U.S. DEPARTMENT OF COMMERCE o I @

National Institute of Standards and Technology

AD-A261 273
o DT REVANEMREN

National PDES Testbed
Report Series —

— 93-03999
—— [

» gt smmem , INIUST

KApproved fot public releasej \

98 2 25 27 % . Devduin Ui 1

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NISTIR 4353

National PDES Testbed

[

l
NATIONAL

= p° NIST STEP
Working Form

TesToeD T rogrammer’s

Reference

Stephen Nowland Clark

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

June 11, 1990

NIST

Disclaimer

No approval or endorsement of any commercial product by the National Institute of
Standards and Technology is intended or implied

UNIX is a trademark of AT&T Technologies, Inc.

Table Of Contents

1 Introduction cessesssssenesenssonns cescaenes 1
L1 COMEBXL .ueeiiiieeerentinentesteienteststsne e seensstasansessesesssassassessensesesessessnsessasnnan 1
2 STEPparse Control Flow............. vessssssssrenssosasanes SRR 2
2.1 First Pass: ParSing.....ccccceeviiiniiiniicniiiniiieecriecticcree e sraeeae e e e s e snae e e nan e 2
2.2 Second Pass: Output Generation............occueeeeeueeeeieneeceeeceeeeeee e e see e 2
3 Working Form Implementation ceesastsscassessassessssnes 3
3.1 PrMILIVE TYPES ..eeieiiiiiiitinte et ctteeesis et e e e e saeeessasssasstaesennee s aesseesnnnan 3
3.2 STEP Working Form Manager Module.........ccocovevciiniiniinnineeccee 3
3.3 Code Organization and CONVENONScocoereiiieeceerceenneeeeenesraeseeecneeeanes 3
3.4 Memory Management and Garbage Collection..........ccoceevvinceenniiceccnnnns 4
3.5 ODJECT. ettt ettt ee et te sttt sa e e et et e e etae et se st e e e e s e asannesnseenne 4
3.6 POGUCT ...ttt ettt et see ettt et es s et e et ssaase st asneaeesaseeseeneene 6
4 Writing An Output Moduleeiiveeorcceerciesecnncscsessneesssacessesssanss 7
4.1 Layout Of the € SOUICEcccouiiiiiiieriieeeeie et e eeree e sre e sabe e sere e e 8
4.2 Output Module Linkage Mechanisms.........c..ccooceeviirniiiiciniccceinnenin e 9
5 Working Form Routines..........cccceeeeesncscnccsnsscsnsscssssssaeas censessssenseses 9
5.1 Working FOrm Managercc.uiviiiiiiiiniiniiieiee e eese e sassnee s sneesvae e e enenes 9
5.2 OJECE ..ottt rtee et e e e st e s e e e er s e e e eraesaan e et e e ense s e e e e s senssenre et e nten 10
5.3 PrOQUCT ...ueneeeeeiiieetete et et eee e stasee s e st asa e st et ase e snasseseessnsessesensenseseness 19
6 STEP Working Form Error Codesccceecceeeerccnneecrceneeccnneccsons 20
Appendix A: References........cccceevrenes ceseresssssssssssnesssssrsassnsasesee 23
Accesion For
NTIS CRA&I
DTIC TAB
Unannounced 0
Justification
By
Distribution |

Availability Codes

. Avail and/or
Dist Special

gl |

—— A} 1 P —-M’m ‘

i

NIST STEP Working Form
Programmer’s Reference

Stephen Nowland Clark

1 Introduction

The NIST STEP physical file parser [Clark90c], and its associated STEP parser,
STEPparse, are Public Domain tools for manipulating product models stored in the
STEP physical file format [Altemueller88]. These tools are a part of the NIST PDES
Toolkit [Clark90a], and are geared particularly toward building STEP translators. This
reference manual discusses the internals of the STEP Working Form, including
STEPparse. The reader is assumed to be familiar with the design of the Toolkit
([Clark90a], [Clark90b], [Clark90c}]). In some cases, technical knowledge of the Ex-
press Working Form [Clark90e] is also required.

The STEP Working Form relies on the NIST Express Working Form [Clark90b] as an
in-core data dictionary, which provides a context in which STEP models can be inter-
preted. The tight dependency of the STEP Working Form abstractions on those of the
Express Working Form is due to the schema-independent nature of the former. The
STEP Working Form, and, in particular, STEPparse, contain no knowledge of any par-
ticular information model. Applications built on these tools can thus manipulate STEP
product models in the context of any number of Express information models without
requiring recompilation.

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between various vendors’
CAD/CAM systems and other manufacturing-related software [Smith88]. A National
PDES Testbed has been established at the National Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of
the Office of the Secretary of Defense. As part of the testing effort, NIST is charged
with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-
kit is an evolving, research-oriented set of software tools. This document is one of a set
of reports which describe various aspects of the Toolkit. An overview of the Toolkit is
provided in [Clark90a], along with references to the other documents in the set.

For further information on the STEP Working Form or other components of the Toolkit,
or to obtain a copy of the software, use the attached order form.

NIST STEP Working Form Programmer’s Reference Page 1

2.1

2.2

Stephen Nowland Clark

STEPparse Control Flow

A STEPparse translator consists of two separate passes: parsing and output generation.
The first pass builds an instantiated P roduct representing the product model specified
in the STEP input file. This Product can then be traversed by an output module in

the second pass, producing whatever report is desired. It is anticipated that users will
need output formats other than those provided with the NIST Toolkit. The process of
writing a report generator for a new output format is discussed in detail in section 4.

First Pass: Parsing

The first pass of a STEPparse translator is a very simple parser. The STEPparse gram-
mar itself is independent of any conceptual schema. The lexical analyzer recognizes
any entity class name simply as an identifier; the actions associated with rules in the
grammar then interpret th's name as refering to a particular Express entity, and con-
struct appropriate objects. Aseach construct is parsed, itis added to the Working Form.
Because the STEP physical file format does not allow forward references to as-yet-un-
defined entity instances, all symbol references can be (and are) resolved during this
parsing pass, so that no symbol resolution pass is required.

The STEPparse parser is written using the standard UNIX™ parser generation languag-
es, Yacc and Lex. The grammar is processed by Biscn, the Free Software Founda-

tion’s" implementation of Yacc. The lexical analyzer is produced by Flex?, a fast,
Public Domain implementation of Lex.

Second Pass: Output Generation

The report or output generation pass manages the production of the various output files.
In the dynamically linked version of STEPparse, this pass loads successive output mod-
ules dynamically, calling each to traverse the Working Form. The dynamic linking
mechanism is discussed briefly in [Clark90d]. It is also possible to build a statically
linked translator, with a particular output module loaded in at build time; this is, in fact,
the only mechanism available in an environment which is not derived from BSD 4.2
UNIX.

A report generator is an object module, most likely written in C, which has been com-
piled as a component module for a larger program (i.e., with the ~c option to a Unix C
compiler). In the dynamically linked version, the object module is linked into the run-
ning parser, and its entry point (by convention a function called print file())is

1. The Frce Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,
whose ultimate goal is to provide a free implementation of the UNIX opcrating system and environment,
These tools are not in the Public Domain: FSF retains ownership and copyright priviledges, but grants free
distribution rights under certain terms. At this writing, further information is available by electronic mail on
the Internet from gnu@prep.ai.mit.edu.

2. Vern Paxson’s Fast Lex is usually distributed with GNU software, although, being in the Public Domain,
it is not an FSF product and does not come under the FSF licensing restrictions.

NIST STEP Working Form Programmer’s Reference Page 2

3.1

3.2

3.3

Stephen Nowland Clark

called. The code of this module consists of calls to STEP Working Form access func-

tions and to standard output routines. Chapter 4 provides a detailed description of the
creation of a new output module.

Working Form Implementation

As in the Express Working Form [Clark90d], the Object abstraction is implemented as
a Symbol header block with a pointerto a private st ruct Object. This C structure
contains the real definition of the abstraction, but is never manipulated directly outside
of the Object module. Product is implemented as a pointer to a private structure,
struct Product.

Most stylistic and other conventions from the Express Working Form are equally valid
for STEP; they are reiterated here for emphasis.

Primitive Types

The STEP Working Form makes use of several modules from the Toolkit general li-
braries, including the Error and Linked_List modules. These are described in
[Clark90d].

STEP Working Form Manager Module

In addition to the abstractions discussed in [Clark90c], 1 ibstep . a contains one more
(conceptual) module, the package manager. Defined in step.c and step.h, this
module includes calls to intialize the entire STEP (and Express) Working Form pack-
age, and to run each of the passes of a STEPparse translator.

Code Organization and Conventions

Each abstraction is implemented as a separate module. Modules share only their inter-
face specifications with other modules. A module Foo is composed of two C source
files, foo.c and foo.h. The former contains the body of the module, including all
non-inlined functions. The latter contains function prototypes for the module, as well
as all type and macro definitions. In addition, global variables are defined here, using
a mechanism which allows the same declarations to be used both for ext ern declara-
tions in other modules and the actual storage definition in the declaring module. These
globals can also be given constant initializers. Finally, foo . h contains inline function
definitions. In a compiler which supports inline functions, these are declared static
inline in every module which includes foo.h, including foo. c itself. In other
compilers, they are undefined except when included in f00 . ¢, when they are compiled
as ordinary functions. foo.c resides in ~pdes/src/step/; foo.hin
~pdes/include/.

The type defined by module Foo is named Foo, and its private structure is struct
Foo. Access functions are named as FOOfunction () ; this function prefix is abbre-
viated for longer abstraction names, so that access functions for type

Foolhardy Bartender might be of the form FOO_BARfunction (). Some

NIST STEP Working Form Programmer’s Refercnce Page 3

34

3.5

Stephen Nowland Clark

functions may be implemented as macros; these macros are not distinguished typo-
graphically from other functions, and are guaranteed notto have unpleasant side effects
like evaluating arguments more than once. These macros are thus virtually indistin-
guishable from functions. Functions which are intended for internal use only are named
FOO_function (),and are usually stat ic as well, unless this is not possible. Glo-
bal variables are often named FOO_variable; most enumeration identifiers and con-
stants are named FOO _CONSTANT (although these latter two rules are by no means
universal).

Every abstraction defines a constant FOO_NULL, which represents an empty or missing
value of the type. In addition, there are several operations which are defined for every
type; these are primarily general management operations. Each abstraction defines at
least one creation function, e.g. FOOcreate () . The parameters to this creation func-
tion vary, depending on the abstraction. A permanent copy of an object (as opposed to
a temporary copy which will immediately be read and discarded) can be obtained by
calling FOOcopy (foo). This helps the system keep track of references to an object,
ensuring that it is not prematurely garbage-collected. Similarly, when an object or a
copy is no longer needed, it should be released by calling FOOfree (foo), allowing
it to be garbage-collected if appropriate.

For each abstraction, there is a function FOOis_foo (ob3j) which returns t rue if
and only if its argument is a foo. This is useful when dealing with a heterogeneous list,
for example.

Memory Management and Garbage Collection

In reading various portions of the STEP Working Form documentation, one may get the
impression that the Working Form does some reasonably intelligent memory manage-
ment. This is not true. The NIST PDES Toolkit is primarily a research tool. This is
especially true of the Express and STEP Working Forms. The Working forms allocate
huge chunks of memory without batting an eye, and this memory often is not released
until an application exits. Hooks for doing memory management do exist (e.g.,
XXXfree () and reference counts), but currently are largely ignored.

Object

The Object abstraction is the basic building block of the STEP Working Form. An
Object is created for each unit of value in a PDES/STEP product model: each entity
instance, aggregate, integer, string, etc. On the surface, this would seem to be a reason-
ably straightforward module to impiement: each Ob ject has an optional name, a
Type, and a value. The value may be simple or structured; in either case, it basically
comes down to a pointer - either to an array of Ob jects, or to an integer, real, string,
etc.

As with most abstractions in the Express Working Form, Object is implemented as a
Symbol header whose definition field points ata struct Object, whichis
defined thus:

struct Object {

NIST STEP Working Form Programmer’s Reference Page 4

Stephen Nowland Clark

Type type:

Generic user_data;

union {
Constant enumeration;
Integer integer;
Logical log’ al;
Real real;
String string;
Object* entity;
Aggregate aggregate;

} value;

}:
The first two fields are pretty straightforward. Note that user data is a generic
pointer field. In strict ANSI C, only a pointer can be safely stored into this field and
later retrieved; it is safest to only store pointers in this field. In particular, the age-old
trick of casting pointers and integers back and forth, never completely portable, is now
officially frowned upon.

The value union is where things get tricky. This field contains the actual value of the
object represented. Unstructured types (numbers, logicals, and strings) are represented

directly; e.g., object .value. integer contains an integer, and
object.value.string, acharacter pointer. The value of an enumeration object

is represented as a Constant, which will be an element of the appropriate enumera-
tion. The integer representation of this enumeration element can be retrieved by calling
(int)CSTget value(object.value.enumeration).

An entity instance’s value field, value.entity, is a pointer to the base of an array
of objects. Each element of this array corresponds to an attribute of the entity; attributes
appear in the same order as in a PDES/STEP physical file, with empty attributes explic-
itly represented by OBJECT_NULL. The offset to a particular attribute value is re-
trieved from the Express data dictionary by calling

ENTITYget attribute offset (entity, attribute),whereentityis
the entity class of the object in question and attribute is the Variable represent-
ing the attribute to be located.

The most convoluted object value representation is that for aggregates. An aggregate
value is represented as a pointer to a struct Aggregate, defined as

struct Aggregate {

int low;

int high;
Expression max;
Object* contents;

}s

NIST STEP Working Form Programmer’s Reference

The last field, contents, holds the actual contents of the aggregate, as an array of
Objects. The low field provides a lower bound on allowable indices into this array,
and doubles as a logical offset to the first element of the array. This value is 1 for any

Page 5

Stephen Nowland Clark

non-array aggregate. Thus, when lowis 1, some_aggregate[1] is found at
contents [0]. Similarly, in an array whose low is 10, the some_array(12] is
found at contents(12~10 = 2]. low remains constant in any particular aggre-
gate object. The high field gives an upper bound on the indices of currently filled slots
in an aggregate object. Every index into the aggregate beyond high which is in bounds
is guaranteed to return OBJECT NULL. The end result is that a loop of the form
for (i = low; i <= high; ++1i) <use contents(i-low]> willal-
ways hit all of the elements of an aggregate. This function of offsetting by the lower
bound is bundled into the various aggregate indexing functions of the working form
(OBJaggr_at (),0BJlist_insert (),el.), so that the indices which a user sees
will be the ones which would be expected based on the Express model. In the current
implementation, high in an aggregate whose type (from Express) gives a finite upper
bound always remains constant at this bound. In the case of an aggregate with no spec-
ified upper bound, however, high may vary with the number of elements actually in
the aggregate. The expression (from Express) giving the absolute upper bound on an
aggregate is cached in aggregate->max. high is never allowed to be greater than
the value of this expression.

Thetwocalls OBJaggr_at () and OBJaggr_at_put () canbe used with any kind
of aggregate, although they are intended to be used primarily for building general ag-
gregates which will later be OBJtype cast () into specific types of aggregates.
This is how STEPparse builds aggregates, since it is considerably easier than figuring
out at parse time what type of aggregate should be built. The various class-specific ma-
nipulations (list concatenation, set intersection, etc.) are provided by calls requiring ag-
gregates of a particularclass: OBJ1ist concat (),0BJset intersect (),etc.
[t should be noted that the calls for combning aggregates are destructive: each modifies
its first argument to hold its computed result. In general, the two arguments may safely
be set equal. Exceptions are noted in the individual function specifications.

Finally, a word about type conversion (also known as casting, as in C). Type conver-
sions of existing Objects are handled by OBJtype cast (Object, Type,
Error*). Only certain conversions are allowed; other attempted casts leave the
Object unchanged and return an error code. Clearly, any Object can trivially be
cast into its own type. The different numeric types can be cast about at will. A general
aggregate can be cast into any specific aggregate class; otherwise, an aggregate can
only be cast into another aggregate type of the same class: an array cannot be cast into
a set, etc. Each element of the aggregate being cast must, of course, be recursively cast
into the appropriate base type; each of these conversions is subject to the same rules as
any other cast. Finally, an entity Ob ject can be converted into an instance of a super-
type of its class, or into an instance of a SELECT type containing some type to which
it can be cast. These casts of entity instances in fact do not modify the Ob ject being
cast.

3.6 Product
A product in STEP contains a large number of interrelated entity instances, and is rep-
resented by the Product abstraction. Each Product is named, and includes a point-
er to the Express model which provides the scope in which its component Ob jects are
NIST STEP Working Form Programmer’s Reference Page 6

Stephen Nowland Clark

defined. These component objects can be retrieved from the Product in several
ways: a specific (external) entity instance can be retrieved by name; a Linked List
of all of the (external) entity instances in the Product can be requested; or a particular
entity class in the Product’s conceptuil schema can be queried for all of its instances
(note that this last method retrieves both internal and external entity instances). Internal
(embedded) entity instances and non-entity Ob ject s must appear as attribute values
or aggregate elements somewhere in the Product, and are only accessible via
ENTITYget instances () and component retrieval from the containing
Objects.

The above three access methods are supported by storing three references to each
Object inaProduct. When an Object is added to a Product, it is added to the
end of the list of external objects. This list preserves the order in which the Objects
were added to the Product, and so is appropriate for applications, such as writing a
STEP physical file, which require that there be no forward references to as-yet-unde-
fined Objects. Each external Object is also added to a dictionary which the
Product maintains, to allow retrieval by name. And when an entity object is first cre-
ated, it is added to the instance list of its class.

4 Writing An Output Module

We now turn to the topic of actually writing a report generator. The end result of this
process will be an object module (UNIX . o file) which can be loaded into STEPparse.
This module contains a single entry point which traverses a given Product and writes
its output to a particular file. The conceptual entry point is conventionally called
print_file (), while the physical entry point, which simply dispatches to
print_file(),iscalled entry_point ().

In most cases, there will be a one-to-one correspondence between Objects in the instan-
tiated Working Form and records to be written on the output. When this is the case, the
meat of the report generator can be made fairly simple. Since a list of all of the Objects
in the Working Form is available, it is easy to iterate over this list and output each Ob-
ject in sequence:

STEPprint (Product product, FILE* file)
{
Linked List list;
list = PRODget_contents(product);
LISTdo(list, obj, Object)
OBJprint (obj, file);
LISTod;
}
The only remaining problem is to write a function OBJprint () which emits the out-
put record for a single Object. Given the variety of types of Objects, this function will
probably be controlled by a large switch statement, selecting on the Object’s type
class (numbers, strings, and aggregates all have to be printed differently). Code to deal
with multi-dimensional arrays an internal/external entity references can get tricky, and

NIST STEP Working Form Programmer’s Reference Page 7

Stephen Nowland Clark

should be written carefully. An example of a fairly simple report generator is that used
by STEPparse-QDES. The source code for this module is in
~pdes/src/STEPparse_qdes/step_output smalltalk.c.

4.1 Layout of the C Source
The layout of the C source file for a report generator which will be dynamically loaded
is of critical importance, due to the primitive level at which the load is carried out. The
very first piece of C source in the file must be the entry point () function, or the
loader may find the wrong entry point to the file, resulting in mayhem. Only comments
may precede this function; even an # include directive may throw off the loader. An
output module is normally layed out as shown:
void
entry point(void* product, void* file)
{
extern void print file();
print file(proauct, file);
}
#include "step.h"
actual output routines
void
print_f£ile(void* product, void* file)
{
print_ file header ((Product)product,
(FILE*) file);
STEPprint {product, file);
print file trailer ((Product)product,
(FILE*) file);
}
Theprint file () function will probably always be quite similar to the one shown,
although in many cases, the file header and/or trailer may well be empty, eliminating
the need for these calls. In this case, STEPprint () andprint file () will prob-
ably become interchangeable.
Having said all of the above about templates, code layout, and so forth, we add the fol-
lowing note: In the final analysis, the output module really is a free-form piece of C
code. There is one and only one rule which must be followed: The entry point (accord-
ing to the a . out format) to the . o file which is produced when the report generator is
compiled must be appropriate to be called with a Product and a FILE*. The sim-
plest (and safest) way of doing this is to adhere strictly to the layout given, and write an
entry point () routine which jumps to the real (conceptual) entry point. But any
other convention which guarantees this property may be used.
NIST STEP Working Form Programmer’s Reference Page 8

4.2

S5.1

Stephen Nowland Clark

Output Module Linkage Mechanisms

One of the powers of STEPparse is the flexibility which it gives a user with regard to
generating output. An important component of this flexibility on BSD Unix systems is
the dynamic loading of output modules. Both static and dynamic binding of output
modules are supported by STEPparse. This is implemented by physically breaking the
object code from the Working Form manager (step. c) into three separate . o files:
the initialization code and the first pass of STEPparse are compiled into step. o,
which is storedin 1ibstep. a. The static linking version of the second pass (without
any output module) is compiled into step static. o; and the dynamic loading ver-
sioninto step dynamic.o. Sources for all of these components residein step. c;
the various sections are extracted via conditional compilation: When this file is com-
piled with the preprocessor symbols reports and static_ reports defined,
step_static.oisproduced. With reports and dynamic reports defined,
step dynamic. o is produced; and with none of these defined, step. o is pro-
duced.

Since step_static.oand step_dynamic. o both define the function
STEPreport (), only one can be linked into any given executable. This selection is
what determines whether a STEPparse translator links in output modules statically or
dynamically. Note that a suitable output module (. o file) must appear after
step_static.o in the linker’s argument list when a statically linked translator is
being built.

Working Form Routines

The remainder of this manual consists of specifications and brief descriptions of the ac-
cess routines and associated error codes for the STEP Working Form. The error codes
are manipulated by the Error module {Clark90d]. Each subsection below corresponds
to a module in the Working Form library. The Working Form Manager module is listed
first, followed by the remaining data abstractions in alphabetical order.

Working Form Manager

Procedure: STEPinitialize
Parameters: Error* errc - buffer for error code
Returns: void

Description: Initialize the STEP Working From package. In a typical STEP translator this is called
by the default main () provided in the Working Form library. Other applications
should call this function at initialization time.

Errors: none

Procedure: STEPparse
Parameters: String filename - the name of the file to be parsed
Express data_model - conceptual schema (as produced by EXPRESSpass_2())
Returns: Product - the product model parsed
Description: Parse a STEP physical file into the Working Form

NIST STEP Working Form Programmer’s Reference Page 9

5.2

NIST STEP Working Form Programmer’s Reference

Procedure:
Parameters:
Returns:
Description:
Description:

Object

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:
Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Stephen Nowland Clark

STEPreport

Product product - the product to output

void

Invoke one or more report generators for a STEP Working Form model.

Invoke one (or more) report gencrator(s). When this function is compiled with
-Ddynamic_reports, it will repeatedly prompt for report generators and output
files, dynamically loading and executing them. When it is compiled with
-Dstatic_reports,areport generator must also be included at link time, with the
entry pointprint_file (Express, FILEX).

OBJaggr_at

Obiject object - object to examine

int index - index of requested clement
Error* errc - buffer for crror code
Object - value at requested position

Retricves the value at some position in an aggregate. Note that the calls which are
specific to a particular aggregate class are much to be preferred.

ERROR_index_out_of_range - the index is outside of the bounds of the
aggregate

OBlJaggr_at_put

Object object - object to modify

int index - index at which to put element

Object value - value 1o insert

Error* errc - buffer for error code

void

Store a value into an aggregate object. Note that the calls which are specific to a
particular aggregate class are much to be preferred.

ERRCR_index out_of_range - the index is outside of the bounds of the
aggregate

OBlJaggr_lower_bound

Object object - object 1o examine

Error* errc - buffer for error code
int - the lower bound of the object

Retrieves the lower bound of an aggregate object. For an array, this is the index of the
first element of the array. For other aggregates, it is 1.

none

OBJaggr_upper_bound

Object object - object to examine

Error* errc - buffer for error code
int - the upper bound of the object

Retrieves the upper bound of an aggregate object. For an aggregate with a constrained
size, this is the value of the upper limit or index. For an aggregate with an infinite
upper bound, the value returned is guaranteed to be larger than the highest index of a
filled slot in the aggregate.

none

Page 10

—

Procedure:
Parameters:

Returns:
Description:
Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

Procedure:
Parameters:

Returns:
Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

NIST STEP Working Form Programmer's Reference

Stephen Nowland Clark

OBJarray_at

Object array - array to examine

int index - index of requested element

Error* errc - buffer for error code

Object - value at requested position

Retrieves the value at some position in an array.

ERROR_index_out_of_range - the index is outside of the bounds of the
aggregale

OBJarray_at_put

Object array - array to modify

int index - index at which 1o put element
Object value - value to insert

Error* errc - buffer for error code

void

Store a value into an array object.

ERROR_index out of_range - the index is outside of the bounds of the
aggregale

OBJtag_add

Object bag - bag to modify

Object item - item to add

Error* errc - buffer for error code

void

Inserts an object into a bag.

ERROR_bag_full - there is no more room in the bag

OBJbag_includes

Object bag - bag to test

Object item - item to test for

Error* errc - buffer for error code
Boolean - does this bag contain this item?
none

OBJbag_intersect

Object bag - bag to intersect into

Object unitee - bag to intersect with

Error* errc - buffer for error code

void

Intersects two bags. This operation is destructive: the first bag holds the resulting
intersection on return,

none

OBJbag_remove

Object bag - bag to remove from

Object item - item to remove

Error* errc - buffer for error code

void

Remove a single occurence of some item from a bag, if it appears.
none

Page 11

4——

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:
Returns:

Procedure:
Parameters:

Returns:
Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

NIST STEP Working Form Programmer’s Reference

Stephen Nowland Clark

OBJbag_remove_all

Object bag - bag to remove from

Object remove - bag of items to remove

Error* errc - buffer for error code

void

Removes all items in a bag from some other bag. This is bag subtraction. This
operation is destructive: the first bag holds the result on return.

none

OBlJbag_subset

Object bag - bag 10 test as superset

Object subset - bag 10 test as subsct

Error* errc - buffer for error code

Boolean - does the first bag contain the second as a subset?

This implementation is not completely correct. In particular, the following returns
true: OBJbag_subset ({a, b, c}, {a, a}).

none

OBJbag_unite

Object bag - bag Lo unite onto

Object unitee - bag to unite with

Error* errc - buffer for error code

void

Adds the contents of a bag 10 another bag. This operation is destructive: the first bag
holds the resulting union on return. It is not safe (o unite a bag with itself.

none

OBJcopy
Object object - object to copy
Object - a shallow copy of the object

OBlcreate

Type type - type 1o instantiate

Error* errc - buffer for error code

Object - a new, empty object of the given type

ERROR_cannot_instantiate - the type given cannot be instantiated (e.g.,
Generic)

OBJcreate_entity

Entity entity - entity class to instantiate

Linked_List attributes - list of attribute values

int line - source line number of the instance to be created
Error* errc - buffer for error code

Object - a new entity instance, as described

A new object of the specified entity type is created. There should be a one-to-one
correspondence between the values on the attribute value list and the list of attributes
for the entity being instantiated.

ERROR_insufficient_attributes - not enovgh attribute values in the list
provided

ERROR_too_many_attributes - too many attribute values in the list provided

Page 12

Procedure:
Description:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Requires:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:
Returns:
Errors:

NIST STEP Working Form Programmer’s Reference

Stephen Nowland Clark

OBJcreate_ud_entity
Create a user-defined entity. This procedure is not yet implemented.

OBlJfast_get_attribute

Object object - object to cxamine
Variable attribute - attribute to retricve
Error* errc - buffer for error code
Object - value of attribute

Retrieves the value of an attribute from an entity instance. This call is faster than
OBJget_attribute () when the caller alrcady has the actual attribute record for
the desired attribute, rather than simply having its name (as expected by
OBJget_attribute()).

none

OBIfast_put_auribute

Object object - object to modify

Variable attribute - attribute to store into

Object value - valuc 10 store into auribute

Error* errc - buffer for error code

void

TYPEget_class(OBJget_type(object)) == TYPE_ENTITY

Store a value into an attribute of an cntity instance. This call is faster than
OBJput_attribute () when the caller already has the actual attribute record for
the desired attribute, rather than simply having its name (as expected by
OBJput_attribute()).

Same as for OBJput_attribute().

OBlfree

Object object - object to free

Error* errc - buffer for error code

void

Releasc an Object. Indicates that the object is no longer used by the caller; if there are
no other references to the object, all storage associated with it may be released.

none

OBlJget_attribute

Object object - object to examine

String attributeName - name of attribute to retrieve
Error* errc - buffer for error code

Object - value of the named attribute

Retrieves the value of anamed attribute from an entity instance. This call is the slower
method for retrieving an attribute value. If the actual attribute recored is already
available, use OBJfast_get_attribute () instead.

none

OBJget_line_number

Object object - object to examine
int - line number of object

none

Page 13

Procedure:
Parameters:
Returns:
Description:

Errors:

Procedure:
Parameters:
Returns:
Errors:

Procedure:
Parameters:

Returns:
Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:
Returns:
Description:
Errors:

Procedure:
Parameters:
Returns:
Errors:

Procedure:
Parameters:
Returns:
Errors:

NIST STEP Working Form Programmer’s Refercnce

Stephen Nowland Clark

OBJget_name
Object object - object to examine
String - the object’s name

Retrieves the name of an object. Unnamed objects, which would normally be
embedded entitics and non-entities, yield STRING_NULL.

none

OBlJget_type

Object object - object to examine
Type - the type of the object
none

OBJgcet_user_data

Object object - object to cxamine

Error* errc - buffer for error code

Generic - value of user data field for this object
none

OBlJget_value

Object object - object to examine
Error* errc - buffer for error code
Generic - the object’s value

Retrieves the value of a single-valued object. The value returned will be acharx* for
a string object, a Constant for an cnumeration object, and a pointer to an int,
double, or Boolean for an integer, real, or logical object, respectively. See
OBJarray_at (),0BJbag_includes(),0BJlist_at (), and

OBJset_at () toread from an aggregate. See OBJget attribute () to read
from an entity instance.

none

OBlinitialize

Error* errc - buffer for error code

void

Initialize the Object module. This is called by STEPinitialize().
none

OBlis_external

Object object - object to examine

Boolean - is this an external object (non-embedded entity)?
none

OBlJis_internal

Object object - object to examine

Boolean - is this an internal object (embedded entity)?
none

Page 14

4_l---l-II-IIIIIIIlIIIlIIIIIIlIIIIlllIlIlIIlIIIIlIIIIIIIIIIIIIIIIIIIIIIIJ

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

NIST STEP Working Form Programmer’s Reference

Stephen Nowland Clark

OBJlist_add_first

Object list - list to modify

Object item - item 10 insert

Error* errc - buffer for error code

void

Adds an item to the beginning of a list. This function is not yet implemented.
none

OBlJlist_add_last

Object list - list 1o modify

Object item - item 10 insert

Error* errc - buffer for error code

void

Adds an item to the end of a list. This function is not yet implemented.
none

OBJlist_concat

Object list - list to concatenate onto

Object tail - list to concatenate

Error* errc - buffer for error code

void

Concatenate a list onto the end of another. This operation is destructive: the first list

is modified so that it includes a copy of the second. Changes to the second will not
appear in the first. This function is not yet implemented.

none

Page 15

Procedure:
Parameters:

Returns:
Requires:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

NIST STEP Working Form Programmer’s Reference

Stephen Nowland Clark

OBJput_attribute

Object object - object to modify

String attributeName - name of attribute to store into

Object value - value to store into attribute

Error* errc - buffer for error code

void

TYPEget_class(OBJget_type(object)) == TYPE_ENTITY

Stores a value into a named attribute of an entity instance. This call is the slower
method for storing into an attribute. If the actual attribute record is available, for
example from traversing the Ent ity’s attribute list, use
OBJfast_put_attribute () instead.

ERROR_aggregate_expected - value given for an aggregate was not an
aggregale

ERROR_array_expected - value given for an array was not an array

ERROR _bag_expected - value given for a bag was not a bag

ERROR_entity expected - value given for an entity was not an entity

ERROR_external_expected -an external altribute was given an intemal
(embedded) entity as a value

ERROR_inappropriate_entity - the entity given as a value was not of an
expected class

ERROR_integer_expected - value given for an integer was not an integer

ERROR_internal_expected -an internal attribute was given an external
entity rcference as a value

ERROR_list_expected - value given for a list was not a list
ERROR_logical_expected - value given for a logical was not a logical
ERROR_number_expected - value given for a number was not a number
ERROR_set_expected - value given for a set was not a set
ERROR_string_expected - value given for a string was not a string

ERROR_incompatible_types - the value given is not of the expected type, in
some way not covered by any of the above messages

OBlJput_linc_number

Object object - object to modify
int number - line number for object
void

Set an object’s line number.

none

OBJput_name

Object object - object to modify

String name - name for object

void

Sets the name (identifier) of an object; normally, only entity instances which are not
embedded are named.

none

OBJput_user_data

Object object - object to modify

Generic value - user data value for object

Error* errc - buffer for error code

Generic - old value of user data field for this object
Stores a value into an object’s user data field

none

Page 16

Procedure:
Purameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

Procedure:
Parameters:

Returns:
Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:
Errors:

NIST STEP Working Form Programmer’s Refcrence

Stephen Nowland Clark

OBlJput_value

Object object - object to modify

Generic value - value for object

Error* errc - buffer for error code

void

Sets the value of a single-valued object. The value given should be achar* fora
string object. For an intcger, real, or logical object, it should be an int *, double*,
and Boolean*, respectively. For an enumeration object, the value given should be
of type Constant. See OBJaggr_at_put {(),OBJarray at put (),
OBJbag_add (), OBJlist_add_first(),0BJlist_add_last(),and
OBJset_add () to store into an aggregate. See OBJput_attribute () 10 store
into an cnlity instance.

none

OBlJset__add

Object set - set to modify

Object item - itcm to add

Error* errc - buffer for error code

void

Inserts an object into a set, if it is not already present.
ERROR_set_full - there is no more room in the set

OBlJset_includes

Object set - set to test

Object item - item to test for

Error* errc - buffer for error code
Boolean - docs this sct contain this item?
none

OBJsel_intersect

Object set - set to intersect into

Object with - set to intersect with

Error* errc - buffer for error code

void

Intersects two sets. This operation is destructive: the first set holds the resulting
intersection on retumn.,

none

OBlJset_remove

Object set - set to remove from

Object item - item to remove

Error* errc - buffer for error code

void

Remove an item from a set, if it appears.
none

Page 17

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

Procedure:
Parameters:

Returns:
Description:

Errors:

NIST STEP Working Form Programmer’s Reference

Stephen Nowland Clark

OBlJset_remove_all

Object set - set to remove from

Object remove - sct of items to remove

Error* errc - buffer for error code

void

Removes all items in a set from some other set. This is set subtraction. This operation
is destructive: the first sct holds the result on retum,

none

OBJset_subset

Object set - set to Lest as superset

Object subset - set to test as subset

Error* errc - buffer for error code

Boolean - does the first sct contain the second as a subset?
none

OBJset_unite

Object set - set to unite onto

Object unitee - sct to unite with

Error* errc - buffer for error code

void

Forms the union of two sets. This operation is destructive: the first set holds the
resulting union on return.

none

OBlJtype_cast

Object object - object to be cast

Type type - type to cast to

Error* errc - buffer for error code

Object - the object, cast to the requested type

Converts an object to a new type, if possible. If the cast is successful (*errc ==
ERROR_none), the original object should no longer be used. It is guaranteed to be
valid only when an error is reported. This call does not report errors to stderr; it is
the callers responsibility to check *errc and to call ERRORreport (*errc,
(String)context) if itis not ERROR none.

ERRCR_aggregate_expected - value given for an aggregate was not an
aggregale

ERROR_array_expected - value given for an array was not an array
ERROR_bag_expected - value given for a bag was not a bag
ERROR_entity_expected - value given for an entity was not an entity

ERROR_inappropriate_entity - the entity given as a value was not of an
expected class

ERROR_integer_expected - value given for an integer was not an integer
ERROR_list_expected - value given for a list was not a list
ERROR_logical_expected - value given for a logical was not a logical
ERROR_number_expected - value given for a number was not a number
ERROR_set_expected - value given for a set was not a set
ERROR_string_expected - value given for a string was not a string

ERROR_incompatible_types - the value given is not of the expected type, in
some way not covered by any of the above messages

Page 18

Stephen Nowland Clark

53 Product

Procedure: PRODadd_object

Parameters: Product rroduct - product 1o modify
Object object - entity instance to add

Returns: void

Requires: TYPEget_class(OBJget_type(object)) == TYPE_ENTITY

Description: Adds an entity instance to a product model. The instance is assumed already to have
been added to the instance list of its class, since OBJcreate_entity () does this.

Errors: none

Procedure: PRODcreate
Parameters: String name - name for new product
Express model - conceptual schema in which to create product

Returns: Product - a new, empty product

Description: Creates an empty product within a particular conceptual schema.

Errors: none

Procedure: PRODget_conceptual_schema

Parameters: Product product - product to examine

Returns: Express - conceptual schema in which the product exists

Errors: none

Procedure: PRODget_contents

Parameters: Product product - product to examine

Returns: Linked_List - entity instances which make up the product

Description: Retrieves a list of the objects in a product model, in the order in which they were
created.

Errors: none

Procedure: PRODget_name

Parameters: Product product - product to examine
Returns: String - the name of the product
Errors: none

Procedure: PRODget_named_object
Parameters: Product product - product to examine
String name - name of object to retrieve

Returns: Object - the named object
LDescription: Retrieves a named object from a STEP product model, if it is defined.
Errors: none

Procedure: PRODintiialize

Parameters: -- none --

Returns: void

Description: Initializes the Product module. This is called by STEPinitialize().
Errors: none

NIST STEP Working Form Programmer’s Reference Page 19

Stephen Nowland Clark

6 STEP Working Form Error Codes

The Error module, which is used to manipulate these error codes, is described in
[Clark90d]. All STEP Working Form error codes are defined in the Object module.

Error: ERROR _aggregate_expected
Severity: SEVERITY_ERROR
Meaning: A non-aggregate value was provided for an aggregate attribute
Format: %s - attribute name
Error: ERROR_array_expected
Severity: SEVERITY_ERROR
Meaning: An aggregate of a specific non-array class was provided for an array attribute
Format: %s - attribute name
Error: ERROR_bag_expected
Severity: SEVERITY_ERROR
Meaning: An aggregate of a specific non-bag class was provided for a bag attribute
Format: %s - attribute name
Error: ERROR _bag_full
Severity: SEVERITY_WARNING
Meaning: An item was inscrted into an already full bag
Format: -- none --
Error: ERROR _cannot_instantiate
Severity: SEVERITY_ERROR
Meaning: An attempt was made 10 instantiate an uninstantiable type
Format: %s - type name
Error: ERROR_entity_expected
Severity: SEVERITY_ERROR
Meaning: A non-entity Object was provided for an attribute having an entity type
Format: %s - attribute name
Error: ERROR _external_expected
Severity: SEVERITY_WARNING
Meaning: An embedded (internal) entity was provided for an attribute with "external” reference
class
Format: %s - attribute name
Error: ERROR _inappropriate_entity
Severity: SEVERITY_ERROR
Meaning: An entity of the wrong type was provided for an attribute having an entity type
Format: %s - attribute name
Error: ERROR _incompatible_types
Severity: SEVERITY_ERROR
Meaning: Some other type problem was encountered in specifying an attribute of some object.
Format: %s - attribute name
NIST STEP Working Form Programmer’s Reference Page 20

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:

Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Error:
Severity:
Meaning:
Format:

Stephen Nowland Clark

ERROR_index_out_of_range

SEVERITY_WARNING

An attempt was made to index an aggregate object outside of the legal bounds
%d - index value

ERROR _insufficient_attributes

SEVERITY_WARNING

Too few attribute values were provided for a particular entity instantiation
%s - entity instance identifier

ERROR _integer_expected

SEVERITY_ERROR

A non-integer valuc was provided for an integer attribute
%s - autribute name

ERROR_internal_expected
SEVERITY_WARNING

An non-embedded (external) entity was provided for an attribute with "internal”
reference class

%s - attribute name

ERROR_list_cxpected

SEVERITY_ERROR

An aggregate of a specific non-list class was provided for a list attribute
%s - attribute name

ERROR_logical_expected

SEVERITY_ERROR

A non-logical value was provided for a logical attribute
%s - attribute name

ERROR_number_expected

SEVERITY_ERROR

A non-numeric value was provided for a numeric attribute
%s - attribute name

ERROR _set_duplicate_entry
SEVERITY_ERROR

A duplicate entry was added to a set
-- none --

ERROR_set_expected

SEVERITY_ERROR

An aggregaie of a specific non-set class was provided for a set auribute
%s - attribute name

ERROR _set_full

SEVERITY_WARNING

An item was inserted into an already full set
-- none --

NIST STEP Working Form Programmer’s Reference Page 21

Stephen Nowland Clark
Error: ERROR _string_expected
Severity: SEVERITY_ERROR
Meaning;: A non-string Object was provided for a string attribute
Format: %s - attribute name
Error: ERROR_too_many_attributes
Severity: SEVERITY_WARNING
Meaning: Too many attribute values were provided for a particular entity instantiation
Format: %s - entity instance identifier
Error: ERROR _undefined_reference
Severity: SEVERITY_ERROR
Meaning: A reference was made 10 an unknown entity instance identifier
Format: %s - enlity instance identifier
Error: ERROR _unknown_entity
Severity: SEVERITY_ERROR
Meaning: A reference was made to an unknown entity class (type)
Format: %s - enlity class name
NIST STEP Working Form Programmer’s Reference Page 22

A References

[Altemueller88]
[ANSI89]

[Clark90a]

[Clark90b]

[Clark90c]

[Clark90d]

[Clark90e]

[Schenck89]

[Smith88]

Stephen Nowland Clark

Altemueller, J., The STEP File Structure, ISO TC184/SC4/WG]1
Document N279, September, 1988

American National Standards Institute, Programming Language C,
Document ANSI X3.159-1989

Clark, S. N., An Introduction to The NIST PDES Toolkit, NISTIR
4336, National Institute of Standards and Technology, Gaithersburg,
MD, May 1990

Clark, S.N., Fed-X: The NIST Express Translator, NISTIR,
National Institute of Standards and Technology. Gaithersburg, MD,
forthcoming

Clark, S.N., The NIST Working Form for STEP, NISTIR 4351,
National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,
NISTIR 4335, National Institute of Standards and Technology,
Gaithersbure, L.u4», May 1990

lark, S.N,, NIST Express Working Form Programmer’s Reference,
NISTIR, National Institute of Standards and Technology,
Gaithersburg, MD, forthcoming

Schenck, D., ed., Information Modeling Language Express:
Language Reference Manual, ISO TC184/SC4/WG1 Document

N362, May 1989

Smith, B., and G. Rinaudot, eds., Product Data Exchange
Specification First Working Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988

NIST STEP Working Form Programmer’s Reference Page 23

ORDER and INFORMATION FORM

MAIL TO:

'S
» . Gaithersburg MD., 20899

Metrology Building, Rm-A127

(301) 975-3508

TESTBED —

-

NATIONAL _ National Institute of Standards and Technology

— Atm: Secretary National PDES Testbed

- 1

Please send the following documents
and/or software:
Clark, SN., An Introduction to The NIST PDES Toolkit

Clark, S.N., The NIST PDES Toolkit: Technical Fyndamentals
Clark, S.N., Fed-X: The NIST Express Translator

Clark, S.N., The NIST Working Form for STEP

Clark, S.N,, NIST Ex Working Form ’s Ref
Clark, S.N., NIST STEP Working Form Programmer’s Reference,
Clark, S.N., QDES User’s Guide

Clark, S.N., QDES Administrative Guide

Morris, K.C., Translating Express to SQL: A User’s Guide

SQOL
Strouse, K., McLay, M., The PDES Testbed User's Guide
OTHER (PLEASE SPECIFY)

O 00O0ooooogod

Nickerson, D., The NIST SQL Database Loader: STEP Working Form to

These documents and corresponding software will be
available from NTIS in the future. When available, the
NTIS ordering information will be forthcoming.

NIST

-

NIST-114A U.S. DEPARTMENT OF COMMERCE PUBLICATION OR REPOAT NUMSER
(REV. 3-89) NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY NISTIR 4353

2 PERFONMING ORGANIZATION REPORT NUMBER
BIBLIOGRAPHIC DATA SHEET

3. PUBLICATION DATR
JULY 1990

4. TITLE AND SUBTITLE

NIST STEP Working Form Programmer's Reference

5. AUTHOR(S)

Stephen Nowland Clark

6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) 7. CONTRACT/GRANT NUMBER

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

GAITHERSBURG, MD 20899 8. TYPE OF REPORY AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, 2IP)

10. SUPPLEMENTARY NOTES

I I DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

1. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. iF DOCUMENT INGLUDES A SIGNIFICANT BIBLIOGRAPHY OR
UTERATURE SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange

of product information among various manufacturing applications. The neutral exchange

medium for PDES product models is the STEP physical file format. The National PDES

Testbed at NIST has developed software to manipulate and translate STEP mocdels. This

software consists of an in-memory working form and an associated physiccl file parser,

STEPparse. The internal operation of the STEPparse parser is described. The implementation

of the data abstractions which make up the STEP Working Form is discussed, and specifi-

cations are given for the Working Form access functions. The creation of STEP translators

using STEPparse is discussed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS 8Y SEMICOLONS)

data modeling; PDES; product data exchange; schema independent software; STEP; STEP physical
file

13. AVAILABIITY 14. NUMBER OF PRINTED PAGES
X] ususereo 29
FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

15, PRICE
ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE, A03
WASHINGTON, DC 20402
—

X ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NT1S), SPRINGFIELD, VA 22181,

ELECTRONIC FORM

