The NIST PDES Toolkit is primarily a research tool. This is
especially true of the Express and STEP Working Forms. The Working forms allocate
huge chunks of memory without batting an eye, and this memory often is not released
until an application exits. Hooks for doing memory management do exist (e.g.,
XXXfree () and reference counts), but currently are largely ignored.

3.5 Object

The Object abstraction is the basic building block of the STEP Working Form. An
Object is created for each unit of value in a PDES/STEP product model: each entity
instance, aggregate, integer, string, etc. On the surface, this would seem to be a reason-
ably straightforward module to implement: each Object has an optional name, a
Type, and a value. The value may be simple or structured; in either case, it basically
comes down to a pointer - either to an array of Objects, or to an integer, real, string,
etc.

As with most abstractions in the Express Working Form, Ob ject is implemented as a
Symbol header whose definition field points at a struct Object, whichis
defined thus:

struct Object

NIST STEP Working Form Programmer's Reference Page 4

Stephen Nowland Clark

Type type;

Generic userdata;
union i

Constant enumeration;
Integer integer;
Logical log' al;
Real real;

String string;
Object* entity;
Aggregate aggregate;

value;
};

The first two fields are pretty straightforward. Note that userdata is a generic
pointer field. In strict ANSI C, only a pointer can be safely stored into this field and
later retrieved; it is safest to only store pointers in this field. In particular, the age-old
trick of casting pointers and integers back and forth, never completely portable, is now
officially frowned upon.

The value union is where things get tricky. This field contains the actual value of the
object represented. Unstructured types (numbers, logicals, and strings) are represented
directly; e.g., object . value, integer contains an integer, and
object .value. string, a character pointer. The value of an enumeration object
is represented as a Constant, which will be an element of the appropriate enumera-
tion. The integer representation of this enumeration element can be retrieved by calling
(int)CSTgetvalue (object.valueenumeration).

An entity instance's value field, value . entity, is a pointer to the base of an array
of objects. Each element of this array corresponds to an attribute of the entity; attributes
appear in the same order as in a PDES/STEP physical file, with empty attributes explic-
itly represented by OBJECTNULL. The offset to a particular attribute value is re-
trieved from the Express data dictionary by calling
ENTITYgetattributeoffset(entity, attribute), where entity is
the entity class of the object in question and attribute is the Variable represent-
ing the attribute to be located.

The most convoluted object value representation is that for aggregates. An aggregate
value is represented as a pointer to a struct Aggregate, defined as

struct Aggregate {
int low;
int high;
Expression max;
Object* contents;

The last field, contents, holds the actual contents of the aggregate, as an array of
Objects. The low field provides a lower bound on allowable indices into this array,
and doubles as a logical offset to the first element of the array. This value is 1 for any

NIST STEP Working Form Programmer's Reference Page 5

Stephen Nowland Clark

non-array aggregate. Thus, when low is 1, someaggregate [1] is found at
contents [0]. Similarly, in an array whose low is 10, the some-array[12l is
found at contents 12-10 = 23. low remains constant in any particular aggre-
gate object. The hi gh field gives an upper bound on the indices of currently filled slots
in an aggregate object. Every index into the aggregate beyond high which is in bounds
is guaranteed to return OBJECTNULL. The end result is that a loop of the form
for (i = low; i <= high; ++i) <use contents(i-low]>willal-
ways hit all of the elements of an aggregate. This function of offsetting by the lower
bound is bundled into the various aggregate indexing functions of the working form
(OBJaggrat o,OBJlist_insert 0 , etc.), so that the indices which a user sees
will be the ones which would be expected based on the Express model. In the current
implementation, high in an aggregate whose type (from Express) gives a finite upper
bound always remains constant at this bound. In the case of an aggregate with no spec-
ified upper bound, however, high may vary with the number of elements actually in
the aggregate. The expression (from Express) giving the absolute upper bound on an
aggregate is cached in aggregate->max. high is never allowed to be greater than
the value of this expression.

The two calls OBJaggrat () and OBJaggr_at_put () can be used with any kind
of aggregate, although they are intended to be used primarily for building general ag-
gregates which will later be OBJtype cast () into specific types of aggregates.
This is how STEPparse builds aggregates, since it is considerably easier than figuring
out at parse time what type of aggregate should be built. The various class-specific ma-
nipulations (list concatenation, set intersection, etc.) are provided by calls requiring ag-
gregates of a particular class: OBJ i st concat 0 , OBJset inter sect),etc.
It should be noted that the calls for combning aggregates are destructive: each modifies
its first argument to hold its computed result. In general, the two arguments may safely
be set equal. Exceptions are noted in the individual function specifications.

Finally, a word about type conversion (also known as casting, as in C). Type conver-
sions of existing Objects are handled by OBJtype cast (Object, Type,
Error*). Only certain conversions are allowed; other attempted casts leave the
Object unchanged and return an error code. Clearly, any Object can trivially be
cast into its own type. The different numeric types can be cast about at will. A general
aggregate can be cast into any specific aggregate class; otherwise, an aggregate can
only be cast into another aggregate type of the same class: an array cannot be cast into
a set, etc. Each element of the aggregate being cast must, of course, be recursively cast
into the appropriate base type; each of these conversions is subject to the same rules as
any other cast. Finally, an entity Ob j e ct can be converted into an instance of a super-
type of its class, or into an instance of a SELECT type containing some type to which
it can be cast. These casts of entity instances in fact do not modify the Object being
cast.

3.6 Product

A product in STEP contains a large number of interrelated entity instances, and is rep-
resented by the Product abstraction. Each Product is named, and includes a point-
er to the Express model which provides the scope in which its component Objects are

NIST STEP Working Form Programmer's Reference Page 6

Stephen Nowland Clark

defined. These component objects can be retrieved from the Product in several
ways: a specific (external) entity instance can be retrieved by name; a Linked List
of all of the (external) entity instances in the Product can be requested; or a particular
entity class in the Product's conceptual schema can be queried for all of its instances
(note that this last method retrieves both internal and external entity instances). Internal
(embedded) entity instances and non-entity Ob j e ct s must appear as attribute values
or aggregate elements somewhere in the Product, and are only accessible via
ENTITYgetinstances () and component retrieval from the containing
Objects.

The above three access methods are supported by storing three references to each
Object in a Product. When an Object is added to aProduct, it is added tothe
end of the list of external objects. This list preserves the order in which the Ob jects
were added to the Product, and so is appropriate for applications, such as writing a
STEP physical file, which require that there be no forward references to as-yet-unde-
fined Objects. Each external Object is also added to a dictionary which the
Product maintains, to allow retrieval by name. And when an entity object is first cre-
ated, it is added to the instance list of its class.

4 Writing An Output Module

We now turn to the topic of actually writing a report generator. The end result of this
process will be an object module (UNIX . o file) which can be loaded into STEPparse.
This module contains a single entry point which traverses a given Product and writes
its output to a particular file. The conceptual entry point is conventionally called
print_fi le (), while the physical entry point, which simply dispatches to
print_file 0 , is called entrypoint 0 .

In most cases, there will be a one-to-one correspondence between Objects in the instan-
tiated Working Form and records to be written on the output. When this is the case, the
meat of the report generator can be made fairly simple. Since a list of all of the Objects
in the Working Form is available, it is easy to iterate over this list and output each Ob-
ject in sequence:

STEPprint (Product product, FILE* file)

LinkedList list;
list = PRODget_contents(product);
LISTdo(list, obj, Object)

OBJprint(obj, file);
LISTod;

}
The only remaining problem is to write a function OBJprint () which emits the out-
put record for a single Object. Given the variety of types of Objects, this function will
probably be controlled by a large switch statement, selecting on the Object's type
class (numbers, strings, and aggregates all have to be printed differently). Code to deal
with multi-dimensional arrays an internal/external entity references can get tricky, and

NIST STEP Working Form Programmer's Reference Page 7

Stephen Nowland Clark

should be written carefully. An example of a fairly simple report generator is that used
by STEPparse-QDES. The source code for this module is in
-pdes/src/STEPparseqdes/step_outputsmalltalk.c.

4.1 Layout of the C Source

The layout of the C source file for a report generator which will be dynamically loaded
is of critical importance, due to the primitive level at which the load is carried out. The
very first piece of C source in the file must be the entry_point () function, or the
loader may find the wrong entry point to the file, resulting in mayhem. Only comments
may precede this function; even an # include directive may throw off the loader. An
output module is normally layed out as shown:

void
entry_point (void* product, void* file)

extern void printfile(;
print_file(proauct, file);

#include "step.h"

... actual output routines

void
print_.ile(void* product, void* file)

printfileheader((Product)product,

(FILE*) file) ;
STEPprint (product, file);

print_filetrailer((Product)product,
(FIIE*) file) ;

}

The printfile () function will probably always be quite similar to the one shown,
although in many cases, the file header and/or trailer may well be empty, eliminating
the need for these calls. In this case, STEPprint () and print file () will prob-
ably become interchangeable.

Having said all of the above about templates, code layout, and so forth, we add the fol-
lowing note: In the final analysis, the output module really is a free-form piece of C
code. There is one and only one rule which must be followed: The entry point (accord-
ing to the a. out format) to the . o file which is produced when the report generator is
compiled must be appropriate to be called with a Product and a FILE*. The sim-
plest (and safest) way of doing this is to adhere strictly to the layout given, and write an
entrypoint () routine which jumps to the real (conceptual) entry point. But any
other convention which guarantees this property may be used.

NIST STEP Working Form Programmer's Reference Page 8

Stephen Nowland Clark

4.2 Output Module Linkage Mechanisms
One of the powers of STEPparse is the flexibility which it gives a user with regard to
generating output. An important component of this flexibility on BSD Unix systems is
the dynamic loading of output modules. Both static and dynamic binding of output
modules are supported by STEPparse. This is implemented by physically breaking the
object code from the Working Form manager (step. c) into three separate . o files:
the initialization code and the first pass of STEPparse are compiled into step. o,
which is stored in 1 ibstep. a. The static linking version of the second pass (without
any output module) is compiled into stepstat ic. o; and the dynamic loading ver-
sion into stepdynamic. o. Sources for all of these components reside in step. c;
the various sections are extracted via conditional compilation: When this file is com-
piled with the preprocessor symbols repo rt s and st at i c_reports defined,
stepstatic. o is produced. With reports and dynamicreports defined,
step dynamic. o is produced; and with none of these defined, step. o is pro-
duced.

Since stepstatic. o and step_dynamic. o both define the function
STEP report (), only one can be linked into any given executable. This selection is
what determines whether a STEPparse translator links in output modules statically or
dynamically. Note that a suitable output module (. o file) must appear after
stepstatic. o in the linker's argument list when a statically linked translator is
being built.

5 Working Form Routines

The remainder of this manual consists of specifications and brief descriptions of the ac-
cess routines and associated error codes for the STEP Working Form. The error codes
are manipulated by the Error module [Clark90d]. Each subsection below corresponds
to a module in the Working Form library. The Working Form Manager module is listed
first, followed by the remaining data abstractions in alphabetical order.

5.1 Working Form Manager
Procedure: STEPinitialize
Parameters: Error* errc - buffer for error code
Returns: void
Description: Initialize the STEP Working From package. In a typical STEP translator this is called

by the default main () provided in the Working Form library. Other applications
should call this function at initialization time.

Errors: none

Procedure: STEPparse
Parameters: String filename - the name of the file to be parsed

Express data-model - conceptual schema (as produced by EXPRESSpass_2 ()
Returns: Product - the product model parsed
Description: Parse a STEP physical file into the Working Form

NIST STEP Working Form Programmer's Reference Page 9

Stephen Nowland Clark

Procedure: STEPreport
Parameters: Product product - the product to output
Returns: void
Description: Invoke one or more report generators for a STEP Working Form model.
Description: Invoke one (or more) report generator(s). When this function is compiled with

-Ddynamic_reports, it will repeatedly prompt for report generators and output
files, dynamically loading and executing them. When it is compiled with
-Dst at icreport s, a report generator must also be included at link time, with the
entry point print_file (Express, FILE*).

5.2 Object
Procedure: OBJaggrat
Parameters: Object object - object to examine

int index - index of requested element
Error* eric - buffer for error code

Returns: Object - value at requested position
Description: Retrieves the value at some position in an aggregate. Note that the calls which are

specific to a particular aggregate class are much to be preferred.
Errors: ERROR index out ofrange - the index is outside of the bounds of the

aggregate

Procedure: OBJaggrai~put
Parameters: Object object - object to modify

int index - index at which to put element
Object value - value to insert
Error* errc - buffer for error code

Returns: void
Description: Store a value into an aggregate object. Note that the calls which are specific to a

particular aggregate class are much to be preferred.
Errors: ERROR index out ofrange - the index is outside of the bounds of the

aggregate

Procedure: OBJaggrlowerbound
Parameters: Object object - object to examine

Error* errc - buffer for error code
Returns: int - the lower bound of the object
Description: Retrieves the lower bound of an aggregate object. For an array, this is the index of the

first element of the array. For other aggregates, it is 1.
Errors: none

Procedure: OBJaggrjupper-bound
Parameters: Object object - object to examine

Error* errc - buffer for error code
Returns: int - the upper bound of the object
Description: Retrieves the upper bound of an aggregate object. For an aggregate with a constrained

size, this is the value of the upper limit or index. For an aggregate with an infinite
upper bound, the value returned is guaranteed to be larger than the highest index of a
fidled slot in the aggregate.

Errors: none

NIST STEP Working Form Programmer's Reference Page 10

Stephen Nowland Clark

Procedure: OBJarrayat
Parameters: Object array - array to examine

int index - index of requested element
Error* errc - buffer for error code

Returns: Object - value at requested position
Description: Retrieves the value at some position in an array.
Errors: ERROR index out of range - the index is outside of the bounds of the

aggregate

Procedure: OBJarrayatput
Parameters: Object array - array to modify

int index - index at which to put element
Object value - value to insert
Error* errc - buffer for error code

Returns: void
Description: Store a value into an array object.
Errors: ERROR index out of range - the index is outside of the bounds of the

aggregate

Procedure: OBJbag-add
Parameters: Object bag - bag to modify

Object item - item to add
Error* erre - buffer for error code

Returns: void
Description: Inserts an object into a bag.
Errors: ERRORbag full - there is no more room in the bag

Procedure: OBJbag-includes
Parameters: Object bag - bag to test

Object item - item to test for
Error* errc - buffer for error code

Returns: Boolean - does this bag contain this item?
Errors: none

Procedure: OBJbagintersect
Parameters: Object bag - bag to intersect into

Object unitee - bag to intersect with
Error* errc - buffer for error code

Returns: void
Description: Intersects two bags. This operation is destructive: the first bag holds the resulting

intersection on return.
Errors: none

Procedure: OBJbag-remove
Parameters: Object bag - bag to remove from

Object item - item to remove
Error* errm - buffer for error code

Returns: void
Description: Remove a single occurence of some item from a bag, if it appears.
Errors: none

NIST STEP Working Form Programmer's Reference Page II

Stephen Nowland Clark

Procedure: OBJbag-removeall
Parameters: Object bag - bag to remove from

Object remove - bag of items to remove
Error* en-c - buffer for error code

Returns: void
Description: Removes all items in a bag from some other bag. This is bag subtraction. This

operation is destructive: the first bag holds the result on return.
Errors: none

Procedure: OBJbag-subset
Parameters: Object bag - bag to test as superset

Object subset - bag to test as subset
Error* errc - buffer for error code

Returns: Boolean - does the first bag contain the second as a subset?
Description: This implementation is not completely correct. In particular, the following returns

true:OBJbagsubset ((a, b, c}, (a, a)).
Errors: none

Procedure: OBJbag__unite
Parameters: Object bag - bag to unite onto

Object unitee - bag to unite with
Error* en-c - buffer for error code

Returns: void
Description: Adds the contents of a bag to another bag. This operation is destructive: the first bag

holds the resulting union on return. It is not safe to unite a bag with itself.
Errors: none

Procedure: OBJcopy
Parameters: Object object - object to copy
Returns: Object - a shallow copy of the object

Procedure: OBJcreate
Parameters: Type type - type to instantiate

Error* errc - buffer for error code
Returns: Object - a new, empty object of the given type
Errors: ERROR cannot-instantiate - the type given cannot be instantiated (e.g.,

Generic)

Procedure: OBJcreateentity
Parameters: Entity entity - entity class to instantiate

Linked_List attributes - list of attribute values
int line - source line number of the instance to be created
Error* errc - buffer for error code

Returns: Object - a new entity instance, as described
Description: A new object of the specified entity type is created. There should be a one-to-one

correspondence between the values on the attribute value list and the list of attributes
for the entity being instantiated.

Errors: ERROR insufficient attributes - not enough attribute values in the list
provideU
ERRORtoomanyattributes - too many attribute values in the list provided

NIST STEP Working Form Programmer's Reference Page 12

Stephen Nowland Clark

Procedure: OBJcreate ud-entity
Description: Create a user-defined entity. This procedure is not yet implemented.

Procedure: OBJfast-getattribute
Parameters: Object object - object to examine

Variable attribute - attribute to retrieve
Error* errc - buffer for error code

Returns: Object - value of attribute
Description: Retrieves the value of an attribute from an entity instance. This call is faster than

OBJget attribute () when the caller already has the actual attribute record for
the desired attribute, rather than simply having its name (as expected by
OBJget attribute 0).

Errors: none

Procedure: OBJfastput-attribute
Parameters: Object object - object to modify

Variable attribute - attribute to store into
Object value - value to store into attribute
Error* erre - buffer for error code

Returns: void
Requires: TYPEget class(OBJget-typc(object)) == TYPEENTITY
Description: Store a value into an attribute of an entity instance. This call is faster than

OBJput attribute () when the caller already has the actual attribute record for
the desired attribute, rather than simply having its name (as expected by
OBJputattribute()).

Errors: Same as for OBJputattribute (.

Procedure: OBJfree
Parameters: Object object - object to free

Error* emr - buffer for error code
Returns: void
Description: Release an Object. Indicates that the object is no longer used by the caller; if there are

no other references to the object, all storage associated with it may be released.
Errors: none

Procedure: OBJget_attribute
Parameters: Object object - object to examine

String auributeName - name of attribute to retrieve
Error* errm - buffer for error code

Returns: Object - value of the named attribute
Description: Retrieves the value of a named attribute from an entity instance. This call is the slower

method for retrieving an attribute value. If the actual attribute recored is already
available, use OBJfastget_attribute() instead.

Errors: none

Procedure: OBJget_linenumber
Parameters: Object object - object to examine
Returns: int - line number of object
Errors: none

NIST STEP Working Form Programmer's Reference Page 13

Stephen Nowland Clark

Procedure: OBJgetiname
Parameters: Object object - object to examine
Returns: String - the object's name
Description: Retrieves the name of an object. Unnamed objects, which would normally be

embedded entities and non-entities, yield STRINGNULL.
Errors: none

Procedure: OBJgetctype
Parameters: Object object - object to examine
Returns: Type - the type of the object
Errors: none

Procedure: OBJgct-uscr_data
Parameters: Object object - object to examine

Error* errc - buffer for error code
Returns: Generic - value of user data field for this object
Errors: none

Procedure: OBJgetvalue
Parameters: Object object - object to examine

Error* erm - buffer for error code
Returns: Generic - the object's value
Description: Retrieves the value of a single-valued object. The value returned will be a cha r* for

a string object, a Constant for an enumeration object, and a pointer to an int,
double, or Boolean for an integer, real, or logical object, respectively. See
OBJarrayato,OBJbag includes (),OBJlist at (),and
OBJset at () to read fromin aggregate. See OBJget-attribute () to read
from an entity instance.

Errors: none

Procedure: OBJinitialize
Parameters: Error* emc - buffer for error code
Returns: void
Description: Initialize the Object module. This is called by STEPinitializeO.
Errors: none

Procedure: OBJis_external
Parameters: Object object - object to examine
Returns: Boolean - is this an external object (non-embedded entity)?
Errors: none

Procedure: OBJis-internal
Parameters: Object object - object to examine
Returns: Boolean - is this an internal object (embedded entity)?
Errors: none

NIST STEP Working Form Programmer's Reference Page 14

Stephen Nowland Clark

Procedure: OBJlist add first
Parameters: Object list - list to modify

Object item - item to insert
Error* errc - buffer for error code

Returns: void
Description: Adds an item to the beginning of a list. This function is not yet implemented.
Errors: none

Procedure: OBilist add-last
Parameters: Object list - list to modify

Object item - item to insert
Error* ermc - buffer for error code

Returns: void
Description: Adds an item to the end of a list This function is not yet implemented.
Errors: none

Procedure: OBJlistconcat
Parameters: Object list - list to concatenate onto

Object tail - list to concatenate
Error* errc - buffer for error code

Returns: void
Description: Concatenate a list onto the end of another. This operation is destructive: the first list

is modified so that it includes a copy of the second. Changes to the second will not
appear in the first. This function is not yet implemented.

Errors: none

NIST STEP Working Form Programmer's Reference Page 15

Stephen Nowland Clark

Procedure: OBJputattribute
Parameters: Object object - object to modify

String auributeName - name of attribute to store into
Object value - value to store into attribute
Error* errc - buffer for error code

Returns: void
Requires: TYPEget-class(OBJgettype(object)) == TYPEENTITY
Description: Stores a value into a named attribute of an entity instance. This call is the slower

method for storing into an attribute. If the actual attribute record is available, for
example from traversing the Entity's attribute list, use
OBJfastput attribute () instead.

Errors: ERRORaggregate_expected - value given for an aggregate was not an
aggregate
ERRORarrayexpected - value given for an array was not an array
ERRORbag expected - value given for a bag was not a bag
ERRORent ityexpected - value given for an entity was not an entity
ERROR external expected - an external attribute was given an internal
(embedded) entity as a value
ERROR inappropriate-entity - the entity given as a value was not of an
expected class
ERROR_integer_expected - value given for an integer was not an integer
ERROR internal expected - an internal attribute was given an external
entity reference as a value
ERRORlist expected - value given for a list was not a list
ERRORlogica 1-expected - value given for a logical was not a logical
ERRORnumberexpected - value given for a number was not a number
ERRORset expected - value given for a set was not a set
ERRORstring-expected - value given for a string was not a string
ERRORincompat ible types - the value given is not of the expected type, in
some way not covered by any of the above messages

Procedure: OBJputline_number
Parameters: Object object - object to modify

int number - line number for object
Returns: void
Description: Set an object's line number.
Errors: none

Procedure: OBJput_name
Parameters: Object object - object to modify

String name - name for object
Returns: void
Description: Sets the name (identifier) of an object; normally, only entity instances which are not

embedded are named.
Errors: none

Procedure: OBJputuser_data
Parameters: Object object - object to modify

Generic value - user data value for object
Error* ermc - buffer for error code

Returns: Generic - old value of user data field for this object
Description: Stores a value into an object's user data field
Errors: none

NIST STEP Working Form Programmer's Reference Page 16

Stephen Nowland Clark

Procedure: OBJput-value
Parameters: Object object - object to modify

Generic value - value for object
Error* errc - buffer for error code

Returns: void
Description: Sets the value of a single-valued object. The value given should be a char* for a

string objecL For an integer, real, or logical object, it should be an int *, double*,
and Boolean*, respectively. For an enumeration object, the value given should be
of type Constant. See OBJaggratput (), OBJarrayatput (),
OBJbag_add(), OBJlist add first(),OBJlist add last(st and
OBJset add() to store into-an aggregate. See OBJput att ribute() to store
into an entity instance.

Errors: none

Procedure: OBJsetadd
Parameters: Object set - set to modify

Object item - item to add
Error* errc - buffer for error code

Returns: void
Description: Inserts an object into a set, if it is not already present.
Errors: ERROR set full - there is no more room in the set

Procedure: OBJsetincludes
Parameters: Object set - set to test

Object item - item to test for
Error* errc - buffer for error code

Returns: Boolean - does this set contain this item?
Errors: none

Procedure: OBJsetintersect
Parameters: Object set - set to intersect into

Object with - set to intersect with

Error* ermc - buffer for error code
Returns: void
Description: Intersects two sets. This operation is destructive: the first set holds the resulting

intersection on return.
Errors: none

Procedure: OBJsetremove
Parameters: Object set - set to remove from

Object item - item to remove

Error* errc - buffer for error code
Returns: void
Description: Remove an item from a set, if it appears.
Errors: none

NIST STEP Working Form Programmer's Reference Page 17

Stephen Nowland Clark

Procedure: OBJsetremove_all
Parameters: Object set - set to remove from

Object remove - set of items to remove
Error* ernc - buffer for error code

Returns: void
Description: Removes all items in a set from some other set. This is set subtraction. This operation

is destructive: the first set holds the result on return.
Errors: none

Procedure: OBJsetsubset
Parameters: Object set - set to test as superset

Object subset - set to test as subset
Error* errc - buffer for error code

Returns: Boolean - does the first set contain the second as a subset?
Errors: none

Procedure: OBJsetunite
Parameters: Object set - set to unite onto

Object unitee - set to unite with
Error* errc - buffer for error code

Returns: void
Description: Forms the union of two sets. This operation is destructive: the first set holds the

resulting union on return.
Errors: none

Procedure: OBJtypecast
Parameters: Object object - object to be cast

Type type - type to cast to
Error* ermc - buffer for error code

Returns: Object - the object, cast to the requested type
Description: Converts an object to a new type, if possible. If the cast is successful (*errc ==

ERROR none), the original object should no longer be used. It is guaranteed to be
valid on-[y when an error is reported. This call does not report errors to stde r r; it is
the callers responsibility to check *errc and to call ERRORreport (*errc,
(String) context) if it is not ERRORnone.

Errors: ERRORaggregateexpected - value given for an aggregate was not an
aggregate
ERROR_arrayexpected - value given for an array was not an array
ERRORbagexpected - value given for a bag was not a bag
ERROR._ent ity expected - value given for an entity was not an entity
ERROR inappropriate-entity - the entity given as a value was not of an
expecteZ class
ERROR._integer expected - value given for an integer was not an integer
ERRORlist-expected - value given for a list was not a list
ERRORlogical expected - value given for a logical was not a logical
ERRORnumbe rexpected - value given for a number was not a number
ERRORsetexpected - value given for a set was not a set
ERRORstringexpected - value given for a string was not a suring
ERROR incompatible types - the value given is not of the expected type, in
some wa-y not covered by aiiy of the above messages

NIST STEP Working Form Programmer's Reference Page 18

Stephen Nowland Clark

5.3 Product
Procedure: PRODadd-object
Parameters: Product Froduct - product to modify

Object object - entity instance to add
Returns: void
Requires: TYPEget-class(OBJgct_type(object)) == TYPEENTITY
Description: Adds an entity instance to a product model. The instance is assumed already to have

been added to the instance list of its class, since OBJcreateent ity () does this.
Errors: none

Procedure: PRODcreate
Parameters: String name - name for new product

Express model - conceptual schema in which to create product
Returns: Product - a new, empty product
Description: Creates an empty product within a particular conceptual schema.
Errors: none

Procedure: PRODget-conceptual-schema
Parameters: Product product - product to examine
Returns: Express - conceptual schema in which the product exists
Errors: none

Procedure: PRODget_contents
Parameters: Product product - product to examine
Returns: LinkedList - entity instances which make up the product
Description: Retrieves a list of the objects in a product model, in the order in which they were

created.
Errors: none

Procedure: PRODgetname
Parameters: Product product - product to examine
Returns: String - the name of the product
Errors: none

Procedure: PRODget-named...object
Parameters: Product product - product to examine

String name - name of object to retrieve
Returns: Object - the named object
LDescription: Retrieves a named object from a STEP product model, if it is defined.
Errors: none

Procedure: PRODintiialize
Parameters: -- none --
Returns: void
Description: Initializes the Product module. This is called by STEPinitializeO.
Errors: none

NIST STEP Working Form Programmer's Reference Page 19

Stephen Nowland Clark

6 STEP Working Form Error Codes

The Error module, which is used to manipulate these error codes, is described in
[Clark90d]. All STEP Working Form error codes are defined in the Object module.

Error: ERROR-aggregate-expec ted
Severity: SEVERITYERROR
Meaning: A non-aggregate value was provided for an aggregate attribute
Format: %s - attribute name

Error: ERRORarray~expected
Severity: SEVERITYERROR
Meaning: An aggregate of a specific non-array class was provided for an array attribute
Format: %s - attribute name

Error: ERRORbag~expected
Severity: SEVERITYERROR
Meaning: An aggregate of a specific non-bag class was provided for a bag attribute
Format: %s - attribute name

Error: ERROR-bagfull
Severity: SEVERITYWARNING
Meaning: An item was inserted into an already full bag
Format: -- none --

Error: ERROR_cannotinstantiate
Severity: SEVERITYERROR
Meaning: An attempt was made to instantiate an uninstantiable type
Format: %s - type name

Error: ERROR_entity.Pexpected
Severity: SEVERITYERROR
Meaning: A non-entity Object was provided for an attribute having an entity type
Format: %s - attribute name

Error: ERRORexternal_expected
Severity: SEVERITYWARNING
Meaning: An embedded (internal) entity was provided for an attribute with "external" reference

class
Format: %s - attribute name

Error: ERROR_inappropriateentity
Severity: SEVERITYERROR
Meaning: An entity of the wrong type was provided for an attribute having an entity type
Format: %s - attribute name

Error: ERRORincompatibletypes
Severity: SEVERITYERROR
Meaning: Some other type problem was encountered in specifying an attribute of some object.
Format: %s - attribute name

NIST STEP Working Form Programmer's Reference Page 20

Stephen Nowland Clark

Error: ERRORindexout of range
Severity: SEVERITYWARNING
Meaning: An attempt was made to index an aggregate object outside of the legal bounds
Format: %d - index value

Error: ERRORinsufficientattributes
Severity: SEVERITYWARNING
Meaning: Too few attribute values were provided for a particular entity instantiation
Format: %s - entity instance identifier

Error: ERROR_integerexpected
Severity: SEVERITYERROR
Meaning: A non-integer value was provided for an integer attribute
Format: %s - attribute name

Error: ERRORinternal expected
Severity: SEVERITY_WARNING
Meaning: An non-embedded (external) entity was provided for an attribute with "internal"

reference class
Format: %s - attribute name

Error: ERRORlist expected
Severity: SEVERITYERROR
Meaning: An aggregate of a specific non-list class was provided for a list attribute
Format: %s - attribute name

Error: ERRORlogical-expected
Severity: SEVERITY_ERROR
Meaning: A non-logical value was provided for a logical attribute
Format: %s - attribute name

Error: ERROR_numberexpected
Severity: SEVERITYERROR
Meaning: A non-numeric value was provided for a numeric attribute
Format: %s - attribute name

Error: ERRORsetduplicate.entry
Severity: SEVERITYERROR
Meaning: A duplicate entry was added to a set
Format: -- none --

Error: ERROR_setexpected
Severity: SEVERITYERROR
Meaning: An aggregate of a specific non-set class was provided for a set attribute
Format: %s - attribute name

Error: ERROR set full
Severity: SEVERITYWARNING
Meaning: An item was inserted into an already full set
Format: -- none --

NIST STEP Working Form Programmer's Reference Page 21

Stephen Nowland Clark

Error: ERRORstringexpected
Severity: SEVERITY_ER.ROR
Meaning: A non-string Object was provided for a string attribute
Format: %s - attribute name

Error: ERRORtoomanyattributes
Severity: SEVERITY-WARNING
Meaning: Too many attribute values were provided for a particular entity instantiation
Format: %s - entity instance identifier

Error: ERROR_undefined_reference
Severity: SEVERITYERROR
Meaning: A reference was made to an unknown entity instance identifier
Format: %s - entity instance identifier

Error: ERRORunknown-entity
Severity: SEVERITYERROR
Meaning: A reference was made to an unknown entity class (type)
Format: %s - entity class name

NIST STEP Working Form Programmer's Reference Page 22

Stephen Nowland Clark

A References

[Altemueller88] Altemueller, J., The STEP File Structure, ISO TC184/SC4/WG1
Document N279, September, 1988

[ANSI89I American National Standards Institute, Programming Language C,
Document ANSI X3.159-1989

[Clark90a] Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR,
National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

[Clark90c] Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90d] Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,
NISTIR 4335, National Institute of Standards and Technology,
Gaithersbure, -,aA, May 1990

[Clark90e] ('ark, S.N., NIST Express Working Form Programmer's Reference,
NISTIR, National Institute of Standards and Technology,
Gaithersburg, MD, forthcoming

[Schenck89] Schenck, D., ed., Information Modeling Language Express:
Language Reference Manual, ISO TC184/SC4/WG1 Document
N362, May 1989

[Smith88] Smith, B., and G. Rinaudot, eds., Product Data Exchange
Specification First Working Draft, NISTIR 88-4004, National
Institute of Standards and Technology, Gaithersburg, MD,
December 1988

NIST STEP Working Form Programmer's Reference Page 23

ORDER_ and _INF RM ATIO NFO RMM A IL TO :

NAT1ONAL_ National Institute of Standards and Technology

___________________Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

TESTBED - (301) 975-3508

Please send the following documents
and/or software:

[-' Clark, S.N., An Introduction to The NIST PDES Toolkit

D Clark, S.N., The NIST PDES Toolkit Technical Fundamentals

El Clark, S.N., Fed-X: The NIST Express Translator

--J Clark, S.N., The NIST Working Form for STEP

F- Clark, S.N., NIST Exoress Working Form Proainmer's Reference

R-' Clark, S.N., NIST STEP Working Form Proyrammer's Reference,

F1 Clark, S.N., ODES User's Guide

ED Clark, S.N., ODES Administrative Guide

-- Morris, K.C., Translating Express to SQL: A User's Guide

F- Nickerson, D., The NIST SQL Database Loader. STEP Workiniz Form to
SOL

-] Strouse, K., McLay, M., The PDES Testbed User's Guide

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future. When available, the
NTIS ordering information will be forthcoming.

NJISl"

MIST- I14A U.S. DEPARTMENT OF COMMERCE I. PUSuCATION ON REPORT MM
(REV. 340) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NISTIR 435.3

2. PERFORMING ORGANIMATION REPORT NUMBER

BIBLIOGRAPHIC DATA SHEET JULY 1990
JULY 1990

4. TITLE AM SUBTITLE

NIST STEP Working Form Programmer's Reference

S. AUTHOR(S)

Stephen Nowland Clark
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) 7. CONTRACT/GRANT NUMMER

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 208"2 S. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE. ZIP)

10. SUPPLEMENTARY NOTES

m7 DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.
11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR

LITERATURE SURVEY. MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange
of product information among various manufacturing applications. The neutral exchange
medium for PDES product models is the STEP physical file format. The National PDES
Testbed at NIST has developed software to manipulate and translate STEP models. This
software consists of an in-memory working form and an associated physicz-1 file parser,
STEPparse. The internal operation of the STEPparse parser is described. The implementation
of the data abstractions which make up the STEP Working Form is discussed, and specifi-
cations are given for the Working Form access functions. The creation of STEP translators
using STEPparse is discussed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPE• NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data modeling; PDES; product data exchange; schema independent software; STEP; STEP physical
file

13. AVAILA•IUTY 14. NUNMSR OF PRINTED PAGES

X umLAUM 29

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDOR FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMINT PRINTING OFFICE, IS. PRICEA

WAHINGTON, DC 20402. A03

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NQrS), SPRINGFIELD.VA 22161.

ELECTRONIC FORM

